xref: /netbsd-src/sys/miscfs/genfs/layer_vnops.c (revision c2f76ff004a2cb67efe5b12d97bd3ef7fe89e18d)
1 /*	$NetBSD: layer_vnops.c,v 1.46 2011/01/13 10:28:38 hannken Exp $	*/
2 
3 /*
4  * Copyright (c) 1999 National Aeronautics & Space Administration
5  * All rights reserved.
6  *
7  * This software was written by William Studenmund of the
8  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the National Aeronautics & Space Administration
19  *    nor the names of its contributors may be used to endorse or promote
20  *    products derived from this software without specific prior written
21  *    permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /*
37  * Copyright (c) 1992, 1993
38  *	The Regents of the University of California.  All rights reserved.
39  *
40  * This code is derived from software contributed to Berkeley by
41  * John Heidemann of the UCLA Ficus project.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of the University nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
68  *
69  * Ancestors:
70  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
71  *	Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
72  *	...and...
73  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
74  */
75 
76 /*
77  * Generic layer vnode operations.
78  *
79  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
80  * the core implementation of stacked file-systems.
81  *
82  * The layerfs duplicates a portion of the file system name space under
83  * a new name.  In this respect, it is similar to the loopback file system.
84  * It differs from the loopback fs in two respects: it is implemented using
85  * a stackable layers technique, and it is "layerfs-nodes" stack above all
86  * lower-layer vnodes, not just over directory vnodes.
87  *
88  * OPERATION OF LAYERFS
89  *
90  * The layerfs is the minimum file system layer, bypassing all possible
91  * operations to the lower layer for processing there.  The majority of its
92  * activity centers on the bypass routine, through which nearly all vnode
93  * operations pass.
94  *
95  * The bypass routine accepts arbitrary vnode operations for handling by
96  * the lower layer.  It begins by examining vnode operation arguments and
97  * replacing any layered nodes by their lower-layer equivalents.  It then
98  * invokes an operation on the lower layer.  Finally, it replaces the
99  * layered nodes in the arguments and, if a vnode is returned by the
100  * operation, stacks a layered node on top of the returned vnode.
101  *
102  * The bypass routine in this file, layer_bypass(), is suitable for use
103  * by many different layered filesystems. It can be used by multiple
104  * filesystems simultaneously. Alternatively, a layered fs may provide
105  * its own bypass routine, in which case layer_bypass() should be used as
106  * a model. For instance, the main functionality provided by umapfs, the user
107  * identity mapping file system, is handled by a custom bypass routine.
108  *
109  * Typically a layered fs registers its selected bypass routine as the
110  * default vnode operation in its vnodeopv_entry_desc table. Additionally
111  * the filesystem must store the bypass entry point in the layerm_bypass
112  * field of struct layer_mount. All other layer routines in this file will
113  * use the layerm_bypass() routine.
114  *
115  * Although the bypass routine handles most operations outright, a number
116  * of operations are special cased and handled by the layerfs.  For instance,
117  * layer_getattr() must change the fsid being returned.  While layer_lock()
118  * and layer_unlock() must handle any locking for the current vnode as well
119  * as pass the lock request down.  layer_inactive() and layer_reclaim() are
120  * not bypassed so that they can handle freeing layerfs-specific data.  Also,
121  * certain vnode operations (create, mknod, remove, link, rename, mkdir,
122  * rmdir, and symlink) change the locking state within the operation.  Ideally
123  * these operations should not change the lock state, but should be changed
124  * to let the caller of the function unlock them.  Otherwise, all intermediate
125  * vnode layers (such as union, umapfs, etc) must catch these functions to do
126  * the necessary locking at their layer.
127  *
128  * INSTANTIATING VNODE STACKS
129  *
130  * Mounting associates "layerfs-nodes" stack and lower layer, in effect
131  * stacking two VFSes.  The initial mount creates a single vnode stack for
132  * the root of the new layerfs.  All other vnode stacks are created as a
133  * result of vnode operations on this or other layerfs vnode stacks.
134  *
135  * New vnode stacks come into existence as a result of an operation which
136  * returns a vnode.  The bypass routine stacks a layerfs-node above the new
137  * vnode before returning it to the caller.
138  *
139  * For example, imagine mounting a null layer with:
140  *
141  *	"mount_null /usr/include /dev/layer/null"
142  *
143  * Changing directory to /dev/layer/null will assign the root layerfs-node,
144  * which was created when the null layer was mounted).  Now consider opening
145  * "sys".  A layer_lookup() would be performed on the root layerfs-node.
146  * This operation would bypass through to the lower layer which would return
147  * a vnode representing the UFS "sys".  Then, layer_bypass() builds a
148  * layerfs-node aliasing the UFS "sys" and returns this to the caller.
149  * Later operations on the layerfs-node "sys" will repeat this process when
150  * constructing other vnode stacks.
151  *
152  * INVOKING OPERATIONS ON LOWER LAYERS
153  *
154  * There are two techniques to invoke operations on a lower layer when the
155  * operation cannot be completely bypassed.  Each method is appropriate in
156  * different situations.  In both cases, it is the responsibility of the
157  * aliasing layer to make the operation arguments "correct" for the lower
158  * layer by mapping any vnode arguments to the lower layer.
159  *
160  * The first approach is to call the aliasing layer's bypass routine.  This
161  * method is most suitable when you wish to invoke the operation currently
162  * being handled on the lower layer.  It has the advantage that the bypass
163  * routine already must do argument mapping.  An example of this is
164  * layer_getattr().
165  *
166  * A second approach is to directly invoke vnode operations on the lower
167  * layer with the VOP_OPERATIONNAME interface.  The advantage of this method
168  * is that it is easy to invoke arbitrary operations on the lower layer.
169  * The disadvantage is that vnode's arguments must be manually mapped.
170  */
171 
172 #include <sys/cdefs.h>
173 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.46 2011/01/13 10:28:38 hannken Exp $");
174 
175 #include <sys/param.h>
176 #include <sys/systm.h>
177 #include <sys/proc.h>
178 #include <sys/time.h>
179 #include <sys/vnode.h>
180 #include <sys/mount.h>
181 #include <sys/namei.h>
182 #include <sys/kmem.h>
183 #include <sys/buf.h>
184 #include <sys/kauth.h>
185 
186 #include <miscfs/genfs/layer.h>
187 #include <miscfs/genfs/layer_extern.h>
188 #include <miscfs/genfs/genfs.h>
189 
190 /*
191  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
192  *		routine by John Heidemann.
193  *	The new element for this version is that the whole nullfs
194  * system gained the concept of locks on the lower node.
195  *    The 10-Apr-92 version was optimized for speed, throwing away some
196  * safety checks.  It should still always work, but it's not as
197  * robust to programmer errors.
198  *
199  * In general, we map all vnodes going down and unmap them on the way back.
200  *
201  * Also, some BSD vnode operations have the side effect of vrele'ing
202  * their arguments.  With stacking, the reference counts are held
203  * by the upper node, not the lower one, so we must handle these
204  * side-effects here.  This is not of concern in Sun-derived systems
205  * since there are no such side-effects.
206  *
207  * New for the 08-June-99 version: we also handle operations which unlock
208  * the passed-in node (typically they vput the node).
209  *
210  * This makes the following assumptions:
211  * - only one returned vpp
212  * - no INOUT vpp's (Sun's vop_open has one of these)
213  * - the vnode operation vector of the first vnode should be used
214  *   to determine what implementation of the op should be invoked
215  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
216  *   problems on rmdir'ing mount points and renaming?)
217  */
218 int
219 layer_bypass(void *v)
220 {
221 	struct vop_generic_args /* {
222 		struct vnodeop_desc *a_desc;
223 		<other random data follows, presumably>
224 	} */ *ap = v;
225 	int (**our_vnodeop_p)(void *);
226 	struct vnode **this_vp_p;
227 	int error;
228 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
229 	struct vnode **vps_p[VDESC_MAX_VPS];
230 	struct vnode ***vppp;
231 	struct mount *mp;
232 	struct vnodeop_desc *descp = ap->a_desc;
233 	int reles, i, flags;
234 
235 #ifdef DIAGNOSTIC
236 	/*
237 	 * We require at least one vp.
238 	 */
239 	if (descp->vdesc_vp_offsets == NULL ||
240 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
241 		panic("%s: no vp's in map.\n", __func__);
242 #endif
243 
244 	vps_p[0] =
245 	    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
246 	vp0 = *vps_p[0];
247 	mp = vp0->v_mount;
248 	flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
249 	our_vnodeop_p = vp0->v_op;
250 
251 	if (flags & LAYERFS_MBYPASSDEBUG)
252 		printf("%s: %s\n", __func__, descp->vdesc_name);
253 
254 	/*
255 	 * Map the vnodes going in.
256 	 * Later, we'll invoke the operation based on
257 	 * the first mapped vnode's operation vector.
258 	 */
259 	reles = descp->vdesc_flags;
260 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
261 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
262 			break;   /* bail out at end of list */
263 		vps_p[i] = this_vp_p =
264 		    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
265 		    ap);
266 		/*
267 		 * We're not guaranteed that any but the first vnode
268 		 * are of our type.  Check for and don't map any
269 		 * that aren't.  (We must always map first vp or vclean fails.)
270 		 */
271 		if (i && (*this_vp_p == NULL ||
272 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
273 			old_vps[i] = NULL;
274 		} else {
275 			old_vps[i] = *this_vp_p;
276 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
277 			/*
278 			 * XXX - Several operations have the side effect
279 			 * of vrele'ing their vp's.  We must account for
280 			 * that.  (This should go away in the future.)
281 			 */
282 			if (reles & VDESC_VP0_WILLRELE)
283 				vref(*this_vp_p);
284 		}
285 	}
286 
287 	/*
288 	 * Call the operation on the lower layer
289 	 * with the modified argument structure.
290 	 */
291 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
292 
293 	/*
294 	 * Maintain the illusion of call-by-value
295 	 * by restoring vnodes in the argument structure
296 	 * to their original value.
297 	 */
298 	reles = descp->vdesc_flags;
299 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
300 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
301 			break;   /* bail out at end of list */
302 		if (old_vps[i]) {
303 			*(vps_p[i]) = old_vps[i];
304 			if (reles & VDESC_VP0_WILLRELE)
305 				vrele(*(vps_p[i]));
306 		}
307 	}
308 
309 	/*
310 	 * Map the possible out-going vpp
311 	 * (Assumes that the lower layer always returns
312 	 * a VREF'ed vpp unless it gets an error.)
313 	 */
314 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
315 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
316 	    !error) {
317 		/*
318 		 * XXX - even though some ops have vpp returned vp's,
319 		 * several ops actually vrele this before returning.
320 		 * We must avoid these ops.
321 		 * (This should go away when these ops are regularized.)
322 		 */
323 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
324 			goto out;
325 		vppp = VOPARG_OFFSETTO(struct vnode***,
326 				 descp->vdesc_vpp_offset, ap);
327 		/*
328 		 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
329 		 * vop_mknod, and vop_symlink return vpp's. vop_bmap
330 		 * doesn't call bypass as the lower vpp is fine (we're just
331 		 * going to do i/o on it). vop_lookup doesn't call bypass
332 		 * as a lookup on "." would generate a locking error.
333 		 * So all the calls which get us here have a locked vpp. :-)
334 		 */
335 		error = layer_node_create(mp, **vppp, *vppp);
336 		if (error) {
337 			vput(**vppp);
338 			**vppp = NULL;
339 		}
340 	}
341 out:
342 	return error;
343 }
344 
345 /*
346  * We have to carry on the locking protocol on the layer vnodes
347  * as we progress through the tree. We also have to enforce read-only
348  * if this layer is mounted read-only.
349  */
350 int
351 layer_lookup(void *v)
352 {
353 	struct vop_lookup_args /* {
354 		struct vnodeop_desc *a_desc;
355 		struct vnode * a_dvp;
356 		struct vnode ** a_vpp;
357 		struct componentname * a_cnp;
358 	} */ *ap = v;
359 	struct componentname *cnp = ap->a_cnp;
360 	struct vnode *dvp, *lvp, *ldvp;
361 	int error, flags = cnp->cn_flags;
362 
363 	dvp = ap->a_dvp;
364 
365 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
366 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
367 		return EROFS;
368 
369 	ldvp = LAYERVPTOLOWERVP(dvp);
370 	ap->a_dvp = ldvp;
371 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
372 	lvp = *ap->a_vpp;
373 	*ap->a_vpp = NULL;
374 
375 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
376 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
377 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
378 		error = EROFS;
379 
380 	/*
381 	 * We must do the same locking and unlocking at this layer as
382 	 * is done in the layers below us.
383 	 */
384 	if (ldvp == lvp) {
385 		/*
386 		 * Got the same object back, because we looked up ".",
387 		 * or ".." in the root node of a mount point.
388 		 * So we make another reference to dvp and return it.
389 		 */
390 		vref(dvp);
391 		*ap->a_vpp = dvp;
392 		vrele(lvp);
393 	} else if (lvp != NULL) {
394 		/* Note: dvp, ldvp and lvp are all locked. */
395 		error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
396 		if (error) {
397 			vput(lvp);
398 		}
399 	}
400 	return error;
401 }
402 
403 /*
404  * Setattr call. Disallow write attempts if the layer is mounted read-only.
405  */
406 int
407 layer_setattr(void *v)
408 {
409 	struct vop_setattr_args /* {
410 		struct vnodeop_desc *a_desc;
411 		struct vnode *a_vp;
412 		struct vattr *a_vap;
413 		kauth_cred_t a_cred;
414 		struct lwp *a_l;
415 	} */ *ap = v;
416 	struct vnode *vp = ap->a_vp;
417 	struct vattr *vap = ap->a_vap;
418 
419   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
420 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
421 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
422 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
423 		return EROFS;
424 	if (vap->va_size != VNOVAL) {
425  		switch (vp->v_type) {
426  		case VDIR:
427  			return EISDIR;
428  		case VCHR:
429  		case VBLK:
430  		case VSOCK:
431  		case VFIFO:
432 			return 0;
433 		case VREG:
434 		case VLNK:
435  		default:
436 			/*
437 			 * Disallow write attempts if the filesystem is
438 			 * mounted read-only.
439 			 */
440 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
441 				return EROFS;
442 		}
443 	}
444 	return LAYERFS_DO_BYPASS(vp, ap);
445 }
446 
447 /*
448  *  We handle getattr only to change the fsid.
449  */
450 int
451 layer_getattr(void *v)
452 {
453 	struct vop_getattr_args /* {
454 		struct vnode *a_vp;
455 		struct vattr *a_vap;
456 		kauth_cred_t a_cred;
457 		struct lwp *a_l;
458 	} */ *ap = v;
459 	struct vnode *vp = ap->a_vp;
460 	int error;
461 
462 	error = LAYERFS_DO_BYPASS(vp, ap);
463 	if (error) {
464 		return error;
465 	}
466 	/* Requires that arguments be restored. */
467 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
468 	return 0;
469 }
470 
471 int
472 layer_access(void *v)
473 {
474 	struct vop_access_args /* {
475 		struct vnode *a_vp;
476 		int  a_mode;
477 		kauth_cred_t a_cred;
478 		struct lwp *a_l;
479 	} */ *ap = v;
480 	struct vnode *vp = ap->a_vp;
481 	mode_t mode = ap->a_mode;
482 
483 	/*
484 	 * Disallow write attempts on read-only layers;
485 	 * unless the file is a socket, fifo, or a block or
486 	 * character device resident on the file system.
487 	 */
488 	if (mode & VWRITE) {
489 		switch (vp->v_type) {
490 		case VDIR:
491 		case VLNK:
492 		case VREG:
493 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
494 				return EROFS;
495 			break;
496 		default:
497 			break;
498 		}
499 	}
500 	return LAYERFS_DO_BYPASS(vp, ap);
501 }
502 
503 /*
504  * We must handle open to be able to catch MNT_NODEV and friends.
505  */
506 int
507 layer_open(void *v)
508 {
509 	struct vop_open_args /* {
510 		const struct vnodeop_desc *a_desc;
511 		struct vnode *a_vp;
512 		int a_mode;
513 		kauth_cred_t a_cred;
514 	} */ *ap = v;
515 	struct vnode *vp = ap->a_vp;
516 	enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
517 
518 	if (((lower_type == VBLK) || (lower_type == VCHR)) &&
519 	    (vp->v_mount->mnt_flag & MNT_NODEV))
520 		return ENXIO;
521 
522 	return LAYERFS_DO_BYPASS(vp, ap);
523 }
524 
525 /*
526  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
527  * syncing the underlying vnodes, since they'll be fsync'ed when
528  * reclaimed; otherwise, pass it through to the underlying layer.
529  *
530  * XXX Do we still need to worry about shallow fsync?
531  */
532 int
533 layer_fsync(void *v)
534 {
535 	struct vop_fsync_args /* {
536 		struct vnode *a_vp;
537 		kauth_cred_t a_cred;
538 		int  a_flags;
539 		off_t offlo;
540 		off_t offhi;
541 		struct lwp *a_l;
542 	} */ *ap = v;
543 
544 	if (ap->a_flags & FSYNC_RECLAIM) {
545 		return 0;
546 	}
547 	return LAYERFS_DO_BYPASS(ap->a_vp, ap);
548 }
549 
550 int
551 layer_inactive(void *v)
552 {
553 	struct vop_inactive_args /* {
554 		struct vnode *a_vp;
555 		bool *a_recycle;
556 	} */ *ap = v;
557 	struct vnode *vp = ap->a_vp;
558 
559 	/*
560 	 * If we did a remove, don't cache the node.
561 	 */
562 	*ap->a_recycle = ((VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED) != 0);
563 
564 	/*
565 	 * Do nothing (and _don't_ bypass).
566 	 * Wait to vrele lowervp until reclaim,
567 	 * so that until then our layer_node is in the
568 	 * cache and reusable.
569 	 *
570 	 * NEEDSWORK: Someday, consider inactive'ing
571 	 * the lowervp and then trying to reactivate it
572 	 * with capabilities (v_id)
573 	 * like they do in the name lookup cache code.
574 	 * That's too much work for now.
575 	 */
576 	VOP_UNLOCK(vp);
577 	return 0;
578 }
579 
580 int
581 layer_remove(void *v)
582 {
583 	struct vop_remove_args /* {
584 		struct vonde		*a_dvp;
585 		struct vnode		*a_vp;
586 		struct componentname	*a_cnp;
587 	} */ *ap = v;
588 	struct vnode *vp = ap->a_vp;
589 	int error;
590 
591 	vref(vp);
592 	error = LAYERFS_DO_BYPASS(vp, ap);
593 	if (error == 0) {
594 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
595 	}
596 	vrele(vp);
597 
598 	return error;
599 }
600 
601 int
602 layer_rename(void *v)
603 {
604 	struct vop_rename_args  /* {
605 		struct vnode		*a_fdvp;
606 		struct vnode		*a_fvp;
607 		struct componentname	*a_fcnp;
608 		struct vnode		*a_tdvp;
609 		struct vnode		*a_tvp;
610 		struct componentname	*a_tcnp;
611 	} */ *ap = v;
612 	struct vnode *fdvp = ap->a_fdvp, *tvp;
613 	int error;
614 
615 	tvp = ap->a_tvp;
616 	if (tvp) {
617 		if (tvp->v_mount != fdvp->v_mount)
618 			tvp = NULL;
619 		else
620 			vref(tvp);
621 	}
622 	error = LAYERFS_DO_BYPASS(fdvp, ap);
623 	if (tvp) {
624 		if (error == 0)
625 			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
626 		vrele(tvp);
627 	}
628 	return error;
629 }
630 
631 int
632 layer_rmdir(void *v)
633 {
634 	struct vop_rmdir_args /* {
635 		struct vnode		*a_dvp;
636 		struct vnode		*a_vp;
637 		struct componentname	*a_cnp;
638 	} */ *ap = v;
639 	int		error;
640 	struct vnode	*vp = ap->a_vp;
641 
642 	vref(vp);
643 	error = LAYERFS_DO_BYPASS(vp, ap);
644 	if (error == 0) {
645 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
646 	}
647 	vrele(vp);
648 
649 	return error;
650 }
651 
652 int
653 layer_revoke(void *v)
654 {
655         struct vop_revoke_args /* {
656 		struct vnode *a_vp;
657 		int a_flags;
658 	} */ *ap = v;
659 	struct vnode *vp = ap->a_vp;
660 	struct vnode *lvp = LAYERVPTOLOWERVP(vp);
661 	int error;
662 
663 	/*
664 	 * We will most likely end up in vclean which uses the v_usecount
665 	 * to determine if a vnode is active.  Take an extra reference on
666 	 * the lower vnode so it will always close and inactivate.
667 	 */
668 	vref(lvp);
669 	error = LAYERFS_DO_BYPASS(vp, ap);
670 	vrele(lvp);
671 
672 	return error;
673 }
674 
675 int
676 layer_reclaim(void *v)
677 {
678 	struct vop_reclaim_args /* {
679 		struct vnode *a_vp;
680 		struct lwp *a_l;
681 	} */ *ap = v;
682 	struct vnode *vp = ap->a_vp;
683 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
684 	struct layer_node *xp = VTOLAYER(vp);
685 	struct vnode *lowervp = xp->layer_lowervp;
686 
687 	/*
688 	 * Note: in vop_reclaim, the node's struct lock has been
689 	 * decomissioned, so we have to be careful about calling
690 	 * VOP's on ourself.  We must be careful as VXLOCK is set.
691 	 */
692 	if (vp == lmp->layerm_rootvp) {
693 		/*
694 		 * Oops! We no longer have a root node. Most likely reason is
695 		 * that someone forcably unmunted the underlying fs.
696 		 *
697 		 * Now getting the root vnode will fail. We're dead. :-(
698 		 */
699 		lmp->layerm_rootvp = NULL;
700 	}
701 	/* After this assignment, this node will not be re-used. */
702 	xp->layer_lowervp = NULL;
703 	mutex_enter(&lmp->layerm_hashlock);
704 	LIST_REMOVE(xp, layer_hash);
705 	mutex_exit(&lmp->layerm_hashlock);
706 	kmem_free(vp->v_data, lmp->layerm_size);
707 	vp->v_data = NULL;
708 	vrele(lowervp);
709 
710 	return 0;
711 }
712 
713 /*
714  * We just feed the returned vnode up to the caller - there's no need
715  * to build a layer node on top of the node on which we're going to do
716  * i/o. :-)
717  */
718 int
719 layer_bmap(void *v)
720 {
721 	struct vop_bmap_args /* {
722 		struct vnode *a_vp;
723 		daddr_t  a_bn;
724 		struct vnode **a_vpp;
725 		daddr_t *a_bnp;
726 		int *a_runp;
727 	} */ *ap = v;
728 	struct vnode *vp;
729 
730 	vp = LAYERVPTOLOWERVP(ap->a_vp);
731 	ap->a_vp = vp;
732 
733 	return VCALL(vp, ap->a_desc->vdesc_offset, ap);
734 }
735 
736 int
737 layer_print(void *v)
738 {
739 	struct vop_print_args /* {
740 		struct vnode *a_vp;
741 	} */ *ap = v;
742 	struct vnode *vp = ap->a_vp;
743 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
744 	return 0;
745 }
746 
747 /*
748  * XXX - vop_bwrite must be hand coded because it has no
749  * vnode in its arguments.
750  * This goes away with a merged VM/buffer cache.
751  */
752 int
753 layer_bwrite(void *v)
754 {
755 	struct vop_bwrite_args /* {
756 		struct buf *a_bp;
757 	} */ *ap = v;
758 	struct buf *bp = ap->a_bp;
759 	struct vnode *savedvp;
760 	int error;
761 
762 	savedvp = bp->b_vp;
763 	bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
764 	error = VOP_BWRITE(bp);
765 	bp->b_vp = savedvp;
766 
767 	return error;
768 }
769 
770 int
771 layer_getpages(void *v)
772 {
773 	struct vop_getpages_args /* {
774 		struct vnode *a_vp;
775 		voff_t a_offset;
776 		struct vm_page **a_m;
777 		int *a_count;
778 		int a_centeridx;
779 		vm_prot_t a_access_type;
780 		int a_advice;
781 		int a_flags;
782 	} */ *ap = v;
783 	struct vnode *vp = ap->a_vp;
784 	int error;
785 
786 	/*
787 	 * just pass the request on to the underlying layer.
788 	 */
789 
790 	if (ap->a_flags & PGO_LOCKED) {
791 		return EBUSY;
792 	}
793 	ap->a_vp = LAYERVPTOLOWERVP(vp);
794 	mutex_exit(&vp->v_interlock);
795 	mutex_enter(&ap->a_vp->v_interlock);
796 	error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
797 	return error;
798 }
799 
800 int
801 layer_putpages(void *v)
802 {
803 	struct vop_putpages_args /* {
804 		struct vnode *a_vp;
805 		voff_t a_offlo;
806 		voff_t a_offhi;
807 		int a_flags;
808 	} */ *ap = v;
809 	struct vnode *vp = ap->a_vp;
810 	int error;
811 
812 	/*
813 	 * just pass the request on to the underlying layer.
814 	 */
815 
816 	ap->a_vp = LAYERVPTOLOWERVP(vp);
817 	mutex_exit(&vp->v_interlock);
818 	if (ap->a_flags & PGO_RECLAIM) {
819 		return 0;
820 	}
821 	mutex_enter(&ap->a_vp->v_interlock);
822 	error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
823 	return error;
824 }
825