xref: /netbsd-src/sys/miscfs/genfs/layer_vnops.c (revision 1423e65b26cfa3a30fb7aaea6d57132588c43746)
1 /*	$NetBSD: layer_vnops.c,v 1.41 2010/06/24 13:03:16 hannken Exp $	*/
2 
3 /*
4  * Copyright (c) 1999 National Aeronautics & Space Administration
5  * All rights reserved.
6  *
7  * This software was written by William Studenmund of the
8  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the National Aeronautics & Space Administration
19  *    nor the names of its contributors may be used to endorse or promote
20  *    products derived from this software without specific prior written
21  *    permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 /*
36  * Copyright (c) 1992, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  *
39  * This code is derived from software contributed to Berkeley by
40  * John Heidemann of the UCLA Ficus project.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
67  *
68  * Ancestors:
69  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
70  *	Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
71  *	...and...
72  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
73  */
74 
75 /*
76  * Null Layer vnode routines.
77  *
78  * (See mount_null(8) for more information.)
79  *
80  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
81  * the core implementation of the null file system and most other stacked
82  * fs's. The description below refers to the null file system, but the
83  * services provided by the layer* files are useful for all layered fs's.
84  *
85  * The null layer duplicates a portion of the file system
86  * name space under a new name.  In this respect, it is
87  * similar to the loopback file system.  It differs from
88  * the loopback fs in two respects:  it is implemented using
89  * a stackable layers techniques, and it's "null-node"s stack above
90  * all lower-layer vnodes, not just over directory vnodes.
91  *
92  * The null layer has two purposes.  First, it serves as a demonstration
93  * of layering by proving a layer which does nothing.  (It actually
94  * does everything the loopback file system does, which is slightly
95  * more than nothing.)  Second, the null layer can serve as a prototype
96  * layer.  Since it provides all necessary layer framework,
97  * new file system layers can be created very easily be starting
98  * with a null layer.
99  *
100  * The remainder of the man page examines the null layer as a basis
101  * for constructing new layers.
102  *
103  *
104  * INSTANTIATING NEW NULL LAYERS
105  *
106  * New null layers are created with mount_null(8).
107  * Mount_null(8) takes two arguments, the pathname
108  * of the lower vfs (target-pn) and the pathname where the null
109  * layer will appear in the namespace (alias-pn).  After
110  * the null layer is put into place, the contents
111  * of target-pn subtree will be aliased under alias-pn.
112  *
113  * It is conceivable that other overlay filesystems will take different
114  * parameters. For instance, data migration or access controll layers might
115  * only take one pathname which will serve both as the target-pn and
116  * alias-pn described above.
117  *
118  *
119  * OPERATION OF A NULL LAYER
120  *
121  * The null layer is the minimum file system layer,
122  * simply bypassing all possible operations to the lower layer
123  * for processing there.  The majority of its activity centers
124  * on the bypass routine, through which nearly all vnode operations
125  * pass.
126  *
127  * The bypass routine accepts arbitrary vnode operations for
128  * handling by the lower layer.  It begins by examing vnode
129  * operation arguments and replacing any layered nodes by their
130  * lower-layer equivalents.  It then invokes the operation
131  * on the lower layer.  Finally, it replaces the layered nodes
132  * in the arguments and, if a vnode is return by the operation,
133  * stacks a layered node on top of the returned vnode.
134  *
135  * The bypass routine in this file, layer_bypass(), is suitable for use
136  * by many different layered filesystems. It can be used by multiple
137  * filesystems simultaneously. Alternatively, a layered fs may provide
138  * its own bypass routine, in which case layer_bypass() should be used as
139  * a model. For instance, the main functionality provided by umapfs, the user
140  * identity mapping file system, is handled by a custom bypass routine.
141  *
142  * Typically a layered fs registers its selected bypass routine as the
143  * default vnode operation in its vnodeopv_entry_desc table. Additionally
144  * the filesystem must store the bypass entry point in the layerm_bypass
145  * field of struct layer_mount. All other layer routines in this file will
146  * use the layerm_bypass routine.
147  *
148  * Although the bypass routine handles most operations outright, a number
149  * of operations are special cased, and handled by the layered fs. One
150  * group, layer_setattr, layer_getattr, layer_access, layer_open, and
151  * layer_fsync, perform layer-specific manipulation in addition to calling
152  * the bypass routine. The other group
153 
154  * Although bypass handles most operations, vop_getattr, vop_lock,
155  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
156  * bypassed. Vop_getattr must change the fsid being returned.
157  * Vop_lock and vop_unlock must handle any locking for the
158  * current vnode as well as pass the lock request down.
159  * Vop_inactive and vop_reclaim are not bypassed so that
160  * they can handle freeing null-layer specific data. Vop_print
161  * is not bypassed to avoid excessive debugging information.
162  * Also, certain vnode operations change the locking state within
163  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
164  * and symlink). Ideally these operations should not change the
165  * lock state, but should be changed to let the caller of the
166  * function unlock them. Otherwise all intermediate vnode layers
167  * (such as union, umapfs, etc) must catch these functions to do
168  * the necessary locking at their layer.
169  *
170  *
171  * INSTANTIATING VNODE STACKS
172  *
173  * Mounting associates the null layer with a lower layer,
174  * effect stacking two VFSes.  Vnode stacks are instead
175  * created on demand as files are accessed.
176  *
177  * The initial mount creates a single vnode stack for the
178  * root of the new null layer.  All other vnode stacks
179  * are created as a result of vnode operations on
180  * this or other null vnode stacks.
181  *
182  * New vnode stacks come into existence as a result of
183  * an operation which returns a vnode.
184  * The bypass routine stacks a null-node above the new
185  * vnode before returning it to the caller.
186  *
187  * For example, imagine mounting a null layer with
188  * "mount_null /usr/include /dev/layer/null".
189  * Changing directory to /dev/layer/null will assign
190  * the root null-node (which was created when the null layer was mounted).
191  * Now consider opening "sys".  A vop_lookup would be
192  * done on the root null-node.  This operation would bypass through
193  * to the lower layer which would return a vnode representing
194  * the UFS "sys".  layer_bypass then builds a null-node
195  * aliasing the UFS "sys" and returns this to the caller.
196  * Later operations on the null-node "sys" will repeat this
197  * process when constructing other vnode stacks.
198  *
199  *
200  * CREATING OTHER FILE SYSTEM LAYERS
201  *
202  * One of the easiest ways to construct new file system layers is to make
203  * a copy of the null layer, rename all files and variables, and
204  * then begin modifing the copy.  Sed can be used to easily rename
205  * all variables.
206  *
207  * The umap layer is an example of a layer descended from the
208  * null layer.
209  *
210  *
211  * INVOKING OPERATIONS ON LOWER LAYERS
212  *
213  * There are two techniques to invoke operations on a lower layer
214  * when the operation cannot be completely bypassed.  Each method
215  * is appropriate in different situations.  In both cases,
216  * it is the responsibility of the aliasing layer to make
217  * the operation arguments "correct" for the lower layer
218  * by mapping an vnode arguments to the lower layer.
219  *
220  * The first approach is to call the aliasing layer's bypass routine.
221  * This method is most suitable when you wish to invoke the operation
222  * currently being handled on the lower layer.  It has the advantage
223  * that the bypass routine already must do argument mapping.
224  * An example of this is null_getattrs in the null layer.
225  *
226  * A second approach is to directly invoke vnode operations on
227  * the lower layer with the VOP_OPERATIONNAME interface.
228  * The advantage of this method is that it is easy to invoke
229  * arbitrary operations on the lower layer.  The disadvantage
230  * is that vnodes' arguments must be manually mapped.
231  *
232  */
233 
234 #include <sys/cdefs.h>
235 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.41 2010/06/24 13:03:16 hannken Exp $");
236 
237 #include <sys/param.h>
238 #include <sys/systm.h>
239 #include <sys/proc.h>
240 #include <sys/time.h>
241 #include <sys/vnode.h>
242 #include <sys/mount.h>
243 #include <sys/namei.h>
244 #include <sys/kmem.h>
245 #include <sys/buf.h>
246 #include <sys/kauth.h>
247 
248 #include <miscfs/genfs/layer.h>
249 #include <miscfs/genfs/layer_extern.h>
250 #include <miscfs/genfs/genfs.h>
251 
252 
253 /*
254  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
255  *		routine by John Heidemann.
256  *	The new element for this version is that the whole nullfs
257  * system gained the concept of locks on the lower node.
258  *    The 10-Apr-92 version was optimized for speed, throwing away some
259  * safety checks.  It should still always work, but it's not as
260  * robust to programmer errors.
261  *
262  * In general, we map all vnodes going down and unmap them on the way back.
263  *
264  * Also, some BSD vnode operations have the side effect of vrele'ing
265  * their arguments.  With stacking, the reference counts are held
266  * by the upper node, not the lower one, so we must handle these
267  * side-effects here.  This is not of concern in Sun-derived systems
268  * since there are no such side-effects.
269  *
270  * New for the 08-June-99 version: we also handle operations which unlock
271  * the passed-in node (typically they vput the node).
272  *
273  * This makes the following assumptions:
274  * - only one returned vpp
275  * - no INOUT vpp's (Sun's vop_open has one of these)
276  * - the vnode operation vector of the first vnode should be used
277  *   to determine what implementation of the op should be invoked
278  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
279  *   problems on rmdir'ing mount points and renaming?)
280  */
281 int
282 layer_bypass(void *v)
283 {
284 	struct vop_generic_args /* {
285 		struct vnodeop_desc *a_desc;
286 		<other random data follows, presumably>
287 	} */ *ap = v;
288 	int (**our_vnodeop_p)(void *);
289 	struct vnode **this_vp_p;
290 	int error;
291 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
292 	struct vnode **vps_p[VDESC_MAX_VPS];
293 	struct vnode ***vppp;
294 	struct mount *mp;
295 	struct vnodeop_desc *descp = ap->a_desc;
296 	int reles, i, flags;
297 
298 #ifdef DIAGNOSTIC
299 	/*
300 	 * We require at least one vp.
301 	 */
302 	if (descp->vdesc_vp_offsets == NULL ||
303 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
304 		panic("%s: no vp's in map.\n", __func__);
305 #endif
306 
307 	vps_p[0] =
308 	    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
309 	vp0 = *vps_p[0];
310 	mp = vp0->v_mount;
311 	flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
312 	our_vnodeop_p = vp0->v_op;
313 
314 	if (flags & LAYERFS_MBYPASSDEBUG)
315 		printf("%s: %s\n", __func__, descp->vdesc_name);
316 
317 	/*
318 	 * Map the vnodes going in.
319 	 * Later, we'll invoke the operation based on
320 	 * the first mapped vnode's operation vector.
321 	 */
322 	reles = descp->vdesc_flags;
323 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
324 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
325 			break;   /* bail out at end of list */
326 		vps_p[i] = this_vp_p =
327 		    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
328 		    ap);
329 		/*
330 		 * We're not guaranteed that any but the first vnode
331 		 * are of our type.  Check for and don't map any
332 		 * that aren't.  (We must always map first vp or vclean fails.)
333 		 */
334 		if (i && (*this_vp_p == NULL ||
335 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
336 			old_vps[i] = NULL;
337 		} else {
338 			old_vps[i] = *this_vp_p;
339 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
340 			/*
341 			 * XXX - Several operations have the side effect
342 			 * of vrele'ing their vp's.  We must account for
343 			 * that.  (This should go away in the future.)
344 			 */
345 			if (reles & VDESC_VP0_WILLRELE)
346 				vref(*this_vp_p);
347 		}
348 
349 	}
350 
351 	/*
352 	 * Call the operation on the lower layer
353 	 * with the modified argument structure.
354 	 */
355 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
356 
357 	/*
358 	 * Maintain the illusion of call-by-value
359 	 * by restoring vnodes in the argument structure
360 	 * to their original value.
361 	 */
362 	reles = descp->vdesc_flags;
363 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
364 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
365 			break;   /* bail out at end of list */
366 		if (old_vps[i]) {
367 			*(vps_p[i]) = old_vps[i];
368 			if (reles & VDESC_VP0_WILLRELE)
369 				vrele(*(vps_p[i]));
370 		}
371 	}
372 
373 	/*
374 	 * Map the possible out-going vpp
375 	 * (Assumes that the lower layer always returns
376 	 * a VREF'ed vpp unless it gets an error.)
377 	 */
378 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
379 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
380 	    !error) {
381 		/*
382 		 * XXX - even though some ops have vpp returned vp's,
383 		 * several ops actually vrele this before returning.
384 		 * We must avoid these ops.
385 		 * (This should go away when these ops are regularized.)
386 		 */
387 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
388 			goto out;
389 		vppp = VOPARG_OFFSETTO(struct vnode***,
390 				 descp->vdesc_vpp_offset, ap);
391 		/*
392 		 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
393 		 * vop_mknod, and vop_symlink return vpp's. vop_bmap
394 		 * doesn't call bypass as the lower vpp is fine (we're just
395 		 * going to do i/o on it). vop_lookup doesn't call bypass
396 		 * as a lookup on "." would generate a locking error.
397 		 * So all the calls which get us here have a locked vpp. :-)
398 		 */
399 		error = layer_node_create(mp, **vppp, *vppp);
400 		if (error) {
401 			vput(**vppp);
402 			**vppp = NULL;
403 		}
404 	}
405 
406  out:
407 	return (error);
408 }
409 
410 /*
411  * We have to carry on the locking protocol on the layer vnodes
412  * as we progress through the tree. We also have to enforce read-only
413  * if this layer is mounted read-only.
414  */
415 int
416 layer_lookup(void *v)
417 {
418 	struct vop_lookup_args /* {
419 		struct vnodeop_desc *a_desc;
420 		struct vnode * a_dvp;
421 		struct vnode ** a_vpp;
422 		struct componentname * a_cnp;
423 	} */ *ap = v;
424 	struct componentname *cnp = ap->a_cnp;
425 	int flags = cnp->cn_flags;
426 	struct vnode *dvp, *lvp, *ldvp;
427 	int error;
428 
429 	dvp = ap->a_dvp;
430 
431 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
432 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
433 		return (EROFS);
434 
435 	ldvp = LAYERVPTOLOWERVP(dvp);
436 	ap->a_dvp = ldvp;
437 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
438 	lvp = *ap->a_vpp;
439 	*ap->a_vpp = NULL;
440 
441 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
442 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
443 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
444 		error = EROFS;
445 
446 	/*
447 	 * We must do the same locking and unlocking at this layer as
448 	 * is done in the layers below us.
449 	 */
450 	if (ldvp == lvp) {
451 
452 		/*
453 		 * Got the same object back, because we looked up ".",
454 		 * or ".." in the root node of a mount point.
455 		 * So we make another reference to dvp and return it.
456 		 */
457 		vref(dvp);
458 		*ap->a_vpp = dvp;
459 		vrele(lvp);
460 	} else if (lvp != NULL) {
461 		/* dvp, ldvp and vp are all locked */
462 		error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
463 		if (error) {
464 			vput(lvp);
465 		}
466 	}
467 	return (error);
468 }
469 
470 /*
471  * Setattr call. Disallow write attempts if the layer is mounted read-only.
472  */
473 int
474 layer_setattr(void *v)
475 {
476 	struct vop_setattr_args /* {
477 		struct vnodeop_desc *a_desc;
478 		struct vnode *a_vp;
479 		struct vattr *a_vap;
480 		kauth_cred_t a_cred;
481 		struct lwp *a_l;
482 	} */ *ap = v;
483 	struct vnode *vp = ap->a_vp;
484 	struct vattr *vap = ap->a_vap;
485 
486   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
487 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
488 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
489 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
490 		return (EROFS);
491 	if (vap->va_size != VNOVAL) {
492  		switch (vp->v_type) {
493  		case VDIR:
494  			return (EISDIR);
495  		case VCHR:
496  		case VBLK:
497  		case VSOCK:
498  		case VFIFO:
499 			return (0);
500 		case VREG:
501 		case VLNK:
502  		default:
503 			/*
504 			 * Disallow write attempts if the filesystem is
505 			 * mounted read-only.
506 			 */
507 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
508 				return (EROFS);
509 		}
510 	}
511 	return (LAYERFS_DO_BYPASS(vp, ap));
512 }
513 
514 /*
515  *  We handle getattr only to change the fsid.
516  */
517 int
518 layer_getattr(void *v)
519 {
520 	struct vop_getattr_args /* {
521 		struct vnode *a_vp;
522 		struct vattr *a_vap;
523 		kauth_cred_t a_cred;
524 		struct lwp *a_l;
525 	} */ *ap = v;
526 	struct vnode *vp = ap->a_vp;
527 	int error;
528 
529 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
530 		return (error);
531 	/* Requires that arguments be restored. */
532 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
533 	return (0);
534 }
535 
536 int
537 layer_access(void *v)
538 {
539 	struct vop_access_args /* {
540 		struct vnode *a_vp;
541 		int  a_mode;
542 		kauth_cred_t a_cred;
543 		struct lwp *a_l;
544 	} */ *ap = v;
545 	struct vnode *vp = ap->a_vp;
546 	mode_t mode = ap->a_mode;
547 
548 	/*
549 	 * Disallow write attempts on read-only layers;
550 	 * unless the file is a socket, fifo, or a block or
551 	 * character device resident on the file system.
552 	 */
553 	if (mode & VWRITE) {
554 		switch (vp->v_type) {
555 		case VDIR:
556 		case VLNK:
557 		case VREG:
558 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
559 				return (EROFS);
560 			break;
561 		default:
562 			break;
563 		}
564 	}
565 	return (LAYERFS_DO_BYPASS(vp, ap));
566 }
567 
568 /*
569  * We must handle open to be able to catch MNT_NODEV and friends.
570  */
571 int
572 layer_open(void *v)
573 {
574 	struct vop_open_args *ap = v;
575 	struct vnode *vp = ap->a_vp;
576 	enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
577 
578 	if (((lower_type == VBLK) || (lower_type == VCHR)) &&
579 	    (vp->v_mount->mnt_flag & MNT_NODEV))
580 		return ENXIO;
581 
582 	return LAYERFS_DO_BYPASS(vp, ap);
583 }
584 
585 /*
586  * We need to clear the interlock flag as it applies only to our vnode,
587  * not the vnodes below us on the stack.
588  */
589 int
590 layer_lock(void *v)
591 {
592 	struct vop_lock_args /* {
593 		struct vnode *a_vp;
594 		int a_flags;
595 		struct proc *a_p;
596 	} */ *ap = v;
597 	struct vnode *vp = ap->a_vp;
598 
599 	if (ap->a_flags & LK_INTERLOCK) {
600 		mutex_exit(&vp->v_interlock);
601 		ap->a_flags &= ~LK_INTERLOCK;
602 	}
603 
604 	return LAYERFS_DO_BYPASS(vp, ap);
605 }
606 
607 int
608 layer_unlock(void *v)
609 {
610 	struct vop_unlock_args /* {
611 		struct vnode *a_vp;
612 		int a_flags;
613 		struct proc *a_p;
614 	} */ *ap = v;
615 	struct vnode *vp = ap->a_vp;
616 
617 	return LAYERFS_DO_BYPASS(vp, ap);
618 }
619 
620 int
621 layer_islocked(void *v)
622 {
623 	struct vop_islocked_args /* {
624 		struct vnode *a_vp;
625 	} */ *ap = v;
626 	struct vnode *vp = ap->a_vp;
627 
628 	return LAYERFS_DO_BYPASS(vp, ap);
629 }
630 
631 /*
632  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
633  * syncing the underlying vnodes, since they'll be fsync'ed when
634  * reclaimed; otherwise,
635  * pass it through to the underlying layer.
636  *
637  * XXX Do we still need to worry about shallow fsync?
638  */
639 
640 int
641 layer_fsync(void *v)
642 {
643 	struct vop_fsync_args /* {
644 		struct vnode *a_vp;
645 		kauth_cred_t a_cred;
646 		int  a_flags;
647 		off_t offlo;
648 		off_t offhi;
649 		struct lwp *a_l;
650 	} */ *ap = v;
651 
652 	if (ap->a_flags & FSYNC_RECLAIM) {
653 		return 0;
654 	}
655 
656 	return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
657 }
658 
659 
660 int
661 layer_inactive(void *v)
662 {
663 	struct vop_inactive_args /* {
664 		struct vnode *a_vp;
665 		bool *a_recycle;
666 	} */ *ap = v;
667 	struct vnode *vp = ap->a_vp;
668 
669 	/*
670 	 * ..., but don't cache the device node. Also, if we did a
671 	 * remove, don't cache the node.
672 	 */
673 	*ap->a_recycle = (vp->v_type == VBLK || vp->v_type == VCHR
674 	    || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED));
675 
676 	/*
677 	 * Do nothing (and _don't_ bypass).
678 	 * Wait to vrele lowervp until reclaim,
679 	 * so that until then our layer_node is in the
680 	 * cache and reusable.
681 	 *
682 	 * NEEDSWORK: Someday, consider inactive'ing
683 	 * the lowervp and then trying to reactivate it
684 	 * with capabilities (v_id)
685 	 * like they do in the name lookup cache code.
686 	 * That's too much work for now.
687 	 */
688 	VOP_UNLOCK(vp);
689 
690 	return (0);
691 }
692 
693 int
694 layer_remove(void *v)
695 {
696 	struct vop_remove_args /* {
697 		struct vonde		*a_dvp;
698 		struct vnode		*a_vp;
699 		struct componentname	*a_cnp;
700 	} */ *ap = v;
701 
702 	int		error;
703 	struct vnode	*vp = ap->a_vp;
704 
705 	vref(vp);
706 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
707 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
708 
709 	vrele(vp);
710 
711 	return (error);
712 }
713 
714 int
715 layer_rename(void *v)
716 {
717 	struct vop_rename_args  /* {
718 		struct vnode		*a_fdvp;
719 		struct vnode		*a_fvp;
720 		struct componentname	*a_fcnp;
721 		struct vnode		*a_tdvp;
722 		struct vnode		*a_tvp;
723 		struct componentname	*a_tcnp;
724 	} */ *ap = v;
725 
726 	int error;
727 	struct vnode *fdvp = ap->a_fdvp;
728 	struct vnode *tvp;
729 
730 	tvp = ap->a_tvp;
731 	if (tvp) {
732 		if (tvp->v_mount != fdvp->v_mount)
733 			tvp = NULL;
734 		else
735 			vref(tvp);
736 	}
737 	error = LAYERFS_DO_BYPASS(fdvp, ap);
738 	if (tvp) {
739 		if (error == 0)
740 			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
741 		vrele(tvp);
742 	}
743 
744 	return (error);
745 }
746 
747 int
748 layer_rmdir(void *v)
749 {
750 	struct vop_rmdir_args /* {
751 		struct vnode		*a_dvp;
752 		struct vnode		*a_vp;
753 		struct componentname	*a_cnp;
754 	} */ *ap = v;
755 	int		error;
756 	struct vnode	*vp = ap->a_vp;
757 
758 	vref(vp);
759 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
760 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
761 
762 	vrele(vp);
763 
764 	return (error);
765 }
766 
767 int
768 layer_reclaim(void *v)
769 {
770 	struct vop_reclaim_args /* {
771 		struct vnode *a_vp;
772 		struct lwp *a_l;
773 	} */ *ap = v;
774 	struct vnode *vp = ap->a_vp;
775 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
776 	struct layer_node *xp = VTOLAYER(vp);
777 	struct vnode *lowervp = xp->layer_lowervp;
778 
779 	/*
780 	 * Note: in vop_reclaim, the node's struct lock has been
781 	 * decomissioned, so we have to be careful about calling
782 	 * VOP's on ourself.  We must be careful as VXLOCK is set.
783 	 */
784 	/* After this assignment, this node will not be re-used. */
785 	if ((vp == lmp->layerm_rootvp)) {
786 		/*
787 		 * Oops! We no longer have a root node. Most likely reason is
788 		 * that someone forcably unmunted the underlying fs.
789 		 *
790 		 * Now getting the root vnode will fail. We're dead. :-(
791 		 */
792 		lmp->layerm_rootvp = NULL;
793 	}
794 	xp->layer_lowervp = NULL;
795 	mutex_enter(&lmp->layerm_hashlock);
796 	LIST_REMOVE(xp, layer_hash);
797 	mutex_exit(&lmp->layerm_hashlock);
798 	kmem_free(vp->v_data, lmp->layerm_size);
799 	vp->v_data = NULL;
800 	vrele(lowervp);
801 
802 	return (0);
803 }
804 
805 /*
806  * We just feed the returned vnode up to the caller - there's no need
807  * to build a layer node on top of the node on which we're going to do
808  * i/o. :-)
809  */
810 int
811 layer_bmap(void *v)
812 {
813 	struct vop_bmap_args /* {
814 		struct vnode *a_vp;
815 		daddr_t  a_bn;
816 		struct vnode **a_vpp;
817 		daddr_t *a_bnp;
818 		int *a_runp;
819 	} */ *ap = v;
820 	struct vnode *vp;
821 
822 	ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
823 
824 	return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
825 }
826 
827 int
828 layer_print(void *v)
829 {
830 	struct vop_print_args /* {
831 		struct vnode *a_vp;
832 	} */ *ap = v;
833 	struct vnode *vp = ap->a_vp;
834 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
835 	return (0);
836 }
837 
838 /*
839  * XXX - vop_bwrite must be hand coded because it has no
840  * vnode in its arguments.
841  * This goes away with a merged VM/buffer cache.
842  */
843 int
844 layer_bwrite(void *v)
845 {
846 	struct vop_bwrite_args /* {
847 		struct buf *a_bp;
848 	} */ *ap = v;
849 	struct buf *bp = ap->a_bp;
850 	int error;
851 	struct vnode *savedvp;
852 
853 	savedvp = bp->b_vp;
854 	bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
855 
856 	error = VOP_BWRITE(bp);
857 
858 	bp->b_vp = savedvp;
859 
860 	return (error);
861 }
862 
863 int
864 layer_getpages(void *v)
865 {
866 	struct vop_getpages_args /* {
867 		struct vnode *a_vp;
868 		voff_t a_offset;
869 		struct vm_page **a_m;
870 		int *a_count;
871 		int a_centeridx;
872 		vm_prot_t a_access_type;
873 		int a_advice;
874 		int a_flags;
875 	} */ *ap = v;
876 	struct vnode *vp = ap->a_vp;
877 	int error;
878 
879 	/*
880 	 * just pass the request on to the underlying layer.
881 	 */
882 
883 	if (ap->a_flags & PGO_LOCKED) {
884 		return EBUSY;
885 	}
886 	ap->a_vp = LAYERVPTOLOWERVP(vp);
887 	mutex_exit(&vp->v_interlock);
888 	mutex_enter(&ap->a_vp->v_interlock);
889 	error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
890 	return error;
891 }
892 
893 int
894 layer_putpages(void *v)
895 {
896 	struct vop_putpages_args /* {
897 		struct vnode *a_vp;
898 		voff_t a_offlo;
899 		voff_t a_offhi;
900 		int a_flags;
901 	} */ *ap = v;
902 	struct vnode *vp = ap->a_vp;
903 	int error;
904 
905 	/*
906 	 * just pass the request on to the underlying layer.
907 	 */
908 
909 	ap->a_vp = LAYERVPTOLOWERVP(vp);
910 	mutex_exit(&vp->v_interlock);
911 	if (ap->a_flags & PGO_RECLAIM) {
912 		return 0;
913 	}
914 	mutex_enter(&ap->a_vp->v_interlock);
915 	error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
916 	return error;
917 }
918