xref: /netbsd-src/sys/miscfs/genfs/layer_vnops.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /*	$NetBSD: layer_vnops.c,v 1.36 2009/01/03 04:38:07 dholland Exp $	*/
2 
3 /*
4  * Copyright (c) 1999 National Aeronautics & Space Administration
5  * All rights reserved.
6  *
7  * This software was written by William Studenmund of the
8  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the National Aeronautics & Space Administration
19  *    nor the names of its contributors may be used to endorse or promote
20  *    products derived from this software without specific prior written
21  *    permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 /*
36  * Copyright (c) 1992, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  *
39  * This code is derived from software contributed to Berkeley by
40  * John Heidemann of the UCLA Ficus project.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
67  *
68  * Ancestors:
69  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
70  *	Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
71  *	...and...
72  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
73  */
74 
75 /*
76  * Null Layer vnode routines.
77  *
78  * (See mount_null(8) for more information.)
79  *
80  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
81  * the core implementation of the null file system and most other stacked
82  * fs's. The description below refers to the null file system, but the
83  * services provided by the layer* files are useful for all layered fs's.
84  *
85  * The null layer duplicates a portion of the file system
86  * name space under a new name.  In this respect, it is
87  * similar to the loopback file system.  It differs from
88  * the loopback fs in two respects:  it is implemented using
89  * a stackable layers techniques, and it's "null-node"s stack above
90  * all lower-layer vnodes, not just over directory vnodes.
91  *
92  * The null layer has two purposes.  First, it serves as a demonstration
93  * of layering by proving a layer which does nothing.  (It actually
94  * does everything the loopback file system does, which is slightly
95  * more than nothing.)  Second, the null layer can serve as a prototype
96  * layer.  Since it provides all necessary layer framework,
97  * new file system layers can be created very easily be starting
98  * with a null layer.
99  *
100  * The remainder of the man page examines the null layer as a basis
101  * for constructing new layers.
102  *
103  *
104  * INSTANTIATING NEW NULL LAYERS
105  *
106  * New null layers are created with mount_null(8).
107  * Mount_null(8) takes two arguments, the pathname
108  * of the lower vfs (target-pn) and the pathname where the null
109  * layer will appear in the namespace (alias-pn).  After
110  * the null layer is put into place, the contents
111  * of target-pn subtree will be aliased under alias-pn.
112  *
113  * It is conceivable that other overlay filesystems will take different
114  * parameters. For instance, data migration or access controll layers might
115  * only take one pathname which will serve both as the target-pn and
116  * alias-pn described above.
117  *
118  *
119  * OPERATION OF A NULL LAYER
120  *
121  * The null layer is the minimum file system layer,
122  * simply bypassing all possible operations to the lower layer
123  * for processing there.  The majority of its activity centers
124  * on the bypass routine, through which nearly all vnode operations
125  * pass.
126  *
127  * The bypass routine accepts arbitrary vnode operations for
128  * handling by the lower layer.  It begins by examing vnode
129  * operation arguments and replacing any layered nodes by their
130  * lower-layer equivalents.  It then invokes the operation
131  * on the lower layer.  Finally, it replaces the layered nodes
132  * in the arguments and, if a vnode is return by the operation,
133  * stacks a layered node on top of the returned vnode.
134  *
135  * The bypass routine in this file, layer_bypass(), is suitable for use
136  * by many different layered filesystems. It can be used by multiple
137  * filesystems simultaneously. Alternatively, a layered fs may provide
138  * its own bypass routine, in which case layer_bypass() should be used as
139  * a model. For instance, the main functionality provided by umapfs, the user
140  * identity mapping file system, is handled by a custom bypass routine.
141  *
142  * Typically a layered fs registers its selected bypass routine as the
143  * default vnode operation in its vnodeopv_entry_desc table. Additionally
144  * the filesystem must store the bypass entry point in the layerm_bypass
145  * field of struct layer_mount. All other layer routines in this file will
146  * use the layerm_bypass routine.
147  *
148  * Although the bypass routine handles most operations outright, a number
149  * of operations are special cased, and handled by the layered fs. One
150  * group, layer_setattr, layer_getattr, layer_access, layer_open, and
151  * layer_fsync, perform layer-specific manipulation in addition to calling
152  * the bypass routine. The other group
153 
154  * Although bypass handles most operations, vop_getattr, vop_lock,
155  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
156  * bypassed. Vop_getattr must change the fsid being returned.
157  * Vop_lock and vop_unlock must handle any locking for the
158  * current vnode as well as pass the lock request down.
159  * Vop_inactive and vop_reclaim are not bypassed so that
160  * they can handle freeing null-layer specific data. Vop_print
161  * is not bypassed to avoid excessive debugging information.
162  * Also, certain vnode operations change the locking state within
163  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
164  * and symlink). Ideally these operations should not change the
165  * lock state, but should be changed to let the caller of the
166  * function unlock them. Otherwise all intermediate vnode layers
167  * (such as union, umapfs, etc) must catch these functions to do
168  * the necessary locking at their layer.
169  *
170  *
171  * INSTANTIATING VNODE STACKS
172  *
173  * Mounting associates the null layer with a lower layer,
174  * effect stacking two VFSes.  Vnode stacks are instead
175  * created on demand as files are accessed.
176  *
177  * The initial mount creates a single vnode stack for the
178  * root of the new null layer.  All other vnode stacks
179  * are created as a result of vnode operations on
180  * this or other null vnode stacks.
181  *
182  * New vnode stacks come into existence as a result of
183  * an operation which returns a vnode.
184  * The bypass routine stacks a null-node above the new
185  * vnode before returning it to the caller.
186  *
187  * For example, imagine mounting a null layer with
188  * "mount_null /usr/include /dev/layer/null".
189  * Changing directory to /dev/layer/null will assign
190  * the root null-node (which was created when the null layer was mounted).
191  * Now consider opening "sys".  A vop_lookup would be
192  * done on the root null-node.  This operation would bypass through
193  * to the lower layer which would return a vnode representing
194  * the UFS "sys".  layer_bypass then builds a null-node
195  * aliasing the UFS "sys" and returns this to the caller.
196  * Later operations on the null-node "sys" will repeat this
197  * process when constructing other vnode stacks.
198  *
199  *
200  * CREATING OTHER FILE SYSTEM LAYERS
201  *
202  * One of the easiest ways to construct new file system layers is to make
203  * a copy of the null layer, rename all files and variables, and
204  * then begin modifing the copy.  Sed can be used to easily rename
205  * all variables.
206  *
207  * The umap layer is an example of a layer descended from the
208  * null layer.
209  *
210  *
211  * INVOKING OPERATIONS ON LOWER LAYERS
212  *
213  * There are two techniques to invoke operations on a lower layer
214  * when the operation cannot be completely bypassed.  Each method
215  * is appropriate in different situations.  In both cases,
216  * it is the responsibility of the aliasing layer to make
217  * the operation arguments "correct" for the lower layer
218  * by mapping an vnode arguments to the lower layer.
219  *
220  * The first approach is to call the aliasing layer's bypass routine.
221  * This method is most suitable when you wish to invoke the operation
222  * currently being handled on the lower layer.  It has the advantage
223  * that the bypass routine already must do argument mapping.
224  * An example of this is null_getattrs in the null layer.
225  *
226  * A second approach is to directly invoke vnode operations on
227  * the lower layer with the VOP_OPERATIONNAME interface.
228  * The advantage of this method is that it is easy to invoke
229  * arbitrary operations on the lower layer.  The disadvantage
230  * is that vnodes' arguments must be manually mapped.
231  *
232  */
233 
234 #include <sys/cdefs.h>
235 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.36 2009/01/03 04:38:07 dholland Exp $");
236 
237 #include <sys/param.h>
238 #include <sys/systm.h>
239 #include <sys/proc.h>
240 #include <sys/time.h>
241 #include <sys/vnode.h>
242 #include <sys/mount.h>
243 #include <sys/namei.h>
244 #include <sys/kmem.h>
245 #include <sys/buf.h>
246 #include <sys/kauth.h>
247 
248 #include <miscfs/genfs/layer.h>
249 #include <miscfs/genfs/layer_extern.h>
250 #include <miscfs/genfs/genfs.h>
251 
252 
253 /*
254  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
255  *		routine by John Heidemann.
256  *	The new element for this version is that the whole nullfs
257  * system gained the concept of locks on the lower node, and locks on
258  * our nodes. When returning from a call to the lower layer, we may
259  * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
260  * macros provide this functionality.
261  *    The 10-Apr-92 version was optimized for speed, throwing away some
262  * safety checks.  It should still always work, but it's not as
263  * robust to programmer errors.
264  *    Define SAFETY to include some error checking code.
265  *
266  * In general, we map all vnodes going down and unmap them on the way back.
267  *
268  * Also, some BSD vnode operations have the side effect of vrele'ing
269  * their arguments.  With stacking, the reference counts are held
270  * by the upper node, not the lower one, so we must handle these
271  * side-effects here.  This is not of concern in Sun-derived systems
272  * since there are no such side-effects.
273  *
274  * New for the 08-June-99 version: we also handle operations which unlock
275  * the passed-in node (typically they vput the node).
276  *
277  * This makes the following assumptions:
278  * - only one returned vpp
279  * - no INOUT vpp's (Sun's vop_open has one of these)
280  * - the vnode operation vector of the first vnode should be used
281  *   to determine what implementation of the op should be invoked
282  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
283  *   problems on rmdir'ing mount points and renaming?)
284  */
285 int
286 layer_bypass(v)
287 	void *v;
288 {
289 	struct vop_generic_args /* {
290 		struct vnodeop_desc *a_desc;
291 		<other random data follows, presumably>
292 	} */ *ap = v;
293 	int (**our_vnodeop_p)(void *);
294 	struct vnode **this_vp_p;
295 	int error, error1;
296 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
297 	struct vnode **vps_p[VDESC_MAX_VPS];
298 	struct vnode ***vppp;
299 	struct mount *mp;
300 	struct vnodeop_desc *descp = ap->a_desc;
301 	int reles, i, flags;
302 
303 #ifdef SAFETY
304 	/*
305 	 * We require at least one vp.
306 	 */
307 	if (descp->vdesc_vp_offsets == NULL ||
308 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
309 		panic("%s: no vp's in map.\n", __func__);
310 #endif
311 
312 	vps_p[0] =
313 	    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
314 	vp0 = *vps_p[0];
315 	mp = vp0->v_mount;
316 	flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
317 	our_vnodeop_p = vp0->v_op;
318 
319 	if (flags & LAYERFS_MBYPASSDEBUG)
320 		printf("%s: %s\n", __func__, descp->vdesc_name);
321 
322 	/*
323 	 * Map the vnodes going in.
324 	 * Later, we'll invoke the operation based on
325 	 * the first mapped vnode's operation vector.
326 	 */
327 	reles = descp->vdesc_flags;
328 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
329 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
330 			break;   /* bail out at end of list */
331 		vps_p[i] = this_vp_p =
332 		    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
333 		    ap);
334 		/*
335 		 * We're not guaranteed that any but the first vnode
336 		 * are of our type.  Check for and don't map any
337 		 * that aren't.  (We must always map first vp or vclean fails.)
338 		 */
339 		if (i && (*this_vp_p == NULL ||
340 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
341 			old_vps[i] = NULL;
342 		} else {
343 			old_vps[i] = *this_vp_p;
344 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
345 			/*
346 			 * XXX - Several operations have the side effect
347 			 * of vrele'ing their vp's.  We must account for
348 			 * that.  (This should go away in the future.)
349 			 */
350 			if (reles & VDESC_VP0_WILLRELE)
351 				VREF(*this_vp_p);
352 		}
353 
354 	}
355 
356 	/*
357 	 * Call the operation on the lower layer
358 	 * with the modified argument structure.
359 	 */
360 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
361 
362 	/*
363 	 * Maintain the illusion of call-by-value
364 	 * by restoring vnodes in the argument structure
365 	 * to their original value.
366 	 */
367 	reles = descp->vdesc_flags;
368 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
369 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
370 			break;   /* bail out at end of list */
371 		if (old_vps[i]) {
372 			*(vps_p[i]) = old_vps[i];
373 			if (reles & VDESC_VP0_WILLUNLOCK)
374 				LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
375 			if (reles & VDESC_VP0_WILLRELE)
376 				vrele(*(vps_p[i]));
377 		}
378 	}
379 
380 	/*
381 	 * Map the possible out-going vpp
382 	 * (Assumes that the lower layer always returns
383 	 * a VREF'ed vpp unless it gets an error.)
384 	 */
385 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
386 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
387 	    !error) {
388 		/*
389 		 * XXX - even though some ops have vpp returned vp's,
390 		 * several ops actually vrele this before returning.
391 		 * We must avoid these ops.
392 		 * (This should go away when these ops are regularized.)
393 		 */
394 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
395 			goto out;
396 		vppp = VOPARG_OFFSETTO(struct vnode***,
397 				 descp->vdesc_vpp_offset, ap);
398 		/*
399 		 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
400 		 * vop_mknod, and vop_symlink return vpp's. vop_bmap
401 		 * doesn't call bypass as the lower vpp is fine (we're just
402 		 * going to do i/o on it). vop_lookup doesn't call bypass
403 		 * as a lookup on "." would generate a locking error.
404 		 * So all the calls which get us here have a locked vpp. :-)
405 		 */
406 		error = layer_node_create(mp, **vppp, *vppp);
407 		if (error) {
408 			vput(**vppp);
409 			**vppp = NULL;
410 		}
411 	}
412 
413  out:
414 	return (error);
415 }
416 
417 /*
418  * We have to carry on the locking protocol on the layer vnodes
419  * as we progress through the tree. We also have to enforce read-only
420  * if this layer is mounted read-only.
421  */
422 int
423 layer_lookup(v)
424 	void *v;
425 {
426 	struct vop_lookup_args /* {
427 		struct vnodeop_desc *a_desc;
428 		struct vnode * a_dvp;
429 		struct vnode ** a_vpp;
430 		struct componentname * a_cnp;
431 	} */ *ap = v;
432 	struct componentname *cnp = ap->a_cnp;
433 	int flags = cnp->cn_flags;
434 	struct vnode *dvp, *lvp, *ldvp;
435 	int error;
436 
437 	dvp = ap->a_dvp;
438 
439 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
440 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
441 		return (EROFS);
442 
443 	ldvp = LAYERVPTOLOWERVP(dvp);
444 	ap->a_dvp = ldvp;
445 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
446 	lvp = *ap->a_vpp;
447 	*ap->a_vpp = NULL;
448 
449 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
450 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
451 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
452 		error = EROFS;
453 
454 	/*
455 	 * We must do the same locking and unlocking at this layer as
456 	 * is done in the layers below us.
457 	 */
458 	if (ldvp == lvp) {
459 
460 		/*
461 		 * Got the same object back, because we looked up ".",
462 		 * or ".." in the root node of a mount point.
463 		 * So we make another reference to dvp and return it.
464 		 */
465 		VREF(dvp);
466 		*ap->a_vpp = dvp;
467 		vrele(lvp);
468 	} else if (lvp != NULL) {
469 		/* dvp, ldvp and vp are all locked */
470 		error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
471 		if (error) {
472 			vput(lvp);
473 		}
474 	}
475 	return (error);
476 }
477 
478 /*
479  * Setattr call. Disallow write attempts if the layer is mounted read-only.
480  */
481 int
482 layer_setattr(v)
483 	void *v;
484 {
485 	struct vop_setattr_args /* {
486 		struct vnodeop_desc *a_desc;
487 		struct vnode *a_vp;
488 		struct vattr *a_vap;
489 		kauth_cred_t a_cred;
490 		struct lwp *a_l;
491 	} */ *ap = v;
492 	struct vnode *vp = ap->a_vp;
493 	struct vattr *vap = ap->a_vap;
494 
495   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
496 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
497 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
498 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
499 		return (EROFS);
500 	if (vap->va_size != VNOVAL) {
501  		switch (vp->v_type) {
502  		case VDIR:
503  			return (EISDIR);
504  		case VCHR:
505  		case VBLK:
506  		case VSOCK:
507  		case VFIFO:
508 			return (0);
509 		case VREG:
510 		case VLNK:
511  		default:
512 			/*
513 			 * Disallow write attempts if the filesystem is
514 			 * mounted read-only.
515 			 */
516 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
517 				return (EROFS);
518 		}
519 	}
520 	return (LAYERFS_DO_BYPASS(vp, ap));
521 }
522 
523 /*
524  *  We handle getattr only to change the fsid.
525  */
526 int
527 layer_getattr(v)
528 	void *v;
529 {
530 	struct vop_getattr_args /* {
531 		struct vnode *a_vp;
532 		struct vattr *a_vap;
533 		kauth_cred_t a_cred;
534 		struct lwp *a_l;
535 	} */ *ap = v;
536 	struct vnode *vp = ap->a_vp;
537 	int error;
538 
539 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
540 		return (error);
541 	/* Requires that arguments be restored. */
542 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
543 	return (0);
544 }
545 
546 int
547 layer_access(v)
548 	void *v;
549 {
550 	struct vop_access_args /* {
551 		struct vnode *a_vp;
552 		int  a_mode;
553 		kauth_cred_t a_cred;
554 		struct lwp *a_l;
555 	} */ *ap = v;
556 	struct vnode *vp = ap->a_vp;
557 	mode_t mode = ap->a_mode;
558 
559 	/*
560 	 * Disallow write attempts on read-only layers;
561 	 * unless the file is a socket, fifo, or a block or
562 	 * character device resident on the file system.
563 	 */
564 	if (mode & VWRITE) {
565 		switch (vp->v_type) {
566 		case VDIR:
567 		case VLNK:
568 		case VREG:
569 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
570 				return (EROFS);
571 			break;
572 		default:
573 			break;
574 		}
575 	}
576 	return (LAYERFS_DO_BYPASS(vp, ap));
577 }
578 
579 /*
580  * We must handle open to be able to catch MNT_NODEV and friends.
581  */
582 int
583 layer_open(v)
584 	void *v;
585 {
586 	struct vop_open_args *ap = v;
587 	struct vnode *vp = ap->a_vp;
588 	enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
589 
590 	if (((lower_type == VBLK) || (lower_type == VCHR)) &&
591 	    (vp->v_mount->mnt_flag & MNT_NODEV))
592 		return ENXIO;
593 
594 	return LAYERFS_DO_BYPASS(vp, ap);
595 }
596 
597 /*
598  * We need to process our own vnode lock and then clear the
599  * interlock flag as it applies only to our vnode, not the
600  * vnodes below us on the stack.
601  */
602 int
603 layer_lock(v)
604 	void *v;
605 {
606 	struct vop_lock_args /* {
607 		struct vnode *a_vp;
608 		int a_flags;
609 		struct proc *a_p;
610 	} */ *ap = v;
611 	struct vnode *vp = ap->a_vp, *lowervp;
612 	int	flags = ap->a_flags, error;
613 
614 	if (flags & LK_INTERLOCK) {
615 		mutex_exit(&vp->v_interlock);
616 		flags &= ~LK_INTERLOCK;
617 	}
618 
619 	if (vp->v_vnlock != NULL) {
620 		/*
621 		 * The lower level has exported a struct lock to us. Use
622 		 * it so that all vnodes in the stack lock and unlock
623 		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
624 		 * decommissions the lock - just because our vnode is
625 		 * going away doesn't mean the struct lock below us is.
626 		 * LK_EXCLUSIVE is fine.
627 		 */
628 		return (vlockmgr(vp->v_vnlock, flags));
629 	} else {
630 		/*
631 		 * Ahh well. It would be nice if the fs we're over would
632 		 * export a struct lock for us to use, but it doesn't.
633 		 *
634 		 * To prevent race conditions involving doing a lookup
635 		 * on "..", we have to lock the lower node, then lock our
636 		 * node. Most of the time it won't matter that we lock our
637 		 * node (as any locking would need the lower one locked
638 		 * first).
639 		 */
640 		lowervp = LAYERVPTOLOWERVP(vp);
641 		error = VOP_LOCK(lowervp, flags);
642 		if (error)
643 			return (error);
644 		if ((error = vlockmgr(&vp->v_lock, flags))) {
645 			VOP_UNLOCK(lowervp, 0);
646 		}
647 		return (error);
648 	}
649 }
650 
651 /*
652  */
653 int
654 layer_unlock(v)
655 	void *v;
656 {
657 	struct vop_unlock_args /* {
658 		struct vnode *a_vp;
659 		int a_flags;
660 		struct proc *a_p;
661 	} */ *ap = v;
662 	struct vnode *vp = ap->a_vp;
663 	int	flags = ap->a_flags;
664 
665 	if (flags & LK_INTERLOCK) {
666 		mutex_exit(&vp->v_interlock);
667 		flags &= ~LK_INTERLOCK;
668 	}
669 
670 	if (vp->v_vnlock != NULL) {
671 		return (vlockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE));
672 	} else {
673 		VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
674 		return (vlockmgr(&vp->v_lock, flags | LK_RELEASE));
675 	}
676 }
677 
678 int
679 layer_islocked(v)
680 	void *v;
681 {
682 	struct vop_islocked_args /* {
683 		struct vnode *a_vp;
684 	} */ *ap = v;
685 	struct vnode *vp = ap->a_vp;
686 	int lkstatus;
687 
688 	if (vp->v_vnlock != NULL)
689 		return vlockstatus(vp->v_vnlock);
690 
691 	lkstatus = VOP_ISLOCKED(LAYERVPTOLOWERVP(vp));
692 	if (lkstatus)
693 		return lkstatus;
694 
695 	return vlockstatus(&vp->v_lock);
696 }
697 
698 /*
699  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
700  * syncing the underlying vnodes, since they'll be fsync'ed when
701  * reclaimed; otherwise,
702  * pass it through to the underlying layer.
703  *
704  * XXX Do we still need to worry about shallow fsync?
705  */
706 
707 int
708 layer_fsync(v)
709 	void *v;
710 {
711 	struct vop_fsync_args /* {
712 		struct vnode *a_vp;
713 		kauth_cred_t a_cred;
714 		int  a_flags;
715 		off_t offlo;
716 		off_t offhi;
717 		struct lwp *a_l;
718 	} */ *ap = v;
719 
720 	if (ap->a_flags & FSYNC_RECLAIM) {
721 		return 0;
722 	}
723 
724 	return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
725 }
726 
727 
728 int
729 layer_inactive(v)
730 	void *v;
731 {
732 	struct vop_inactive_args /* {
733 		struct vnode *a_vp;
734 		bool *a_recycle;
735 	} */ *ap = v;
736 	struct vnode *vp = ap->a_vp;
737 
738 	/*
739 	 * ..., but don't cache the device node. Also, if we did a
740 	 * remove, don't cache the node.
741 	 */
742 	*ap->a_recycle = (vp->v_type == VBLK || vp->v_type == VCHR
743 	    || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED));
744 
745 	/*
746 	 * Do nothing (and _don't_ bypass).
747 	 * Wait to vrele lowervp until reclaim,
748 	 * so that until then our layer_node is in the
749 	 * cache and reusable.
750 	 *
751 	 * NEEDSWORK: Someday, consider inactive'ing
752 	 * the lowervp and then trying to reactivate it
753 	 * with capabilities (v_id)
754 	 * like they do in the name lookup cache code.
755 	 * That's too much work for now.
756 	 */
757 	VOP_UNLOCK(vp, 0);
758 
759 	return (0);
760 }
761 
762 int
763 layer_remove(v)
764 	void *v;
765 {
766 	struct vop_remove_args /* {
767 		struct vonde		*a_dvp;
768 		struct vnode		*a_vp;
769 		struct componentname	*a_cnp;
770 	} */ *ap = v;
771 
772 	int		error;
773 	struct vnode	*vp = ap->a_vp;
774 
775 	vref(vp);
776 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
777 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
778 
779 	vrele(vp);
780 
781 	return (error);
782 }
783 
784 int
785 layer_rename(v)
786 	void *v;
787 {
788 	struct vop_rename_args  /* {
789 		struct vnode		*a_fdvp;
790 		struct vnode		*a_fvp;
791 		struct componentname	*a_fcnp;
792 		struct vnode		*a_tdvp;
793 		struct vnode		*a_tvp;
794 		struct componentname	*a_tcnp;
795 	} */ *ap = v;
796 
797 	int error;
798 	struct vnode *fdvp = ap->a_fdvp;
799 	struct vnode *tvp;
800 
801 	tvp = ap->a_tvp;
802 	if (tvp) {
803 		if (tvp->v_mount != fdvp->v_mount)
804 			tvp = NULL;
805 		else
806 			vref(tvp);
807 	}
808 	error = LAYERFS_DO_BYPASS(fdvp, ap);
809 	if (tvp) {
810 		if (error == 0)
811 			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
812 		vrele(tvp);
813 	}
814 
815 	return (error);
816 }
817 
818 int
819 layer_rmdir(v)
820 	void *v;
821 {
822 	struct vop_rmdir_args /* {
823 		struct vnode		*a_dvp;
824 		struct vnode		*a_vp;
825 		struct componentname	*a_cnp;
826 	} */ *ap = v;
827 	int		error;
828 	struct vnode	*vp = ap->a_vp;
829 
830 	vref(vp);
831 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
832 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
833 
834 	vrele(vp);
835 
836 	return (error);
837 }
838 
839 int
840 layer_reclaim(v)
841 	void *v;
842 {
843 	struct vop_reclaim_args /* {
844 		struct vnode *a_vp;
845 		struct lwp *a_l;
846 	} */ *ap = v;
847 	struct vnode *vp = ap->a_vp;
848 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
849 	struct layer_node *xp = VTOLAYER(vp);
850 	struct vnode *lowervp = xp->layer_lowervp;
851 
852 	/*
853 	 * Note: in vop_reclaim, the node's struct lock has been
854 	 * decomissioned, so we have to be careful about calling
855 	 * VOP's on ourself.  We must be careful as VXLOCK is set.
856 	 */
857 	/* After this assignment, this node will not be re-used. */
858 	if ((vp == lmp->layerm_rootvp)) {
859 		/*
860 		 * Oops! We no longer have a root node. Most likely reason is
861 		 * that someone forcably unmunted the underlying fs.
862 		 *
863 		 * Now getting the root vnode will fail. We're dead. :-(
864 		 */
865 		lmp->layerm_rootvp = NULL;
866 	}
867 	xp->layer_lowervp = NULL;
868 	mutex_enter(&lmp->layerm_hashlock);
869 	LIST_REMOVE(xp, layer_hash);
870 	mutex_exit(&lmp->layerm_hashlock);
871 	kmem_free(vp->v_data, lmp->layerm_size);
872 	vp->v_data = NULL;
873 	vrele(lowervp);
874 
875 	return (0);
876 }
877 
878 /*
879  * We just feed the returned vnode up to the caller - there's no need
880  * to build a layer node on top of the node on which we're going to do
881  * i/o. :-)
882  */
883 int
884 layer_bmap(v)
885 	void *v;
886 {
887 	struct vop_bmap_args /* {
888 		struct vnode *a_vp;
889 		daddr_t  a_bn;
890 		struct vnode **a_vpp;
891 		daddr_t *a_bnp;
892 		int *a_runp;
893 	} */ *ap = v;
894 	struct vnode *vp;
895 
896 	ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
897 
898 	return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
899 }
900 
901 int
902 layer_print(v)
903 	void *v;
904 {
905 	struct vop_print_args /* {
906 		struct vnode *a_vp;
907 	} */ *ap = v;
908 	struct vnode *vp = ap->a_vp;
909 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
910 	return (0);
911 }
912 
913 /*
914  * XXX - vop_bwrite must be hand coded because it has no
915  * vnode in its arguments.
916  * This goes away with a merged VM/buffer cache.
917  */
918 int
919 layer_bwrite(v)
920 	void *v;
921 {
922 	struct vop_bwrite_args /* {
923 		struct buf *a_bp;
924 	} */ *ap = v;
925 	struct buf *bp = ap->a_bp;
926 	int error;
927 	struct vnode *savedvp;
928 
929 	savedvp = bp->b_vp;
930 	bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
931 
932 	error = VOP_BWRITE(bp);
933 
934 	bp->b_vp = savedvp;
935 
936 	return (error);
937 }
938 
939 int
940 layer_getpages(v)
941 	void *v;
942 {
943 	struct vop_getpages_args /* {
944 		struct vnode *a_vp;
945 		voff_t a_offset;
946 		struct vm_page **a_m;
947 		int *a_count;
948 		int a_centeridx;
949 		vm_prot_t a_access_type;
950 		int a_advice;
951 		int a_flags;
952 	} */ *ap = v;
953 	struct vnode *vp = ap->a_vp;
954 	int error;
955 
956 	/*
957 	 * just pass the request on to the underlying layer.
958 	 */
959 
960 	if (ap->a_flags & PGO_LOCKED) {
961 		return EBUSY;
962 	}
963 	ap->a_vp = LAYERVPTOLOWERVP(vp);
964 	mutex_exit(&vp->v_interlock);
965 	mutex_enter(&ap->a_vp->v_interlock);
966 	error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
967 	return error;
968 }
969 
970 int
971 layer_putpages(v)
972 	void *v;
973 {
974 	struct vop_putpages_args /* {
975 		struct vnode *a_vp;
976 		voff_t a_offlo;
977 		voff_t a_offhi;
978 		int a_flags;
979 	} */ *ap = v;
980 	struct vnode *vp = ap->a_vp;
981 	int error;
982 
983 	/*
984 	 * just pass the request on to the underlying layer.
985 	 */
986 
987 	ap->a_vp = LAYERVPTOLOWERVP(vp);
988 	mutex_exit(&vp->v_interlock);
989 	if (ap->a_flags & PGO_RECLAIM) {
990 		return 0;
991 	}
992 	mutex_enter(&ap->a_vp->v_interlock);
993 	error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
994 	return error;
995 }
996