1 /* $NetBSD: layer_vnops.c,v 1.41 2010/06/24 13:03:16 hannken Exp $ */ 2 3 /* 4 * Copyright (c) 1999 National Aeronautics & Space Administration 5 * All rights reserved. 6 * 7 * This software was written by William Studenmund of the 8 * Numerical Aerospace Simulation Facility, NASA Ames Research Center. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the National Aeronautics & Space Administration 19 * nor the names of its contributors may be used to endorse or promote 20 * products derived from this software without specific prior written 21 * permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION 24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB- 27 * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, 28 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 33 * POSSIBILITY OF SUCH DAMAGE. 34 */ 35 /* 36 * Copyright (c) 1992, 1993 37 * The Regents of the University of California. All rights reserved. 38 * 39 * This code is derived from software contributed to Berkeley by 40 * John Heidemann of the UCLA Ficus project. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. Neither the name of the University nor the names of its contributors 51 * may be used to endorse or promote products derived from this software 52 * without specific prior written permission. 53 * 54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 64 * SUCH DAMAGE. 65 * 66 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95 67 * 68 * Ancestors: 69 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92 70 * Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp 71 * ...and... 72 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project 73 */ 74 75 /* 76 * Null Layer vnode routines. 77 * 78 * (See mount_null(8) for more information.) 79 * 80 * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide 81 * the core implementation of the null file system and most other stacked 82 * fs's. The description below refers to the null file system, but the 83 * services provided by the layer* files are useful for all layered fs's. 84 * 85 * The null layer duplicates a portion of the file system 86 * name space under a new name. In this respect, it is 87 * similar to the loopback file system. It differs from 88 * the loopback fs in two respects: it is implemented using 89 * a stackable layers techniques, and it's "null-node"s stack above 90 * all lower-layer vnodes, not just over directory vnodes. 91 * 92 * The null layer has two purposes. First, it serves as a demonstration 93 * of layering by proving a layer which does nothing. (It actually 94 * does everything the loopback file system does, which is slightly 95 * more than nothing.) Second, the null layer can serve as a prototype 96 * layer. Since it provides all necessary layer framework, 97 * new file system layers can be created very easily be starting 98 * with a null layer. 99 * 100 * The remainder of the man page examines the null layer as a basis 101 * for constructing new layers. 102 * 103 * 104 * INSTANTIATING NEW NULL LAYERS 105 * 106 * New null layers are created with mount_null(8). 107 * Mount_null(8) takes two arguments, the pathname 108 * of the lower vfs (target-pn) and the pathname where the null 109 * layer will appear in the namespace (alias-pn). After 110 * the null layer is put into place, the contents 111 * of target-pn subtree will be aliased under alias-pn. 112 * 113 * It is conceivable that other overlay filesystems will take different 114 * parameters. For instance, data migration or access controll layers might 115 * only take one pathname which will serve both as the target-pn and 116 * alias-pn described above. 117 * 118 * 119 * OPERATION OF A NULL LAYER 120 * 121 * The null layer is the minimum file system layer, 122 * simply bypassing all possible operations to the lower layer 123 * for processing there. The majority of its activity centers 124 * on the bypass routine, through which nearly all vnode operations 125 * pass. 126 * 127 * The bypass routine accepts arbitrary vnode operations for 128 * handling by the lower layer. It begins by examing vnode 129 * operation arguments and replacing any layered nodes by their 130 * lower-layer equivalents. It then invokes the operation 131 * on the lower layer. Finally, it replaces the layered nodes 132 * in the arguments and, if a vnode is return by the operation, 133 * stacks a layered node on top of the returned vnode. 134 * 135 * The bypass routine in this file, layer_bypass(), is suitable for use 136 * by many different layered filesystems. It can be used by multiple 137 * filesystems simultaneously. Alternatively, a layered fs may provide 138 * its own bypass routine, in which case layer_bypass() should be used as 139 * a model. For instance, the main functionality provided by umapfs, the user 140 * identity mapping file system, is handled by a custom bypass routine. 141 * 142 * Typically a layered fs registers its selected bypass routine as the 143 * default vnode operation in its vnodeopv_entry_desc table. Additionally 144 * the filesystem must store the bypass entry point in the layerm_bypass 145 * field of struct layer_mount. All other layer routines in this file will 146 * use the layerm_bypass routine. 147 * 148 * Although the bypass routine handles most operations outright, a number 149 * of operations are special cased, and handled by the layered fs. One 150 * group, layer_setattr, layer_getattr, layer_access, layer_open, and 151 * layer_fsync, perform layer-specific manipulation in addition to calling 152 * the bypass routine. The other group 153 154 * Although bypass handles most operations, vop_getattr, vop_lock, 155 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not 156 * bypassed. Vop_getattr must change the fsid being returned. 157 * Vop_lock and vop_unlock must handle any locking for the 158 * current vnode as well as pass the lock request down. 159 * Vop_inactive and vop_reclaim are not bypassed so that 160 * they can handle freeing null-layer specific data. Vop_print 161 * is not bypassed to avoid excessive debugging information. 162 * Also, certain vnode operations change the locking state within 163 * the operation (create, mknod, remove, link, rename, mkdir, rmdir, 164 * and symlink). Ideally these operations should not change the 165 * lock state, but should be changed to let the caller of the 166 * function unlock them. Otherwise all intermediate vnode layers 167 * (such as union, umapfs, etc) must catch these functions to do 168 * the necessary locking at their layer. 169 * 170 * 171 * INSTANTIATING VNODE STACKS 172 * 173 * Mounting associates the null layer with a lower layer, 174 * effect stacking two VFSes. Vnode stacks are instead 175 * created on demand as files are accessed. 176 * 177 * The initial mount creates a single vnode stack for the 178 * root of the new null layer. All other vnode stacks 179 * are created as a result of vnode operations on 180 * this or other null vnode stacks. 181 * 182 * New vnode stacks come into existence as a result of 183 * an operation which returns a vnode. 184 * The bypass routine stacks a null-node above the new 185 * vnode before returning it to the caller. 186 * 187 * For example, imagine mounting a null layer with 188 * "mount_null /usr/include /dev/layer/null". 189 * Changing directory to /dev/layer/null will assign 190 * the root null-node (which was created when the null layer was mounted). 191 * Now consider opening "sys". A vop_lookup would be 192 * done on the root null-node. This operation would bypass through 193 * to the lower layer which would return a vnode representing 194 * the UFS "sys". layer_bypass then builds a null-node 195 * aliasing the UFS "sys" and returns this to the caller. 196 * Later operations on the null-node "sys" will repeat this 197 * process when constructing other vnode stacks. 198 * 199 * 200 * CREATING OTHER FILE SYSTEM LAYERS 201 * 202 * One of the easiest ways to construct new file system layers is to make 203 * a copy of the null layer, rename all files and variables, and 204 * then begin modifing the copy. Sed can be used to easily rename 205 * all variables. 206 * 207 * The umap layer is an example of a layer descended from the 208 * null layer. 209 * 210 * 211 * INVOKING OPERATIONS ON LOWER LAYERS 212 * 213 * There are two techniques to invoke operations on a lower layer 214 * when the operation cannot be completely bypassed. Each method 215 * is appropriate in different situations. In both cases, 216 * it is the responsibility of the aliasing layer to make 217 * the operation arguments "correct" for the lower layer 218 * by mapping an vnode arguments to the lower layer. 219 * 220 * The first approach is to call the aliasing layer's bypass routine. 221 * This method is most suitable when you wish to invoke the operation 222 * currently being handled on the lower layer. It has the advantage 223 * that the bypass routine already must do argument mapping. 224 * An example of this is null_getattrs in the null layer. 225 * 226 * A second approach is to directly invoke vnode operations on 227 * the lower layer with the VOP_OPERATIONNAME interface. 228 * The advantage of this method is that it is easy to invoke 229 * arbitrary operations on the lower layer. The disadvantage 230 * is that vnodes' arguments must be manually mapped. 231 * 232 */ 233 234 #include <sys/cdefs.h> 235 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.41 2010/06/24 13:03:16 hannken Exp $"); 236 237 #include <sys/param.h> 238 #include <sys/systm.h> 239 #include <sys/proc.h> 240 #include <sys/time.h> 241 #include <sys/vnode.h> 242 #include <sys/mount.h> 243 #include <sys/namei.h> 244 #include <sys/kmem.h> 245 #include <sys/buf.h> 246 #include <sys/kauth.h> 247 248 #include <miscfs/genfs/layer.h> 249 #include <miscfs/genfs/layer_extern.h> 250 #include <miscfs/genfs/genfs.h> 251 252 253 /* 254 * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass 255 * routine by John Heidemann. 256 * The new element for this version is that the whole nullfs 257 * system gained the concept of locks on the lower node. 258 * The 10-Apr-92 version was optimized for speed, throwing away some 259 * safety checks. It should still always work, but it's not as 260 * robust to programmer errors. 261 * 262 * In general, we map all vnodes going down and unmap them on the way back. 263 * 264 * Also, some BSD vnode operations have the side effect of vrele'ing 265 * their arguments. With stacking, the reference counts are held 266 * by the upper node, not the lower one, so we must handle these 267 * side-effects here. This is not of concern in Sun-derived systems 268 * since there are no such side-effects. 269 * 270 * New for the 08-June-99 version: we also handle operations which unlock 271 * the passed-in node (typically they vput the node). 272 * 273 * This makes the following assumptions: 274 * - only one returned vpp 275 * - no INOUT vpp's (Sun's vop_open has one of these) 276 * - the vnode operation vector of the first vnode should be used 277 * to determine what implementation of the op should be invoked 278 * - all mapped vnodes are of our vnode-type (NEEDSWORK: 279 * problems on rmdir'ing mount points and renaming?) 280 */ 281 int 282 layer_bypass(void *v) 283 { 284 struct vop_generic_args /* { 285 struct vnodeop_desc *a_desc; 286 <other random data follows, presumably> 287 } */ *ap = v; 288 int (**our_vnodeop_p)(void *); 289 struct vnode **this_vp_p; 290 int error; 291 struct vnode *old_vps[VDESC_MAX_VPS], *vp0; 292 struct vnode **vps_p[VDESC_MAX_VPS]; 293 struct vnode ***vppp; 294 struct mount *mp; 295 struct vnodeop_desc *descp = ap->a_desc; 296 int reles, i, flags; 297 298 #ifdef DIAGNOSTIC 299 /* 300 * We require at least one vp. 301 */ 302 if (descp->vdesc_vp_offsets == NULL || 303 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET) 304 panic("%s: no vp's in map.\n", __func__); 305 #endif 306 307 vps_p[0] = 308 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap); 309 vp0 = *vps_p[0]; 310 mp = vp0->v_mount; 311 flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags; 312 our_vnodeop_p = vp0->v_op; 313 314 if (flags & LAYERFS_MBYPASSDEBUG) 315 printf("%s: %s\n", __func__, descp->vdesc_name); 316 317 /* 318 * Map the vnodes going in. 319 * Later, we'll invoke the operation based on 320 * the first mapped vnode's operation vector. 321 */ 322 reles = descp->vdesc_flags; 323 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 324 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 325 break; /* bail out at end of list */ 326 vps_p[i] = this_vp_p = 327 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i], 328 ap); 329 /* 330 * We're not guaranteed that any but the first vnode 331 * are of our type. Check for and don't map any 332 * that aren't. (We must always map first vp or vclean fails.) 333 */ 334 if (i && (*this_vp_p == NULL || 335 (*this_vp_p)->v_op != our_vnodeop_p)) { 336 old_vps[i] = NULL; 337 } else { 338 old_vps[i] = *this_vp_p; 339 *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p); 340 /* 341 * XXX - Several operations have the side effect 342 * of vrele'ing their vp's. We must account for 343 * that. (This should go away in the future.) 344 */ 345 if (reles & VDESC_VP0_WILLRELE) 346 vref(*this_vp_p); 347 } 348 349 } 350 351 /* 352 * Call the operation on the lower layer 353 * with the modified argument structure. 354 */ 355 error = VCALL(*vps_p[0], descp->vdesc_offset, ap); 356 357 /* 358 * Maintain the illusion of call-by-value 359 * by restoring vnodes in the argument structure 360 * to their original value. 361 */ 362 reles = descp->vdesc_flags; 363 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 364 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 365 break; /* bail out at end of list */ 366 if (old_vps[i]) { 367 *(vps_p[i]) = old_vps[i]; 368 if (reles & VDESC_VP0_WILLRELE) 369 vrele(*(vps_p[i])); 370 } 371 } 372 373 /* 374 * Map the possible out-going vpp 375 * (Assumes that the lower layer always returns 376 * a VREF'ed vpp unless it gets an error.) 377 */ 378 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && 379 !(descp->vdesc_flags & VDESC_NOMAP_VPP) && 380 !error) { 381 /* 382 * XXX - even though some ops have vpp returned vp's, 383 * several ops actually vrele this before returning. 384 * We must avoid these ops. 385 * (This should go away when these ops are regularized.) 386 */ 387 if (descp->vdesc_flags & VDESC_VPP_WILLRELE) 388 goto out; 389 vppp = VOPARG_OFFSETTO(struct vnode***, 390 descp->vdesc_vpp_offset, ap); 391 /* 392 * Only vop_lookup, vop_create, vop_makedir, vop_bmap, 393 * vop_mknod, and vop_symlink return vpp's. vop_bmap 394 * doesn't call bypass as the lower vpp is fine (we're just 395 * going to do i/o on it). vop_lookup doesn't call bypass 396 * as a lookup on "." would generate a locking error. 397 * So all the calls which get us here have a locked vpp. :-) 398 */ 399 error = layer_node_create(mp, **vppp, *vppp); 400 if (error) { 401 vput(**vppp); 402 **vppp = NULL; 403 } 404 } 405 406 out: 407 return (error); 408 } 409 410 /* 411 * We have to carry on the locking protocol on the layer vnodes 412 * as we progress through the tree. We also have to enforce read-only 413 * if this layer is mounted read-only. 414 */ 415 int 416 layer_lookup(void *v) 417 { 418 struct vop_lookup_args /* { 419 struct vnodeop_desc *a_desc; 420 struct vnode * a_dvp; 421 struct vnode ** a_vpp; 422 struct componentname * a_cnp; 423 } */ *ap = v; 424 struct componentname *cnp = ap->a_cnp; 425 int flags = cnp->cn_flags; 426 struct vnode *dvp, *lvp, *ldvp; 427 int error; 428 429 dvp = ap->a_dvp; 430 431 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) && 432 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 433 return (EROFS); 434 435 ldvp = LAYERVPTOLOWERVP(dvp); 436 ap->a_dvp = ldvp; 437 error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap); 438 lvp = *ap->a_vpp; 439 *ap->a_vpp = NULL; 440 441 if (error == EJUSTRETURN && (flags & ISLASTCN) && 442 (dvp->v_mount->mnt_flag & MNT_RDONLY) && 443 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME)) 444 error = EROFS; 445 446 /* 447 * We must do the same locking and unlocking at this layer as 448 * is done in the layers below us. 449 */ 450 if (ldvp == lvp) { 451 452 /* 453 * Got the same object back, because we looked up ".", 454 * or ".." in the root node of a mount point. 455 * So we make another reference to dvp and return it. 456 */ 457 vref(dvp); 458 *ap->a_vpp = dvp; 459 vrele(lvp); 460 } else if (lvp != NULL) { 461 /* dvp, ldvp and vp are all locked */ 462 error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp); 463 if (error) { 464 vput(lvp); 465 } 466 } 467 return (error); 468 } 469 470 /* 471 * Setattr call. Disallow write attempts if the layer is mounted read-only. 472 */ 473 int 474 layer_setattr(void *v) 475 { 476 struct vop_setattr_args /* { 477 struct vnodeop_desc *a_desc; 478 struct vnode *a_vp; 479 struct vattr *a_vap; 480 kauth_cred_t a_cred; 481 struct lwp *a_l; 482 } */ *ap = v; 483 struct vnode *vp = ap->a_vp; 484 struct vattr *vap = ap->a_vap; 485 486 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || 487 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || 488 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && 489 (vp->v_mount->mnt_flag & MNT_RDONLY)) 490 return (EROFS); 491 if (vap->va_size != VNOVAL) { 492 switch (vp->v_type) { 493 case VDIR: 494 return (EISDIR); 495 case VCHR: 496 case VBLK: 497 case VSOCK: 498 case VFIFO: 499 return (0); 500 case VREG: 501 case VLNK: 502 default: 503 /* 504 * Disallow write attempts if the filesystem is 505 * mounted read-only. 506 */ 507 if (vp->v_mount->mnt_flag & MNT_RDONLY) 508 return (EROFS); 509 } 510 } 511 return (LAYERFS_DO_BYPASS(vp, ap)); 512 } 513 514 /* 515 * We handle getattr only to change the fsid. 516 */ 517 int 518 layer_getattr(void *v) 519 { 520 struct vop_getattr_args /* { 521 struct vnode *a_vp; 522 struct vattr *a_vap; 523 kauth_cred_t a_cred; 524 struct lwp *a_l; 525 } */ *ap = v; 526 struct vnode *vp = ap->a_vp; 527 int error; 528 529 if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0) 530 return (error); 531 /* Requires that arguments be restored. */ 532 ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0]; 533 return (0); 534 } 535 536 int 537 layer_access(void *v) 538 { 539 struct vop_access_args /* { 540 struct vnode *a_vp; 541 int a_mode; 542 kauth_cred_t a_cred; 543 struct lwp *a_l; 544 } */ *ap = v; 545 struct vnode *vp = ap->a_vp; 546 mode_t mode = ap->a_mode; 547 548 /* 549 * Disallow write attempts on read-only layers; 550 * unless the file is a socket, fifo, or a block or 551 * character device resident on the file system. 552 */ 553 if (mode & VWRITE) { 554 switch (vp->v_type) { 555 case VDIR: 556 case VLNK: 557 case VREG: 558 if (vp->v_mount->mnt_flag & MNT_RDONLY) 559 return (EROFS); 560 break; 561 default: 562 break; 563 } 564 } 565 return (LAYERFS_DO_BYPASS(vp, ap)); 566 } 567 568 /* 569 * We must handle open to be able to catch MNT_NODEV and friends. 570 */ 571 int 572 layer_open(void *v) 573 { 574 struct vop_open_args *ap = v; 575 struct vnode *vp = ap->a_vp; 576 enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type; 577 578 if (((lower_type == VBLK) || (lower_type == VCHR)) && 579 (vp->v_mount->mnt_flag & MNT_NODEV)) 580 return ENXIO; 581 582 return LAYERFS_DO_BYPASS(vp, ap); 583 } 584 585 /* 586 * We need to clear the interlock flag as it applies only to our vnode, 587 * not the vnodes below us on the stack. 588 */ 589 int 590 layer_lock(void *v) 591 { 592 struct vop_lock_args /* { 593 struct vnode *a_vp; 594 int a_flags; 595 struct proc *a_p; 596 } */ *ap = v; 597 struct vnode *vp = ap->a_vp; 598 599 if (ap->a_flags & LK_INTERLOCK) { 600 mutex_exit(&vp->v_interlock); 601 ap->a_flags &= ~LK_INTERLOCK; 602 } 603 604 return LAYERFS_DO_BYPASS(vp, ap); 605 } 606 607 int 608 layer_unlock(void *v) 609 { 610 struct vop_unlock_args /* { 611 struct vnode *a_vp; 612 int a_flags; 613 struct proc *a_p; 614 } */ *ap = v; 615 struct vnode *vp = ap->a_vp; 616 617 return LAYERFS_DO_BYPASS(vp, ap); 618 } 619 620 int 621 layer_islocked(void *v) 622 { 623 struct vop_islocked_args /* { 624 struct vnode *a_vp; 625 } */ *ap = v; 626 struct vnode *vp = ap->a_vp; 627 628 return LAYERFS_DO_BYPASS(vp, ap); 629 } 630 631 /* 632 * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother 633 * syncing the underlying vnodes, since they'll be fsync'ed when 634 * reclaimed; otherwise, 635 * pass it through to the underlying layer. 636 * 637 * XXX Do we still need to worry about shallow fsync? 638 */ 639 640 int 641 layer_fsync(void *v) 642 { 643 struct vop_fsync_args /* { 644 struct vnode *a_vp; 645 kauth_cred_t a_cred; 646 int a_flags; 647 off_t offlo; 648 off_t offhi; 649 struct lwp *a_l; 650 } */ *ap = v; 651 652 if (ap->a_flags & FSYNC_RECLAIM) { 653 return 0; 654 } 655 656 return (LAYERFS_DO_BYPASS(ap->a_vp, ap)); 657 } 658 659 660 int 661 layer_inactive(void *v) 662 { 663 struct vop_inactive_args /* { 664 struct vnode *a_vp; 665 bool *a_recycle; 666 } */ *ap = v; 667 struct vnode *vp = ap->a_vp; 668 669 /* 670 * ..., but don't cache the device node. Also, if we did a 671 * remove, don't cache the node. 672 */ 673 *ap->a_recycle = (vp->v_type == VBLK || vp->v_type == VCHR 674 || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED)); 675 676 /* 677 * Do nothing (and _don't_ bypass). 678 * Wait to vrele lowervp until reclaim, 679 * so that until then our layer_node is in the 680 * cache and reusable. 681 * 682 * NEEDSWORK: Someday, consider inactive'ing 683 * the lowervp and then trying to reactivate it 684 * with capabilities (v_id) 685 * like they do in the name lookup cache code. 686 * That's too much work for now. 687 */ 688 VOP_UNLOCK(vp); 689 690 return (0); 691 } 692 693 int 694 layer_remove(void *v) 695 { 696 struct vop_remove_args /* { 697 struct vonde *a_dvp; 698 struct vnode *a_vp; 699 struct componentname *a_cnp; 700 } */ *ap = v; 701 702 int error; 703 struct vnode *vp = ap->a_vp; 704 705 vref(vp); 706 if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0) 707 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED; 708 709 vrele(vp); 710 711 return (error); 712 } 713 714 int 715 layer_rename(void *v) 716 { 717 struct vop_rename_args /* { 718 struct vnode *a_fdvp; 719 struct vnode *a_fvp; 720 struct componentname *a_fcnp; 721 struct vnode *a_tdvp; 722 struct vnode *a_tvp; 723 struct componentname *a_tcnp; 724 } */ *ap = v; 725 726 int error; 727 struct vnode *fdvp = ap->a_fdvp; 728 struct vnode *tvp; 729 730 tvp = ap->a_tvp; 731 if (tvp) { 732 if (tvp->v_mount != fdvp->v_mount) 733 tvp = NULL; 734 else 735 vref(tvp); 736 } 737 error = LAYERFS_DO_BYPASS(fdvp, ap); 738 if (tvp) { 739 if (error == 0) 740 VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED; 741 vrele(tvp); 742 } 743 744 return (error); 745 } 746 747 int 748 layer_rmdir(void *v) 749 { 750 struct vop_rmdir_args /* { 751 struct vnode *a_dvp; 752 struct vnode *a_vp; 753 struct componentname *a_cnp; 754 } */ *ap = v; 755 int error; 756 struct vnode *vp = ap->a_vp; 757 758 vref(vp); 759 if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0) 760 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED; 761 762 vrele(vp); 763 764 return (error); 765 } 766 767 int 768 layer_reclaim(void *v) 769 { 770 struct vop_reclaim_args /* { 771 struct vnode *a_vp; 772 struct lwp *a_l; 773 } */ *ap = v; 774 struct vnode *vp = ap->a_vp; 775 struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount); 776 struct layer_node *xp = VTOLAYER(vp); 777 struct vnode *lowervp = xp->layer_lowervp; 778 779 /* 780 * Note: in vop_reclaim, the node's struct lock has been 781 * decomissioned, so we have to be careful about calling 782 * VOP's on ourself. We must be careful as VXLOCK is set. 783 */ 784 /* After this assignment, this node will not be re-used. */ 785 if ((vp == lmp->layerm_rootvp)) { 786 /* 787 * Oops! We no longer have a root node. Most likely reason is 788 * that someone forcably unmunted the underlying fs. 789 * 790 * Now getting the root vnode will fail. We're dead. :-( 791 */ 792 lmp->layerm_rootvp = NULL; 793 } 794 xp->layer_lowervp = NULL; 795 mutex_enter(&lmp->layerm_hashlock); 796 LIST_REMOVE(xp, layer_hash); 797 mutex_exit(&lmp->layerm_hashlock); 798 kmem_free(vp->v_data, lmp->layerm_size); 799 vp->v_data = NULL; 800 vrele(lowervp); 801 802 return (0); 803 } 804 805 /* 806 * We just feed the returned vnode up to the caller - there's no need 807 * to build a layer node on top of the node on which we're going to do 808 * i/o. :-) 809 */ 810 int 811 layer_bmap(void *v) 812 { 813 struct vop_bmap_args /* { 814 struct vnode *a_vp; 815 daddr_t a_bn; 816 struct vnode **a_vpp; 817 daddr_t *a_bnp; 818 int *a_runp; 819 } */ *ap = v; 820 struct vnode *vp; 821 822 ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp); 823 824 return (VCALL(vp, ap->a_desc->vdesc_offset, ap)); 825 } 826 827 int 828 layer_print(void *v) 829 { 830 struct vop_print_args /* { 831 struct vnode *a_vp; 832 } */ *ap = v; 833 struct vnode *vp = ap->a_vp; 834 printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp)); 835 return (0); 836 } 837 838 /* 839 * XXX - vop_bwrite must be hand coded because it has no 840 * vnode in its arguments. 841 * This goes away with a merged VM/buffer cache. 842 */ 843 int 844 layer_bwrite(void *v) 845 { 846 struct vop_bwrite_args /* { 847 struct buf *a_bp; 848 } */ *ap = v; 849 struct buf *bp = ap->a_bp; 850 int error; 851 struct vnode *savedvp; 852 853 savedvp = bp->b_vp; 854 bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp); 855 856 error = VOP_BWRITE(bp); 857 858 bp->b_vp = savedvp; 859 860 return (error); 861 } 862 863 int 864 layer_getpages(void *v) 865 { 866 struct vop_getpages_args /* { 867 struct vnode *a_vp; 868 voff_t a_offset; 869 struct vm_page **a_m; 870 int *a_count; 871 int a_centeridx; 872 vm_prot_t a_access_type; 873 int a_advice; 874 int a_flags; 875 } */ *ap = v; 876 struct vnode *vp = ap->a_vp; 877 int error; 878 879 /* 880 * just pass the request on to the underlying layer. 881 */ 882 883 if (ap->a_flags & PGO_LOCKED) { 884 return EBUSY; 885 } 886 ap->a_vp = LAYERVPTOLOWERVP(vp); 887 mutex_exit(&vp->v_interlock); 888 mutex_enter(&ap->a_vp->v_interlock); 889 error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap); 890 return error; 891 } 892 893 int 894 layer_putpages(void *v) 895 { 896 struct vop_putpages_args /* { 897 struct vnode *a_vp; 898 voff_t a_offlo; 899 voff_t a_offhi; 900 int a_flags; 901 } */ *ap = v; 902 struct vnode *vp = ap->a_vp; 903 int error; 904 905 /* 906 * just pass the request on to the underlying layer. 907 */ 908 909 ap->a_vp = LAYERVPTOLOWERVP(vp); 910 mutex_exit(&vp->v_interlock); 911 if (ap->a_flags & PGO_RECLAIM) { 912 return 0; 913 } 914 mutex_enter(&ap->a_vp->v_interlock); 915 error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap); 916 return error; 917 } 918