xref: /netbsd-src/sys/miscfs/genfs/layer_vnops.c (revision ba65fde2d7fefa7d39838fa5fa855e62bd606b5e)
1 /*	$NetBSD: layer_vnops.c,v 1.51 2012/10/10 06:55:25 dholland Exp $	*/
2 
3 /*
4  * Copyright (c) 1999 National Aeronautics & Space Administration
5  * All rights reserved.
6  *
7  * This software was written by William Studenmund of the
8  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the National Aeronautics & Space Administration
19  *    nor the names of its contributors may be used to endorse or promote
20  *    products derived from this software without specific prior written
21  *    permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /*
37  * Copyright (c) 1992, 1993
38  *	The Regents of the University of California.  All rights reserved.
39  *
40  * This code is derived from software contributed to Berkeley by
41  * John Heidemann of the UCLA Ficus project.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of the University nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
68  *
69  * Ancestors:
70  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
71  *	Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
72  *	...and...
73  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
74  */
75 
76 /*
77  * Generic layer vnode operations.
78  *
79  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
80  * the core implementation of stacked file-systems.
81  *
82  * The layerfs duplicates a portion of the file system name space under
83  * a new name.  In this respect, it is similar to the loopback file system.
84  * It differs from the loopback fs in two respects: it is implemented using
85  * a stackable layers technique, and it is "layerfs-nodes" stack above all
86  * lower-layer vnodes, not just over directory vnodes.
87  *
88  * OPERATION OF LAYERFS
89  *
90  * The layerfs is the minimum file system layer, bypassing all possible
91  * operations to the lower layer for processing there.  The majority of its
92  * activity centers on the bypass routine, through which nearly all vnode
93  * operations pass.
94  *
95  * The bypass routine accepts arbitrary vnode operations for handling by
96  * the lower layer.  It begins by examining vnode operation arguments and
97  * replacing any layered nodes by their lower-layer equivalents.  It then
98  * invokes an operation on the lower layer.  Finally, it replaces the
99  * layered nodes in the arguments and, if a vnode is returned by the
100  * operation, stacks a layered node on top of the returned vnode.
101  *
102  * The bypass routine in this file, layer_bypass(), is suitable for use
103  * by many different layered filesystems. It can be used by multiple
104  * filesystems simultaneously. Alternatively, a layered fs may provide
105  * its own bypass routine, in which case layer_bypass() should be used as
106  * a model. For instance, the main functionality provided by umapfs, the user
107  * identity mapping file system, is handled by a custom bypass routine.
108  *
109  * Typically a layered fs registers its selected bypass routine as the
110  * default vnode operation in its vnodeopv_entry_desc table. Additionally
111  * the filesystem must store the bypass entry point in the layerm_bypass
112  * field of struct layer_mount. All other layer routines in this file will
113  * use the layerm_bypass() routine.
114  *
115  * Although the bypass routine handles most operations outright, a number
116  * of operations are special cased and handled by the layerfs.  For instance,
117  * layer_getattr() must change the fsid being returned.  While layer_lock()
118  * and layer_unlock() must handle any locking for the current vnode as well
119  * as pass the lock request down.  layer_inactive() and layer_reclaim() are
120  * not bypassed so that they can handle freeing layerfs-specific data.  Also,
121  * certain vnode operations (create, mknod, remove, link, rename, mkdir,
122  * rmdir, and symlink) change the locking state within the operation.  Ideally
123  * these operations should not change the lock state, but should be changed
124  * to let the caller of the function unlock them.  Otherwise, all intermediate
125  * vnode layers (such as union, umapfs, etc) must catch these functions to do
126  * the necessary locking at their layer.
127  *
128  * INSTANTIATING VNODE STACKS
129  *
130  * Mounting associates "layerfs-nodes" stack and lower layer, in effect
131  * stacking two VFSes.  The initial mount creates a single vnode stack for
132  * the root of the new layerfs.  All other vnode stacks are created as a
133  * result of vnode operations on this or other layerfs vnode stacks.
134  *
135  * New vnode stacks come into existence as a result of an operation which
136  * returns a vnode.  The bypass routine stacks a layerfs-node above the new
137  * vnode before returning it to the caller.
138  *
139  * For example, imagine mounting a null layer with:
140  *
141  *	"mount_null /usr/include /dev/layer/null"
142  *
143  * Changing directory to /dev/layer/null will assign the root layerfs-node,
144  * which was created when the null layer was mounted).  Now consider opening
145  * "sys".  A layer_lookup() would be performed on the root layerfs-node.
146  * This operation would bypass through to the lower layer which would return
147  * a vnode representing the UFS "sys".  Then, layer_bypass() builds a
148  * layerfs-node aliasing the UFS "sys" and returns this to the caller.
149  * Later operations on the layerfs-node "sys" will repeat this process when
150  * constructing other vnode stacks.
151  *
152  * INVOKING OPERATIONS ON LOWER LAYERS
153  *
154  * There are two techniques to invoke operations on a lower layer when the
155  * operation cannot be completely bypassed.  Each method is appropriate in
156  * different situations.  In both cases, it is the responsibility of the
157  * aliasing layer to make the operation arguments "correct" for the lower
158  * layer by mapping any vnode arguments to the lower layer.
159  *
160  * The first approach is to call the aliasing layer's bypass routine.  This
161  * method is most suitable when you wish to invoke the operation currently
162  * being handled on the lower layer.  It has the advantage that the bypass
163  * routine already must do argument mapping.  An example of this is
164  * layer_getattr().
165  *
166  * A second approach is to directly invoke vnode operations on the lower
167  * layer with the VOP_OPERATIONNAME interface.  The advantage of this method
168  * is that it is easy to invoke arbitrary operations on the lower layer.
169  * The disadvantage is that vnode's arguments must be manually mapped.
170  */
171 
172 #include <sys/cdefs.h>
173 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.51 2012/10/10 06:55:25 dholland Exp $");
174 
175 #include <sys/param.h>
176 #include <sys/systm.h>
177 #include <sys/proc.h>
178 #include <sys/time.h>
179 #include <sys/vnode.h>
180 #include <sys/mount.h>
181 #include <sys/namei.h>
182 #include <sys/kmem.h>
183 #include <sys/buf.h>
184 #include <sys/kauth.h>
185 
186 #include <miscfs/genfs/layer.h>
187 #include <miscfs/genfs/layer_extern.h>
188 #include <miscfs/genfs/genfs.h>
189 #include <miscfs/specfs/specdev.h>
190 
191 /*
192  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
193  *		routine by John Heidemann.
194  *	The new element for this version is that the whole nullfs
195  * system gained the concept of locks on the lower node.
196  *    The 10-Apr-92 version was optimized for speed, throwing away some
197  * safety checks.  It should still always work, but it's not as
198  * robust to programmer errors.
199  *
200  * In general, we map all vnodes going down and unmap them on the way back.
201  *
202  * Also, some BSD vnode operations have the side effect of vrele'ing
203  * their arguments.  With stacking, the reference counts are held
204  * by the upper node, not the lower one, so we must handle these
205  * side-effects here.  This is not of concern in Sun-derived systems
206  * since there are no such side-effects.
207  *
208  * New for the 08-June-99 version: we also handle operations which unlock
209  * the passed-in node (typically they vput the node).
210  *
211  * This makes the following assumptions:
212  * - only one returned vpp
213  * - no INOUT vpp's (Sun's vop_open has one of these)
214  * - the vnode operation vector of the first vnode should be used
215  *   to determine what implementation of the op should be invoked
216  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
217  *   problems on rmdir'ing mount points and renaming?)
218  */
219 int
220 layer_bypass(void *v)
221 {
222 	struct vop_generic_args /* {
223 		struct vnodeop_desc *a_desc;
224 		<other random data follows, presumably>
225 	} */ *ap = v;
226 	int (**our_vnodeop_p)(void *);
227 	struct vnode **this_vp_p;
228 	int error;
229 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
230 	struct vnode **vps_p[VDESC_MAX_VPS];
231 	struct vnode ***vppp;
232 	struct mount *mp;
233 	struct vnodeop_desc *descp = ap->a_desc;
234 	int reles, i, flags;
235 
236 #ifdef DIAGNOSTIC
237 	/*
238 	 * We require at least one vp.
239 	 */
240 	if (descp->vdesc_vp_offsets == NULL ||
241 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
242 		panic("%s: no vp's in map.\n", __func__);
243 #endif
244 
245 	vps_p[0] =
246 	    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
247 	vp0 = *vps_p[0];
248 	mp = vp0->v_mount;
249 	flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
250 	our_vnodeop_p = vp0->v_op;
251 
252 	if (flags & LAYERFS_MBYPASSDEBUG)
253 		printf("%s: %s\n", __func__, descp->vdesc_name);
254 
255 	/*
256 	 * Map the vnodes going in.
257 	 * Later, we'll invoke the operation based on
258 	 * the first mapped vnode's operation vector.
259 	 */
260 	reles = descp->vdesc_flags;
261 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
262 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
263 			break;   /* bail out at end of list */
264 		vps_p[i] = this_vp_p =
265 		    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
266 		    ap);
267 		/*
268 		 * We're not guaranteed that any but the first vnode
269 		 * are of our type.  Check for and don't map any
270 		 * that aren't.  (We must always map first vp or vclean fails.)
271 		 */
272 		if (i && (*this_vp_p == NULL ||
273 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
274 			old_vps[i] = NULL;
275 		} else {
276 			old_vps[i] = *this_vp_p;
277 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
278 			/*
279 			 * XXX - Several operations have the side effect
280 			 * of vrele'ing their vp's.  We must account for
281 			 * that.  (This should go away in the future.)
282 			 */
283 			if (reles & VDESC_VP0_WILLRELE)
284 				vref(*this_vp_p);
285 		}
286 	}
287 
288 	/*
289 	 * Call the operation on the lower layer
290 	 * with the modified argument structure.
291 	 */
292 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
293 
294 	/*
295 	 * Maintain the illusion of call-by-value
296 	 * by restoring vnodes in the argument structure
297 	 * to their original value.
298 	 */
299 	reles = descp->vdesc_flags;
300 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
301 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
302 			break;   /* bail out at end of list */
303 		if (old_vps[i]) {
304 			*(vps_p[i]) = old_vps[i];
305 			if (reles & VDESC_VP0_WILLRELE)
306 				vrele(*(vps_p[i]));
307 		}
308 	}
309 
310 	/*
311 	 * Map the possible out-going vpp
312 	 * (Assumes that the lower layer always returns
313 	 * a VREF'ed vpp unless it gets an error.)
314 	 */
315 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) {
316 		vppp = VOPARG_OFFSETTO(struct vnode***,
317 				 descp->vdesc_vpp_offset, ap);
318 		/*
319 		 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
320 		 * vop_mknod, and vop_symlink return vpp's. vop_bmap
321 		 * doesn't call bypass as the lower vpp is fine (we're just
322 		 * going to do i/o on it). vop_lookup doesn't call bypass
323 		 * as a lookup on "." would generate a locking error.
324 		 * So all the calls which get us here have a locked vpp. :-)
325 		 */
326 		error = layer_node_create(mp, **vppp, *vppp);
327 		if (error) {
328 			vput(**vppp);
329 			**vppp = NULL;
330 		}
331 	}
332 	return error;
333 }
334 
335 /*
336  * We have to carry on the locking protocol on the layer vnodes
337  * as we progress through the tree. We also have to enforce read-only
338  * if this layer is mounted read-only.
339  */
340 int
341 layer_lookup(void *v)
342 {
343 	struct vop_lookup_args /* {
344 		struct vnodeop_desc *a_desc;
345 		struct vnode * a_dvp;
346 		struct vnode ** a_vpp;
347 		struct componentname * a_cnp;
348 	} */ *ap = v;
349 	struct componentname *cnp = ap->a_cnp;
350 	struct vnode *dvp, *lvp, *ldvp;
351 	int error, flags = cnp->cn_flags;
352 
353 	dvp = ap->a_dvp;
354 
355 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
356 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) {
357 		*ap->a_vpp = NULL;
358 		return EROFS;
359 	}
360 
361 	ldvp = LAYERVPTOLOWERVP(dvp);
362 	ap->a_dvp = ldvp;
363 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
364 	lvp = *ap->a_vpp;
365 	*ap->a_vpp = NULL;
366 
367 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
368 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
369 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
370 		error = EROFS;
371 
372 	/*
373 	 * We must do the same locking and unlocking at this layer as
374 	 * is done in the layers below us.
375 	 */
376 	if (ldvp == lvp) {
377 		/*
378 		 * Got the same object back, because we looked up ".",
379 		 * or ".." in the root node of a mount point.
380 		 * So we make another reference to dvp and return it.
381 		 */
382 		vref(dvp);
383 		*ap->a_vpp = dvp;
384 		vrele(lvp);
385 	} else if (lvp != NULL) {
386 		/* Note: dvp, ldvp and lvp are all locked. */
387 		error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
388 		if (error) {
389 			vput(lvp);
390 		}
391 	}
392 	return error;
393 }
394 
395 /*
396  * Setattr call. Disallow write attempts if the layer is mounted read-only.
397  */
398 int
399 layer_setattr(void *v)
400 {
401 	struct vop_setattr_args /* {
402 		struct vnodeop_desc *a_desc;
403 		struct vnode *a_vp;
404 		struct vattr *a_vap;
405 		kauth_cred_t a_cred;
406 		struct lwp *a_l;
407 	} */ *ap = v;
408 	struct vnode *vp = ap->a_vp;
409 	struct vattr *vap = ap->a_vap;
410 
411   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
412 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
413 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
414 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
415 		return EROFS;
416 	if (vap->va_size != VNOVAL) {
417  		switch (vp->v_type) {
418  		case VDIR:
419  			return EISDIR;
420  		case VCHR:
421  		case VBLK:
422  		case VSOCK:
423  		case VFIFO:
424 			return 0;
425 		case VREG:
426 		case VLNK:
427  		default:
428 			/*
429 			 * Disallow write attempts if the filesystem is
430 			 * mounted read-only.
431 			 */
432 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
433 				return EROFS;
434 		}
435 	}
436 	return LAYERFS_DO_BYPASS(vp, ap);
437 }
438 
439 /*
440  *  We handle getattr only to change the fsid.
441  */
442 int
443 layer_getattr(void *v)
444 {
445 	struct vop_getattr_args /* {
446 		struct vnode *a_vp;
447 		struct vattr *a_vap;
448 		kauth_cred_t a_cred;
449 		struct lwp *a_l;
450 	} */ *ap = v;
451 	struct vnode *vp = ap->a_vp;
452 	int error;
453 
454 	error = LAYERFS_DO_BYPASS(vp, ap);
455 	if (error) {
456 		return error;
457 	}
458 	/* Requires that arguments be restored. */
459 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
460 	return 0;
461 }
462 
463 int
464 layer_access(void *v)
465 {
466 	struct vop_access_args /* {
467 		struct vnode *a_vp;
468 		int  a_mode;
469 		kauth_cred_t a_cred;
470 		struct lwp *a_l;
471 	} */ *ap = v;
472 	struct vnode *vp = ap->a_vp;
473 	mode_t mode = ap->a_mode;
474 
475 	/*
476 	 * Disallow write attempts on read-only layers;
477 	 * unless the file is a socket, fifo, or a block or
478 	 * character device resident on the file system.
479 	 */
480 	if (mode & VWRITE) {
481 		switch (vp->v_type) {
482 		case VDIR:
483 		case VLNK:
484 		case VREG:
485 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
486 				return EROFS;
487 			break;
488 		default:
489 			break;
490 		}
491 	}
492 	return LAYERFS_DO_BYPASS(vp, ap);
493 }
494 
495 /*
496  * We must handle open to be able to catch MNT_NODEV and friends.
497  */
498 int
499 layer_open(void *v)
500 {
501 	struct vop_open_args /* {
502 		const struct vnodeop_desc *a_desc;
503 		struct vnode *a_vp;
504 		int a_mode;
505 		kauth_cred_t a_cred;
506 	} */ *ap = v;
507 	struct vnode *vp = ap->a_vp;
508 	enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
509 
510 	if (((lower_type == VBLK) || (lower_type == VCHR)) &&
511 	    (vp->v_mount->mnt_flag & MNT_NODEV))
512 		return ENXIO;
513 
514 	return LAYERFS_DO_BYPASS(vp, ap);
515 }
516 
517 /*
518  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
519  * syncing the underlying vnodes, since they'll be fsync'ed when
520  * reclaimed; otherwise, pass it through to the underlying layer.
521  *
522  * XXX Do we still need to worry about shallow fsync?
523  */
524 int
525 layer_fsync(void *v)
526 {
527 	struct vop_fsync_args /* {
528 		struct vnode *a_vp;
529 		kauth_cred_t a_cred;
530 		int  a_flags;
531 		off_t offlo;
532 		off_t offhi;
533 		struct lwp *a_l;
534 	} */ *ap = v;
535 	int error;
536 
537 	if (ap->a_flags & FSYNC_RECLAIM) {
538 		return 0;
539 	}
540 	if (ap->a_vp->v_type == VBLK || ap->a_vp->v_type == VCHR) {
541 		error = spec_fsync(v);
542 		if (error)
543 			return error;
544 	}
545 	return LAYERFS_DO_BYPASS(ap->a_vp, ap);
546 }
547 
548 int
549 layer_inactive(void *v)
550 {
551 	struct vop_inactive_args /* {
552 		struct vnode *a_vp;
553 		bool *a_recycle;
554 	} */ *ap = v;
555 	struct vnode *vp = ap->a_vp;
556 
557 	/*
558 	 * If we did a remove, don't cache the node.
559 	 */
560 	*ap->a_recycle = ((VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED) != 0);
561 
562 	/*
563 	 * Do nothing (and _don't_ bypass).
564 	 * Wait to vrele lowervp until reclaim,
565 	 * so that until then our layer_node is in the
566 	 * cache and reusable.
567 	 *
568 	 * NEEDSWORK: Someday, consider inactive'ing
569 	 * the lowervp and then trying to reactivate it
570 	 * with capabilities (v_id)
571 	 * like they do in the name lookup cache code.
572 	 * That's too much work for now.
573 	 */
574 	VOP_UNLOCK(vp);
575 	return 0;
576 }
577 
578 int
579 layer_remove(void *v)
580 {
581 	struct vop_remove_args /* {
582 		struct vonde		*a_dvp;
583 		struct vnode		*a_vp;
584 		struct componentname	*a_cnp;
585 	} */ *ap = v;
586 	struct vnode *vp = ap->a_vp;
587 	int error;
588 
589 	vref(vp);
590 	error = LAYERFS_DO_BYPASS(vp, ap);
591 	if (error == 0) {
592 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
593 	}
594 	vrele(vp);
595 
596 	return error;
597 }
598 
599 int
600 layer_rename(void *v)
601 {
602 	struct vop_rename_args  /* {
603 		struct vnode		*a_fdvp;
604 		struct vnode		*a_fvp;
605 		struct componentname	*a_fcnp;
606 		struct vnode		*a_tdvp;
607 		struct vnode		*a_tvp;
608 		struct componentname	*a_tcnp;
609 	} */ *ap = v;
610 	struct vnode *fdvp = ap->a_fdvp, *tvp;
611 	int error;
612 
613 	tvp = ap->a_tvp;
614 	if (tvp) {
615 		if (tvp->v_mount != fdvp->v_mount)
616 			tvp = NULL;
617 		else
618 			vref(tvp);
619 	}
620 	error = LAYERFS_DO_BYPASS(fdvp, ap);
621 	if (tvp) {
622 		if (error == 0)
623 			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
624 		vrele(tvp);
625 	}
626 	return error;
627 }
628 
629 int
630 layer_rmdir(void *v)
631 {
632 	struct vop_rmdir_args /* {
633 		struct vnode		*a_dvp;
634 		struct vnode		*a_vp;
635 		struct componentname	*a_cnp;
636 	} */ *ap = v;
637 	int		error;
638 	struct vnode	*vp = ap->a_vp;
639 
640 	vref(vp);
641 	error = LAYERFS_DO_BYPASS(vp, ap);
642 	if (error == 0) {
643 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
644 	}
645 	vrele(vp);
646 
647 	return error;
648 }
649 
650 int
651 layer_revoke(void *v)
652 {
653         struct vop_revoke_args /* {
654 		struct vnode *a_vp;
655 		int a_flags;
656 	} */ *ap = v;
657 	struct vnode *vp = ap->a_vp;
658 	struct vnode *lvp = LAYERVPTOLOWERVP(vp);
659 	int error;
660 
661 	/*
662 	 * We will most likely end up in vclean which uses the v_usecount
663 	 * to determine if a vnode is active.  Take an extra reference on
664 	 * the lower vnode so it will always close and inactivate.
665 	 */
666 	vref(lvp);
667 	error = LAYERFS_DO_BYPASS(vp, ap);
668 	vrele(lvp);
669 
670 	return error;
671 }
672 
673 int
674 layer_reclaim(void *v)
675 {
676 	struct vop_reclaim_args /* {
677 		struct vnode *a_vp;
678 		struct lwp *a_l;
679 	} */ *ap = v;
680 	struct vnode *vp = ap->a_vp;
681 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
682 	struct layer_node *xp = VTOLAYER(vp);
683 	struct vnode *lowervp = xp->layer_lowervp;
684 
685 	/*
686 	 * Note: in vop_reclaim, the node's struct lock has been
687 	 * decomissioned, so we have to be careful about calling
688 	 * VOP's on ourself.  We must be careful as VXLOCK is set.
689 	 */
690 	if (vp == lmp->layerm_rootvp) {
691 		/*
692 		 * Oops! We no longer have a root node. Most likely reason is
693 		 * that someone forcably unmunted the underlying fs.
694 		 *
695 		 * Now getting the root vnode will fail. We're dead. :-(
696 		 */
697 		lmp->layerm_rootvp = NULL;
698 	}
699 	/* After this assignment, this node will not be re-used. */
700 	xp->layer_lowervp = NULL;
701 	mutex_enter(&lmp->layerm_hashlock);
702 	LIST_REMOVE(xp, layer_hash);
703 	mutex_exit(&lmp->layerm_hashlock);
704 	kmem_free(vp->v_data, lmp->layerm_size);
705 	vp->v_data = NULL;
706 	vrele(lowervp);
707 
708 	return 0;
709 }
710 
711 /*
712  * We just feed the returned vnode up to the caller - there's no need
713  * to build a layer node on top of the node on which we're going to do
714  * i/o. :-)
715  */
716 int
717 layer_bmap(void *v)
718 {
719 	struct vop_bmap_args /* {
720 		struct vnode *a_vp;
721 		daddr_t  a_bn;
722 		struct vnode **a_vpp;
723 		daddr_t *a_bnp;
724 		int *a_runp;
725 	} */ *ap = v;
726 	struct vnode *vp;
727 
728 	vp = LAYERVPTOLOWERVP(ap->a_vp);
729 	ap->a_vp = vp;
730 
731 	return VCALL(vp, ap->a_desc->vdesc_offset, ap);
732 }
733 
734 int
735 layer_print(void *v)
736 {
737 	struct vop_print_args /* {
738 		struct vnode *a_vp;
739 	} */ *ap = v;
740 	struct vnode *vp = ap->a_vp;
741 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
742 	return 0;
743 }
744 
745 int
746 layer_getpages(void *v)
747 {
748 	struct vop_getpages_args /* {
749 		struct vnode *a_vp;
750 		voff_t a_offset;
751 		struct vm_page **a_m;
752 		int *a_count;
753 		int a_centeridx;
754 		vm_prot_t a_access_type;
755 		int a_advice;
756 		int a_flags;
757 	} */ *ap = v;
758 	struct vnode *vp = ap->a_vp;
759 
760 	KASSERT(mutex_owned(vp->v_interlock));
761 
762 	if (ap->a_flags & PGO_LOCKED) {
763 		return EBUSY;
764 	}
765 	ap->a_vp = LAYERVPTOLOWERVP(vp);
766 	KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
767 
768 	/* Just pass the request on to the underlying layer. */
769 	return VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
770 }
771 
772 int
773 layer_putpages(void *v)
774 {
775 	struct vop_putpages_args /* {
776 		struct vnode *a_vp;
777 		voff_t a_offlo;
778 		voff_t a_offhi;
779 		int a_flags;
780 	} */ *ap = v;
781 	struct vnode *vp = ap->a_vp;
782 
783 	KASSERT(mutex_owned(vp->v_interlock));
784 
785 	ap->a_vp = LAYERVPTOLOWERVP(vp);
786 	KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
787 
788 	if (ap->a_flags & PGO_RECLAIM) {
789 		mutex_exit(vp->v_interlock);
790 		return 0;
791 	}
792 
793 	/* Just pass the request on to the underlying layer. */
794 	return VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
795 }
796