1 /* $NetBSD: layer_vnops.c,v 1.48 2011/06/12 03:35:58 rmind Exp $ */ 2 3 /* 4 * Copyright (c) 1999 National Aeronautics & Space Administration 5 * All rights reserved. 6 * 7 * This software was written by William Studenmund of the 8 * Numerical Aerospace Simulation Facility, NASA Ames Research Center. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the National Aeronautics & Space Administration 19 * nor the names of its contributors may be used to endorse or promote 20 * products derived from this software without specific prior written 21 * permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION 24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB- 27 * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, 28 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 33 * POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 /* 37 * Copyright (c) 1992, 1993 38 * The Regents of the University of California. All rights reserved. 39 * 40 * This code is derived from software contributed to Berkeley by 41 * John Heidemann of the UCLA Ficus project. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. Neither the name of the University nor the names of its contributors 52 * may be used to endorse or promote products derived from this software 53 * without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * SUCH DAMAGE. 66 * 67 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95 68 * 69 * Ancestors: 70 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92 71 * Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp 72 * ...and... 73 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project 74 */ 75 76 /* 77 * Generic layer vnode operations. 78 * 79 * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide 80 * the core implementation of stacked file-systems. 81 * 82 * The layerfs duplicates a portion of the file system name space under 83 * a new name. In this respect, it is similar to the loopback file system. 84 * It differs from the loopback fs in two respects: it is implemented using 85 * a stackable layers technique, and it is "layerfs-nodes" stack above all 86 * lower-layer vnodes, not just over directory vnodes. 87 * 88 * OPERATION OF LAYERFS 89 * 90 * The layerfs is the minimum file system layer, bypassing all possible 91 * operations to the lower layer for processing there. The majority of its 92 * activity centers on the bypass routine, through which nearly all vnode 93 * operations pass. 94 * 95 * The bypass routine accepts arbitrary vnode operations for handling by 96 * the lower layer. It begins by examining vnode operation arguments and 97 * replacing any layered nodes by their lower-layer equivalents. It then 98 * invokes an operation on the lower layer. Finally, it replaces the 99 * layered nodes in the arguments and, if a vnode is returned by the 100 * operation, stacks a layered node on top of the returned vnode. 101 * 102 * The bypass routine in this file, layer_bypass(), is suitable for use 103 * by many different layered filesystems. It can be used by multiple 104 * filesystems simultaneously. Alternatively, a layered fs may provide 105 * its own bypass routine, in which case layer_bypass() should be used as 106 * a model. For instance, the main functionality provided by umapfs, the user 107 * identity mapping file system, is handled by a custom bypass routine. 108 * 109 * Typically a layered fs registers its selected bypass routine as the 110 * default vnode operation in its vnodeopv_entry_desc table. Additionally 111 * the filesystem must store the bypass entry point in the layerm_bypass 112 * field of struct layer_mount. All other layer routines in this file will 113 * use the layerm_bypass() routine. 114 * 115 * Although the bypass routine handles most operations outright, a number 116 * of operations are special cased and handled by the layerfs. For instance, 117 * layer_getattr() must change the fsid being returned. While layer_lock() 118 * and layer_unlock() must handle any locking for the current vnode as well 119 * as pass the lock request down. layer_inactive() and layer_reclaim() are 120 * not bypassed so that they can handle freeing layerfs-specific data. Also, 121 * certain vnode operations (create, mknod, remove, link, rename, mkdir, 122 * rmdir, and symlink) change the locking state within the operation. Ideally 123 * these operations should not change the lock state, but should be changed 124 * to let the caller of the function unlock them. Otherwise, all intermediate 125 * vnode layers (such as union, umapfs, etc) must catch these functions to do 126 * the necessary locking at their layer. 127 * 128 * INSTANTIATING VNODE STACKS 129 * 130 * Mounting associates "layerfs-nodes" stack and lower layer, in effect 131 * stacking two VFSes. The initial mount creates a single vnode stack for 132 * the root of the new layerfs. All other vnode stacks are created as a 133 * result of vnode operations on this or other layerfs vnode stacks. 134 * 135 * New vnode stacks come into existence as a result of an operation which 136 * returns a vnode. The bypass routine stacks a layerfs-node above the new 137 * vnode before returning it to the caller. 138 * 139 * For example, imagine mounting a null layer with: 140 * 141 * "mount_null /usr/include /dev/layer/null" 142 * 143 * Changing directory to /dev/layer/null will assign the root layerfs-node, 144 * which was created when the null layer was mounted). Now consider opening 145 * "sys". A layer_lookup() would be performed on the root layerfs-node. 146 * This operation would bypass through to the lower layer which would return 147 * a vnode representing the UFS "sys". Then, layer_bypass() builds a 148 * layerfs-node aliasing the UFS "sys" and returns this to the caller. 149 * Later operations on the layerfs-node "sys" will repeat this process when 150 * constructing other vnode stacks. 151 * 152 * INVOKING OPERATIONS ON LOWER LAYERS 153 * 154 * There are two techniques to invoke operations on a lower layer when the 155 * operation cannot be completely bypassed. Each method is appropriate in 156 * different situations. In both cases, it is the responsibility of the 157 * aliasing layer to make the operation arguments "correct" for the lower 158 * layer by mapping any vnode arguments to the lower layer. 159 * 160 * The first approach is to call the aliasing layer's bypass routine. This 161 * method is most suitable when you wish to invoke the operation currently 162 * being handled on the lower layer. It has the advantage that the bypass 163 * routine already must do argument mapping. An example of this is 164 * layer_getattr(). 165 * 166 * A second approach is to directly invoke vnode operations on the lower 167 * layer with the VOP_OPERATIONNAME interface. The advantage of this method 168 * is that it is easy to invoke arbitrary operations on the lower layer. 169 * The disadvantage is that vnode's arguments must be manually mapped. 170 */ 171 172 #include <sys/cdefs.h> 173 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.48 2011/06/12 03:35:58 rmind Exp $"); 174 175 #include <sys/param.h> 176 #include <sys/systm.h> 177 #include <sys/proc.h> 178 #include <sys/time.h> 179 #include <sys/vnode.h> 180 #include <sys/mount.h> 181 #include <sys/namei.h> 182 #include <sys/kmem.h> 183 #include <sys/buf.h> 184 #include <sys/kauth.h> 185 186 #include <miscfs/genfs/layer.h> 187 #include <miscfs/genfs/layer_extern.h> 188 #include <miscfs/genfs/genfs.h> 189 190 /* 191 * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass 192 * routine by John Heidemann. 193 * The new element for this version is that the whole nullfs 194 * system gained the concept of locks on the lower node. 195 * The 10-Apr-92 version was optimized for speed, throwing away some 196 * safety checks. It should still always work, but it's not as 197 * robust to programmer errors. 198 * 199 * In general, we map all vnodes going down and unmap them on the way back. 200 * 201 * Also, some BSD vnode operations have the side effect of vrele'ing 202 * their arguments. With stacking, the reference counts are held 203 * by the upper node, not the lower one, so we must handle these 204 * side-effects here. This is not of concern in Sun-derived systems 205 * since there are no such side-effects. 206 * 207 * New for the 08-June-99 version: we also handle operations which unlock 208 * the passed-in node (typically they vput the node). 209 * 210 * This makes the following assumptions: 211 * - only one returned vpp 212 * - no INOUT vpp's (Sun's vop_open has one of these) 213 * - the vnode operation vector of the first vnode should be used 214 * to determine what implementation of the op should be invoked 215 * - all mapped vnodes are of our vnode-type (NEEDSWORK: 216 * problems on rmdir'ing mount points and renaming?) 217 */ 218 int 219 layer_bypass(void *v) 220 { 221 struct vop_generic_args /* { 222 struct vnodeop_desc *a_desc; 223 <other random data follows, presumably> 224 } */ *ap = v; 225 int (**our_vnodeop_p)(void *); 226 struct vnode **this_vp_p; 227 int error; 228 struct vnode *old_vps[VDESC_MAX_VPS], *vp0; 229 struct vnode **vps_p[VDESC_MAX_VPS]; 230 struct vnode ***vppp; 231 struct mount *mp; 232 struct vnodeop_desc *descp = ap->a_desc; 233 int reles, i, flags; 234 235 #ifdef DIAGNOSTIC 236 /* 237 * We require at least one vp. 238 */ 239 if (descp->vdesc_vp_offsets == NULL || 240 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET) 241 panic("%s: no vp's in map.\n", __func__); 242 #endif 243 244 vps_p[0] = 245 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap); 246 vp0 = *vps_p[0]; 247 mp = vp0->v_mount; 248 flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags; 249 our_vnodeop_p = vp0->v_op; 250 251 if (flags & LAYERFS_MBYPASSDEBUG) 252 printf("%s: %s\n", __func__, descp->vdesc_name); 253 254 /* 255 * Map the vnodes going in. 256 * Later, we'll invoke the operation based on 257 * the first mapped vnode's operation vector. 258 */ 259 reles = descp->vdesc_flags; 260 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 261 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 262 break; /* bail out at end of list */ 263 vps_p[i] = this_vp_p = 264 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i], 265 ap); 266 /* 267 * We're not guaranteed that any but the first vnode 268 * are of our type. Check for and don't map any 269 * that aren't. (We must always map first vp or vclean fails.) 270 */ 271 if (i && (*this_vp_p == NULL || 272 (*this_vp_p)->v_op != our_vnodeop_p)) { 273 old_vps[i] = NULL; 274 } else { 275 old_vps[i] = *this_vp_p; 276 *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p); 277 /* 278 * XXX - Several operations have the side effect 279 * of vrele'ing their vp's. We must account for 280 * that. (This should go away in the future.) 281 */ 282 if (reles & VDESC_VP0_WILLRELE) 283 vref(*this_vp_p); 284 } 285 } 286 287 /* 288 * Call the operation on the lower layer 289 * with the modified argument structure. 290 */ 291 error = VCALL(*vps_p[0], descp->vdesc_offset, ap); 292 293 /* 294 * Maintain the illusion of call-by-value 295 * by restoring vnodes in the argument structure 296 * to their original value. 297 */ 298 reles = descp->vdesc_flags; 299 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 300 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 301 break; /* bail out at end of list */ 302 if (old_vps[i]) { 303 *(vps_p[i]) = old_vps[i]; 304 if (reles & VDESC_VP0_WILLRELE) 305 vrele(*(vps_p[i])); 306 } 307 } 308 309 /* 310 * Map the possible out-going vpp 311 * (Assumes that the lower layer always returns 312 * a VREF'ed vpp unless it gets an error.) 313 */ 314 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) { 315 vppp = VOPARG_OFFSETTO(struct vnode***, 316 descp->vdesc_vpp_offset, ap); 317 /* 318 * Only vop_lookup, vop_create, vop_makedir, vop_bmap, 319 * vop_mknod, and vop_symlink return vpp's. vop_bmap 320 * doesn't call bypass as the lower vpp is fine (we're just 321 * going to do i/o on it). vop_lookup doesn't call bypass 322 * as a lookup on "." would generate a locking error. 323 * So all the calls which get us here have a locked vpp. :-) 324 */ 325 error = layer_node_create(mp, **vppp, *vppp); 326 if (error) { 327 vput(**vppp); 328 **vppp = NULL; 329 } 330 } 331 return error; 332 } 333 334 /* 335 * We have to carry on the locking protocol on the layer vnodes 336 * as we progress through the tree. We also have to enforce read-only 337 * if this layer is mounted read-only. 338 */ 339 int 340 layer_lookup(void *v) 341 { 342 struct vop_lookup_args /* { 343 struct vnodeop_desc *a_desc; 344 struct vnode * a_dvp; 345 struct vnode ** a_vpp; 346 struct componentname * a_cnp; 347 } */ *ap = v; 348 struct componentname *cnp = ap->a_cnp; 349 struct vnode *dvp, *lvp, *ldvp; 350 int error, flags = cnp->cn_flags; 351 352 dvp = ap->a_dvp; 353 354 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) && 355 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 356 return EROFS; 357 358 ldvp = LAYERVPTOLOWERVP(dvp); 359 ap->a_dvp = ldvp; 360 error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap); 361 lvp = *ap->a_vpp; 362 *ap->a_vpp = NULL; 363 364 if (error == EJUSTRETURN && (flags & ISLASTCN) && 365 (dvp->v_mount->mnt_flag & MNT_RDONLY) && 366 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME)) 367 error = EROFS; 368 369 /* 370 * We must do the same locking and unlocking at this layer as 371 * is done in the layers below us. 372 */ 373 if (ldvp == lvp) { 374 /* 375 * Got the same object back, because we looked up ".", 376 * or ".." in the root node of a mount point. 377 * So we make another reference to dvp and return it. 378 */ 379 vref(dvp); 380 *ap->a_vpp = dvp; 381 vrele(lvp); 382 } else if (lvp != NULL) { 383 /* Note: dvp, ldvp and lvp are all locked. */ 384 error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp); 385 if (error) { 386 vput(lvp); 387 } 388 } 389 return error; 390 } 391 392 /* 393 * Setattr call. Disallow write attempts if the layer is mounted read-only. 394 */ 395 int 396 layer_setattr(void *v) 397 { 398 struct vop_setattr_args /* { 399 struct vnodeop_desc *a_desc; 400 struct vnode *a_vp; 401 struct vattr *a_vap; 402 kauth_cred_t a_cred; 403 struct lwp *a_l; 404 } */ *ap = v; 405 struct vnode *vp = ap->a_vp; 406 struct vattr *vap = ap->a_vap; 407 408 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || 409 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || 410 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && 411 (vp->v_mount->mnt_flag & MNT_RDONLY)) 412 return EROFS; 413 if (vap->va_size != VNOVAL) { 414 switch (vp->v_type) { 415 case VDIR: 416 return EISDIR; 417 case VCHR: 418 case VBLK: 419 case VSOCK: 420 case VFIFO: 421 return 0; 422 case VREG: 423 case VLNK: 424 default: 425 /* 426 * Disallow write attempts if the filesystem is 427 * mounted read-only. 428 */ 429 if (vp->v_mount->mnt_flag & MNT_RDONLY) 430 return EROFS; 431 } 432 } 433 return LAYERFS_DO_BYPASS(vp, ap); 434 } 435 436 /* 437 * We handle getattr only to change the fsid. 438 */ 439 int 440 layer_getattr(void *v) 441 { 442 struct vop_getattr_args /* { 443 struct vnode *a_vp; 444 struct vattr *a_vap; 445 kauth_cred_t a_cred; 446 struct lwp *a_l; 447 } */ *ap = v; 448 struct vnode *vp = ap->a_vp; 449 int error; 450 451 error = LAYERFS_DO_BYPASS(vp, ap); 452 if (error) { 453 return error; 454 } 455 /* Requires that arguments be restored. */ 456 ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0]; 457 return 0; 458 } 459 460 int 461 layer_access(void *v) 462 { 463 struct vop_access_args /* { 464 struct vnode *a_vp; 465 int a_mode; 466 kauth_cred_t a_cred; 467 struct lwp *a_l; 468 } */ *ap = v; 469 struct vnode *vp = ap->a_vp; 470 mode_t mode = ap->a_mode; 471 472 /* 473 * Disallow write attempts on read-only layers; 474 * unless the file is a socket, fifo, or a block or 475 * character device resident on the file system. 476 */ 477 if (mode & VWRITE) { 478 switch (vp->v_type) { 479 case VDIR: 480 case VLNK: 481 case VREG: 482 if (vp->v_mount->mnt_flag & MNT_RDONLY) 483 return EROFS; 484 break; 485 default: 486 break; 487 } 488 } 489 return LAYERFS_DO_BYPASS(vp, ap); 490 } 491 492 /* 493 * We must handle open to be able to catch MNT_NODEV and friends. 494 */ 495 int 496 layer_open(void *v) 497 { 498 struct vop_open_args /* { 499 const struct vnodeop_desc *a_desc; 500 struct vnode *a_vp; 501 int a_mode; 502 kauth_cred_t a_cred; 503 } */ *ap = v; 504 struct vnode *vp = ap->a_vp; 505 enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type; 506 507 if (((lower_type == VBLK) || (lower_type == VCHR)) && 508 (vp->v_mount->mnt_flag & MNT_NODEV)) 509 return ENXIO; 510 511 return LAYERFS_DO_BYPASS(vp, ap); 512 } 513 514 /* 515 * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother 516 * syncing the underlying vnodes, since they'll be fsync'ed when 517 * reclaimed; otherwise, pass it through to the underlying layer. 518 * 519 * XXX Do we still need to worry about shallow fsync? 520 */ 521 int 522 layer_fsync(void *v) 523 { 524 struct vop_fsync_args /* { 525 struct vnode *a_vp; 526 kauth_cred_t a_cred; 527 int a_flags; 528 off_t offlo; 529 off_t offhi; 530 struct lwp *a_l; 531 } */ *ap = v; 532 533 if (ap->a_flags & FSYNC_RECLAIM) { 534 return 0; 535 } 536 return LAYERFS_DO_BYPASS(ap->a_vp, ap); 537 } 538 539 int 540 layer_inactive(void *v) 541 { 542 struct vop_inactive_args /* { 543 struct vnode *a_vp; 544 bool *a_recycle; 545 } */ *ap = v; 546 struct vnode *vp = ap->a_vp; 547 548 /* 549 * If we did a remove, don't cache the node. 550 */ 551 *ap->a_recycle = ((VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED) != 0); 552 553 /* 554 * Do nothing (and _don't_ bypass). 555 * Wait to vrele lowervp until reclaim, 556 * so that until then our layer_node is in the 557 * cache and reusable. 558 * 559 * NEEDSWORK: Someday, consider inactive'ing 560 * the lowervp and then trying to reactivate it 561 * with capabilities (v_id) 562 * like they do in the name lookup cache code. 563 * That's too much work for now. 564 */ 565 VOP_UNLOCK(vp); 566 return 0; 567 } 568 569 int 570 layer_remove(void *v) 571 { 572 struct vop_remove_args /* { 573 struct vonde *a_dvp; 574 struct vnode *a_vp; 575 struct componentname *a_cnp; 576 } */ *ap = v; 577 struct vnode *vp = ap->a_vp; 578 int error; 579 580 vref(vp); 581 error = LAYERFS_DO_BYPASS(vp, ap); 582 if (error == 0) { 583 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED; 584 } 585 vrele(vp); 586 587 return error; 588 } 589 590 int 591 layer_rename(void *v) 592 { 593 struct vop_rename_args /* { 594 struct vnode *a_fdvp; 595 struct vnode *a_fvp; 596 struct componentname *a_fcnp; 597 struct vnode *a_tdvp; 598 struct vnode *a_tvp; 599 struct componentname *a_tcnp; 600 } */ *ap = v; 601 struct vnode *fdvp = ap->a_fdvp, *tvp; 602 int error; 603 604 tvp = ap->a_tvp; 605 if (tvp) { 606 if (tvp->v_mount != fdvp->v_mount) 607 tvp = NULL; 608 else 609 vref(tvp); 610 } 611 error = LAYERFS_DO_BYPASS(fdvp, ap); 612 if (tvp) { 613 if (error == 0) 614 VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED; 615 vrele(tvp); 616 } 617 return error; 618 } 619 620 int 621 layer_rmdir(void *v) 622 { 623 struct vop_rmdir_args /* { 624 struct vnode *a_dvp; 625 struct vnode *a_vp; 626 struct componentname *a_cnp; 627 } */ *ap = v; 628 int error; 629 struct vnode *vp = ap->a_vp; 630 631 vref(vp); 632 error = LAYERFS_DO_BYPASS(vp, ap); 633 if (error == 0) { 634 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED; 635 } 636 vrele(vp); 637 638 return error; 639 } 640 641 int 642 layer_revoke(void *v) 643 { 644 struct vop_revoke_args /* { 645 struct vnode *a_vp; 646 int a_flags; 647 } */ *ap = v; 648 struct vnode *vp = ap->a_vp; 649 struct vnode *lvp = LAYERVPTOLOWERVP(vp); 650 int error; 651 652 /* 653 * We will most likely end up in vclean which uses the v_usecount 654 * to determine if a vnode is active. Take an extra reference on 655 * the lower vnode so it will always close and inactivate. 656 */ 657 vref(lvp); 658 error = LAYERFS_DO_BYPASS(vp, ap); 659 vrele(lvp); 660 661 return error; 662 } 663 664 int 665 layer_reclaim(void *v) 666 { 667 struct vop_reclaim_args /* { 668 struct vnode *a_vp; 669 struct lwp *a_l; 670 } */ *ap = v; 671 struct vnode *vp = ap->a_vp; 672 struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount); 673 struct layer_node *xp = VTOLAYER(vp); 674 struct vnode *lowervp = xp->layer_lowervp; 675 676 /* 677 * Note: in vop_reclaim, the node's struct lock has been 678 * decomissioned, so we have to be careful about calling 679 * VOP's on ourself. We must be careful as VXLOCK is set. 680 */ 681 if (vp == lmp->layerm_rootvp) { 682 /* 683 * Oops! We no longer have a root node. Most likely reason is 684 * that someone forcably unmunted the underlying fs. 685 * 686 * Now getting the root vnode will fail. We're dead. :-( 687 */ 688 lmp->layerm_rootvp = NULL; 689 } 690 /* After this assignment, this node will not be re-used. */ 691 xp->layer_lowervp = NULL; 692 mutex_enter(&lmp->layerm_hashlock); 693 LIST_REMOVE(xp, layer_hash); 694 mutex_exit(&lmp->layerm_hashlock); 695 kmem_free(vp->v_data, lmp->layerm_size); 696 vp->v_data = NULL; 697 vrele(lowervp); 698 699 return 0; 700 } 701 702 /* 703 * We just feed the returned vnode up to the caller - there's no need 704 * to build a layer node on top of the node on which we're going to do 705 * i/o. :-) 706 */ 707 int 708 layer_bmap(void *v) 709 { 710 struct vop_bmap_args /* { 711 struct vnode *a_vp; 712 daddr_t a_bn; 713 struct vnode **a_vpp; 714 daddr_t *a_bnp; 715 int *a_runp; 716 } */ *ap = v; 717 struct vnode *vp; 718 719 vp = LAYERVPTOLOWERVP(ap->a_vp); 720 ap->a_vp = vp; 721 722 return VCALL(vp, ap->a_desc->vdesc_offset, ap); 723 } 724 725 int 726 layer_print(void *v) 727 { 728 struct vop_print_args /* { 729 struct vnode *a_vp; 730 } */ *ap = v; 731 struct vnode *vp = ap->a_vp; 732 printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp)); 733 return 0; 734 } 735 736 /* 737 * XXX - vop_bwrite must be hand coded because it has no 738 * vnode in its arguments. 739 * This goes away with a merged VM/buffer cache. 740 */ 741 int 742 layer_bwrite(void *v) 743 { 744 struct vop_bwrite_args /* { 745 struct buf *a_bp; 746 } */ *ap = v; 747 struct buf *bp = ap->a_bp; 748 struct vnode *savedvp; 749 int error; 750 751 savedvp = bp->b_vp; 752 bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp); 753 error = VOP_BWRITE(bp); 754 bp->b_vp = savedvp; 755 756 return error; 757 } 758 759 int 760 layer_getpages(void *v) 761 { 762 struct vop_getpages_args /* { 763 struct vnode *a_vp; 764 voff_t a_offset; 765 struct vm_page **a_m; 766 int *a_count; 767 int a_centeridx; 768 vm_prot_t a_access_type; 769 int a_advice; 770 int a_flags; 771 } */ *ap = v; 772 struct vnode *vp = ap->a_vp; 773 774 KASSERT(mutex_owned(vp->v_interlock)); 775 776 if (ap->a_flags & PGO_LOCKED) { 777 return EBUSY; 778 } 779 ap->a_vp = LAYERVPTOLOWERVP(vp); 780 KASSERT(vp->v_interlock == ap->a_vp->v_interlock); 781 782 /* Just pass the request on to the underlying layer. */ 783 return VCALL(ap->a_vp, VOFFSET(vop_getpages), ap); 784 } 785 786 int 787 layer_putpages(void *v) 788 { 789 struct vop_putpages_args /* { 790 struct vnode *a_vp; 791 voff_t a_offlo; 792 voff_t a_offhi; 793 int a_flags; 794 } */ *ap = v; 795 struct vnode *vp = ap->a_vp; 796 797 KASSERT(mutex_owned(vp->v_interlock)); 798 799 ap->a_vp = LAYERVPTOLOWERVP(vp); 800 KASSERT(vp->v_interlock == ap->a_vp->v_interlock); 801 802 if (ap->a_flags & PGO_RECLAIM) { 803 mutex_exit(vp->v_interlock); 804 return 0; 805 } 806 807 /* Just pass the request on to the underlying layer. */ 808 return VCALL(ap->a_vp, VOFFSET(vop_putpages), ap); 809 } 810