1 /* $NetBSD: genfs_vnops.c,v 1.125 2006/05/14 21:31:52 elad Exp $ */ 2 3 /* 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 */ 32 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.125 2006/05/14 21:31:52 elad Exp $"); 35 36 #if defined(_KERNEL_OPT) 37 #include "opt_nfsserver.h" 38 #endif 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/proc.h> 43 #include <sys/kernel.h> 44 #include <sys/mount.h> 45 #include <sys/namei.h> 46 #include <sys/vnode.h> 47 #include <sys/fcntl.h> 48 #include <sys/malloc.h> 49 #include <sys/poll.h> 50 #include <sys/mman.h> 51 #include <sys/file.h> 52 #include <sys/kauth.h> 53 54 #include <miscfs/genfs/genfs.h> 55 #include <miscfs/genfs/genfs_node.h> 56 #include <miscfs/specfs/specdev.h> 57 58 #include <uvm/uvm.h> 59 #include <uvm/uvm_pager.h> 60 61 #ifdef NFSSERVER 62 #include <nfs/rpcv2.h> 63 #include <nfs/nfsproto.h> 64 #include <nfs/nfs.h> 65 #include <nfs/nqnfs.h> 66 #include <nfs/nfs_var.h> 67 #endif 68 69 static inline void genfs_rel_pages(struct vm_page **, int); 70 static void filt_genfsdetach(struct knote *); 71 static int filt_genfsread(struct knote *, long); 72 static int filt_genfsvnode(struct knote *, long); 73 74 #define MAX_READ_PAGES 16 /* XXXUBC 16 */ 75 76 int 77 genfs_poll(void *v) 78 { 79 struct vop_poll_args /* { 80 struct vnode *a_vp; 81 int a_events; 82 struct lwp *a_l; 83 } */ *ap = v; 84 85 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM)); 86 } 87 88 int 89 genfs_seek(void *v) 90 { 91 struct vop_seek_args /* { 92 struct vnode *a_vp; 93 off_t a_oldoff; 94 off_t a_newoff; 95 kauth_cred_t cred; 96 } */ *ap = v; 97 98 if (ap->a_newoff < 0) 99 return (EINVAL); 100 101 return (0); 102 } 103 104 int 105 genfs_abortop(void *v) 106 { 107 struct vop_abortop_args /* { 108 struct vnode *a_dvp; 109 struct componentname *a_cnp; 110 } */ *ap = v; 111 112 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF) 113 PNBUF_PUT(ap->a_cnp->cn_pnbuf); 114 return (0); 115 } 116 117 int 118 genfs_fcntl(void *v) 119 { 120 struct vop_fcntl_args /* { 121 struct vnode *a_vp; 122 u_int a_command; 123 caddr_t a_data; 124 int a_fflag; 125 kauth_cred_t a_cred; 126 struct lwp *a_l; 127 } */ *ap = v; 128 129 if (ap->a_command == F_SETFL) 130 return (0); 131 else 132 return (EOPNOTSUPP); 133 } 134 135 /*ARGSUSED*/ 136 int 137 genfs_badop(void *v) 138 { 139 140 panic("genfs: bad op"); 141 } 142 143 /*ARGSUSED*/ 144 int 145 genfs_nullop(void *v) 146 { 147 148 return (0); 149 } 150 151 /*ARGSUSED*/ 152 int 153 genfs_einval(void *v) 154 { 155 156 return (EINVAL); 157 } 158 159 /* 160 * Called when an fs doesn't support a particular vop. 161 * This takes care to vrele, vput, or vunlock passed in vnodes. 162 */ 163 int 164 genfs_eopnotsupp(void *v) 165 { 166 struct vop_generic_args /* 167 struct vnodeop_desc *a_desc; 168 / * other random data follows, presumably * / 169 } */ *ap = v; 170 struct vnodeop_desc *desc = ap->a_desc; 171 struct vnode *vp, *vp_last = NULL; 172 int flags, i, j, offset; 173 174 flags = desc->vdesc_flags; 175 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) { 176 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET) 177 break; /* stop at end of list */ 178 if ((j = flags & VDESC_VP0_WILLPUT)) { 179 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap); 180 181 /* Skip if NULL */ 182 if (!vp) 183 continue; 184 185 switch (j) { 186 case VDESC_VP0_WILLPUT: 187 /* Check for dvp == vp cases */ 188 if (vp == vp_last) 189 vrele(vp); 190 else { 191 vput(vp); 192 vp_last = vp; 193 } 194 break; 195 case VDESC_VP0_WILLUNLOCK: 196 VOP_UNLOCK(vp, 0); 197 break; 198 case VDESC_VP0_WILLRELE: 199 vrele(vp); 200 break; 201 } 202 } 203 } 204 205 return (EOPNOTSUPP); 206 } 207 208 /*ARGSUSED*/ 209 int 210 genfs_ebadf(void *v) 211 { 212 213 return (EBADF); 214 } 215 216 /* ARGSUSED */ 217 int 218 genfs_enoioctl(void *v) 219 { 220 221 return (EPASSTHROUGH); 222 } 223 224 225 /* 226 * Eliminate all activity associated with the requested vnode 227 * and with all vnodes aliased to the requested vnode. 228 */ 229 int 230 genfs_revoke(void *v) 231 { 232 struct vop_revoke_args /* { 233 struct vnode *a_vp; 234 int a_flags; 235 } */ *ap = v; 236 struct vnode *vp, *vq; 237 struct lwp *l = curlwp; /* XXX */ 238 239 #ifdef DIAGNOSTIC 240 if ((ap->a_flags & REVOKEALL) == 0) 241 panic("genfs_revoke: not revokeall"); 242 #endif 243 244 vp = ap->a_vp; 245 simple_lock(&vp->v_interlock); 246 247 if (vp->v_flag & VALIASED) { 248 /* 249 * If a vgone (or vclean) is already in progress, 250 * wait until it is done and return. 251 */ 252 if (vp->v_flag & VXLOCK) { 253 vp->v_flag |= VXWANT; 254 ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0, 255 &vp->v_interlock); 256 return (0); 257 } 258 /* 259 * Ensure that vp will not be vgone'd while we 260 * are eliminating its aliases. 261 */ 262 vp->v_flag |= VXLOCK; 263 simple_unlock(&vp->v_interlock); 264 while (vp->v_flag & VALIASED) { 265 simple_lock(&spechash_slock); 266 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) { 267 if (vq->v_rdev != vp->v_rdev || 268 vq->v_type != vp->v_type || vp == vq) 269 continue; 270 simple_unlock(&spechash_slock); 271 vgone(vq); 272 break; 273 } 274 if (vq == NULLVP) 275 simple_unlock(&spechash_slock); 276 } 277 /* 278 * Remove the lock so that vgone below will 279 * really eliminate the vnode after which time 280 * vgone will awaken any sleepers. 281 */ 282 simple_lock(&vp->v_interlock); 283 vp->v_flag &= ~VXLOCK; 284 } 285 vgonel(vp, l); 286 return (0); 287 } 288 289 /* 290 * Lock the node. 291 */ 292 int 293 genfs_lock(void *v) 294 { 295 struct vop_lock_args /* { 296 struct vnode *a_vp; 297 int a_flags; 298 } */ *ap = v; 299 struct vnode *vp = ap->a_vp; 300 301 return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock)); 302 } 303 304 /* 305 * Unlock the node. 306 */ 307 int 308 genfs_unlock(void *v) 309 { 310 struct vop_unlock_args /* { 311 struct vnode *a_vp; 312 int a_flags; 313 } */ *ap = v; 314 struct vnode *vp = ap->a_vp; 315 316 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE, 317 &vp->v_interlock)); 318 } 319 320 /* 321 * Return whether or not the node is locked. 322 */ 323 int 324 genfs_islocked(void *v) 325 { 326 struct vop_islocked_args /* { 327 struct vnode *a_vp; 328 } */ *ap = v; 329 struct vnode *vp = ap->a_vp; 330 331 return (lockstatus(vp->v_vnlock)); 332 } 333 334 /* 335 * Stubs to use when there is no locking to be done on the underlying object. 336 */ 337 int 338 genfs_nolock(void *v) 339 { 340 struct vop_lock_args /* { 341 struct vnode *a_vp; 342 int a_flags; 343 struct lwp *a_l; 344 } */ *ap = v; 345 346 /* 347 * Since we are not using the lock manager, we must clear 348 * the interlock here. 349 */ 350 if (ap->a_flags & LK_INTERLOCK) 351 simple_unlock(&ap->a_vp->v_interlock); 352 return (0); 353 } 354 355 int 356 genfs_nounlock(void *v) 357 { 358 359 return (0); 360 } 361 362 int 363 genfs_noislocked(void *v) 364 { 365 366 return (0); 367 } 368 369 /* 370 * Local lease check for NFS servers. Just set up args and let 371 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel, 372 * this is a null operation. 373 */ 374 int 375 genfs_lease_check(void *v) 376 { 377 #ifdef NFSSERVER 378 struct vop_lease_args /* { 379 struct vnode *a_vp; 380 struct lwp *a_l; 381 kauth_cred_t a_cred; 382 int a_flag; 383 } */ *ap = v; 384 u_int32_t duration = 0; 385 int cache; 386 u_quad_t frev; 387 388 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag, 389 NQLOCALSLP, ap->a_l, (struct mbuf *)0, &cache, &frev, ap->a_cred); 390 return (0); 391 #else 392 return (0); 393 #endif /* NFSSERVER */ 394 } 395 396 int 397 genfs_mmap(void *v) 398 { 399 400 return (0); 401 } 402 403 static inline void 404 genfs_rel_pages(struct vm_page **pgs, int npages) 405 { 406 int i; 407 408 for (i = 0; i < npages; i++) { 409 struct vm_page *pg = pgs[i]; 410 411 if (pg == NULL) 412 continue; 413 if (pg->flags & PG_FAKE) { 414 pg->flags |= PG_RELEASED; 415 } 416 } 417 uvm_lock_pageq(); 418 uvm_page_unbusy(pgs, npages); 419 uvm_unlock_pageq(); 420 } 421 422 /* 423 * generic VM getpages routine. 424 * Return PG_BUSY pages for the given range, 425 * reading from backing store if necessary. 426 */ 427 428 int 429 genfs_getpages(void *v) 430 { 431 struct vop_getpages_args /* { 432 struct vnode *a_vp; 433 voff_t a_offset; 434 struct vm_page **a_m; 435 int *a_count; 436 int a_centeridx; 437 vm_prot_t a_access_type; 438 int a_advice; 439 int a_flags; 440 } */ *ap = v; 441 442 off_t newsize, diskeof, memeof; 443 off_t offset, origoffset, startoffset, endoffset; 444 daddr_t lbn, blkno; 445 int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount; 446 int fs_bshift, fs_bsize, dev_bshift; 447 int flags = ap->a_flags; 448 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes; 449 vaddr_t kva; 450 struct buf *bp, *mbp; 451 struct vnode *vp = ap->a_vp; 452 struct vnode *devvp; 453 struct genfs_node *gp = VTOG(vp); 454 struct uvm_object *uobj = &vp->v_uobj; 455 struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES]; 456 int pgs_size; 457 kauth_cred_t cred = curproc->p_cred; /* XXXUBC curlwp */ 458 boolean_t async = (flags & PGO_SYNCIO) == 0; 459 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0; 460 boolean_t sawhole = FALSE; 461 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0; 462 boolean_t blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0; 463 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist); 464 465 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d", 466 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count); 467 468 KASSERT(vp->v_type == VREG || vp->v_type == VDIR || 469 vp->v_type == VLNK || vp->v_type == VBLK); 470 471 /* XXXUBC temp limit */ 472 if (*ap->a_count > MAX_READ_PAGES) { 473 panic("genfs_getpages: too many pages"); 474 } 475 476 error = 0; 477 origoffset = ap->a_offset; 478 orignpages = *ap->a_count; 479 GOP_SIZE(vp, vp->v_size, &diskeof, 0); 480 if (flags & PGO_PASTEOF) { 481 newsize = MAX(vp->v_size, 482 origoffset + (orignpages << PAGE_SHIFT)); 483 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM); 484 } else { 485 GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_MEM); 486 } 487 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages); 488 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0); 489 KASSERT(orignpages > 0); 490 491 /* 492 * Bounds-check the request. 493 */ 494 495 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) { 496 if ((flags & PGO_LOCKED) == 0) { 497 simple_unlock(&uobj->vmobjlock); 498 } 499 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x", 500 origoffset, *ap->a_count, memeof,0); 501 return (EINVAL); 502 } 503 504 /* uobj is locked */ 505 506 if ((flags & PGO_NOTIMESTAMP) == 0 && 507 (vp->v_type != VBLK || 508 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) { 509 int updflags = 0; 510 511 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) { 512 updflags = GOP_UPDATE_ACCESSED; 513 } 514 if (write) { 515 updflags |= GOP_UPDATE_MODIFIED; 516 } 517 if (updflags != 0) { 518 GOP_MARKUPDATE(vp, updflags); 519 } 520 } 521 522 if (write) { 523 gp->g_dirtygen++; 524 if ((vp->v_flag & VONWORKLST) == 0) { 525 vn_syncer_add_to_worklist(vp, filedelay); 526 } 527 if ((vp->v_flag & (VWRITEMAP|VWRITEMAPDIRTY)) == VWRITEMAP) { 528 vp->v_flag |= VWRITEMAPDIRTY; 529 } 530 } 531 532 /* 533 * For PGO_LOCKED requests, just return whatever's in memory. 534 */ 535 536 if (flags & PGO_LOCKED) { 537 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, 538 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0)); 539 540 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0); 541 } 542 543 /* 544 * find the requested pages and make some simple checks. 545 * leave space in the page array for a whole block. 546 */ 547 548 if (vp->v_type != VBLK) { 549 fs_bshift = vp->v_mount->mnt_fs_bshift; 550 dev_bshift = vp->v_mount->mnt_dev_bshift; 551 } else { 552 fs_bshift = DEV_BSHIFT; 553 dev_bshift = DEV_BSHIFT; 554 } 555 fs_bsize = 1 << fs_bshift; 556 557 orignpages = MIN(orignpages, 558 round_page(memeof - origoffset) >> PAGE_SHIFT); 559 npages = orignpages; 560 startoffset = origoffset & ~(fs_bsize - 1); 561 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) + 562 fs_bsize - 1) & ~(fs_bsize - 1)); 563 endoffset = MIN(endoffset, round_page(memeof)); 564 ridx = (origoffset - startoffset) >> PAGE_SHIFT; 565 566 pgs_size = sizeof(struct vm_page *) * 567 ((endoffset - startoffset) >> PAGE_SHIFT); 568 if (pgs_size > sizeof(pgs_onstack)) { 569 pgs = malloc(pgs_size, M_DEVBUF, M_NOWAIT | M_ZERO); 570 if (pgs == NULL) { 571 simple_unlock(&uobj->vmobjlock); 572 return (ENOMEM); 573 } 574 } else { 575 pgs = pgs_onstack; 576 memset(pgs, 0, pgs_size); 577 } 578 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld", 579 ridx, npages, startoffset, endoffset); 580 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], 581 async ? UFP_NOWAIT : UFP_ALL) != orignpages) { 582 KASSERT(async != 0); 583 genfs_rel_pages(&pgs[ridx], orignpages); 584 simple_unlock(&uobj->vmobjlock); 585 if (pgs != pgs_onstack) 586 free(pgs, M_DEVBUF); 587 return (EBUSY); 588 } 589 590 /* 591 * if the pages are already resident, just return them. 592 */ 593 594 for (i = 0; i < npages; i++) { 595 struct vm_page *pg1 = pgs[ridx + i]; 596 597 if ((pg1->flags & PG_FAKE) || 598 (blockalloc && (pg1->flags & PG_RDONLY))) { 599 break; 600 } 601 } 602 if (i == npages) { 603 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0); 604 npages += ridx; 605 goto out; 606 } 607 608 /* 609 * if PGO_OVERWRITE is set, don't bother reading the pages. 610 */ 611 612 if (overwrite) { 613 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0); 614 615 for (i = 0; i < npages; i++) { 616 struct vm_page *pg1 = pgs[ridx + i]; 617 618 pg1->flags &= ~(PG_RDONLY|PG_CLEAN); 619 } 620 npages += ridx; 621 goto out; 622 } 623 624 /* 625 * the page wasn't resident and we're not overwriting, 626 * so we're going to have to do some i/o. 627 * find any additional pages needed to cover the expanded range. 628 */ 629 630 npages = (endoffset - startoffset) >> PAGE_SHIFT; 631 if (startoffset != origoffset || npages != orignpages) { 632 633 /* 634 * we need to avoid deadlocks caused by locking 635 * additional pages at lower offsets than pages we 636 * already have locked. unlock them all and start over. 637 */ 638 639 genfs_rel_pages(&pgs[ridx], orignpages); 640 memset(pgs, 0, pgs_size); 641 642 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x", 643 startoffset, endoffset, 0,0); 644 npgs = npages; 645 if (uvn_findpages(uobj, startoffset, &npgs, pgs, 646 async ? UFP_NOWAIT : UFP_ALL) != npages) { 647 KASSERT(async != 0); 648 genfs_rel_pages(pgs, npages); 649 simple_unlock(&uobj->vmobjlock); 650 if (pgs != pgs_onstack) 651 free(pgs, M_DEVBUF); 652 return (EBUSY); 653 } 654 } 655 simple_unlock(&uobj->vmobjlock); 656 657 /* 658 * read the desired page(s). 659 */ 660 661 totalbytes = npages << PAGE_SHIFT; 662 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0)); 663 tailbytes = totalbytes - bytes; 664 skipbytes = 0; 665 666 kva = uvm_pagermapin(pgs, npages, 667 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK); 668 669 mbp = getiobuf(); 670 mbp->b_bufsize = totalbytes; 671 mbp->b_data = (void *)kva; 672 mbp->b_resid = mbp->b_bcount = bytes; 673 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0); 674 mbp->b_iodone = (async ? uvm_aio_biodone : 0); 675 mbp->b_vp = vp; 676 if (async) 677 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED); 678 else 679 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL); 680 681 /* 682 * if EOF is in the middle of the range, zero the part past EOF. 683 * if the page including EOF is not PG_FAKE, skip over it since 684 * in that case it has valid data that we need to preserve. 685 */ 686 687 if (tailbytes > 0) { 688 size_t tailstart = bytes; 689 690 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) { 691 tailstart = round_page(tailstart); 692 tailbytes -= tailstart - bytes; 693 } 694 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x", 695 kva, tailstart, tailbytes,0); 696 memset((void *)(kva + tailstart), 0, tailbytes); 697 } 698 699 /* 700 * now loop over the pages, reading as needed. 701 */ 702 703 if (blockalloc) { 704 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL); 705 } else { 706 lockmgr(&gp->g_glock, LK_SHARED, NULL); 707 } 708 709 bp = NULL; 710 for (offset = startoffset; 711 bytes > 0; 712 offset += iobytes, bytes -= iobytes) { 713 714 /* 715 * skip pages which don't need to be read. 716 */ 717 718 pidx = (offset - startoffset) >> PAGE_SHIFT; 719 while ((pgs[pidx]->flags & PG_FAKE) == 0) { 720 size_t b; 721 722 KASSERT((offset & (PAGE_SIZE - 1)) == 0); 723 if ((pgs[pidx]->flags & PG_RDONLY)) { 724 sawhole = TRUE; 725 } 726 b = MIN(PAGE_SIZE, bytes); 727 offset += b; 728 bytes -= b; 729 skipbytes += b; 730 pidx++; 731 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x", 732 offset, 0,0,0); 733 if (bytes == 0) { 734 goto loopdone; 735 } 736 } 737 738 /* 739 * bmap the file to find out the blkno to read from and 740 * how much we can read in one i/o. if bmap returns an error, 741 * skip the rest of the top-level i/o. 742 */ 743 744 lbn = offset >> fs_bshift; 745 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run); 746 if (error) { 747 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n", 748 lbn, error,0,0); 749 skipbytes += bytes; 750 goto loopdone; 751 } 752 753 /* 754 * see how many pages can be read with this i/o. 755 * reduce the i/o size if necessary to avoid 756 * overwriting pages with valid data. 757 */ 758 759 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset, 760 bytes); 761 if (offset + iobytes > round_page(offset)) { 762 pcount = 1; 763 while (pidx + pcount < npages && 764 pgs[pidx + pcount]->flags & PG_FAKE) { 765 pcount++; 766 } 767 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) - 768 (offset - trunc_page(offset))); 769 } 770 771 /* 772 * if this block isn't allocated, zero it instead of 773 * reading it. unless we are going to allocate blocks, 774 * mark the pages we zeroed PG_RDONLY. 775 */ 776 777 if (blkno < 0) { 778 int holepages = (round_page(offset + iobytes) - 779 trunc_page(offset)) >> PAGE_SHIFT; 780 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0); 781 782 sawhole = TRUE; 783 memset((char *)kva + (offset - startoffset), 0, 784 iobytes); 785 skipbytes += iobytes; 786 787 for (i = 0; i < holepages; i++) { 788 if (write) { 789 pgs[pidx + i]->flags &= ~PG_CLEAN; 790 } 791 if (!blockalloc) { 792 pgs[pidx + i]->flags |= PG_RDONLY; 793 } 794 } 795 continue; 796 } 797 798 /* 799 * allocate a sub-buf for this piece of the i/o 800 * (or just use mbp if there's only 1 piece), 801 * and start it going. 802 */ 803 804 if (offset == startoffset && iobytes == bytes) { 805 bp = mbp; 806 } else { 807 bp = getiobuf(); 808 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes); 809 } 810 bp->b_lblkno = 0; 811 812 /* adjust physical blkno for partial blocks */ 813 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >> 814 dev_bshift); 815 816 UVMHIST_LOG(ubchist, 817 "bp %p offset 0x%x bcount 0x%x blkno 0x%x", 818 bp, offset, iobytes, bp->b_blkno); 819 820 VOP_STRATEGY(devvp, bp); 821 } 822 823 loopdone: 824 nestiobuf_done(mbp, skipbytes, error); 825 if (async) { 826 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0); 827 lockmgr(&gp->g_glock, LK_RELEASE, NULL); 828 if (pgs != pgs_onstack) 829 free(pgs, M_DEVBUF); 830 return (0); 831 } 832 if (bp != NULL) { 833 error = biowait(mbp); 834 } 835 putiobuf(mbp); 836 uvm_pagermapout(kva, npages); 837 838 /* 839 * if this we encountered a hole then we have to do a little more work. 840 * for read faults, we marked the page PG_RDONLY so that future 841 * write accesses to the page will fault again. 842 * for write faults, we must make sure that the backing store for 843 * the page is completely allocated while the pages are locked. 844 */ 845 846 if (!error && sawhole && blockalloc) { 847 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0, 848 cred); 849 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d", 850 startoffset, npages << PAGE_SHIFT, error,0); 851 if (!error) { 852 for (i = 0; i < npages; i++) { 853 if (pgs[i] == NULL) { 854 continue; 855 } 856 pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY); 857 UVMHIST_LOG(ubchist, "mark dirty pg %p", 858 pgs[i],0,0,0); 859 } 860 } 861 } 862 lockmgr(&gp->g_glock, LK_RELEASE, NULL); 863 simple_lock(&uobj->vmobjlock); 864 865 /* 866 * we're almost done! release the pages... 867 * for errors, we free the pages. 868 * otherwise we activate them and mark them as valid and clean. 869 * also, unbusy pages that were not actually requested. 870 */ 871 872 if (error) { 873 for (i = 0; i < npages; i++) { 874 if (pgs[i] == NULL) { 875 continue; 876 } 877 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x", 878 pgs[i], pgs[i]->flags, 0,0); 879 if (pgs[i]->flags & PG_FAKE) { 880 pgs[i]->flags |= PG_RELEASED; 881 } 882 } 883 uvm_lock_pageq(); 884 uvm_page_unbusy(pgs, npages); 885 uvm_unlock_pageq(); 886 simple_unlock(&uobj->vmobjlock); 887 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0); 888 if (pgs != pgs_onstack) 889 free(pgs, M_DEVBUF); 890 return (error); 891 } 892 893 out: 894 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0); 895 uvm_lock_pageq(); 896 for (i = 0; i < npages; i++) { 897 pg = pgs[i]; 898 if (pg == NULL) { 899 continue; 900 } 901 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x", 902 pg, pg->flags, 0,0); 903 if (pg->flags & PG_FAKE && !overwrite) { 904 pg->flags &= ~(PG_FAKE); 905 pmap_clear_modify(pgs[i]); 906 } 907 KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0); 908 if (i < ridx || i >= ridx + orignpages || async) { 909 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x", 910 pg, pg->offset,0,0); 911 if (pg->flags & PG_WANTED) { 912 wakeup(pg); 913 } 914 if (pg->flags & PG_FAKE) { 915 KASSERT(overwrite); 916 uvm_pagezero(pg); 917 } 918 if (pg->flags & PG_RELEASED) { 919 uvm_pagefree(pg); 920 continue; 921 } 922 uvm_pageactivate(pg); 923 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE); 924 UVM_PAGE_OWN(pg, NULL); 925 } 926 } 927 uvm_unlock_pageq(); 928 simple_unlock(&uobj->vmobjlock); 929 if (ap->a_m != NULL) { 930 memcpy(ap->a_m, &pgs[ridx], 931 orignpages * sizeof(struct vm_page *)); 932 } 933 if (pgs != pgs_onstack) 934 free(pgs, M_DEVBUF); 935 return (0); 936 } 937 938 /* 939 * generic VM putpages routine. 940 * Write the given range of pages to backing store. 941 * 942 * => "offhi == 0" means flush all pages at or after "offlo". 943 * => object should be locked by caller. we may _unlock_ the object 944 * if (and only if) we need to clean a page (PGO_CLEANIT), or 945 * if PGO_SYNCIO is set and there are pages busy. 946 * we return with the object locked. 947 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O). 948 * thus, a caller might want to unlock higher level resources 949 * (e.g. vm_map) before calling flush. 950 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither 951 * unlock the object nor block. 952 * => if PGO_ALLPAGES is set, then all pages in the object will be processed. 953 * => NOTE: we rely on the fact that the object's memq is a TAILQ and 954 * that new pages are inserted on the tail end of the list. thus, 955 * we can make a complete pass through the object in one go by starting 956 * at the head and working towards the tail (new pages are put in 957 * front of us). 958 * => NOTE: we are allowed to lock the page queues, so the caller 959 * must not be holding the page queue lock. 960 * 961 * note on "cleaning" object and PG_BUSY pages: 962 * this routine is holding the lock on the object. the only time 963 * that it can run into a PG_BUSY page that it does not own is if 964 * some other process has started I/O on the page (e.g. either 965 * a pagein, or a pageout). if the PG_BUSY page is being paged 966 * in, then it can not be dirty (!PG_CLEAN) because no one has 967 * had a chance to modify it yet. if the PG_BUSY page is being 968 * paged out then it means that someone else has already started 969 * cleaning the page for us (how nice!). in this case, if we 970 * have syncio specified, then after we make our pass through the 971 * object we need to wait for the other PG_BUSY pages to clear 972 * off (i.e. we need to do an iosync). also note that once a 973 * page is PG_BUSY it must stay in its object until it is un-busyed. 974 * 975 * note on page traversal: 976 * we can traverse the pages in an object either by going down the 977 * linked list in "uobj->memq", or we can go over the address range 978 * by page doing hash table lookups for each address. depending 979 * on how many pages are in the object it may be cheaper to do one 980 * or the other. we set "by_list" to true if we are using memq. 981 * if the cost of a hash lookup was equal to the cost of the list 982 * traversal we could compare the number of pages in the start->stop 983 * range to the total number of pages in the object. however, it 984 * seems that a hash table lookup is more expensive than the linked 985 * list traversal, so we multiply the number of pages in the 986 * range by an estimate of the relatively higher cost of the hash lookup. 987 */ 988 989 int 990 genfs_putpages(void *v) 991 { 992 struct vop_putpages_args /* { 993 struct vnode *a_vp; 994 voff_t a_offlo; 995 voff_t a_offhi; 996 int a_flags; 997 } */ *ap = v; 998 struct vnode *vp = ap->a_vp; 999 struct uvm_object *uobj = &vp->v_uobj; 1000 struct simplelock *slock = &uobj->vmobjlock; 1001 off_t startoff = ap->a_offlo; 1002 off_t endoff = ap->a_offhi; 1003 off_t off; 1004 int flags = ap->a_flags; 1005 /* Even for strange MAXPHYS, the shift rounds down to a page */ 1006 const int maxpages = MAXPHYS >> PAGE_SHIFT; 1007 int i, s, error, npages, nback; 1008 int freeflag; 1009 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp; 1010 boolean_t wasclean, by_list, needs_clean, yld; 1011 boolean_t async = (flags & PGO_SYNCIO) == 0; 1012 boolean_t pagedaemon = curproc == uvm.pagedaemon_proc; 1013 struct lwp *l = curlwp ? curlwp : &lwp0; 1014 struct genfs_node *gp = VTOG(vp); 1015 int dirtygen; 1016 boolean_t modified = FALSE; 1017 boolean_t cleanall; 1018 1019 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist); 1020 1021 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)); 1022 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0); 1023 KASSERT(startoff < endoff || endoff == 0); 1024 1025 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x", 1026 vp, uobj->uo_npages, startoff, endoff - startoff); 1027 1028 KASSERT((vp->v_flag & VONWORKLST) != 0 || 1029 (vp->v_flag & VWRITEMAPDIRTY) == 0); 1030 if (uobj->uo_npages == 0) { 1031 s = splbio(); 1032 if (vp->v_flag & VONWORKLST) { 1033 vp->v_flag &= ~VWRITEMAPDIRTY; 1034 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { 1035 vp->v_flag &= ~VONWORKLST; 1036 LIST_REMOVE(vp, v_synclist); 1037 } 1038 } 1039 splx(s); 1040 simple_unlock(slock); 1041 return (0); 1042 } 1043 1044 /* 1045 * the vnode has pages, set up to process the request. 1046 */ 1047 1048 error = 0; 1049 s = splbio(); 1050 simple_lock(&global_v_numoutput_slock); 1051 wasclean = (vp->v_numoutput == 0); 1052 simple_unlock(&global_v_numoutput_slock); 1053 splx(s); 1054 off = startoff; 1055 if (endoff == 0 || flags & PGO_ALLPAGES) { 1056 endoff = trunc_page(LLONG_MAX); 1057 } 1058 by_list = (uobj->uo_npages <= 1059 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY); 1060 1061 #if !defined(DEBUG) 1062 /* 1063 * if this vnode is known not to have dirty pages, 1064 * don't bother to clean it out. 1065 */ 1066 1067 if ((vp->v_flag & VONWORKLST) == 0) { 1068 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) { 1069 goto skip_scan; 1070 } 1071 flags &= ~PGO_CLEANIT; 1072 } 1073 #endif /* !defined(DEBUG) */ 1074 1075 /* 1076 * start the loop. when scanning by list, hold the last page 1077 * in the list before we start. pages allocated after we start 1078 * will be added to the end of the list, so we can stop at the 1079 * current last page. 1080 */ 1081 1082 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean && 1083 startoff == 0 && endoff == trunc_page(LLONG_MAX) && 1084 (vp->v_flag & VONWORKLST) != 0; 1085 dirtygen = gp->g_dirtygen; 1086 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED; 1087 if (by_list) { 1088 curmp.uobject = uobj; 1089 curmp.offset = (voff_t)-1; 1090 curmp.flags = PG_BUSY; 1091 endmp.uobject = uobj; 1092 endmp.offset = (voff_t)-1; 1093 endmp.flags = PG_BUSY; 1094 pg = TAILQ_FIRST(&uobj->memq); 1095 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq); 1096 PHOLD(l); 1097 } else { 1098 pg = uvm_pagelookup(uobj, off); 1099 } 1100 nextpg = NULL; 1101 while (by_list || off < endoff) { 1102 1103 /* 1104 * if the current page is not interesting, move on to the next. 1105 */ 1106 1107 KASSERT(pg == NULL || pg->uobject == uobj); 1108 KASSERT(pg == NULL || 1109 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 || 1110 (pg->flags & PG_BUSY) != 0); 1111 if (by_list) { 1112 if (pg == &endmp) { 1113 break; 1114 } 1115 if (pg->offset < startoff || pg->offset >= endoff || 1116 pg->flags & (PG_RELEASED|PG_PAGEOUT)) { 1117 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) { 1118 wasclean = FALSE; 1119 } 1120 pg = TAILQ_NEXT(pg, listq); 1121 continue; 1122 } 1123 off = pg->offset; 1124 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) { 1125 if (pg != NULL) { 1126 wasclean = FALSE; 1127 } 1128 off += PAGE_SIZE; 1129 if (off < endoff) { 1130 pg = uvm_pagelookup(uobj, off); 1131 } 1132 continue; 1133 } 1134 1135 /* 1136 * if the current page needs to be cleaned and it's busy, 1137 * wait for it to become unbusy. 1138 */ 1139 1140 yld = (l->l_cpu->ci_schedstate.spc_flags & 1141 SPCF_SHOULDYIELD) && !pagedaemon; 1142 if (pg->flags & PG_BUSY || yld) { 1143 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0); 1144 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) { 1145 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0); 1146 error = EDEADLK; 1147 break; 1148 } 1149 KASSERT(!pagedaemon); 1150 if (by_list) { 1151 TAILQ_INSERT_BEFORE(pg, &curmp, listq); 1152 UVMHIST_LOG(ubchist, "curmp next %p", 1153 TAILQ_NEXT(&curmp, listq), 0,0,0); 1154 } 1155 if (yld) { 1156 simple_unlock(slock); 1157 preempt(1); 1158 simple_lock(slock); 1159 } else { 1160 pg->flags |= PG_WANTED; 1161 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0); 1162 simple_lock(slock); 1163 } 1164 if (by_list) { 1165 UVMHIST_LOG(ubchist, "after next %p", 1166 TAILQ_NEXT(&curmp, listq), 0,0,0); 1167 pg = TAILQ_NEXT(&curmp, listq); 1168 TAILQ_REMOVE(&uobj->memq, &curmp, listq); 1169 } else { 1170 pg = uvm_pagelookup(uobj, off); 1171 } 1172 continue; 1173 } 1174 1175 /* 1176 * if we're freeing, remove all mappings of the page now. 1177 * if we're cleaning, check if the page is needs to be cleaned. 1178 */ 1179 1180 if (flags & PGO_FREE) { 1181 pmap_page_protect(pg, VM_PROT_NONE); 1182 } else if (flags & PGO_CLEANIT) { 1183 1184 /* 1185 * if we still have some hope to pull this vnode off 1186 * from the syncer queue, write-protect the page. 1187 */ 1188 1189 if (cleanall && wasclean && 1190 gp->g_dirtygen == dirtygen) { 1191 1192 /* 1193 * uobj pages get wired only by uvm_fault 1194 * where uobj is locked. 1195 */ 1196 1197 if (pg->wire_count == 0) { 1198 pmap_page_protect(pg, 1199 VM_PROT_READ|VM_PROT_EXECUTE); 1200 } else { 1201 cleanall = FALSE; 1202 } 1203 } 1204 } 1205 1206 if (flags & PGO_CLEANIT) { 1207 needs_clean = pmap_clear_modify(pg) || 1208 (pg->flags & PG_CLEAN) == 0; 1209 pg->flags |= PG_CLEAN; 1210 } else { 1211 needs_clean = FALSE; 1212 } 1213 1214 /* 1215 * if we're cleaning, build a cluster. 1216 * the cluster will consist of pages which are currently dirty, 1217 * but they will be returned to us marked clean. 1218 * if not cleaning, just operate on the one page. 1219 */ 1220 1221 if (needs_clean) { 1222 KDASSERT((vp->v_flag & VONWORKLST)); 1223 wasclean = FALSE; 1224 memset(pgs, 0, sizeof(pgs)); 1225 pg->flags |= PG_BUSY; 1226 UVM_PAGE_OWN(pg, "genfs_putpages"); 1227 1228 /* 1229 * first look backward. 1230 */ 1231 1232 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT); 1233 nback = npages; 1234 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0], 1235 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD); 1236 if (nback) { 1237 memmove(&pgs[0], &pgs[npages - nback], 1238 nback * sizeof(pgs[0])); 1239 if (npages - nback < nback) 1240 memset(&pgs[nback], 0, 1241 (npages - nback) * sizeof(pgs[0])); 1242 else 1243 memset(&pgs[npages - nback], 0, 1244 nback * sizeof(pgs[0])); 1245 } 1246 1247 /* 1248 * then plug in our page of interest. 1249 */ 1250 1251 pgs[nback] = pg; 1252 1253 /* 1254 * then look forward to fill in the remaining space in 1255 * the array of pages. 1256 */ 1257 1258 npages = maxpages - nback - 1; 1259 uvn_findpages(uobj, off + PAGE_SIZE, &npages, 1260 &pgs[nback + 1], 1261 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY); 1262 npages += nback + 1; 1263 } else { 1264 pgs[0] = pg; 1265 npages = 1; 1266 nback = 0; 1267 } 1268 1269 /* 1270 * apply FREE or DEACTIVATE options if requested. 1271 */ 1272 1273 if (flags & (PGO_DEACTIVATE|PGO_FREE)) { 1274 uvm_lock_pageq(); 1275 } 1276 for (i = 0; i < npages; i++) { 1277 tpg = pgs[i]; 1278 KASSERT(tpg->uobject == uobj); 1279 if (by_list && tpg == TAILQ_NEXT(pg, listq)) 1280 pg = tpg; 1281 if (tpg->offset < startoff || tpg->offset >= endoff) 1282 continue; 1283 if (flags & PGO_DEACTIVATE && 1284 (tpg->pqflags & PQ_INACTIVE) == 0 && 1285 tpg->wire_count == 0) { 1286 (void) pmap_clear_reference(tpg); 1287 uvm_pagedeactivate(tpg); 1288 } else if (flags & PGO_FREE) { 1289 pmap_page_protect(tpg, VM_PROT_NONE); 1290 if (tpg->flags & PG_BUSY) { 1291 tpg->flags |= freeflag; 1292 if (pagedaemon) { 1293 uvmexp.paging++; 1294 uvm_pagedequeue(tpg); 1295 } 1296 } else { 1297 1298 /* 1299 * ``page is not busy'' 1300 * implies that npages is 1 1301 * and needs_clean is false. 1302 */ 1303 1304 nextpg = TAILQ_NEXT(tpg, listq); 1305 uvm_pagefree(tpg); 1306 if (pagedaemon) 1307 uvmexp.pdfreed++; 1308 } 1309 } 1310 } 1311 if (flags & (PGO_DEACTIVATE|PGO_FREE)) { 1312 uvm_unlock_pageq(); 1313 } 1314 if (needs_clean) { 1315 modified = TRUE; 1316 1317 /* 1318 * start the i/o. if we're traversing by list, 1319 * keep our place in the list with a marker page. 1320 */ 1321 1322 if (by_list) { 1323 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp, 1324 listq); 1325 } 1326 simple_unlock(slock); 1327 error = GOP_WRITE(vp, pgs, npages, flags); 1328 simple_lock(slock); 1329 if (by_list) { 1330 pg = TAILQ_NEXT(&curmp, listq); 1331 TAILQ_REMOVE(&uobj->memq, &curmp, listq); 1332 } 1333 if (error) { 1334 break; 1335 } 1336 if (by_list) { 1337 continue; 1338 } 1339 } 1340 1341 /* 1342 * find the next page and continue if there was no error. 1343 */ 1344 1345 if (by_list) { 1346 if (nextpg) { 1347 pg = nextpg; 1348 nextpg = NULL; 1349 } else { 1350 pg = TAILQ_NEXT(pg, listq); 1351 } 1352 } else { 1353 off += (npages - nback) << PAGE_SHIFT; 1354 if (off < endoff) { 1355 pg = uvm_pagelookup(uobj, off); 1356 } 1357 } 1358 } 1359 if (by_list) { 1360 TAILQ_REMOVE(&uobj->memq, &endmp, listq); 1361 PRELE(l); 1362 } 1363 1364 if (modified && (vp->v_flag & VWRITEMAPDIRTY) != 0 && 1365 (vp->v_type != VBLK || 1366 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) { 1367 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED); 1368 } 1369 1370 /* 1371 * if we're cleaning and there was nothing to clean, 1372 * take us off the syncer list. if we started any i/o 1373 * and we're doing sync i/o, wait for all writes to finish. 1374 */ 1375 1376 s = splbio(); 1377 if (cleanall && wasclean && gp->g_dirtygen == dirtygen && 1378 (vp->v_flag & VONWORKLST) != 0) { 1379 vp->v_flag &= ~VWRITEMAPDIRTY; 1380 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { 1381 vp->v_flag &= ~VONWORKLST; 1382 LIST_REMOVE(vp, v_synclist); 1383 } 1384 } 1385 splx(s); 1386 1387 #if !defined(DEBUG) 1388 skip_scan: 1389 #endif /* !defined(DEBUG) */ 1390 if (!wasclean && !async) { 1391 s = splbio(); 1392 /* 1393 * XXX - we want simple_unlock(&global_v_numoutput_slock); 1394 * but the slot in ltsleep() is taken! 1395 * XXX - try to recover from missed wakeups with a timeout.. 1396 * must think of something better. 1397 */ 1398 while (vp->v_numoutput != 0) { 1399 vp->v_flag |= VBWAIT; 1400 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE, 1401 "genput2", hz); 1402 simple_lock(slock); 1403 } 1404 splx(s); 1405 } 1406 simple_unlock(&uobj->vmobjlock); 1407 return (error); 1408 } 1409 1410 int 1411 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags) 1412 { 1413 int s, error, run; 1414 int fs_bshift, dev_bshift; 1415 vaddr_t kva; 1416 off_t eof, offset, startoffset; 1417 size_t bytes, iobytes, skipbytes; 1418 daddr_t lbn, blkno; 1419 struct vm_page *pg; 1420 struct buf *mbp, *bp; 1421 struct vnode *devvp; 1422 boolean_t async = (flags & PGO_SYNCIO) == 0; 1423 UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist); 1424 1425 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x", 1426 vp, pgs, npages, flags); 1427 1428 GOP_SIZE(vp, vp->v_size, &eof, 0); 1429 if (vp->v_type != VBLK) { 1430 fs_bshift = vp->v_mount->mnt_fs_bshift; 1431 dev_bshift = vp->v_mount->mnt_dev_bshift; 1432 } else { 1433 fs_bshift = DEV_BSHIFT; 1434 dev_bshift = DEV_BSHIFT; 1435 } 1436 error = 0; 1437 pg = pgs[0]; 1438 startoffset = pg->offset; 1439 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset); 1440 skipbytes = 0; 1441 KASSERT(bytes != 0); 1442 1443 kva = uvm_pagermapin(pgs, npages, 1444 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK); 1445 1446 s = splbio(); 1447 simple_lock(&global_v_numoutput_slock); 1448 vp->v_numoutput += 2; 1449 simple_unlock(&global_v_numoutput_slock); 1450 splx(s); 1451 mbp = getiobuf(); 1452 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x", 1453 vp, mbp, vp->v_numoutput, bytes); 1454 mbp->b_bufsize = npages << PAGE_SHIFT; 1455 mbp->b_data = (void *)kva; 1456 mbp->b_resid = mbp->b_bcount = bytes; 1457 mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0); 1458 mbp->b_iodone = uvm_aio_biodone; 1459 mbp->b_vp = vp; 1460 if (curproc == uvm.pagedaemon_proc) 1461 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED); 1462 else if (async) 1463 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL); 1464 else 1465 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL); 1466 1467 bp = NULL; 1468 for (offset = startoffset; 1469 bytes > 0; 1470 offset += iobytes, bytes -= iobytes) { 1471 lbn = offset >> fs_bshift; 1472 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run); 1473 if (error) { 1474 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0); 1475 skipbytes += bytes; 1476 bytes = 0; 1477 break; 1478 } 1479 1480 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset, 1481 bytes); 1482 if (blkno == (daddr_t)-1) { 1483 skipbytes += iobytes; 1484 continue; 1485 } 1486 1487 /* if it's really one i/o, don't make a second buf */ 1488 if (offset == startoffset && iobytes == bytes) { 1489 bp = mbp; 1490 } else { 1491 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d", 1492 vp, bp, vp->v_numoutput, 0); 1493 bp = getiobuf(); 1494 nestiobuf_setup(mbp, bp, offset - pg->offset, iobytes); 1495 } 1496 bp->b_lblkno = 0; 1497 1498 /* adjust physical blkno for partial blocks */ 1499 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >> 1500 dev_bshift); 1501 UVMHIST_LOG(ubchist, 1502 "vp %p offset 0x%x bcount 0x%x blkno 0x%x", 1503 vp, offset, bp->b_bcount, bp->b_blkno); 1504 1505 VOP_STRATEGY(devvp, bp); 1506 } 1507 if (skipbytes) { 1508 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0); 1509 } 1510 nestiobuf_done(mbp, skipbytes, error); 1511 if (async) { 1512 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0); 1513 return (0); 1514 } 1515 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0); 1516 error = biowait(mbp); 1517 uvm_aio_aiodone(mbp); 1518 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0); 1519 return (error); 1520 } 1521 1522 /* 1523 * VOP_PUTPAGES() for vnodes which never have pages. 1524 */ 1525 1526 int 1527 genfs_null_putpages(void *v) 1528 { 1529 struct vop_putpages_args /* { 1530 struct vnode *a_vp; 1531 voff_t a_offlo; 1532 voff_t a_offhi; 1533 int a_flags; 1534 } */ *ap = v; 1535 struct vnode *vp = ap->a_vp; 1536 1537 KASSERT(vp->v_uobj.uo_npages == 0); 1538 simple_unlock(&vp->v_interlock); 1539 return (0); 1540 } 1541 1542 void 1543 genfs_node_init(struct vnode *vp, const struct genfs_ops *ops) 1544 { 1545 struct genfs_node *gp = VTOG(vp); 1546 1547 lockinit(&gp->g_glock, PINOD, "glock", 0, 0); 1548 gp->g_op = ops; 1549 } 1550 1551 void 1552 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags) 1553 { 1554 int bsize; 1555 1556 bsize = 1 << vp->v_mount->mnt_fs_bshift; 1557 *eobp = (size + bsize - 1) & ~(bsize - 1); 1558 } 1559 1560 int 1561 genfs_compat_getpages(void *v) 1562 { 1563 struct vop_getpages_args /* { 1564 struct vnode *a_vp; 1565 voff_t a_offset; 1566 struct vm_page **a_m; 1567 int *a_count; 1568 int a_centeridx; 1569 vm_prot_t a_access_type; 1570 int a_advice; 1571 int a_flags; 1572 } */ *ap = v; 1573 1574 off_t origoffset; 1575 struct vnode *vp = ap->a_vp; 1576 struct uvm_object *uobj = &vp->v_uobj; 1577 struct vm_page *pg, **pgs; 1578 vaddr_t kva; 1579 int i, error, orignpages, npages; 1580 struct iovec iov; 1581 struct uio uio; 1582 kauth_cred_t cred = curproc->p_cred; 1583 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0; 1584 1585 error = 0; 1586 origoffset = ap->a_offset; 1587 orignpages = *ap->a_count; 1588 pgs = ap->a_m; 1589 1590 if (write && (vp->v_flag & VONWORKLST) == 0) { 1591 vn_syncer_add_to_worklist(vp, filedelay); 1592 } 1593 if (ap->a_flags & PGO_LOCKED) { 1594 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, 1595 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0)); 1596 1597 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0); 1598 } 1599 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) { 1600 simple_unlock(&uobj->vmobjlock); 1601 return (EINVAL); 1602 } 1603 if ((ap->a_flags & PGO_SYNCIO) == 0) { 1604 simple_unlock(&uobj->vmobjlock); 1605 return 0; 1606 } 1607 npages = orignpages; 1608 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL); 1609 simple_unlock(&uobj->vmobjlock); 1610 kva = uvm_pagermapin(pgs, npages, 1611 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK); 1612 for (i = 0; i < npages; i++) { 1613 pg = pgs[i]; 1614 if ((pg->flags & PG_FAKE) == 0) { 1615 continue; 1616 } 1617 iov.iov_base = (char *)kva + (i << PAGE_SHIFT); 1618 iov.iov_len = PAGE_SIZE; 1619 uio.uio_iov = &iov; 1620 uio.uio_iovcnt = 1; 1621 uio.uio_offset = origoffset + (i << PAGE_SHIFT); 1622 uio.uio_rw = UIO_READ; 1623 uio.uio_resid = PAGE_SIZE; 1624 UIO_SETUP_SYSSPACE(&uio); 1625 /* XXX vn_lock */ 1626 error = VOP_READ(vp, &uio, 0, cred); 1627 if (error) { 1628 break; 1629 } 1630 if (uio.uio_resid) { 1631 memset(iov.iov_base, 0, uio.uio_resid); 1632 } 1633 } 1634 uvm_pagermapout(kva, npages); 1635 simple_lock(&uobj->vmobjlock); 1636 uvm_lock_pageq(); 1637 for (i = 0; i < npages; i++) { 1638 pg = pgs[i]; 1639 if (error && (pg->flags & PG_FAKE) != 0) { 1640 pg->flags |= PG_RELEASED; 1641 } else { 1642 pmap_clear_modify(pg); 1643 uvm_pageactivate(pg); 1644 } 1645 } 1646 if (error) { 1647 uvm_page_unbusy(pgs, npages); 1648 } 1649 uvm_unlock_pageq(); 1650 simple_unlock(&uobj->vmobjlock); 1651 return (error); 1652 } 1653 1654 int 1655 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, 1656 int flags) 1657 { 1658 off_t offset; 1659 struct iovec iov; 1660 struct uio uio; 1661 kauth_cred_t cred = curproc->p_cred; 1662 struct buf *bp; 1663 vaddr_t kva; 1664 int s, error; 1665 1666 offset = pgs[0]->offset; 1667 kva = uvm_pagermapin(pgs, npages, 1668 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK); 1669 1670 iov.iov_base = (void *)kva; 1671 iov.iov_len = npages << PAGE_SHIFT; 1672 uio.uio_iov = &iov; 1673 uio.uio_iovcnt = 1; 1674 uio.uio_offset = offset; 1675 uio.uio_rw = UIO_WRITE; 1676 uio.uio_resid = npages << PAGE_SHIFT; 1677 UIO_SETUP_SYSSPACE(&uio); 1678 /* XXX vn_lock */ 1679 error = VOP_WRITE(vp, &uio, 0, cred); 1680 1681 s = splbio(); 1682 V_INCR_NUMOUTPUT(vp); 1683 splx(s); 1684 1685 bp = getiobuf(); 1686 bp->b_flags = B_BUSY | B_WRITE | B_AGE; 1687 bp->b_vp = vp; 1688 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift; 1689 bp->b_data = (char *)kva; 1690 bp->b_bcount = npages << PAGE_SHIFT; 1691 bp->b_bufsize = npages << PAGE_SHIFT; 1692 bp->b_resid = 0; 1693 if (error) { 1694 bp->b_flags |= B_ERROR; 1695 bp->b_error = error; 1696 } 1697 uvm_aio_aiodone(bp); 1698 return (error); 1699 } 1700 1701 static void 1702 filt_genfsdetach(struct knote *kn) 1703 { 1704 struct vnode *vp = (struct vnode *)kn->kn_hook; 1705 1706 /* XXXLUKEM lock the struct? */ 1707 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext); 1708 } 1709 1710 static int 1711 filt_genfsread(struct knote *kn, long hint) 1712 { 1713 struct vnode *vp = (struct vnode *)kn->kn_hook; 1714 1715 /* 1716 * filesystem is gone, so set the EOF flag and schedule 1717 * the knote for deletion. 1718 */ 1719 if (hint == NOTE_REVOKE) { 1720 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 1721 return (1); 1722 } 1723 1724 /* XXXLUKEM lock the struct? */ 1725 kn->kn_data = vp->v_size - kn->kn_fp->f_offset; 1726 return (kn->kn_data != 0); 1727 } 1728 1729 static int 1730 filt_genfsvnode(struct knote *kn, long hint) 1731 { 1732 1733 if (kn->kn_sfflags & hint) 1734 kn->kn_fflags |= hint; 1735 if (hint == NOTE_REVOKE) { 1736 kn->kn_flags |= EV_EOF; 1737 return (1); 1738 } 1739 return (kn->kn_fflags != 0); 1740 } 1741 1742 static const struct filterops genfsread_filtops = 1743 { 1, NULL, filt_genfsdetach, filt_genfsread }; 1744 static const struct filterops genfsvnode_filtops = 1745 { 1, NULL, filt_genfsdetach, filt_genfsvnode }; 1746 1747 int 1748 genfs_kqfilter(void *v) 1749 { 1750 struct vop_kqfilter_args /* { 1751 struct vnode *a_vp; 1752 struct knote *a_kn; 1753 } */ *ap = v; 1754 struct vnode *vp; 1755 struct knote *kn; 1756 1757 vp = ap->a_vp; 1758 kn = ap->a_kn; 1759 switch (kn->kn_filter) { 1760 case EVFILT_READ: 1761 kn->kn_fop = &genfsread_filtops; 1762 break; 1763 case EVFILT_VNODE: 1764 kn->kn_fop = &genfsvnode_filtops; 1765 break; 1766 default: 1767 return (1); 1768 } 1769 1770 kn->kn_hook = vp; 1771 1772 /* XXXLUKEM lock the struct? */ 1773 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext); 1774 1775 return (0); 1776 } 1777