xref: /netbsd-src/sys/miscfs/genfs/layer_vnops.c (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1 /*	$NetBSD: layer_vnops.c,v 1.58 2014/05/25 13:51:25 hannken Exp $	*/
2 
3 /*
4  * Copyright (c) 1999 National Aeronautics & Space Administration
5  * All rights reserved.
6  *
7  * This software was written by William Studenmund of the
8  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the National Aeronautics & Space Administration
19  *    nor the names of its contributors may be used to endorse or promote
20  *    products derived from this software without specific prior written
21  *    permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /*
37  * Copyright (c) 1992, 1993
38  *	The Regents of the University of California.  All rights reserved.
39  *
40  * This code is derived from software contributed to Berkeley by
41  * John Heidemann of the UCLA Ficus project.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of the University nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
68  *
69  * Ancestors:
70  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
71  *	Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
72  *	...and...
73  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
74  */
75 
76 /*
77  * Generic layer vnode operations.
78  *
79  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
80  * the core implementation of stacked file-systems.
81  *
82  * The layerfs duplicates a portion of the file system name space under
83  * a new name.  In this respect, it is similar to the loopback file system.
84  * It differs from the loopback fs in two respects: it is implemented using
85  * a stackable layers technique, and it is "layerfs-nodes" stack above all
86  * lower-layer vnodes, not just over directory vnodes.
87  *
88  * OPERATION OF LAYERFS
89  *
90  * The layerfs is the minimum file system layer, bypassing all possible
91  * operations to the lower layer for processing there.  The majority of its
92  * activity centers on the bypass routine, through which nearly all vnode
93  * operations pass.
94  *
95  * The bypass routine accepts arbitrary vnode operations for handling by
96  * the lower layer.  It begins by examining vnode operation arguments and
97  * replacing any layered nodes by their lower-layer equivalents.  It then
98  * invokes an operation on the lower layer.  Finally, it replaces the
99  * layered nodes in the arguments and, if a vnode is returned by the
100  * operation, stacks a layered node on top of the returned vnode.
101  *
102  * The bypass routine in this file, layer_bypass(), is suitable for use
103  * by many different layered filesystems. It can be used by multiple
104  * filesystems simultaneously. Alternatively, a layered fs may provide
105  * its own bypass routine, in which case layer_bypass() should be used as
106  * a model. For instance, the main functionality provided by umapfs, the user
107  * identity mapping file system, is handled by a custom bypass routine.
108  *
109  * Typically a layered fs registers its selected bypass routine as the
110  * default vnode operation in its vnodeopv_entry_desc table. Additionally
111  * the filesystem must store the bypass entry point in the layerm_bypass
112  * field of struct layer_mount. All other layer routines in this file will
113  * use the layerm_bypass() routine.
114  *
115  * Although the bypass routine handles most operations outright, a number
116  * of operations are special cased and handled by the layerfs.  For instance,
117  * layer_getattr() must change the fsid being returned.  While layer_lock()
118  * and layer_unlock() must handle any locking for the current vnode as well
119  * as pass the lock request down.  layer_inactive() and layer_reclaim() are
120  * not bypassed so that they can handle freeing layerfs-specific data.  Also,
121  * certain vnode operations (create, mknod, remove, link, rename, mkdir,
122  * rmdir, and symlink) change the locking state within the operation.  Ideally
123  * these operations should not change the lock state, but should be changed
124  * to let the caller of the function unlock them.  Otherwise, all intermediate
125  * vnode layers (such as union, umapfs, etc) must catch these functions to do
126  * the necessary locking at their layer.
127  *
128  * INSTANTIATING VNODE STACKS
129  *
130  * Mounting associates "layerfs-nodes" stack and lower layer, in effect
131  * stacking two VFSes.  The initial mount creates a single vnode stack for
132  * the root of the new layerfs.  All other vnode stacks are created as a
133  * result of vnode operations on this or other layerfs vnode stacks.
134  *
135  * New vnode stacks come into existence as a result of an operation which
136  * returns a vnode.  The bypass routine stacks a layerfs-node above the new
137  * vnode before returning it to the caller.
138  *
139  * For example, imagine mounting a null layer with:
140  *
141  *	"mount_null /usr/include /dev/layer/null"
142  *
143  * Changing directory to /dev/layer/null will assign the root layerfs-node,
144  * which was created when the null layer was mounted).  Now consider opening
145  * "sys".  A layer_lookup() would be performed on the root layerfs-node.
146  * This operation would bypass through to the lower layer which would return
147  * a vnode representing the UFS "sys".  Then, layer_bypass() builds a
148  * layerfs-node aliasing the UFS "sys" and returns this to the caller.
149  * Later operations on the layerfs-node "sys" will repeat this process when
150  * constructing other vnode stacks.
151  *
152  * INVOKING OPERATIONS ON LOWER LAYERS
153  *
154  * There are two techniques to invoke operations on a lower layer when the
155  * operation cannot be completely bypassed.  Each method is appropriate in
156  * different situations.  In both cases, it is the responsibility of the
157  * aliasing layer to make the operation arguments "correct" for the lower
158  * layer by mapping any vnode arguments to the lower layer.
159  *
160  * The first approach is to call the aliasing layer's bypass routine.  This
161  * method is most suitable when you wish to invoke the operation currently
162  * being handled on the lower layer.  It has the advantage that the bypass
163  * routine already must do argument mapping.  An example of this is
164  * layer_getattr().
165  *
166  * A second approach is to directly invoke vnode operations on the lower
167  * layer with the VOP_OPERATIONNAME interface.  The advantage of this method
168  * is that it is easy to invoke arbitrary operations on the lower layer.
169  * The disadvantage is that vnode's arguments must be manually mapped.
170  */
171 
172 #include <sys/cdefs.h>
173 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.58 2014/05/25 13:51:25 hannken Exp $");
174 
175 #include <sys/param.h>
176 #include <sys/systm.h>
177 #include <sys/proc.h>
178 #include <sys/time.h>
179 #include <sys/vnode.h>
180 #include <sys/mount.h>
181 #include <sys/namei.h>
182 #include <sys/kmem.h>
183 #include <sys/buf.h>
184 #include <sys/kauth.h>
185 
186 #include <miscfs/genfs/layer.h>
187 #include <miscfs/genfs/layer_extern.h>
188 #include <miscfs/genfs/genfs.h>
189 #include <miscfs/specfs/specdev.h>
190 
191 /*
192  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
193  *		routine by John Heidemann.
194  *	The new element for this version is that the whole nullfs
195  * system gained the concept of locks on the lower node.
196  *    The 10-Apr-92 version was optimized for speed, throwing away some
197  * safety checks.  It should still always work, but it's not as
198  * robust to programmer errors.
199  *
200  * In general, we map all vnodes going down and unmap them on the way back.
201  *
202  * Also, some BSD vnode operations have the side effect of vrele'ing
203  * their arguments.  With stacking, the reference counts are held
204  * by the upper node, not the lower one, so we must handle these
205  * side-effects here.  This is not of concern in Sun-derived systems
206  * since there are no such side-effects.
207  *
208  * New for the 08-June-99 version: we also handle operations which unlock
209  * the passed-in node (typically they vput the node).
210  *
211  * This makes the following assumptions:
212  * - only one returned vpp
213  * - no INOUT vpp's (Sun's vop_open has one of these)
214  * - the vnode operation vector of the first vnode should be used
215  *   to determine what implementation of the op should be invoked
216  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
217  *   problems on rmdir'ing mount points and renaming?)
218  */
219 int
220 layer_bypass(void *v)
221 {
222 	struct vop_generic_args /* {
223 		struct vnodeop_desc *a_desc;
224 		<other random data follows, presumably>
225 	} */ *ap = v;
226 	int (**our_vnodeop_p)(void *);
227 	struct vnode **this_vp_p;
228 	int error;
229 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
230 	struct vnode **vps_p[VDESC_MAX_VPS];
231 	struct vnode ***vppp;
232 	struct mount *mp;
233 	struct vnodeop_desc *descp = ap->a_desc;
234 	int reles, i, flags;
235 
236 #ifdef DIAGNOSTIC
237 	/*
238 	 * We require at least one vp.
239 	 */
240 	if (descp->vdesc_vp_offsets == NULL ||
241 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
242 		panic("%s: no vp's in map.\n", __func__);
243 #endif
244 
245 	vps_p[0] =
246 	    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
247 	vp0 = *vps_p[0];
248 	mp = vp0->v_mount;
249 	flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
250 	our_vnodeop_p = vp0->v_op;
251 
252 	if (flags & LAYERFS_MBYPASSDEBUG)
253 		printf("%s: %s\n", __func__, descp->vdesc_name);
254 
255 	/*
256 	 * Map the vnodes going in.
257 	 * Later, we'll invoke the operation based on
258 	 * the first mapped vnode's operation vector.
259 	 */
260 	reles = descp->vdesc_flags;
261 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
262 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
263 			break;   /* bail out at end of list */
264 		vps_p[i] = this_vp_p =
265 		    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
266 		    ap);
267 		/*
268 		 * We're not guaranteed that any but the first vnode
269 		 * are of our type.  Check for and don't map any
270 		 * that aren't.  (We must always map first vp or vclean fails.)
271 		 */
272 		if (i && (*this_vp_p == NULL ||
273 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
274 			old_vps[i] = NULL;
275 		} else {
276 			old_vps[i] = *this_vp_p;
277 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
278 			/*
279 			 * XXX - Several operations have the side effect
280 			 * of vrele'ing their vp's.  We must account for
281 			 * that.  (This should go away in the future.)
282 			 */
283 			if (reles & VDESC_VP0_WILLRELE)
284 				vref(*this_vp_p);
285 		}
286 	}
287 
288 	/*
289 	 * Call the operation on the lower layer
290 	 * with the modified argument structure.
291 	 */
292 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
293 
294 	/*
295 	 * Maintain the illusion of call-by-value
296 	 * by restoring vnodes in the argument structure
297 	 * to their original value.
298 	 */
299 	reles = descp->vdesc_flags;
300 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
301 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
302 			break;   /* bail out at end of list */
303 		if (old_vps[i]) {
304 			*(vps_p[i]) = old_vps[i];
305 			if (reles & VDESC_VP0_WILLRELE)
306 				vrele(*(vps_p[i]));
307 		}
308 	}
309 
310 	/*
311 	 * Map the possible out-going vpp
312 	 * (Assumes that the lower layer always returns
313 	 * a VREF'ed vpp unless it gets an error.)
314 	 */
315 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) {
316 		vppp = VOPARG_OFFSETTO(struct vnode***,
317 				 descp->vdesc_vpp_offset, ap);
318 		/*
319 		 * Only vop_lookup, vop_create, vop_makedir, vop_mknod
320 		 * and vop_symlink return vpp's. vop_lookup doesn't call bypass
321 		 * as a lookup on "." would generate a locking error.
322 		 * So all the calls which get us here have a unlocked vpp. :-)
323 		 */
324 		error = layer_node_create(mp, **vppp, *vppp);
325 		if (error) {
326 			vrele(**vppp);
327 			**vppp = NULL;
328 		}
329 	}
330 	return error;
331 }
332 
333 /*
334  * We have to carry on the locking protocol on the layer vnodes
335  * as we progress through the tree. We also have to enforce read-only
336  * if this layer is mounted read-only.
337  */
338 int
339 layer_lookup(void *v)
340 {
341 	struct vop_lookup_v2_args /* {
342 		struct vnodeop_desc *a_desc;
343 		struct vnode * a_dvp;
344 		struct vnode ** a_vpp;
345 		struct componentname * a_cnp;
346 	} */ *ap = v;
347 	struct componentname *cnp = ap->a_cnp;
348 	struct vnode *dvp, *lvp, *ldvp;
349 	int error, flags = cnp->cn_flags;
350 
351 	dvp = ap->a_dvp;
352 
353 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
354 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) {
355 		*ap->a_vpp = NULL;
356 		return EROFS;
357 	}
358 
359 	ldvp = LAYERVPTOLOWERVP(dvp);
360 	ap->a_dvp = ldvp;
361 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
362 	lvp = *ap->a_vpp;
363 	*ap->a_vpp = NULL;
364 
365 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
366 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
367 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
368 		error = EROFS;
369 
370 	/*
371 	 * We must do the same locking and unlocking at this layer as
372 	 * is done in the layers below us.
373 	 */
374 	if (ldvp == lvp) {
375 		/*
376 		 * Got the same object back, because we looked up ".",
377 		 * or ".." in the root node of a mount point.
378 		 * So we make another reference to dvp and return it.
379 		 */
380 		vref(dvp);
381 		*ap->a_vpp = dvp;
382 		vrele(lvp);
383 	} else if (lvp != NULL) {
384 		/* Note: dvp and ldvp are both locked. */
385 		error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
386 		if (error) {
387 			vrele(lvp);
388 		}
389 	}
390 	return error;
391 }
392 
393 /*
394  * Setattr call. Disallow write attempts if the layer is mounted read-only.
395  */
396 int
397 layer_setattr(void *v)
398 {
399 	struct vop_setattr_args /* {
400 		struct vnodeop_desc *a_desc;
401 		struct vnode *a_vp;
402 		struct vattr *a_vap;
403 		kauth_cred_t a_cred;
404 		struct lwp *a_l;
405 	} */ *ap = v;
406 	struct vnode *vp = ap->a_vp;
407 	struct vattr *vap = ap->a_vap;
408 
409   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
410 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
411 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
412 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
413 		return EROFS;
414 	if (vap->va_size != VNOVAL) {
415  		switch (vp->v_type) {
416  		case VDIR:
417  			return EISDIR;
418  		case VCHR:
419  		case VBLK:
420  		case VSOCK:
421  		case VFIFO:
422 			return 0;
423 		case VREG:
424 		case VLNK:
425  		default:
426 			/*
427 			 * Disallow write attempts if the filesystem is
428 			 * mounted read-only.
429 			 */
430 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
431 				return EROFS;
432 		}
433 	}
434 	return LAYERFS_DO_BYPASS(vp, ap);
435 }
436 
437 /*
438  *  We handle getattr only to change the fsid.
439  */
440 int
441 layer_getattr(void *v)
442 {
443 	struct vop_getattr_args /* {
444 		struct vnode *a_vp;
445 		struct vattr *a_vap;
446 		kauth_cred_t a_cred;
447 		struct lwp *a_l;
448 	} */ *ap = v;
449 	struct vnode *vp = ap->a_vp;
450 	int error;
451 
452 	error = LAYERFS_DO_BYPASS(vp, ap);
453 	if (error) {
454 		return error;
455 	}
456 	/* Requires that arguments be restored. */
457 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
458 	return 0;
459 }
460 
461 int
462 layer_access(void *v)
463 {
464 	struct vop_access_args /* {
465 		struct vnode *a_vp;
466 		int  a_mode;
467 		kauth_cred_t a_cred;
468 		struct lwp *a_l;
469 	} */ *ap = v;
470 	struct vnode *vp = ap->a_vp;
471 	mode_t mode = ap->a_mode;
472 
473 	/*
474 	 * Disallow write attempts on read-only layers;
475 	 * unless the file is a socket, fifo, or a block or
476 	 * character device resident on the file system.
477 	 */
478 	if (mode & VWRITE) {
479 		switch (vp->v_type) {
480 		case VDIR:
481 		case VLNK:
482 		case VREG:
483 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
484 				return EROFS;
485 			break;
486 		default:
487 			break;
488 		}
489 	}
490 	return LAYERFS_DO_BYPASS(vp, ap);
491 }
492 
493 /*
494  * We must handle open to be able to catch MNT_NODEV and friends.
495  */
496 int
497 layer_open(void *v)
498 {
499 	struct vop_open_args /* {
500 		const struct vnodeop_desc *a_desc;
501 		struct vnode *a_vp;
502 		int a_mode;
503 		kauth_cred_t a_cred;
504 	} */ *ap = v;
505 	struct vnode *vp = ap->a_vp;
506 	enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
507 
508 	if (((lower_type == VBLK) || (lower_type == VCHR)) &&
509 	    (vp->v_mount->mnt_flag & MNT_NODEV))
510 		return ENXIO;
511 
512 	return LAYERFS_DO_BYPASS(vp, ap);
513 }
514 
515 /*
516  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
517  * syncing the underlying vnodes, since they'll be fsync'ed when
518  * reclaimed; otherwise, pass it through to the underlying layer.
519  *
520  * XXX Do we still need to worry about shallow fsync?
521  */
522 int
523 layer_fsync(void *v)
524 {
525 	struct vop_fsync_args /* {
526 		struct vnode *a_vp;
527 		kauth_cred_t a_cred;
528 		int  a_flags;
529 		off_t offlo;
530 		off_t offhi;
531 		struct lwp *a_l;
532 	} */ *ap = v;
533 	int error;
534 
535 	if (ap->a_flags & FSYNC_RECLAIM) {
536 		return 0;
537 	}
538 	if (ap->a_vp->v_type == VBLK || ap->a_vp->v_type == VCHR) {
539 		error = spec_fsync(v);
540 		if (error)
541 			return error;
542 	}
543 	return LAYERFS_DO_BYPASS(ap->a_vp, ap);
544 }
545 
546 int
547 layer_inactive(void *v)
548 {
549 	struct vop_inactive_args /* {
550 		struct vnode *a_vp;
551 		bool *a_recycle;
552 	} */ *ap = v;
553 	struct vnode *vp = ap->a_vp;
554 
555 	/*
556 	 * If we did a remove, don't cache the node.
557 	 */
558 	*ap->a_recycle = ((VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED) != 0);
559 
560 	/*
561 	 * Do nothing (and _don't_ bypass).
562 	 * Wait to vrele lowervp until reclaim,
563 	 * so that until then our layer_node is in the
564 	 * cache and reusable.
565 	 *
566 	 * NEEDSWORK: Someday, consider inactive'ing
567 	 * the lowervp and then trying to reactivate it
568 	 * with capabilities (v_id)
569 	 * like they do in the name lookup cache code.
570 	 * That's too much work for now.
571 	 */
572 	VOP_UNLOCK(vp);
573 	return 0;
574 }
575 
576 int
577 layer_remove(void *v)
578 {
579 	struct vop_remove_args /* {
580 		struct vonde		*a_dvp;
581 		struct vnode		*a_vp;
582 		struct componentname	*a_cnp;
583 	} */ *ap = v;
584 	struct vnode *vp = ap->a_vp;
585 	int error;
586 
587 	vref(vp);
588 	error = LAYERFS_DO_BYPASS(vp, ap);
589 	if (error == 0) {
590 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
591 	}
592 	vrele(vp);
593 
594 	return error;
595 }
596 
597 int
598 layer_rename(void *v)
599 {
600 	struct vop_rename_args  /* {
601 		struct vnode		*a_fdvp;
602 		struct vnode		*a_fvp;
603 		struct componentname	*a_fcnp;
604 		struct vnode		*a_tdvp;
605 		struct vnode		*a_tvp;
606 		struct componentname	*a_tcnp;
607 	} */ *ap = v;
608 	struct vnode *fdvp = ap->a_fdvp, *tvp;
609 	int error;
610 
611 	tvp = ap->a_tvp;
612 	if (tvp) {
613 		if (tvp->v_mount != fdvp->v_mount)
614 			tvp = NULL;
615 		else
616 			vref(tvp);
617 	}
618 	error = LAYERFS_DO_BYPASS(fdvp, ap);
619 	if (tvp) {
620 		if (error == 0)
621 			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
622 		vrele(tvp);
623 	}
624 	return error;
625 }
626 
627 int
628 layer_rmdir(void *v)
629 {
630 	struct vop_rmdir_args /* {
631 		struct vnode		*a_dvp;
632 		struct vnode		*a_vp;
633 		struct componentname	*a_cnp;
634 	} */ *ap = v;
635 	int		error;
636 	struct vnode	*vp = ap->a_vp;
637 
638 	vref(vp);
639 	error = LAYERFS_DO_BYPASS(vp, ap);
640 	if (error == 0) {
641 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
642 	}
643 	vrele(vp);
644 
645 	return error;
646 }
647 
648 int
649 layer_revoke(void *v)
650 {
651         struct vop_revoke_args /* {
652 		struct vnode *a_vp;
653 		int a_flags;
654 	} */ *ap = v;
655 	struct vnode *vp = ap->a_vp;
656 	struct vnode *lvp = LAYERVPTOLOWERVP(vp);
657 	int error;
658 
659 	/*
660 	 * We will most likely end up in vclean which uses the v_usecount
661 	 * to determine if a vnode is active.  Take an extra reference on
662 	 * the lower vnode so it will always close and inactivate.
663 	 */
664 	vref(lvp);
665 	error = LAYERFS_DO_BYPASS(vp, ap);
666 	vrele(lvp);
667 
668 	return error;
669 }
670 
671 int
672 layer_reclaim(void *v)
673 {
674 	struct vop_reclaim_args /* {
675 		struct vnode *a_vp;
676 		struct lwp *a_l;
677 	} */ *ap = v;
678 	struct vnode *vp = ap->a_vp;
679 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
680 	struct layer_node *xp = VTOLAYER(vp);
681 	struct vnode *lowervp = xp->layer_lowervp;
682 
683 	/*
684 	 * Note: in vop_reclaim, the node's struct lock has been
685 	 * decomissioned, so we have to be careful about calling
686 	 * VOP's on ourself.  We must be careful as VXLOCK is set.
687 	 */
688 	if (vp == lmp->layerm_rootvp) {
689 		/*
690 		 * Oops! We no longer have a root node. Most likely reason is
691 		 * that someone forcably unmunted the underlying fs.
692 		 *
693 		 * Now getting the root vnode will fail. We're dead. :-(
694 		 */
695 		lmp->layerm_rootvp = NULL;
696 	}
697 	vcache_remove(vp->v_mount, &lowervp, sizeof(lowervp));
698 	/* After this assignment, this node will not be re-used. */
699 	xp->layer_lowervp = NULL;
700 	kmem_free(vp->v_data, lmp->layerm_size);
701 	vp->v_data = NULL;
702 	vrele(lowervp);
703 
704 	return 0;
705 }
706 
707 int
708 layer_lock(void *v)
709 {
710 	struct vop_lock_args /* {
711 		struct vnode *a_vp;
712 		int a_flags;
713 	} */ *ap = v;
714 	struct vnode *vp = ap->a_vp;
715 	struct vnode *lowervp = LAYERVPTOLOWERVP(vp);
716 	int flags = ap->a_flags;
717 	int error;
718 
719 	if (ISSET(flags, LK_NOWAIT)) {
720 		error = VOP_LOCK(lowervp, flags);
721 		if (error)
722 			return error;
723 		if (mutex_tryenter(vp->v_interlock)) {
724 			error = vdead_check(vp, VDEAD_NOWAIT);
725 			mutex_exit(vp->v_interlock);
726 		} else
727 			error = EBUSY;
728 		if (error)
729 			VOP_UNLOCK(lowervp);
730 		return error;
731 	}
732 
733 	error = VOP_LOCK(lowervp, flags);
734 	if (error)
735 		return error;
736 
737 	mutex_enter(vp->v_interlock);
738 	error = vdead_check(vp, VDEAD_NOWAIT);
739 	if (error) {
740 		VOP_UNLOCK(lowervp);
741 		error = vdead_check(vp, 0);
742 		KASSERT(error == ENOENT);
743 	}
744 	mutex_exit(vp->v_interlock);
745 
746 	return error;
747 }
748 
749 /*
750  * We just feed the returned vnode up to the caller - there's no need
751  * to build a layer node on top of the node on which we're going to do
752  * i/o. :-)
753  */
754 int
755 layer_bmap(void *v)
756 {
757 	struct vop_bmap_args /* {
758 		struct vnode *a_vp;
759 		daddr_t  a_bn;
760 		struct vnode **a_vpp;
761 		daddr_t *a_bnp;
762 		int *a_runp;
763 	} */ *ap = v;
764 	struct vnode *vp;
765 
766 	vp = LAYERVPTOLOWERVP(ap->a_vp);
767 	ap->a_vp = vp;
768 
769 	return VCALL(vp, ap->a_desc->vdesc_offset, ap);
770 }
771 
772 int
773 layer_print(void *v)
774 {
775 	struct vop_print_args /* {
776 		struct vnode *a_vp;
777 	} */ *ap = v;
778 	struct vnode *vp = ap->a_vp;
779 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
780 	return 0;
781 }
782 
783 int
784 layer_getpages(void *v)
785 {
786 	struct vop_getpages_args /* {
787 		struct vnode *a_vp;
788 		voff_t a_offset;
789 		struct vm_page **a_m;
790 		int *a_count;
791 		int a_centeridx;
792 		vm_prot_t a_access_type;
793 		int a_advice;
794 		int a_flags;
795 	} */ *ap = v;
796 	struct vnode *vp = ap->a_vp;
797 
798 	KASSERT(mutex_owned(vp->v_interlock));
799 
800 	if (ap->a_flags & PGO_LOCKED) {
801 		return EBUSY;
802 	}
803 	ap->a_vp = LAYERVPTOLOWERVP(vp);
804 	KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
805 
806 	/* Just pass the request on to the underlying layer. */
807 	return VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
808 }
809 
810 int
811 layer_putpages(void *v)
812 {
813 	struct vop_putpages_args /* {
814 		struct vnode *a_vp;
815 		voff_t a_offlo;
816 		voff_t a_offhi;
817 		int a_flags;
818 	} */ *ap = v;
819 	struct vnode *vp = ap->a_vp;
820 
821 	KASSERT(mutex_owned(vp->v_interlock));
822 
823 	ap->a_vp = LAYERVPTOLOWERVP(vp);
824 	KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
825 
826 	if (ap->a_flags & PGO_RECLAIM) {
827 		mutex_exit(vp->v_interlock);
828 		return 0;
829 	}
830 
831 	/* Just pass the request on to the underlying layer. */
832 	return VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
833 }
834