1 /* $NetBSD: layer_vnops.c,v 1.39 2010/01/08 11:35:10 pooka Exp $ */ 2 3 /* 4 * Copyright (c) 1999 National Aeronautics & Space Administration 5 * All rights reserved. 6 * 7 * This software was written by William Studenmund of the 8 * Numerical Aerospace Simulation Facility, NASA Ames Research Center. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the National Aeronautics & Space Administration 19 * nor the names of its contributors may be used to endorse or promote 20 * products derived from this software without specific prior written 21 * permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION 24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB- 27 * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, 28 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 33 * POSSIBILITY OF SUCH DAMAGE. 34 */ 35 /* 36 * Copyright (c) 1992, 1993 37 * The Regents of the University of California. All rights reserved. 38 * 39 * This code is derived from software contributed to Berkeley by 40 * John Heidemann of the UCLA Ficus project. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. Neither the name of the University nor the names of its contributors 51 * may be used to endorse or promote products derived from this software 52 * without specific prior written permission. 53 * 54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 64 * SUCH DAMAGE. 65 * 66 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95 67 * 68 * Ancestors: 69 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92 70 * Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp 71 * ...and... 72 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project 73 */ 74 75 /* 76 * Null Layer vnode routines. 77 * 78 * (See mount_null(8) for more information.) 79 * 80 * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide 81 * the core implementation of the null file system and most other stacked 82 * fs's. The description below refers to the null file system, but the 83 * services provided by the layer* files are useful for all layered fs's. 84 * 85 * The null layer duplicates a portion of the file system 86 * name space under a new name. In this respect, it is 87 * similar to the loopback file system. It differs from 88 * the loopback fs in two respects: it is implemented using 89 * a stackable layers techniques, and it's "null-node"s stack above 90 * all lower-layer vnodes, not just over directory vnodes. 91 * 92 * The null layer has two purposes. First, it serves as a demonstration 93 * of layering by proving a layer which does nothing. (It actually 94 * does everything the loopback file system does, which is slightly 95 * more than nothing.) Second, the null layer can serve as a prototype 96 * layer. Since it provides all necessary layer framework, 97 * new file system layers can be created very easily be starting 98 * with a null layer. 99 * 100 * The remainder of the man page examines the null layer as a basis 101 * for constructing new layers. 102 * 103 * 104 * INSTANTIATING NEW NULL LAYERS 105 * 106 * New null layers are created with mount_null(8). 107 * Mount_null(8) takes two arguments, the pathname 108 * of the lower vfs (target-pn) and the pathname where the null 109 * layer will appear in the namespace (alias-pn). After 110 * the null layer is put into place, the contents 111 * of target-pn subtree will be aliased under alias-pn. 112 * 113 * It is conceivable that other overlay filesystems will take different 114 * parameters. For instance, data migration or access controll layers might 115 * only take one pathname which will serve both as the target-pn and 116 * alias-pn described above. 117 * 118 * 119 * OPERATION OF A NULL LAYER 120 * 121 * The null layer is the minimum file system layer, 122 * simply bypassing all possible operations to the lower layer 123 * for processing there. The majority of its activity centers 124 * on the bypass routine, through which nearly all vnode operations 125 * pass. 126 * 127 * The bypass routine accepts arbitrary vnode operations for 128 * handling by the lower layer. It begins by examing vnode 129 * operation arguments and replacing any layered nodes by their 130 * lower-layer equivalents. It then invokes the operation 131 * on the lower layer. Finally, it replaces the layered nodes 132 * in the arguments and, if a vnode is return by the operation, 133 * stacks a layered node on top of the returned vnode. 134 * 135 * The bypass routine in this file, layer_bypass(), is suitable for use 136 * by many different layered filesystems. It can be used by multiple 137 * filesystems simultaneously. Alternatively, a layered fs may provide 138 * its own bypass routine, in which case layer_bypass() should be used as 139 * a model. For instance, the main functionality provided by umapfs, the user 140 * identity mapping file system, is handled by a custom bypass routine. 141 * 142 * Typically a layered fs registers its selected bypass routine as the 143 * default vnode operation in its vnodeopv_entry_desc table. Additionally 144 * the filesystem must store the bypass entry point in the layerm_bypass 145 * field of struct layer_mount. All other layer routines in this file will 146 * use the layerm_bypass routine. 147 * 148 * Although the bypass routine handles most operations outright, a number 149 * of operations are special cased, and handled by the layered fs. One 150 * group, layer_setattr, layer_getattr, layer_access, layer_open, and 151 * layer_fsync, perform layer-specific manipulation in addition to calling 152 * the bypass routine. The other group 153 154 * Although bypass handles most operations, vop_getattr, vop_lock, 155 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not 156 * bypassed. Vop_getattr must change the fsid being returned. 157 * Vop_lock and vop_unlock must handle any locking for the 158 * current vnode as well as pass the lock request down. 159 * Vop_inactive and vop_reclaim are not bypassed so that 160 * they can handle freeing null-layer specific data. Vop_print 161 * is not bypassed to avoid excessive debugging information. 162 * Also, certain vnode operations change the locking state within 163 * the operation (create, mknod, remove, link, rename, mkdir, rmdir, 164 * and symlink). Ideally these operations should not change the 165 * lock state, but should be changed to let the caller of the 166 * function unlock them. Otherwise all intermediate vnode layers 167 * (such as union, umapfs, etc) must catch these functions to do 168 * the necessary locking at their layer. 169 * 170 * 171 * INSTANTIATING VNODE STACKS 172 * 173 * Mounting associates the null layer with a lower layer, 174 * effect stacking two VFSes. Vnode stacks are instead 175 * created on demand as files are accessed. 176 * 177 * The initial mount creates a single vnode stack for the 178 * root of the new null layer. All other vnode stacks 179 * are created as a result of vnode operations on 180 * this or other null vnode stacks. 181 * 182 * New vnode stacks come into existence as a result of 183 * an operation which returns a vnode. 184 * The bypass routine stacks a null-node above the new 185 * vnode before returning it to the caller. 186 * 187 * For example, imagine mounting a null layer with 188 * "mount_null /usr/include /dev/layer/null". 189 * Changing directory to /dev/layer/null will assign 190 * the root null-node (which was created when the null layer was mounted). 191 * Now consider opening "sys". A vop_lookup would be 192 * done on the root null-node. This operation would bypass through 193 * to the lower layer which would return a vnode representing 194 * the UFS "sys". layer_bypass then builds a null-node 195 * aliasing the UFS "sys" and returns this to the caller. 196 * Later operations on the null-node "sys" will repeat this 197 * process when constructing other vnode stacks. 198 * 199 * 200 * CREATING OTHER FILE SYSTEM LAYERS 201 * 202 * One of the easiest ways to construct new file system layers is to make 203 * a copy of the null layer, rename all files and variables, and 204 * then begin modifing the copy. Sed can be used to easily rename 205 * all variables. 206 * 207 * The umap layer is an example of a layer descended from the 208 * null layer. 209 * 210 * 211 * INVOKING OPERATIONS ON LOWER LAYERS 212 * 213 * There are two techniques to invoke operations on a lower layer 214 * when the operation cannot be completely bypassed. Each method 215 * is appropriate in different situations. In both cases, 216 * it is the responsibility of the aliasing layer to make 217 * the operation arguments "correct" for the lower layer 218 * by mapping an vnode arguments to the lower layer. 219 * 220 * The first approach is to call the aliasing layer's bypass routine. 221 * This method is most suitable when you wish to invoke the operation 222 * currently being handled on the lower layer. It has the advantage 223 * that the bypass routine already must do argument mapping. 224 * An example of this is null_getattrs in the null layer. 225 * 226 * A second approach is to directly invoke vnode operations on 227 * the lower layer with the VOP_OPERATIONNAME interface. 228 * The advantage of this method is that it is easy to invoke 229 * arbitrary operations on the lower layer. The disadvantage 230 * is that vnodes' arguments must be manually mapped. 231 * 232 */ 233 234 #include <sys/cdefs.h> 235 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.39 2010/01/08 11:35:10 pooka Exp $"); 236 237 #include <sys/param.h> 238 #include <sys/systm.h> 239 #include <sys/proc.h> 240 #include <sys/time.h> 241 #include <sys/vnode.h> 242 #include <sys/mount.h> 243 #include <sys/namei.h> 244 #include <sys/kmem.h> 245 #include <sys/buf.h> 246 #include <sys/kauth.h> 247 248 #include <miscfs/genfs/layer.h> 249 #include <miscfs/genfs/layer_extern.h> 250 #include <miscfs/genfs/genfs.h> 251 252 253 /* 254 * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass 255 * routine by John Heidemann. 256 * The new element for this version is that the whole nullfs 257 * system gained the concept of locks on the lower node, and locks on 258 * our nodes. When returning from a call to the lower layer, we may 259 * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK() 260 * macros provide this functionality. 261 * The 10-Apr-92 version was optimized for speed, throwing away some 262 * safety checks. It should still always work, but it's not as 263 * robust to programmer errors. 264 * 265 * In general, we map all vnodes going down and unmap them on the way back. 266 * 267 * Also, some BSD vnode operations have the side effect of vrele'ing 268 * their arguments. With stacking, the reference counts are held 269 * by the upper node, not the lower one, so we must handle these 270 * side-effects here. This is not of concern in Sun-derived systems 271 * since there are no such side-effects. 272 * 273 * New for the 08-June-99 version: we also handle operations which unlock 274 * the passed-in node (typically they vput the node). 275 * 276 * This makes the following assumptions: 277 * - only one returned vpp 278 * - no INOUT vpp's (Sun's vop_open has one of these) 279 * - the vnode operation vector of the first vnode should be used 280 * to determine what implementation of the op should be invoked 281 * - all mapped vnodes are of our vnode-type (NEEDSWORK: 282 * problems on rmdir'ing mount points and renaming?) 283 */ 284 int 285 layer_bypass(void *v) 286 { 287 struct vop_generic_args /* { 288 struct vnodeop_desc *a_desc; 289 <other random data follows, presumably> 290 } */ *ap = v; 291 int (**our_vnodeop_p)(void *); 292 struct vnode **this_vp_p; 293 int error, error1; 294 struct vnode *old_vps[VDESC_MAX_VPS], *vp0; 295 struct vnode **vps_p[VDESC_MAX_VPS]; 296 struct vnode ***vppp; 297 struct mount *mp; 298 struct vnodeop_desc *descp = ap->a_desc; 299 int reles, i, flags; 300 301 #ifdef DIAGNOSTIC 302 /* 303 * We require at least one vp. 304 */ 305 if (descp->vdesc_vp_offsets == NULL || 306 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET) 307 panic("%s: no vp's in map.\n", __func__); 308 #endif 309 310 vps_p[0] = 311 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap); 312 vp0 = *vps_p[0]; 313 mp = vp0->v_mount; 314 flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags; 315 our_vnodeop_p = vp0->v_op; 316 317 if (flags & LAYERFS_MBYPASSDEBUG) 318 printf("%s: %s\n", __func__, descp->vdesc_name); 319 320 /* 321 * Map the vnodes going in. 322 * Later, we'll invoke the operation based on 323 * the first mapped vnode's operation vector. 324 */ 325 reles = descp->vdesc_flags; 326 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 327 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 328 break; /* bail out at end of list */ 329 vps_p[i] = this_vp_p = 330 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i], 331 ap); 332 /* 333 * We're not guaranteed that any but the first vnode 334 * are of our type. Check for and don't map any 335 * that aren't. (We must always map first vp or vclean fails.) 336 */ 337 if (i && (*this_vp_p == NULL || 338 (*this_vp_p)->v_op != our_vnodeop_p)) { 339 old_vps[i] = NULL; 340 } else { 341 old_vps[i] = *this_vp_p; 342 *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p); 343 /* 344 * XXX - Several operations have the side effect 345 * of vrele'ing their vp's. We must account for 346 * that. (This should go away in the future.) 347 */ 348 if (reles & VDESC_VP0_WILLRELE) 349 vref(*this_vp_p); 350 } 351 352 } 353 354 /* 355 * Call the operation on the lower layer 356 * with the modified argument structure. 357 */ 358 error = VCALL(*vps_p[0], descp->vdesc_offset, ap); 359 360 /* 361 * Maintain the illusion of call-by-value 362 * by restoring vnodes in the argument structure 363 * to their original value. 364 */ 365 reles = descp->vdesc_flags; 366 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 367 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 368 break; /* bail out at end of list */ 369 if (old_vps[i]) { 370 *(vps_p[i]) = old_vps[i]; 371 if (reles & VDESC_VP0_WILLUNLOCK) 372 LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1); 373 if (reles & VDESC_VP0_WILLRELE) 374 vrele(*(vps_p[i])); 375 } 376 } 377 378 /* 379 * Map the possible out-going vpp 380 * (Assumes that the lower layer always returns 381 * a VREF'ed vpp unless it gets an error.) 382 */ 383 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && 384 !(descp->vdesc_flags & VDESC_NOMAP_VPP) && 385 !error) { 386 /* 387 * XXX - even though some ops have vpp returned vp's, 388 * several ops actually vrele this before returning. 389 * We must avoid these ops. 390 * (This should go away when these ops are regularized.) 391 */ 392 if (descp->vdesc_flags & VDESC_VPP_WILLRELE) 393 goto out; 394 vppp = VOPARG_OFFSETTO(struct vnode***, 395 descp->vdesc_vpp_offset, ap); 396 /* 397 * Only vop_lookup, vop_create, vop_makedir, vop_bmap, 398 * vop_mknod, and vop_symlink return vpp's. vop_bmap 399 * doesn't call bypass as the lower vpp is fine (we're just 400 * going to do i/o on it). vop_lookup doesn't call bypass 401 * as a lookup on "." would generate a locking error. 402 * So all the calls which get us here have a locked vpp. :-) 403 */ 404 error = layer_node_create(mp, **vppp, *vppp); 405 if (error) { 406 vput(**vppp); 407 **vppp = NULL; 408 } 409 } 410 411 out: 412 return (error); 413 } 414 415 /* 416 * We have to carry on the locking protocol on the layer vnodes 417 * as we progress through the tree. We also have to enforce read-only 418 * if this layer is mounted read-only. 419 */ 420 int 421 layer_lookup(void *v) 422 { 423 struct vop_lookup_args /* { 424 struct vnodeop_desc *a_desc; 425 struct vnode * a_dvp; 426 struct vnode ** a_vpp; 427 struct componentname * a_cnp; 428 } */ *ap = v; 429 struct componentname *cnp = ap->a_cnp; 430 int flags = cnp->cn_flags; 431 struct vnode *dvp, *lvp, *ldvp; 432 int error; 433 434 dvp = ap->a_dvp; 435 436 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) && 437 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 438 return (EROFS); 439 440 ldvp = LAYERVPTOLOWERVP(dvp); 441 ap->a_dvp = ldvp; 442 error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap); 443 lvp = *ap->a_vpp; 444 *ap->a_vpp = NULL; 445 446 if (error == EJUSTRETURN && (flags & ISLASTCN) && 447 (dvp->v_mount->mnt_flag & MNT_RDONLY) && 448 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME)) 449 error = EROFS; 450 451 /* 452 * We must do the same locking and unlocking at this layer as 453 * is done in the layers below us. 454 */ 455 if (ldvp == lvp) { 456 457 /* 458 * Got the same object back, because we looked up ".", 459 * or ".." in the root node of a mount point. 460 * So we make another reference to dvp and return it. 461 */ 462 vref(dvp); 463 *ap->a_vpp = dvp; 464 vrele(lvp); 465 } else if (lvp != NULL) { 466 /* dvp, ldvp and vp are all locked */ 467 error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp); 468 if (error) { 469 vput(lvp); 470 } 471 } 472 return (error); 473 } 474 475 /* 476 * Setattr call. Disallow write attempts if the layer is mounted read-only. 477 */ 478 int 479 layer_setattr(void *v) 480 { 481 struct vop_setattr_args /* { 482 struct vnodeop_desc *a_desc; 483 struct vnode *a_vp; 484 struct vattr *a_vap; 485 kauth_cred_t a_cred; 486 struct lwp *a_l; 487 } */ *ap = v; 488 struct vnode *vp = ap->a_vp; 489 struct vattr *vap = ap->a_vap; 490 491 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || 492 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || 493 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && 494 (vp->v_mount->mnt_flag & MNT_RDONLY)) 495 return (EROFS); 496 if (vap->va_size != VNOVAL) { 497 switch (vp->v_type) { 498 case VDIR: 499 return (EISDIR); 500 case VCHR: 501 case VBLK: 502 case VSOCK: 503 case VFIFO: 504 return (0); 505 case VREG: 506 case VLNK: 507 default: 508 /* 509 * Disallow write attempts if the filesystem is 510 * mounted read-only. 511 */ 512 if (vp->v_mount->mnt_flag & MNT_RDONLY) 513 return (EROFS); 514 } 515 } 516 return (LAYERFS_DO_BYPASS(vp, ap)); 517 } 518 519 /* 520 * We handle getattr only to change the fsid. 521 */ 522 int 523 layer_getattr(void *v) 524 { 525 struct vop_getattr_args /* { 526 struct vnode *a_vp; 527 struct vattr *a_vap; 528 kauth_cred_t a_cred; 529 struct lwp *a_l; 530 } */ *ap = v; 531 struct vnode *vp = ap->a_vp; 532 int error; 533 534 if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0) 535 return (error); 536 /* Requires that arguments be restored. */ 537 ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0]; 538 return (0); 539 } 540 541 int 542 layer_access(void *v) 543 { 544 struct vop_access_args /* { 545 struct vnode *a_vp; 546 int a_mode; 547 kauth_cred_t a_cred; 548 struct lwp *a_l; 549 } */ *ap = v; 550 struct vnode *vp = ap->a_vp; 551 mode_t mode = ap->a_mode; 552 553 /* 554 * Disallow write attempts on read-only layers; 555 * unless the file is a socket, fifo, or a block or 556 * character device resident on the file system. 557 */ 558 if (mode & VWRITE) { 559 switch (vp->v_type) { 560 case VDIR: 561 case VLNK: 562 case VREG: 563 if (vp->v_mount->mnt_flag & MNT_RDONLY) 564 return (EROFS); 565 break; 566 default: 567 break; 568 } 569 } 570 return (LAYERFS_DO_BYPASS(vp, ap)); 571 } 572 573 /* 574 * We must handle open to be able to catch MNT_NODEV and friends. 575 */ 576 int 577 layer_open(void *v) 578 { 579 struct vop_open_args *ap = v; 580 struct vnode *vp = ap->a_vp; 581 enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type; 582 583 if (((lower_type == VBLK) || (lower_type == VCHR)) && 584 (vp->v_mount->mnt_flag & MNT_NODEV)) 585 return ENXIO; 586 587 return LAYERFS_DO_BYPASS(vp, ap); 588 } 589 590 /* 591 * We need to process our own vnode lock and then clear the 592 * interlock flag as it applies only to our vnode, not the 593 * vnodes below us on the stack. 594 */ 595 int 596 layer_lock(void *v) 597 { 598 struct vop_lock_args /* { 599 struct vnode *a_vp; 600 int a_flags; 601 struct proc *a_p; 602 } */ *ap = v; 603 struct vnode *vp = ap->a_vp, *lowervp; 604 int flags = ap->a_flags, error; 605 606 if (flags & LK_INTERLOCK) { 607 mutex_exit(&vp->v_interlock); 608 flags &= ~LK_INTERLOCK; 609 } 610 611 if (vp->v_vnlock != NULL) { 612 /* 613 * The lower level has exported a struct lock to us. Use 614 * it so that all vnodes in the stack lock and unlock 615 * simultaneously. Note: we don't DRAIN the lock as DRAIN 616 * decommissions the lock - just because our vnode is 617 * going away doesn't mean the struct lock below us is. 618 * LK_EXCLUSIVE is fine. 619 */ 620 return (vlockmgr(vp->v_vnlock, flags)); 621 } else { 622 /* 623 * Ahh well. It would be nice if the fs we're over would 624 * export a struct lock for us to use, but it doesn't. 625 * 626 * To prevent race conditions involving doing a lookup 627 * on "..", we have to lock the lower node, then lock our 628 * node. Most of the time it won't matter that we lock our 629 * node (as any locking would need the lower one locked 630 * first). 631 */ 632 lowervp = LAYERVPTOLOWERVP(vp); 633 error = VOP_LOCK(lowervp, flags); 634 if (error) 635 return (error); 636 if ((error = vlockmgr(&vp->v_lock, flags))) { 637 VOP_UNLOCK(lowervp, 0); 638 } 639 return (error); 640 } 641 } 642 643 /* 644 */ 645 int 646 layer_unlock(void *v) 647 { 648 struct vop_unlock_args /* { 649 struct vnode *a_vp; 650 int a_flags; 651 struct proc *a_p; 652 } */ *ap = v; 653 struct vnode *vp = ap->a_vp; 654 int flags = ap->a_flags; 655 656 if (flags & LK_INTERLOCK) { 657 mutex_exit(&vp->v_interlock); 658 flags &= ~LK_INTERLOCK; 659 } 660 661 if (vp->v_vnlock != NULL) { 662 return (vlockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE)); 663 } else { 664 VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags); 665 return (vlockmgr(&vp->v_lock, flags | LK_RELEASE)); 666 } 667 } 668 669 int 670 layer_islocked(void *v) 671 { 672 struct vop_islocked_args /* { 673 struct vnode *a_vp; 674 } */ *ap = v; 675 struct vnode *vp = ap->a_vp; 676 int lkstatus; 677 678 if (vp->v_vnlock != NULL) 679 return vlockstatus(vp->v_vnlock); 680 681 lkstatus = VOP_ISLOCKED(LAYERVPTOLOWERVP(vp)); 682 if (lkstatus) 683 return lkstatus; 684 685 return vlockstatus(&vp->v_lock); 686 } 687 688 /* 689 * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother 690 * syncing the underlying vnodes, since they'll be fsync'ed when 691 * reclaimed; otherwise, 692 * pass it through to the underlying layer. 693 * 694 * XXX Do we still need to worry about shallow fsync? 695 */ 696 697 int 698 layer_fsync(void *v) 699 { 700 struct vop_fsync_args /* { 701 struct vnode *a_vp; 702 kauth_cred_t a_cred; 703 int a_flags; 704 off_t offlo; 705 off_t offhi; 706 struct lwp *a_l; 707 } */ *ap = v; 708 709 if (ap->a_flags & FSYNC_RECLAIM) { 710 return 0; 711 } 712 713 return (LAYERFS_DO_BYPASS(ap->a_vp, ap)); 714 } 715 716 717 int 718 layer_inactive(void *v) 719 { 720 struct vop_inactive_args /* { 721 struct vnode *a_vp; 722 bool *a_recycle; 723 } */ *ap = v; 724 struct vnode *vp = ap->a_vp; 725 726 /* 727 * ..., but don't cache the device node. Also, if we did a 728 * remove, don't cache the node. 729 */ 730 *ap->a_recycle = (vp->v_type == VBLK || vp->v_type == VCHR 731 || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED)); 732 733 /* 734 * Do nothing (and _don't_ bypass). 735 * Wait to vrele lowervp until reclaim, 736 * so that until then our layer_node is in the 737 * cache and reusable. 738 * 739 * NEEDSWORK: Someday, consider inactive'ing 740 * the lowervp and then trying to reactivate it 741 * with capabilities (v_id) 742 * like they do in the name lookup cache code. 743 * That's too much work for now. 744 */ 745 VOP_UNLOCK(vp, 0); 746 747 return (0); 748 } 749 750 int 751 layer_remove(void *v) 752 { 753 struct vop_remove_args /* { 754 struct vonde *a_dvp; 755 struct vnode *a_vp; 756 struct componentname *a_cnp; 757 } */ *ap = v; 758 759 int error; 760 struct vnode *vp = ap->a_vp; 761 762 vref(vp); 763 if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0) 764 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED; 765 766 vrele(vp); 767 768 return (error); 769 } 770 771 int 772 layer_rename(void *v) 773 { 774 struct vop_rename_args /* { 775 struct vnode *a_fdvp; 776 struct vnode *a_fvp; 777 struct componentname *a_fcnp; 778 struct vnode *a_tdvp; 779 struct vnode *a_tvp; 780 struct componentname *a_tcnp; 781 } */ *ap = v; 782 783 int error; 784 struct vnode *fdvp = ap->a_fdvp; 785 struct vnode *tvp; 786 787 tvp = ap->a_tvp; 788 if (tvp) { 789 if (tvp->v_mount != fdvp->v_mount) 790 tvp = NULL; 791 else 792 vref(tvp); 793 } 794 error = LAYERFS_DO_BYPASS(fdvp, ap); 795 if (tvp) { 796 if (error == 0) 797 VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED; 798 vrele(tvp); 799 } 800 801 return (error); 802 } 803 804 int 805 layer_rmdir(void *v) 806 { 807 struct vop_rmdir_args /* { 808 struct vnode *a_dvp; 809 struct vnode *a_vp; 810 struct componentname *a_cnp; 811 } */ *ap = v; 812 int error; 813 struct vnode *vp = ap->a_vp; 814 815 vref(vp); 816 if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0) 817 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED; 818 819 vrele(vp); 820 821 return (error); 822 } 823 824 int 825 layer_reclaim(void *v) 826 { 827 struct vop_reclaim_args /* { 828 struct vnode *a_vp; 829 struct lwp *a_l; 830 } */ *ap = v; 831 struct vnode *vp = ap->a_vp; 832 struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount); 833 struct layer_node *xp = VTOLAYER(vp); 834 struct vnode *lowervp = xp->layer_lowervp; 835 836 /* 837 * Note: in vop_reclaim, the node's struct lock has been 838 * decomissioned, so we have to be careful about calling 839 * VOP's on ourself. We must be careful as VXLOCK is set. 840 */ 841 /* After this assignment, this node will not be re-used. */ 842 if ((vp == lmp->layerm_rootvp)) { 843 /* 844 * Oops! We no longer have a root node. Most likely reason is 845 * that someone forcably unmunted the underlying fs. 846 * 847 * Now getting the root vnode will fail. We're dead. :-( 848 */ 849 lmp->layerm_rootvp = NULL; 850 } 851 xp->layer_lowervp = NULL; 852 mutex_enter(&lmp->layerm_hashlock); 853 LIST_REMOVE(xp, layer_hash); 854 mutex_exit(&lmp->layerm_hashlock); 855 kmem_free(vp->v_data, lmp->layerm_size); 856 vp->v_data = NULL; 857 vrele(lowervp); 858 859 return (0); 860 } 861 862 /* 863 * We just feed the returned vnode up to the caller - there's no need 864 * to build a layer node on top of the node on which we're going to do 865 * i/o. :-) 866 */ 867 int 868 layer_bmap(void *v) 869 { 870 struct vop_bmap_args /* { 871 struct vnode *a_vp; 872 daddr_t a_bn; 873 struct vnode **a_vpp; 874 daddr_t *a_bnp; 875 int *a_runp; 876 } */ *ap = v; 877 struct vnode *vp; 878 879 ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp); 880 881 return (VCALL(vp, ap->a_desc->vdesc_offset, ap)); 882 } 883 884 int 885 layer_print(void *v) 886 { 887 struct vop_print_args /* { 888 struct vnode *a_vp; 889 } */ *ap = v; 890 struct vnode *vp = ap->a_vp; 891 printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp)); 892 return (0); 893 } 894 895 /* 896 * XXX - vop_bwrite must be hand coded because it has no 897 * vnode in its arguments. 898 * This goes away with a merged VM/buffer cache. 899 */ 900 int 901 layer_bwrite(void *v) 902 { 903 struct vop_bwrite_args /* { 904 struct buf *a_bp; 905 } */ *ap = v; 906 struct buf *bp = ap->a_bp; 907 int error; 908 struct vnode *savedvp; 909 910 savedvp = bp->b_vp; 911 bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp); 912 913 error = VOP_BWRITE(bp); 914 915 bp->b_vp = savedvp; 916 917 return (error); 918 } 919 920 int 921 layer_getpages(void *v) 922 { 923 struct vop_getpages_args /* { 924 struct vnode *a_vp; 925 voff_t a_offset; 926 struct vm_page **a_m; 927 int *a_count; 928 int a_centeridx; 929 vm_prot_t a_access_type; 930 int a_advice; 931 int a_flags; 932 } */ *ap = v; 933 struct vnode *vp = ap->a_vp; 934 int error; 935 936 /* 937 * just pass the request on to the underlying layer. 938 */ 939 940 if (ap->a_flags & PGO_LOCKED) { 941 return EBUSY; 942 } 943 ap->a_vp = LAYERVPTOLOWERVP(vp); 944 mutex_exit(&vp->v_interlock); 945 mutex_enter(&ap->a_vp->v_interlock); 946 error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap); 947 return error; 948 } 949 950 int 951 layer_putpages(void *v) 952 { 953 struct vop_putpages_args /* { 954 struct vnode *a_vp; 955 voff_t a_offlo; 956 voff_t a_offhi; 957 int a_flags; 958 } */ *ap = v; 959 struct vnode *vp = ap->a_vp; 960 int error; 961 962 /* 963 * just pass the request on to the underlying layer. 964 */ 965 966 ap->a_vp = LAYERVPTOLOWERVP(vp); 967 mutex_exit(&vp->v_interlock); 968 if (ap->a_flags & PGO_RECLAIM) { 969 return 0; 970 } 971 mutex_enter(&ap->a_vp->v_interlock); 972 error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap); 973 return error; 974 } 975