xref: /netbsd-src/sys/miscfs/genfs/layer_vnops.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: layer_vnops.c,v 1.23 2004/06/30 17:42:55 hannken Exp $	*/
2 
3 /*
4  * Copyright (c) 1999 National Aeronautics & Space Administration
5  * All rights reserved.
6  *
7  * This software was written by William Studenmund of the
8  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the National Aeronautics & Space Administration
19  *    nor the names of its contributors may be used to endorse or promote
20  *    products derived from this software without specific prior written
21  *    permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 /*
36  * Copyright (c) 1992, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  *
39  * This code is derived from software contributed to Berkeley by
40  * John Heidemann of the UCLA Ficus project.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
67  *
68  * Ancestors:
69  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
70  *	$Id: layer_vnops.c,v 1.23 2004/06/30 17:42:55 hannken Exp $
71  *	...and...
72  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
73  */
74 
75 /*
76  * Null Layer vnode routines.
77  *
78  * (See mount_null(8) for more information.)
79  *
80  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
81  * the core implementation of the null file system and most other stacked
82  * fs's. The description below refers to the null file system, but the
83  * services provided by the layer* files are useful for all layered fs's.
84  *
85  * The null layer duplicates a portion of the file system
86  * name space under a new name.  In this respect, it is
87  * similar to the loopback file system.  It differs from
88  * the loopback fs in two respects:  it is implemented using
89  * a stackable layers techniques, and it's "null-node"s stack above
90  * all lower-layer vnodes, not just over directory vnodes.
91  *
92  * The null layer has two purposes.  First, it serves as a demonstration
93  * of layering by proving a layer which does nothing.  (It actually
94  * does everything the loopback file system does, which is slightly
95  * more than nothing.)  Second, the null layer can serve as a prototype
96  * layer.  Since it provides all necessary layer framework,
97  * new file system layers can be created very easily be starting
98  * with a null layer.
99  *
100  * The remainder of the man page examines the null layer as a basis
101  * for constructing new layers.
102  *
103  *
104  * INSTANTIATING NEW NULL LAYERS
105  *
106  * New null layers are created with mount_null(8).
107  * Mount_null(8) takes two arguments, the pathname
108  * of the lower vfs (target-pn) and the pathname where the null
109  * layer will appear in the namespace (alias-pn).  After
110  * the null layer is put into place, the contents
111  * of target-pn subtree will be aliased under alias-pn.
112  *
113  * It is conceivable that other overlay filesystems will take different
114  * parameters. For instance, data migration or access controll layers might
115  * only take one pathname which will serve both as the target-pn and
116  * alias-pn described above.
117  *
118  *
119  * OPERATION OF A NULL LAYER
120  *
121  * The null layer is the minimum file system layer,
122  * simply bypassing all possible operations to the lower layer
123  * for processing there.  The majority of its activity centers
124  * on the bypass routine, through which nearly all vnode operations
125  * pass.
126  *
127  * The bypass routine accepts arbitrary vnode operations for
128  * handling by the lower layer.  It begins by examing vnode
129  * operation arguments and replacing any layered nodes by their
130  * lower-layer equivalents.  It then invokes the operation
131  * on the lower layer.  Finally, it replaces the layered nodes
132  * in the arguments and, if a vnode is return by the operation,
133  * stacks a layered node on top of the returned vnode.
134  *
135  * The bypass routine in this file, layer_bypass(), is suitable for use
136  * by many different layered filesystems. It can be used by multiple
137  * filesystems simultaneously. Alternatively, a layered fs may provide
138  * its own bypass routine, in which case layer_bypass() should be used as
139  * a model. For instance, the main functionality provided by umapfs, the user
140  * identity mapping file system, is handled by a custom bypass routine.
141  *
142  * Typically a layered fs registers its selected bypass routine as the
143  * default vnode operation in its vnodeopv_entry_desc table. Additionally
144  * the filesystem must store the bypass entry point in the layerm_bypass
145  * field of struct layer_mount. All other layer routines in this file will
146  * use the layerm_bypass routine.
147  *
148  * Although the bypass routine handles most operations outright, a number
149  * of operations are special cased, and handled by the layered fs. One
150  * group, layer_setattr, layer_getattr, layer_access, layer_open, and
151  * layer_fsync, perform layer-specific manipulation in addition to calling
152  * the bypass routine. The other group
153 
154  * Although bypass handles most operations, vop_getattr, vop_lock,
155  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
156  * bypassed. Vop_getattr must change the fsid being returned.
157  * Vop_lock and vop_unlock must handle any locking for the
158  * current vnode as well as pass the lock request down.
159  * Vop_inactive and vop_reclaim are not bypassed so that
160  * they can handle freeing null-layer specific data. Vop_print
161  * is not bypassed to avoid excessive debugging information.
162  * Also, certain vnode operations change the locking state within
163  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
164  * and symlink). Ideally these operations should not change the
165  * lock state, but should be changed to let the caller of the
166  * function unlock them. Otherwise all intermediate vnode layers
167  * (such as union, umapfs, etc) must catch these functions to do
168  * the necessary locking at their layer.
169  *
170  *
171  * INSTANTIATING VNODE STACKS
172  *
173  * Mounting associates the null layer with a lower layer,
174  * effect stacking two VFSes.  Vnode stacks are instead
175  * created on demand as files are accessed.
176  *
177  * The initial mount creates a single vnode stack for the
178  * root of the new null layer.  All other vnode stacks
179  * are created as a result of vnode operations on
180  * this or other null vnode stacks.
181  *
182  * New vnode stacks come into existence as a result of
183  * an operation which returns a vnode.
184  * The bypass routine stacks a null-node above the new
185  * vnode before returning it to the caller.
186  *
187  * For example, imagine mounting a null layer with
188  * "mount_null /usr/include /dev/layer/null".
189  * Changing directory to /dev/layer/null will assign
190  * the root null-node (which was created when the null layer was mounted).
191  * Now consider opening "sys".  A vop_lookup would be
192  * done on the root null-node.  This operation would bypass through
193  * to the lower layer which would return a vnode representing
194  * the UFS "sys".  layer_bypass then builds a null-node
195  * aliasing the UFS "sys" and returns this to the caller.
196  * Later operations on the null-node "sys" will repeat this
197  * process when constructing other vnode stacks.
198  *
199  *
200  * CREATING OTHER FILE SYSTEM LAYERS
201  *
202  * One of the easiest ways to construct new file system layers is to make
203  * a copy of the null layer, rename all files and variables, and
204  * then begin modifing the copy.  Sed can be used to easily rename
205  * all variables.
206  *
207  * The umap layer is an example of a layer descended from the
208  * null layer.
209  *
210  *
211  * INVOKING OPERATIONS ON LOWER LAYERS
212  *
213  * There are two techniques to invoke operations on a lower layer
214  * when the operation cannot be completely bypassed.  Each method
215  * is appropriate in different situations.  In both cases,
216  * it is the responsibility of the aliasing layer to make
217  * the operation arguments "correct" for the lower layer
218  * by mapping an vnode arguments to the lower layer.
219  *
220  * The first approach is to call the aliasing layer's bypass routine.
221  * This method is most suitable when you wish to invoke the operation
222  * currently being handled on the lower layer.  It has the advantage
223  * that the bypass routine already must do argument mapping.
224  * An example of this is null_getattrs in the null layer.
225  *
226  * A second approach is to directly invoke vnode operations on
227  * the lower layer with the VOP_OPERATIONNAME interface.
228  * The advantage of this method is that it is easy to invoke
229  * arbitrary operations on the lower layer.  The disadvantage
230  * is that vnodes' arguments must be manually mapped.
231  *
232  */
233 
234 #include <sys/cdefs.h>
235 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.23 2004/06/30 17:42:55 hannken Exp $");
236 
237 #include <sys/param.h>
238 #include <sys/systm.h>
239 #include <sys/proc.h>
240 #include <sys/time.h>
241 #include <sys/vnode.h>
242 #include <sys/mount.h>
243 #include <sys/namei.h>
244 #include <sys/malloc.h>
245 #include <sys/buf.h>
246 #include <miscfs/genfs/layer.h>
247 #include <miscfs/genfs/layer_extern.h>
248 #include <miscfs/genfs/genfs.h>
249 
250 
251 /*
252  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
253  *		routine by John Heidemann.
254  *	The new element for this version is that the whole nullfs
255  * system gained the concept of locks on the lower node, and locks on
256  * our nodes. When returning from a call to the lower layer, we may
257  * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
258  * macros provide this functionality.
259  *    The 10-Apr-92 version was optimized for speed, throwing away some
260  * safety checks.  It should still always work, but it's not as
261  * robust to programmer errors.
262  *    Define SAFETY to include some error checking code.
263  *
264  * In general, we map all vnodes going down and unmap them on the way back.
265  *
266  * Also, some BSD vnode operations have the side effect of vrele'ing
267  * their arguments.  With stacking, the reference counts are held
268  * by the upper node, not the lower one, so we must handle these
269  * side-effects here.  This is not of concern in Sun-derived systems
270  * since there are no such side-effects.
271  *
272  * New for the 08-June-99 version: we also handle operations which unlock
273  * the passed-in node (typically they vput the node).
274  *
275  * This makes the following assumptions:
276  * - only one returned vpp
277  * - no INOUT vpp's (Sun's vop_open has one of these)
278  * - the vnode operation vector of the first vnode should be used
279  *   to determine what implementation of the op should be invoked
280  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
281  *   problems on rmdir'ing mount points and renaming?)
282  */
283 int
284 layer_bypass(v)
285 	void *v;
286 {
287 	struct vop_generic_args /* {
288 		struct vnodeop_desc *a_desc;
289 		<other random data follows, presumably>
290 	} */ *ap = v;
291 	int (**our_vnodeop_p) __P((void *));
292 	struct vnode **this_vp_p;
293 	int error, error1;
294 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
295 	struct vnode **vps_p[VDESC_MAX_VPS];
296 	struct vnode ***vppp;
297 	struct vnodeop_desc *descp = ap->a_desc;
298 	int reles, i, flags;
299 
300 #ifdef SAFETY
301 	/*
302 	 * We require at least one vp.
303 	 */
304 	if (descp->vdesc_vp_offsets == NULL ||
305 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
306 		panic("%s: no vp's in map.\n", __func__);
307 #endif
308 
309 	vps_p[0] =
310 	    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
311 	vp0 = *vps_p[0];
312 	flags = MOUNTTOLAYERMOUNT(vp0->v_mount)->layerm_flags;
313 	our_vnodeop_p = vp0->v_op;
314 
315 	if (flags & LAYERFS_MBYPASSDEBUG)
316 		printf("%s: %s\n", __func__, descp->vdesc_name);
317 
318 	/*
319 	 * Map the vnodes going in.
320 	 * Later, we'll invoke the operation based on
321 	 * the first mapped vnode's operation vector.
322 	 */
323 	reles = descp->vdesc_flags;
324 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
325 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
326 			break;   /* bail out at end of list */
327 		vps_p[i] = this_vp_p =
328 		    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
329 		    ap);
330 		/*
331 		 * We're not guaranteed that any but the first vnode
332 		 * are of our type.  Check for and don't map any
333 		 * that aren't.  (We must always map first vp or vclean fails.)
334 		 */
335 		if (i && (*this_vp_p == NULL ||
336 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
337 			old_vps[i] = NULL;
338 		} else {
339 			old_vps[i] = *this_vp_p;
340 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
341 			/*
342 			 * XXX - Several operations have the side effect
343 			 * of vrele'ing their vp's.  We must account for
344 			 * that.  (This should go away in the future.)
345 			 */
346 			if (reles & VDESC_VP0_WILLRELE)
347 				VREF(*this_vp_p);
348 		}
349 
350 	}
351 
352 	/*
353 	 * Call the operation on the lower layer
354 	 * with the modified argument structure.
355 	 */
356 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
357 
358 	/*
359 	 * Maintain the illusion of call-by-value
360 	 * by restoring vnodes in the argument structure
361 	 * to their original value.
362 	 */
363 	reles = descp->vdesc_flags;
364 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
365 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
366 			break;   /* bail out at end of list */
367 		if (old_vps[i]) {
368 			*(vps_p[i]) = old_vps[i];
369 			if (reles & VDESC_VP0_WILLUNLOCK)
370 				LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
371 			if (reles & VDESC_VP0_WILLRELE)
372 				vrele(*(vps_p[i]));
373 		}
374 	}
375 
376 	/*
377 	 * Map the possible out-going vpp
378 	 * (Assumes that the lower layer always returns
379 	 * a VREF'ed vpp unless it gets an error.)
380 	 */
381 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
382 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
383 	    !error) {
384 		/*
385 		 * XXX - even though some ops have vpp returned vp's,
386 		 * several ops actually vrele this before returning.
387 		 * We must avoid these ops.
388 		 * (This should go away when these ops are regularized.)
389 		 */
390 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
391 			goto out;
392 		vppp = VOPARG_OFFSETTO(struct vnode***,
393 				 descp->vdesc_vpp_offset, ap);
394 		/*
395 		 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
396 		 * vop_mknod, and vop_symlink return vpp's. vop_bmap
397 		 * doesn't call bypass as the lower vpp is fine (we're just
398 		 * going to do i/o on it). vop_lookup doesn't call bypass
399 		 * as a lookup on "." would generate a locking error.
400 		 * So all the calls which get us here have a locked vpp. :-)
401 		 */
402 		error = layer_node_create(old_vps[0]->v_mount, **vppp, *vppp);
403 		if (error) {
404 			vput(**vppp);
405 			**vppp = NULL;
406 		}
407 	}
408 
409  out:
410 	return (error);
411 }
412 
413 /*
414  * We have to carry on the locking protocol on the layer vnodes
415  * as we progress through the tree. We also have to enforce read-only
416  * if this layer is mounted read-only.
417  */
418 int
419 layer_lookup(v)
420 	void *v;
421 {
422 	struct vop_lookup_args /* {
423 		struct vnodeop_desc *a_desc;
424 		struct vnode * a_dvp;
425 		struct vnode ** a_vpp;
426 		struct componentname * a_cnp;
427 	} */ *ap = v;
428 	struct componentname *cnp = ap->a_cnp;
429 	int flags = cnp->cn_flags;
430 	struct vnode *dvp, *vp, *ldvp;
431 	int error, r;
432 
433 	dvp = ap->a_dvp;
434 
435 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
436 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
437 		return (EROFS);
438 
439 	ldvp = LAYERVPTOLOWERVP(dvp);
440 	ap->a_dvp = ldvp;
441 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
442 	vp = *ap->a_vpp;
443 	*ap->a_vpp = NULL;
444 
445 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
446 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
447 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
448 		error = EROFS;
449 	/*
450 	 * We must do the same locking and unlocking at this layer as
451 	 * is done in the layers below us. It used to be we would try
452 	 * to guess based on what was set with the flags and error codes.
453 	 *
454 	 * But that doesn't work. So now we have the underlying VOP_LOOKUP
455 	 * tell us if it released the parent vnode, and we adjust the
456 	 * upper node accordingly. We can't just look at the lock states
457 	 * of the lower nodes as someone else might have come along and
458 	 * locked the parent node after our call to VOP_LOOKUP locked it.
459 	 */
460 	if ((cnp->cn_flags & PDIRUNLOCK)) {
461 		LAYERFS_UPPERUNLOCK(dvp, 0, r);
462 	}
463 	if (ldvp == vp) {
464 		/*
465 		 * Did lookup on "." or ".." in the root node of a mount point.
466 		 * So we return dvp after a VREF.
467 		 */
468 		*ap->a_vpp = dvp;
469 		VREF(dvp);
470 		vrele(vp);
471 	} else if (vp != NULL) {
472 		error = layer_node_create(dvp->v_mount, vp, ap->a_vpp);
473 		if (error) {
474 			vput(vp);
475 			if (cnp->cn_flags & PDIRUNLOCK) {
476 				if (vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY) == 0)
477 					cnp->cn_flags &= ~PDIRUNLOCK;
478 			}
479 		}
480 	}
481 	return (error);
482 }
483 
484 /*
485  * Setattr call. Disallow write attempts if the layer is mounted read-only.
486  */
487 int
488 layer_setattr(v)
489 	void *v;
490 {
491 	struct vop_setattr_args /* {
492 		struct vnodeop_desc *a_desc;
493 		struct vnode *a_vp;
494 		struct vattr *a_vap;
495 		struct ucred *a_cred;
496 		struct proc *a_p;
497 	} */ *ap = v;
498 	struct vnode *vp = ap->a_vp;
499 	struct vattr *vap = ap->a_vap;
500 
501   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
502 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
503 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
504 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
505 		return (EROFS);
506 	if (vap->va_size != VNOVAL) {
507  		switch (vp->v_type) {
508  		case VDIR:
509  			return (EISDIR);
510  		case VCHR:
511  		case VBLK:
512  		case VSOCK:
513  		case VFIFO:
514 			return (0);
515 		case VREG:
516 		case VLNK:
517  		default:
518 			/*
519 			 * Disallow write attempts if the filesystem is
520 			 * mounted read-only.
521 			 */
522 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
523 				return (EROFS);
524 		}
525 	}
526 	return (LAYERFS_DO_BYPASS(vp, ap));
527 }
528 
529 /*
530  *  We handle getattr only to change the fsid.
531  */
532 int
533 layer_getattr(v)
534 	void *v;
535 {
536 	struct vop_getattr_args /* {
537 		struct vnode *a_vp;
538 		struct vattr *a_vap;
539 		struct ucred *a_cred;
540 		struct proc *a_p;
541 	} */ *ap = v;
542 	struct vnode *vp = ap->a_vp;
543 	int error;
544 
545 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
546 		return (error);
547 	/* Requires that arguments be restored. */
548 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
549 	return (0);
550 }
551 
552 int
553 layer_access(v)
554 	void *v;
555 {
556 	struct vop_access_args /* {
557 		struct vnode *a_vp;
558 		int  a_mode;
559 		struct ucred *a_cred;
560 		struct proc *a_p;
561 	} */ *ap = v;
562 	struct vnode *vp = ap->a_vp;
563 	mode_t mode = ap->a_mode;
564 
565 	/*
566 	 * Disallow write attempts on read-only layers;
567 	 * unless the file is a socket, fifo, or a block or
568 	 * character device resident on the file system.
569 	 */
570 	if (mode & VWRITE) {
571 		switch (vp->v_type) {
572 		case VDIR:
573 		case VLNK:
574 		case VREG:
575 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
576 				return (EROFS);
577 			break;
578 		default:
579 			break;
580 		}
581 	}
582 	return (LAYERFS_DO_BYPASS(vp, ap));
583 }
584 
585 /*
586  * We must handle open to be able to catch MNT_NODEV and friends.
587  */
588 int
589 layer_open(v)
590 	void *v;
591 {
592 	struct vop_open_args *ap = v;
593 	struct vnode *vp = ap->a_vp;
594 	enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
595 
596 	if (((lower_type == VBLK) || (lower_type == VCHR)) &&
597 	    (vp->v_mount->mnt_flag & MNT_NODEV))
598 		return ENXIO;
599 
600 	return LAYERFS_DO_BYPASS(vp, ap);
601 }
602 
603 /*
604  * We need to process our own vnode lock and then clear the
605  * interlock flag as it applies only to our vnode, not the
606  * vnodes below us on the stack.
607  */
608 int
609 layer_lock(v)
610 	void *v;
611 {
612 	struct vop_lock_args /* {
613 		struct vnode *a_vp;
614 		int a_flags;
615 		struct proc *a_p;
616 	} */ *ap = v;
617 	struct vnode *vp = ap->a_vp, *lowervp;
618 	int	flags = ap->a_flags, error;
619 
620 	if (vp->v_vnlock != NULL) {
621 		/*
622 		 * The lower level has exported a struct lock to us. Use
623 		 * it so that all vnodes in the stack lock and unlock
624 		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
625 		 * decommissions the lock - just because our vnode is
626 		 * going away doesn't mean the struct lock below us is.
627 		 * LK_EXCLUSIVE is fine.
628 		 */
629 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
630 			return(lockmgr(vp->v_vnlock,
631 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
632 				&vp->v_interlock));
633 		} else
634 			return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock));
635 	} else {
636 		/*
637 		 * Ahh well. It would be nice if the fs we're over would
638 		 * export a struct lock for us to use, but it doesn't.
639 		 *
640 		 * To prevent race conditions involving doing a lookup
641 		 * on "..", we have to lock the lower node, then lock our
642 		 * node. Most of the time it won't matter that we lock our
643 		 * node (as any locking would need the lower one locked
644 		 * first). But we can LK_DRAIN the upper lock as a step
645 		 * towards decomissioning it.
646 		 */
647 		lowervp = LAYERVPTOLOWERVP(vp);
648 		if (flags & LK_INTERLOCK) {
649 			simple_unlock(&vp->v_interlock);
650 			flags &= ~LK_INTERLOCK;
651 		}
652 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
653 			error = VOP_LOCK(lowervp,
654 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE);
655 		} else
656 			error = VOP_LOCK(lowervp, flags);
657 		if (error)
658 			return (error);
659 		if ((error = lockmgr(&vp->v_lock, flags, &vp->v_interlock))) {
660 			VOP_UNLOCK(lowervp, 0);
661 		}
662 		return (error);
663 	}
664 }
665 
666 /*
667  */
668 int
669 layer_unlock(v)
670 	void *v;
671 {
672 	struct vop_unlock_args /* {
673 		struct vnode *a_vp;
674 		int a_flags;
675 		struct proc *a_p;
676 	} */ *ap = v;
677 	struct vnode *vp = ap->a_vp;
678 	int	flags = ap->a_flags;
679 
680 	if (vp->v_vnlock != NULL) {
681 		return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
682 			&vp->v_interlock));
683 	} else {
684 		if (flags & LK_INTERLOCK) {
685 			simple_unlock(&vp->v_interlock);
686 			flags &= ~LK_INTERLOCK;
687 		}
688 		VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
689 		return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
690 			&vp->v_interlock));
691 	}
692 }
693 
694 int
695 layer_islocked(v)
696 	void *v;
697 {
698 	struct vop_islocked_args /* {
699 		struct vnode *a_vp;
700 	} */ *ap = v;
701 	struct vnode *vp = ap->a_vp;
702 	int lkstatus;
703 
704 	if (vp->v_vnlock != NULL)
705 		return lockstatus(vp->v_vnlock);
706 
707 	lkstatus = VOP_ISLOCKED(LAYERVPTOLOWERVP(vp));
708 	if (lkstatus)
709 		return lkstatus;
710 
711 	return lockstatus(&vp->v_lock);
712 }
713 
714 /*
715  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
716  * syncing the underlying vnodes, since they'll be fsync'ed when
717  * reclaimed; otherwise,
718  * pass it through to the underlying layer.
719  *
720  * XXX Do we still need to worry about shallow fsync?
721  */
722 
723 int
724 layer_fsync(v)
725 	void *v;
726 {
727 	struct vop_fsync_args /* {
728 		struct vnode *a_vp;
729 		struct ucred *a_cred;
730 		int  a_flags;
731 		off_t offlo;
732 		off_t offhi;
733 		struct proc *a_p;
734 	} */ *ap = v;
735 
736 	if (ap->a_flags & FSYNC_RECLAIM) {
737 		return 0;
738 	}
739 
740 	return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
741 }
742 
743 
744 int
745 layer_inactive(v)
746 	void *v;
747 {
748 	struct vop_inactive_args /* {
749 		struct vnode *a_vp;
750 		struct proc *a_p;
751 	} */ *ap = v;
752 	struct vnode *vp = ap->a_vp;
753 
754 	/*
755 	 * Do nothing (and _don't_ bypass).
756 	 * Wait to vrele lowervp until reclaim,
757 	 * so that until then our layer_node is in the
758 	 * cache and reusable.
759 	 *
760 	 * NEEDSWORK: Someday, consider inactive'ing
761 	 * the lowervp and then trying to reactivate it
762 	 * with capabilities (v_id)
763 	 * like they do in the name lookup cache code.
764 	 * That's too much work for now.
765 	 */
766 	VOP_UNLOCK(vp, 0);
767 
768 	/*
769 	 * ..., but don't cache the device node. Also, if we did a
770 	 * remove, don't cache the node.
771 	 */
772 	if (vp->v_type == VBLK || vp->v_type == VCHR
773 	    || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED))
774 		vgone(vp);
775 	return (0);
776 }
777 
778 int
779 layer_remove(v)
780 	void *v;
781 {
782 	struct vop_remove_args /* {
783 		struct vonde		*a_dvp;
784 		struct vnode		*a_vp;
785 		struct componentname	*a_cnp;
786 	} */ *ap = v;
787 
788 	int		error;
789 	struct vnode	*vp = ap->a_vp;
790 
791 	vref(vp);
792 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
793 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
794 
795 	vrele(vp);
796 
797 	return (error);
798 }
799 
800 int
801 layer_rename(v)
802 	void *v;
803 {
804 	struct vop_rename_args  /* {
805 		struct vnode		*a_fdvp;
806 		struct vnode		*a_fvp;
807 		struct componentname	*a_fcnp;
808 		struct vnode		*a_tdvp;
809 		struct vnode		*a_tvp;
810 		struct componentname	*a_tcnp;
811 	} */ *ap = v;
812 
813 	int error;
814 	struct vnode *fdvp = ap->a_fdvp;
815 	struct vnode *tvp;
816 
817 	tvp = ap->a_tvp;
818 	if (tvp) {
819 		if (tvp->v_mount != fdvp->v_mount)
820 			tvp = NULL;
821 		else
822 			vref(tvp);
823 	}
824 	error = LAYERFS_DO_BYPASS(fdvp, ap);
825 	if (tvp) {
826 		if (error == 0)
827 			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
828 		vrele(tvp);
829 	}
830 
831 	return (error);
832 }
833 
834 int
835 layer_rmdir(v)
836 	void *v;
837 {
838 	struct vop_rmdir_args /* {
839 		struct vnode		*a_dvp;
840 		struct vnode		*a_vp;
841 		struct componentname	*a_cnp;
842 	} */ *ap = v;
843 	int		error;
844 	struct vnode	*vp = ap->a_vp;
845 
846 	vref(vp);
847 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
848 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
849 
850 	vrele(vp);
851 
852 	return (error);
853 }
854 
855 int
856 layer_reclaim(v)
857 	void *v;
858 {
859 	struct vop_reclaim_args /* {
860 		struct vnode *a_vp;
861 		struct proc *a_p;
862 	} */ *ap = v;
863 	struct vnode *vp = ap->a_vp;
864 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
865 	struct layer_node *xp = VTOLAYER(vp);
866 	struct vnode *lowervp = xp->layer_lowervp;
867 
868 	/*
869 	 * Note: in vop_reclaim, the node's struct lock has been
870 	 * decomissioned, so we have to be careful about calling
871 	 * VOP's on ourself. Even if we turned a LK_DRAIN into an
872 	 * LK_EXCLUSIVE in layer_lock, we still must be careful as VXLOCK is
873 	 * set.
874 	 */
875 	/* After this assignment, this node will not be re-used. */
876 	if ((vp == lmp->layerm_rootvp)) {
877 		/*
878 		 * Oops! We no longer have a root node. Most likely reason is
879 		 * that someone forcably unmunted the underlying fs.
880 		 *
881 		 * Now getting the root vnode will fail. We're dead. :-(
882 		 */
883 		lmp->layerm_rootvp = NULL;
884 	}
885 	xp->layer_lowervp = NULL;
886 	simple_lock(&lmp->layerm_hashlock);
887 	LIST_REMOVE(xp, layer_hash);
888 	simple_unlock(&lmp->layerm_hashlock);
889 	FREE(vp->v_data, M_TEMP);
890 	vp->v_data = NULL;
891 	vrele (lowervp);
892 	return (0);
893 }
894 
895 /*
896  * We just feed the returned vnode up to the caller - there's no need
897  * to build a layer node on top of the node on which we're going to do
898  * i/o. :-)
899  */
900 int
901 layer_bmap(v)
902 	void *v;
903 {
904 	struct vop_bmap_args /* {
905 		struct vnode *a_vp;
906 		daddr_t  a_bn;
907 		struct vnode **a_vpp;
908 		daddr_t *a_bnp;
909 		int *a_runp;
910 	} */ *ap = v;
911 	struct vnode *vp;
912 
913 	ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
914 
915 	return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
916 }
917 
918 int
919 layer_print(v)
920 	void *v;
921 {
922 	struct vop_print_args /* {
923 		struct vnode *a_vp;
924 	} */ *ap = v;
925 	struct vnode *vp = ap->a_vp;
926 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
927 	return (0);
928 }
929 
930 /*
931  * XXX - vop_bwrite must be hand coded because it has no
932  * vnode in its arguments.
933  * This goes away with a merged VM/buffer cache.
934  */
935 int
936 layer_bwrite(v)
937 	void *v;
938 {
939 	struct vop_bwrite_args /* {
940 		struct buf *a_bp;
941 	} */ *ap = v;
942 	struct buf *bp = ap->a_bp;
943 	int error;
944 	struct vnode *savedvp;
945 
946 	savedvp = bp->b_vp;
947 	bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
948 
949 	error = VOP_BWRITE(bp);
950 
951 	bp->b_vp = savedvp;
952 
953 	return (error);
954 }
955 
956 int
957 layer_getpages(v)
958 	void *v;
959 {
960 	struct vop_getpages_args /* {
961 		struct vnode *a_vp;
962 		voff_t a_offset;
963 		struct vm_page **a_m;
964 		int *a_count;
965 		int a_centeridx;
966 		vm_prot_t a_access_type;
967 		int a_advice;
968 		int a_flags;
969 	} */ *ap = v;
970 	struct vnode *vp = ap->a_vp;
971 	int error;
972 
973 	/*
974 	 * just pass the request on to the underlying layer.
975 	 */
976 
977 	if (ap->a_flags & PGO_LOCKED) {
978 		return EBUSY;
979 	}
980 	ap->a_vp = LAYERVPTOLOWERVP(vp);
981 	simple_unlock(&vp->v_interlock);
982 	simple_lock(&ap->a_vp->v_interlock);
983 	error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
984 	return error;
985 }
986 
987 int
988 layer_putpages(v)
989 	void *v;
990 {
991 	struct vop_putpages_args /* {
992 		struct vnode *a_vp;
993 		voff_t a_offlo;
994 		voff_t a_offhi;
995 		int a_flags;
996 	} */ *ap = v;
997 	struct vnode *vp = ap->a_vp;
998 	int error;
999 
1000 	/*
1001 	 * just pass the request on to the underlying layer.
1002 	 */
1003 
1004 	ap->a_vp = LAYERVPTOLOWERVP(vp);
1005 	simple_unlock(&vp->v_interlock);
1006 	simple_lock(&ap->a_vp->v_interlock);
1007 	error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
1008 	return error;
1009 }
1010