1 /* $NetBSD: genfs_vnops.c,v 1.117 2005/12/15 02:23:38 yamt Exp $ */ 2 3 /* 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 */ 32 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.117 2005/12/15 02:23:38 yamt Exp $"); 35 36 #if defined(_KERNEL_OPT) 37 #include "opt_nfsserver.h" 38 #endif 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/proc.h> 43 #include <sys/kernel.h> 44 #include <sys/mount.h> 45 #include <sys/namei.h> 46 #include <sys/vnode.h> 47 #include <sys/fcntl.h> 48 #include <sys/malloc.h> 49 #include <sys/poll.h> 50 #include <sys/mman.h> 51 #include <sys/file.h> 52 53 #include <miscfs/genfs/genfs.h> 54 #include <miscfs/genfs/genfs_node.h> 55 #include <miscfs/specfs/specdev.h> 56 57 #include <uvm/uvm.h> 58 #include <uvm/uvm_pager.h> 59 60 #ifdef NFSSERVER 61 #include <nfs/rpcv2.h> 62 #include <nfs/nfsproto.h> 63 #include <nfs/nfs.h> 64 #include <nfs/nqnfs.h> 65 #include <nfs/nfs_var.h> 66 #endif 67 68 static __inline void genfs_rel_pages(struct vm_page **, int); 69 static void filt_genfsdetach(struct knote *); 70 static int filt_genfsread(struct knote *, long); 71 static int filt_genfsvnode(struct knote *, long); 72 73 #define MAX_READ_PAGES 16 /* XXXUBC 16 */ 74 75 int 76 genfs_poll(void *v) 77 { 78 struct vop_poll_args /* { 79 struct vnode *a_vp; 80 int a_events; 81 struct lwp *a_l; 82 } */ *ap = v; 83 84 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM)); 85 } 86 87 int 88 genfs_seek(void *v) 89 { 90 struct vop_seek_args /* { 91 struct vnode *a_vp; 92 off_t a_oldoff; 93 off_t a_newoff; 94 struct ucred *a_ucred; 95 } */ *ap = v; 96 97 if (ap->a_newoff < 0) 98 return (EINVAL); 99 100 return (0); 101 } 102 103 int 104 genfs_abortop(void *v) 105 { 106 struct vop_abortop_args /* { 107 struct vnode *a_dvp; 108 struct componentname *a_cnp; 109 } */ *ap = v; 110 111 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF) 112 PNBUF_PUT(ap->a_cnp->cn_pnbuf); 113 return (0); 114 } 115 116 int 117 genfs_fcntl(void *v) 118 { 119 struct vop_fcntl_args /* { 120 struct vnode *a_vp; 121 u_int a_command; 122 caddr_t a_data; 123 int a_fflag; 124 struct ucred *a_cred; 125 struct lwp *a_l; 126 } */ *ap = v; 127 128 if (ap->a_command == F_SETFL) 129 return (0); 130 else 131 return (EOPNOTSUPP); 132 } 133 134 /*ARGSUSED*/ 135 int 136 genfs_badop(void *v) 137 { 138 139 panic("genfs: bad op"); 140 } 141 142 /*ARGSUSED*/ 143 int 144 genfs_nullop(void *v) 145 { 146 147 return (0); 148 } 149 150 /*ARGSUSED*/ 151 int 152 genfs_einval(void *v) 153 { 154 155 return (EINVAL); 156 } 157 158 /* 159 * Called when an fs doesn't support a particular vop. 160 * This takes care to vrele, vput, or vunlock passed in vnodes. 161 */ 162 int 163 genfs_eopnotsupp(void *v) 164 { 165 struct vop_generic_args /* 166 struct vnodeop_desc *a_desc; 167 / * other random data follows, presumably * / 168 } */ *ap = v; 169 struct vnodeop_desc *desc = ap->a_desc; 170 struct vnode *vp, *vp_last = NULL; 171 int flags, i, j, offset; 172 173 flags = desc->vdesc_flags; 174 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) { 175 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET) 176 break; /* stop at end of list */ 177 if ((j = flags & VDESC_VP0_WILLPUT)) { 178 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap); 179 180 /* Skip if NULL */ 181 if (!vp) 182 continue; 183 184 switch (j) { 185 case VDESC_VP0_WILLPUT: 186 /* Check for dvp == vp cases */ 187 if (vp == vp_last) 188 vrele(vp); 189 else { 190 vput(vp); 191 vp_last = vp; 192 } 193 break; 194 case VDESC_VP0_WILLUNLOCK: 195 VOP_UNLOCK(vp, 0); 196 break; 197 case VDESC_VP0_WILLRELE: 198 vrele(vp); 199 break; 200 } 201 } 202 } 203 204 return (EOPNOTSUPP); 205 } 206 207 /*ARGSUSED*/ 208 int 209 genfs_ebadf(void *v) 210 { 211 212 return (EBADF); 213 } 214 215 /* ARGSUSED */ 216 int 217 genfs_enoioctl(void *v) 218 { 219 220 return (EPASSTHROUGH); 221 } 222 223 224 /* 225 * Eliminate all activity associated with the requested vnode 226 * and with all vnodes aliased to the requested vnode. 227 */ 228 int 229 genfs_revoke(void *v) 230 { 231 struct vop_revoke_args /* { 232 struct vnode *a_vp; 233 int a_flags; 234 } */ *ap = v; 235 struct vnode *vp, *vq; 236 struct lwp *l = curlwp; /* XXX */ 237 238 #ifdef DIAGNOSTIC 239 if ((ap->a_flags & REVOKEALL) == 0) 240 panic("genfs_revoke: not revokeall"); 241 #endif 242 243 vp = ap->a_vp; 244 simple_lock(&vp->v_interlock); 245 246 if (vp->v_flag & VALIASED) { 247 /* 248 * If a vgone (or vclean) is already in progress, 249 * wait until it is done and return. 250 */ 251 if (vp->v_flag & VXLOCK) { 252 vp->v_flag |= VXWANT; 253 ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0, 254 &vp->v_interlock); 255 return (0); 256 } 257 /* 258 * Ensure that vp will not be vgone'd while we 259 * are eliminating its aliases. 260 */ 261 vp->v_flag |= VXLOCK; 262 simple_unlock(&vp->v_interlock); 263 while (vp->v_flag & VALIASED) { 264 simple_lock(&spechash_slock); 265 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) { 266 if (vq->v_rdev != vp->v_rdev || 267 vq->v_type != vp->v_type || vp == vq) 268 continue; 269 simple_unlock(&spechash_slock); 270 vgone(vq); 271 break; 272 } 273 if (vq == NULLVP) 274 simple_unlock(&spechash_slock); 275 } 276 /* 277 * Remove the lock so that vgone below will 278 * really eliminate the vnode after which time 279 * vgone will awaken any sleepers. 280 */ 281 simple_lock(&vp->v_interlock); 282 vp->v_flag &= ~VXLOCK; 283 } 284 vgonel(vp, l); 285 return (0); 286 } 287 288 /* 289 * Lock the node. 290 */ 291 int 292 genfs_lock(void *v) 293 { 294 struct vop_lock_args /* { 295 struct vnode *a_vp; 296 int a_flags; 297 } */ *ap = v; 298 struct vnode *vp = ap->a_vp; 299 300 return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock)); 301 } 302 303 /* 304 * Unlock the node. 305 */ 306 int 307 genfs_unlock(void *v) 308 { 309 struct vop_unlock_args /* { 310 struct vnode *a_vp; 311 int a_flags; 312 } */ *ap = v; 313 struct vnode *vp = ap->a_vp; 314 315 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE, 316 &vp->v_interlock)); 317 } 318 319 /* 320 * Return whether or not the node is locked. 321 */ 322 int 323 genfs_islocked(void *v) 324 { 325 struct vop_islocked_args /* { 326 struct vnode *a_vp; 327 } */ *ap = v; 328 struct vnode *vp = ap->a_vp; 329 330 return (lockstatus(vp->v_vnlock)); 331 } 332 333 /* 334 * Stubs to use when there is no locking to be done on the underlying object. 335 */ 336 int 337 genfs_nolock(void *v) 338 { 339 struct vop_lock_args /* { 340 struct vnode *a_vp; 341 int a_flags; 342 struct lwp *a_l; 343 } */ *ap = v; 344 345 /* 346 * Since we are not using the lock manager, we must clear 347 * the interlock here. 348 */ 349 if (ap->a_flags & LK_INTERLOCK) 350 simple_unlock(&ap->a_vp->v_interlock); 351 return (0); 352 } 353 354 int 355 genfs_nounlock(void *v) 356 { 357 358 return (0); 359 } 360 361 int 362 genfs_noislocked(void *v) 363 { 364 365 return (0); 366 } 367 368 /* 369 * Local lease check for NFS servers. Just set up args and let 370 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel, 371 * this is a null operation. 372 */ 373 int 374 genfs_lease_check(void *v) 375 { 376 #ifdef NFSSERVER 377 struct vop_lease_args /* { 378 struct vnode *a_vp; 379 struct lwp *a_l; 380 struct ucred *a_cred; 381 int a_flag; 382 } */ *ap = v; 383 u_int32_t duration = 0; 384 int cache; 385 u_quad_t frev; 386 387 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag, 388 NQLOCALSLP, ap->a_l, (struct mbuf *)0, &cache, &frev, ap->a_cred); 389 return (0); 390 #else 391 return (0); 392 #endif /* NFSSERVER */ 393 } 394 395 int 396 genfs_mmap(void *v) 397 { 398 399 return (0); 400 } 401 402 static __inline void 403 genfs_rel_pages(struct vm_page **pgs, int npages) 404 { 405 int i; 406 407 for (i = 0; i < npages; i++) { 408 struct vm_page *pg = pgs[i]; 409 410 if (pg == NULL) 411 continue; 412 if (pg->flags & PG_FAKE) { 413 pg->flags |= PG_RELEASED; 414 } 415 } 416 uvm_lock_pageq(); 417 uvm_page_unbusy(pgs, npages); 418 uvm_unlock_pageq(); 419 } 420 421 /* 422 * generic VM getpages routine. 423 * Return PG_BUSY pages for the given range, 424 * reading from backing store if necessary. 425 */ 426 427 int 428 genfs_getpages(void *v) 429 { 430 struct vop_getpages_args /* { 431 struct vnode *a_vp; 432 voff_t a_offset; 433 struct vm_page **a_m; 434 int *a_count; 435 int a_centeridx; 436 vm_prot_t a_access_type; 437 int a_advice; 438 int a_flags; 439 } */ *ap = v; 440 441 off_t newsize, diskeof, memeof; 442 off_t offset, origoffset, startoffset, endoffset, raoffset; 443 daddr_t lbn, blkno; 444 int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount; 445 int fs_bshift, fs_bsize, dev_bshift; 446 int flags = ap->a_flags; 447 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes; 448 vaddr_t kva; 449 struct buf *bp, *mbp; 450 struct vnode *vp = ap->a_vp; 451 struct vnode *devvp; 452 struct genfs_node *gp = VTOG(vp); 453 struct uvm_object *uobj = &vp->v_uobj; 454 struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES]; 455 int pgs_size; 456 struct ucred *cred = curproc->p_ucred; /* XXXUBC curlwp */ 457 boolean_t async = (flags & PGO_SYNCIO) == 0; 458 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0; 459 boolean_t sawhole = FALSE; 460 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0; 461 boolean_t blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0; 462 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist); 463 464 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d", 465 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count); 466 467 KASSERT(vp->v_type == VREG || vp->v_type == VBLK); 468 469 /* XXXUBC temp limit */ 470 if (*ap->a_count > MAX_READ_PAGES) { 471 panic("genfs_getpages: too many pages"); 472 } 473 474 error = 0; 475 origoffset = ap->a_offset; 476 orignpages = *ap->a_count; 477 GOP_SIZE(vp, vp->v_size, &diskeof, GOP_SIZE_READ); 478 if (flags & PGO_PASTEOF) { 479 newsize = MAX(vp->v_size, 480 origoffset + (orignpages << PAGE_SHIFT)); 481 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM); 482 } else { 483 GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM); 484 } 485 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages); 486 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0); 487 KASSERT(orignpages > 0); 488 489 /* 490 * Bounds-check the request. 491 */ 492 493 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) { 494 if ((flags & PGO_LOCKED) == 0) { 495 simple_unlock(&uobj->vmobjlock); 496 } 497 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x", 498 origoffset, *ap->a_count, memeof,0); 499 return (EINVAL); 500 } 501 502 /* uobj is locked */ 503 504 if ((flags & PGO_NOTIMESTAMP) == 0 && 505 (vp->v_type == VREG || 506 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) { 507 int updflags = 0; 508 509 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) { 510 updflags = GOP_UPDATE_ACCESSED; 511 } 512 if (write) { 513 updflags |= GOP_UPDATE_MODIFIED; 514 } 515 if (updflags != 0) { 516 GOP_MARKUPDATE(vp, updflags); 517 } 518 } 519 520 if (write) { 521 gp->g_dirtygen++; 522 if ((vp->v_flag & VONWORKLST) == 0) { 523 vn_syncer_add_to_worklist(vp, filedelay); 524 } 525 if ((vp->v_flag & (VWRITEMAP|VWRITEMAPDIRTY)) == VWRITEMAP) { 526 vp->v_flag |= VWRITEMAPDIRTY; 527 } 528 } 529 530 /* 531 * For PGO_LOCKED requests, just return whatever's in memory. 532 */ 533 534 if (flags & PGO_LOCKED) { 535 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, 536 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0)); 537 538 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0); 539 } 540 541 /* 542 * find the requested pages and make some simple checks. 543 * leave space in the page array for a whole block. 544 */ 545 546 if (vp->v_type == VREG) { 547 fs_bshift = vp->v_mount->mnt_fs_bshift; 548 dev_bshift = vp->v_mount->mnt_dev_bshift; 549 } else { 550 fs_bshift = DEV_BSHIFT; 551 dev_bshift = DEV_BSHIFT; 552 } 553 fs_bsize = 1 << fs_bshift; 554 555 orignpages = MIN(orignpages, 556 round_page(memeof - origoffset) >> PAGE_SHIFT); 557 npages = orignpages; 558 startoffset = origoffset & ~(fs_bsize - 1); 559 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) + 560 fs_bsize - 1) & ~(fs_bsize - 1)); 561 endoffset = MIN(endoffset, round_page(memeof)); 562 ridx = (origoffset - startoffset) >> PAGE_SHIFT; 563 564 pgs_size = sizeof(struct vm_page *) * 565 ((endoffset - startoffset) >> PAGE_SHIFT); 566 if (pgs_size > sizeof(pgs_onstack)) { 567 pgs = malloc(pgs_size, M_DEVBUF, M_NOWAIT | M_ZERO); 568 if (pgs == NULL) { 569 simple_unlock(&uobj->vmobjlock); 570 return (ENOMEM); 571 } 572 } else { 573 pgs = pgs_onstack; 574 memset(pgs, 0, pgs_size); 575 } 576 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld", 577 ridx, npages, startoffset, endoffset); 578 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], 579 async ? UFP_NOWAIT : UFP_ALL) != orignpages) { 580 KASSERT(async != 0); 581 genfs_rel_pages(&pgs[ridx], orignpages); 582 simple_unlock(&uobj->vmobjlock); 583 if (pgs != pgs_onstack) 584 free(pgs, M_DEVBUF); 585 return (EBUSY); 586 } 587 588 /* 589 * if the pages are already resident, just return them. 590 */ 591 592 for (i = 0; i < npages; i++) { 593 struct vm_page *pg1 = pgs[ridx + i]; 594 595 if ((pg1->flags & PG_FAKE) || 596 (blockalloc && (pg1->flags & PG_RDONLY))) { 597 break; 598 } 599 } 600 if (i == npages) { 601 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0); 602 raoffset = origoffset + (orignpages << PAGE_SHIFT); 603 npages += ridx; 604 goto out; 605 } 606 607 /* 608 * if PGO_OVERWRITE is set, don't bother reading the pages. 609 */ 610 611 if (flags & PGO_OVERWRITE) { 612 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0); 613 614 for (i = 0; i < npages; i++) { 615 struct vm_page *pg1 = pgs[ridx + i]; 616 617 pg1->flags &= ~(PG_RDONLY|PG_CLEAN); 618 } 619 npages += ridx; 620 goto out; 621 } 622 623 /* 624 * the page wasn't resident and we're not overwriting, 625 * so we're going to have to do some i/o. 626 * find any additional pages needed to cover the expanded range. 627 */ 628 629 npages = (endoffset - startoffset) >> PAGE_SHIFT; 630 if (startoffset != origoffset || npages != orignpages) { 631 632 /* 633 * we need to avoid deadlocks caused by locking 634 * additional pages at lower offsets than pages we 635 * already have locked. unlock them all and start over. 636 */ 637 638 genfs_rel_pages(&pgs[ridx], orignpages); 639 memset(pgs, 0, pgs_size); 640 641 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x", 642 startoffset, endoffset, 0,0); 643 npgs = npages; 644 if (uvn_findpages(uobj, startoffset, &npgs, pgs, 645 async ? UFP_NOWAIT : UFP_ALL) != npages) { 646 KASSERT(async != 0); 647 genfs_rel_pages(pgs, npages); 648 simple_unlock(&uobj->vmobjlock); 649 if (pgs != pgs_onstack) 650 free(pgs, M_DEVBUF); 651 return (EBUSY); 652 } 653 } 654 simple_unlock(&uobj->vmobjlock); 655 656 /* 657 * read the desired page(s). 658 */ 659 660 totalbytes = npages << PAGE_SHIFT; 661 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0)); 662 tailbytes = totalbytes - bytes; 663 skipbytes = 0; 664 665 kva = uvm_pagermapin(pgs, npages, 666 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK); 667 668 s = splbio(); 669 mbp = pool_get(&bufpool, PR_WAITOK); 670 splx(s); 671 BUF_INIT(mbp); 672 mbp->b_bufsize = totalbytes; 673 mbp->b_data = (void *)kva; 674 mbp->b_resid = mbp->b_bcount = bytes; 675 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0); 676 mbp->b_iodone = (async ? uvm_aio_biodone : 0); 677 mbp->b_vp = vp; 678 679 /* 680 * if EOF is in the middle of the range, zero the part past EOF. 681 * if the page including EOF is not PG_FAKE, skip over it since 682 * in that case it has valid data that we need to preserve. 683 */ 684 685 if (tailbytes > 0) { 686 size_t tailstart = bytes; 687 688 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) { 689 tailstart = round_page(tailstart); 690 tailbytes -= tailstart - bytes; 691 } 692 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x", 693 kva, tailstart, tailbytes,0); 694 memset((void *)(kva + tailstart), 0, tailbytes); 695 } 696 697 /* 698 * now loop over the pages, reading as needed. 699 */ 700 701 if (blockalloc) { 702 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL); 703 } else { 704 lockmgr(&gp->g_glock, LK_SHARED, NULL); 705 } 706 707 bp = NULL; 708 for (offset = startoffset; 709 bytes > 0; 710 offset += iobytes, bytes -= iobytes) { 711 712 /* 713 * skip pages which don't need to be read. 714 */ 715 716 pidx = (offset - startoffset) >> PAGE_SHIFT; 717 while ((pgs[pidx]->flags & PG_FAKE) == 0) { 718 size_t b; 719 720 KASSERT((offset & (PAGE_SIZE - 1)) == 0); 721 if ((pgs[pidx]->flags & PG_RDONLY)) { 722 sawhole = TRUE; 723 } 724 b = MIN(PAGE_SIZE, bytes); 725 offset += b; 726 bytes -= b; 727 skipbytes += b; 728 pidx++; 729 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x", 730 offset, 0,0,0); 731 if (bytes == 0) { 732 goto loopdone; 733 } 734 } 735 736 /* 737 * bmap the file to find out the blkno to read from and 738 * how much we can read in one i/o. if bmap returns an error, 739 * skip the rest of the top-level i/o. 740 */ 741 742 lbn = offset >> fs_bshift; 743 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run); 744 if (error) { 745 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n", 746 lbn, error,0,0); 747 skipbytes += bytes; 748 goto loopdone; 749 } 750 751 /* 752 * see how many pages can be read with this i/o. 753 * reduce the i/o size if necessary to avoid 754 * overwriting pages with valid data. 755 */ 756 757 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset, 758 bytes); 759 if (offset + iobytes > round_page(offset)) { 760 pcount = 1; 761 while (pidx + pcount < npages && 762 pgs[pidx + pcount]->flags & PG_FAKE) { 763 pcount++; 764 } 765 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) - 766 (offset - trunc_page(offset))); 767 } 768 769 /* 770 * if this block isn't allocated, zero it instead of 771 * reading it. unless we are going to allocate blocks, 772 * mark the pages we zeroed PG_RDONLY. 773 */ 774 775 if (blkno < 0) { 776 int holepages = (round_page(offset + iobytes) - 777 trunc_page(offset)) >> PAGE_SHIFT; 778 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0); 779 780 sawhole = TRUE; 781 memset((char *)kva + (offset - startoffset), 0, 782 iobytes); 783 skipbytes += iobytes; 784 785 for (i = 0; i < holepages; i++) { 786 if (write) { 787 pgs[pidx + i]->flags &= ~PG_CLEAN; 788 } 789 if (!blockalloc) { 790 pgs[pidx + i]->flags |= PG_RDONLY; 791 } 792 } 793 continue; 794 } 795 796 /* 797 * allocate a sub-buf for this piece of the i/o 798 * (or just use mbp if there's only 1 piece), 799 * and start it going. 800 */ 801 802 if (offset == startoffset && iobytes == bytes) { 803 bp = mbp; 804 } else { 805 s = splbio(); 806 bp = pool_get(&bufpool, PR_WAITOK); 807 splx(s); 808 BUF_INIT(bp); 809 bp->b_data = (char *)kva + offset - startoffset; 810 bp->b_resid = bp->b_bcount = iobytes; 811 bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC; 812 bp->b_iodone = uvm_aio_biodone1; 813 bp->b_vp = vp; 814 bp->b_proc = NULL; 815 } 816 bp->b_lblkno = 0; 817 bp->b_private = mbp; 818 819 /* adjust physical blkno for partial blocks */ 820 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >> 821 dev_bshift); 822 823 UVMHIST_LOG(ubchist, 824 "bp %p offset 0x%x bcount 0x%x blkno 0x%x", 825 bp, offset, iobytes, bp->b_blkno); 826 827 if (async) 828 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 829 else 830 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 831 832 VOP_STRATEGY(devvp, bp); 833 } 834 835 loopdone: 836 if (skipbytes) { 837 s = splbio(); 838 if (error) { 839 mbp->b_flags |= B_ERROR; 840 mbp->b_error = error; 841 } 842 mbp->b_resid -= skipbytes; 843 if (mbp->b_resid == 0) { 844 biodone(mbp); 845 } 846 splx(s); 847 } 848 849 if (async) { 850 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0); 851 lockmgr(&gp->g_glock, LK_RELEASE, NULL); 852 if (pgs != pgs_onstack) 853 free(pgs, M_DEVBUF); 854 return (0); 855 } 856 if (bp != NULL) { 857 error = biowait(mbp); 858 } 859 s = splbio(); 860 pool_put(&bufpool, mbp); 861 splx(s); 862 uvm_pagermapout(kva, npages); 863 raoffset = startoffset + totalbytes; 864 865 /* 866 * if this we encountered a hole then we have to do a little more work. 867 * for read faults, we marked the page PG_RDONLY so that future 868 * write accesses to the page will fault again. 869 * for write faults, we must make sure that the backing store for 870 * the page is completely allocated while the pages are locked. 871 */ 872 873 if (!error && sawhole && blockalloc) { 874 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0, 875 cred); 876 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d", 877 startoffset, npages << PAGE_SHIFT, error,0); 878 if (!error) { 879 for (i = 0; i < npages; i++) { 880 if (pgs[i] == NULL) { 881 continue; 882 } 883 pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY); 884 UVMHIST_LOG(ubchist, "mark dirty pg %p", 885 pgs[i],0,0,0); 886 } 887 } 888 } 889 lockmgr(&gp->g_glock, LK_RELEASE, NULL); 890 simple_lock(&uobj->vmobjlock); 891 892 /* 893 * we're almost done! release the pages... 894 * for errors, we free the pages. 895 * otherwise we activate them and mark them as valid and clean. 896 * also, unbusy pages that were not actually requested. 897 */ 898 899 if (error) { 900 for (i = 0; i < npages; i++) { 901 if (pgs[i] == NULL) { 902 continue; 903 } 904 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x", 905 pgs[i], pgs[i]->flags, 0,0); 906 if (pgs[i]->flags & PG_FAKE) { 907 pgs[i]->flags |= PG_RELEASED; 908 } 909 } 910 uvm_lock_pageq(); 911 uvm_page_unbusy(pgs, npages); 912 uvm_unlock_pageq(); 913 simple_unlock(&uobj->vmobjlock); 914 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0); 915 if (pgs != pgs_onstack) 916 free(pgs, M_DEVBUF); 917 return (error); 918 } 919 920 out: 921 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0); 922 uvm_lock_pageq(); 923 for (i = 0; i < npages; i++) { 924 pg = pgs[i]; 925 if (pg == NULL) { 926 continue; 927 } 928 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x", 929 pg, pg->flags, 0,0); 930 if (pg->flags & PG_FAKE && !overwrite) { 931 pg->flags &= ~(PG_FAKE); 932 pmap_clear_modify(pgs[i]); 933 } 934 KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0); 935 if (i < ridx || i >= ridx + orignpages || async) { 936 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x", 937 pg, pg->offset,0,0); 938 if (pg->flags & PG_WANTED) { 939 wakeup(pg); 940 } 941 if (pg->flags & PG_FAKE) { 942 KASSERT(overwrite); 943 uvm_pagezero(pg); 944 } 945 if (pg->flags & PG_RELEASED) { 946 uvm_pagefree(pg); 947 continue; 948 } 949 uvm_pageactivate(pg); 950 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE); 951 UVM_PAGE_OWN(pg, NULL); 952 } 953 } 954 uvm_unlock_pageq(); 955 simple_unlock(&uobj->vmobjlock); 956 if (ap->a_m != NULL) { 957 memcpy(ap->a_m, &pgs[ridx], 958 orignpages * sizeof(struct vm_page *)); 959 } 960 if (pgs != pgs_onstack) 961 free(pgs, M_DEVBUF); 962 return (0); 963 } 964 965 /* 966 * generic VM putpages routine. 967 * Write the given range of pages to backing store. 968 * 969 * => "offhi == 0" means flush all pages at or after "offlo". 970 * => object should be locked by caller. we may _unlock_ the object 971 * if (and only if) we need to clean a page (PGO_CLEANIT), or 972 * if PGO_SYNCIO is set and there are pages busy. 973 * we return with the object locked. 974 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O). 975 * thus, a caller might want to unlock higher level resources 976 * (e.g. vm_map) before calling flush. 977 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither 978 * unlock the object nor block. 979 * => if PGO_ALLPAGES is set, then all pages in the object will be processed. 980 * => NOTE: we rely on the fact that the object's memq is a TAILQ and 981 * that new pages are inserted on the tail end of the list. thus, 982 * we can make a complete pass through the object in one go by starting 983 * at the head and working towards the tail (new pages are put in 984 * front of us). 985 * => NOTE: we are allowed to lock the page queues, so the caller 986 * must not be holding the page queue lock. 987 * 988 * note on "cleaning" object and PG_BUSY pages: 989 * this routine is holding the lock on the object. the only time 990 * that it can run into a PG_BUSY page that it does not own is if 991 * some other process has started I/O on the page (e.g. either 992 * a pagein, or a pageout). if the PG_BUSY page is being paged 993 * in, then it can not be dirty (!PG_CLEAN) because no one has 994 * had a chance to modify it yet. if the PG_BUSY page is being 995 * paged out then it means that someone else has already started 996 * cleaning the page for us (how nice!). in this case, if we 997 * have syncio specified, then after we make our pass through the 998 * object we need to wait for the other PG_BUSY pages to clear 999 * off (i.e. we need to do an iosync). also note that once a 1000 * page is PG_BUSY it must stay in its object until it is un-busyed. 1001 * 1002 * note on page traversal: 1003 * we can traverse the pages in an object either by going down the 1004 * linked list in "uobj->memq", or we can go over the address range 1005 * by page doing hash table lookups for each address. depending 1006 * on how many pages are in the object it may be cheaper to do one 1007 * or the other. we set "by_list" to true if we are using memq. 1008 * if the cost of a hash lookup was equal to the cost of the list 1009 * traversal we could compare the number of pages in the start->stop 1010 * range to the total number of pages in the object. however, it 1011 * seems that a hash table lookup is more expensive than the linked 1012 * list traversal, so we multiply the number of pages in the 1013 * range by an estimate of the relatively higher cost of the hash lookup. 1014 */ 1015 1016 int 1017 genfs_putpages(void *v) 1018 { 1019 struct vop_putpages_args /* { 1020 struct vnode *a_vp; 1021 voff_t a_offlo; 1022 voff_t a_offhi; 1023 int a_flags; 1024 } */ *ap = v; 1025 struct vnode *vp = ap->a_vp; 1026 struct uvm_object *uobj = &vp->v_uobj; 1027 struct simplelock *slock = &uobj->vmobjlock; 1028 off_t startoff = ap->a_offlo; 1029 off_t endoff = ap->a_offhi; 1030 off_t off; 1031 int flags = ap->a_flags; 1032 /* Even for strange MAXPHYS, the shift rounds down to a page */ 1033 const int maxpages = MAXPHYS >> PAGE_SHIFT; 1034 int i, s, error, npages, nback; 1035 int freeflag; 1036 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp; 1037 boolean_t wasclean, by_list, needs_clean, yld; 1038 boolean_t async = (flags & PGO_SYNCIO) == 0; 1039 boolean_t pagedaemon = curproc == uvm.pagedaemon_proc; 1040 struct lwp *l = curlwp ? curlwp : &lwp0; 1041 struct genfs_node *gp = VTOG(vp); 1042 int dirtygen; 1043 boolean_t modified = FALSE; 1044 boolean_t cleanall; 1045 1046 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist); 1047 1048 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)); 1049 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0); 1050 KASSERT(startoff < endoff || endoff == 0); 1051 1052 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x", 1053 vp, uobj->uo_npages, startoff, endoff - startoff); 1054 1055 KASSERT((vp->v_flag & VONWORKLST) != 0 || 1056 (vp->v_flag & VWRITEMAPDIRTY) == 0); 1057 if (uobj->uo_npages == 0) { 1058 s = splbio(); 1059 if (vp->v_flag & VONWORKLST) { 1060 vp->v_flag &= ~VWRITEMAPDIRTY; 1061 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { 1062 vp->v_flag &= ~VONWORKLST; 1063 LIST_REMOVE(vp, v_synclist); 1064 } 1065 } 1066 splx(s); 1067 simple_unlock(slock); 1068 return (0); 1069 } 1070 1071 /* 1072 * the vnode has pages, set up to process the request. 1073 */ 1074 1075 error = 0; 1076 s = splbio(); 1077 simple_lock(&global_v_numoutput_slock); 1078 wasclean = (vp->v_numoutput == 0); 1079 simple_unlock(&global_v_numoutput_slock); 1080 splx(s); 1081 off = startoff; 1082 if (endoff == 0 || flags & PGO_ALLPAGES) { 1083 endoff = trunc_page(LLONG_MAX); 1084 } 1085 by_list = (uobj->uo_npages <= 1086 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY); 1087 1088 #if !defined(DEBUG) 1089 /* 1090 * if this vnode is known not to have dirty pages, 1091 * don't bother to clean it out. 1092 */ 1093 1094 if ((vp->v_flag & VONWORKLST) == 0) { 1095 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) { 1096 goto skip_scan; 1097 } 1098 flags &= ~PGO_CLEANIT; 1099 } 1100 #endif /* !defined(DEBUG) */ 1101 1102 /* 1103 * start the loop. when scanning by list, hold the last page 1104 * in the list before we start. pages allocated after we start 1105 * will be added to the end of the list, so we can stop at the 1106 * current last page. 1107 */ 1108 1109 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean && 1110 startoff == 0 && endoff == trunc_page(LLONG_MAX) && 1111 (vp->v_flag & VONWORKLST) != 0; 1112 dirtygen = gp->g_dirtygen; 1113 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED; 1114 if (by_list) { 1115 curmp.uobject = uobj; 1116 curmp.offset = (voff_t)-1; 1117 curmp.flags = PG_BUSY; 1118 endmp.uobject = uobj; 1119 endmp.offset = (voff_t)-1; 1120 endmp.flags = PG_BUSY; 1121 pg = TAILQ_FIRST(&uobj->memq); 1122 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq); 1123 PHOLD(l); 1124 } else { 1125 pg = uvm_pagelookup(uobj, off); 1126 } 1127 nextpg = NULL; 1128 while (by_list || off < endoff) { 1129 1130 /* 1131 * if the current page is not interesting, move on to the next. 1132 */ 1133 1134 KASSERT(pg == NULL || pg->uobject == uobj); 1135 KASSERT(pg == NULL || 1136 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 || 1137 (pg->flags & PG_BUSY) != 0); 1138 if (by_list) { 1139 if (pg == &endmp) { 1140 break; 1141 } 1142 if (pg->offset < startoff || pg->offset >= endoff || 1143 pg->flags & (PG_RELEASED|PG_PAGEOUT)) { 1144 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) { 1145 wasclean = FALSE; 1146 } 1147 pg = TAILQ_NEXT(pg, listq); 1148 continue; 1149 } 1150 off = pg->offset; 1151 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) { 1152 if (pg != NULL) { 1153 wasclean = FALSE; 1154 } 1155 off += PAGE_SIZE; 1156 if (off < endoff) { 1157 pg = uvm_pagelookup(uobj, off); 1158 } 1159 continue; 1160 } 1161 1162 /* 1163 * if the current page needs to be cleaned and it's busy, 1164 * wait for it to become unbusy. 1165 */ 1166 1167 yld = (l->l_cpu->ci_schedstate.spc_flags & 1168 SPCF_SHOULDYIELD) && !pagedaemon; 1169 if (pg->flags & PG_BUSY || yld) { 1170 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0); 1171 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) { 1172 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0); 1173 error = EDEADLK; 1174 break; 1175 } 1176 KASSERT(!pagedaemon); 1177 if (by_list) { 1178 TAILQ_INSERT_BEFORE(pg, &curmp, listq); 1179 UVMHIST_LOG(ubchist, "curmp next %p", 1180 TAILQ_NEXT(&curmp, listq), 0,0,0); 1181 } 1182 if (yld) { 1183 simple_unlock(slock); 1184 preempt(1); 1185 simple_lock(slock); 1186 } else { 1187 pg->flags |= PG_WANTED; 1188 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0); 1189 simple_lock(slock); 1190 } 1191 if (by_list) { 1192 UVMHIST_LOG(ubchist, "after next %p", 1193 TAILQ_NEXT(&curmp, listq), 0,0,0); 1194 pg = TAILQ_NEXT(&curmp, listq); 1195 TAILQ_REMOVE(&uobj->memq, &curmp, listq); 1196 } else { 1197 pg = uvm_pagelookup(uobj, off); 1198 } 1199 continue; 1200 } 1201 1202 /* 1203 * if we're freeing, remove all mappings of the page now. 1204 * if we're cleaning, check if the page is needs to be cleaned. 1205 */ 1206 1207 if (flags & PGO_FREE) { 1208 pmap_page_protect(pg, VM_PROT_NONE); 1209 } else if (flags & PGO_CLEANIT) { 1210 1211 /* 1212 * if we still have some hope to pull this vnode off 1213 * from the syncer queue, write-protect the page. 1214 */ 1215 1216 if (cleanall && wasclean && 1217 gp->g_dirtygen == dirtygen) { 1218 1219 /* 1220 * uobj pages get wired only by uvm_fault 1221 * where uobj is locked. 1222 */ 1223 1224 if (pg->wire_count == 0) { 1225 pmap_page_protect(pg, 1226 VM_PROT_READ|VM_PROT_EXECUTE); 1227 } else { 1228 cleanall = FALSE; 1229 } 1230 } 1231 } 1232 1233 if (flags & PGO_CLEANIT) { 1234 needs_clean = pmap_clear_modify(pg) || 1235 (pg->flags & PG_CLEAN) == 0; 1236 pg->flags |= PG_CLEAN; 1237 } else { 1238 needs_clean = FALSE; 1239 } 1240 1241 /* 1242 * if we're cleaning, build a cluster. 1243 * the cluster will consist of pages which are currently dirty, 1244 * but they will be returned to us marked clean. 1245 * if not cleaning, just operate on the one page. 1246 */ 1247 1248 if (needs_clean) { 1249 KDASSERT((vp->v_flag & VONWORKLST)); 1250 wasclean = FALSE; 1251 memset(pgs, 0, sizeof(pgs)); 1252 pg->flags |= PG_BUSY; 1253 UVM_PAGE_OWN(pg, "genfs_putpages"); 1254 1255 /* 1256 * first look backward. 1257 */ 1258 1259 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT); 1260 nback = npages; 1261 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0], 1262 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD); 1263 if (nback) { 1264 memmove(&pgs[0], &pgs[npages - nback], 1265 nback * sizeof(pgs[0])); 1266 if (npages - nback < nback) 1267 memset(&pgs[nback], 0, 1268 (npages - nback) * sizeof(pgs[0])); 1269 else 1270 memset(&pgs[npages - nback], 0, 1271 nback * sizeof(pgs[0])); 1272 } 1273 1274 /* 1275 * then plug in our page of interest. 1276 */ 1277 1278 pgs[nback] = pg; 1279 1280 /* 1281 * then look forward to fill in the remaining space in 1282 * the array of pages. 1283 */ 1284 1285 npages = maxpages - nback - 1; 1286 uvn_findpages(uobj, off + PAGE_SIZE, &npages, 1287 &pgs[nback + 1], 1288 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY); 1289 npages += nback + 1; 1290 } else { 1291 pgs[0] = pg; 1292 npages = 1; 1293 nback = 0; 1294 } 1295 1296 /* 1297 * apply FREE or DEACTIVATE options if requested. 1298 */ 1299 1300 if (flags & (PGO_DEACTIVATE|PGO_FREE)) { 1301 uvm_lock_pageq(); 1302 } 1303 for (i = 0; i < npages; i++) { 1304 tpg = pgs[i]; 1305 KASSERT(tpg->uobject == uobj); 1306 if (by_list && tpg == TAILQ_NEXT(pg, listq)) 1307 pg = tpg; 1308 if (tpg->offset < startoff || tpg->offset >= endoff) 1309 continue; 1310 if (flags & PGO_DEACTIVATE && 1311 (tpg->pqflags & PQ_INACTIVE) == 0 && 1312 tpg->wire_count == 0) { 1313 (void) pmap_clear_reference(tpg); 1314 uvm_pagedeactivate(tpg); 1315 } else if (flags & PGO_FREE) { 1316 pmap_page_protect(tpg, VM_PROT_NONE); 1317 if (tpg->flags & PG_BUSY) { 1318 tpg->flags |= freeflag; 1319 if (pagedaemon) { 1320 uvmexp.paging++; 1321 uvm_pagedequeue(tpg); 1322 } 1323 } else { 1324 1325 /* 1326 * ``page is not busy'' 1327 * implies that npages is 1 1328 * and needs_clean is false. 1329 */ 1330 1331 nextpg = TAILQ_NEXT(tpg, listq); 1332 uvm_pagefree(tpg); 1333 if (pagedaemon) 1334 uvmexp.pdfreed++; 1335 } 1336 } 1337 } 1338 if (flags & (PGO_DEACTIVATE|PGO_FREE)) { 1339 uvm_unlock_pageq(); 1340 } 1341 if (needs_clean) { 1342 modified = TRUE; 1343 1344 /* 1345 * start the i/o. if we're traversing by list, 1346 * keep our place in the list with a marker page. 1347 */ 1348 1349 if (by_list) { 1350 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp, 1351 listq); 1352 } 1353 simple_unlock(slock); 1354 error = GOP_WRITE(vp, pgs, npages, flags); 1355 simple_lock(slock); 1356 if (by_list) { 1357 pg = TAILQ_NEXT(&curmp, listq); 1358 TAILQ_REMOVE(&uobj->memq, &curmp, listq); 1359 } 1360 if (error) { 1361 break; 1362 } 1363 if (by_list) { 1364 continue; 1365 } 1366 } 1367 1368 /* 1369 * find the next page and continue if there was no error. 1370 */ 1371 1372 if (by_list) { 1373 if (nextpg) { 1374 pg = nextpg; 1375 nextpg = NULL; 1376 } else { 1377 pg = TAILQ_NEXT(pg, listq); 1378 } 1379 } else { 1380 off += (npages - nback) << PAGE_SHIFT; 1381 if (off < endoff) { 1382 pg = uvm_pagelookup(uobj, off); 1383 } 1384 } 1385 } 1386 if (by_list) { 1387 TAILQ_REMOVE(&uobj->memq, &endmp, listq); 1388 PRELE(l); 1389 } 1390 1391 if (modified && (vp->v_flag & VWRITEMAPDIRTY) != 0 && 1392 (vp->v_type == VREG || 1393 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) { 1394 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED); 1395 } 1396 1397 /* 1398 * if we're cleaning and there was nothing to clean, 1399 * take us off the syncer list. if we started any i/o 1400 * and we're doing sync i/o, wait for all writes to finish. 1401 */ 1402 1403 s = splbio(); 1404 if (cleanall && wasclean && gp->g_dirtygen == dirtygen && 1405 (vp->v_flag & VONWORKLST) != 0) { 1406 vp->v_flag &= ~VWRITEMAPDIRTY; 1407 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { 1408 vp->v_flag &= ~VONWORKLST; 1409 LIST_REMOVE(vp, v_synclist); 1410 } 1411 } 1412 splx(s); 1413 1414 #if !defined(DEBUG) 1415 skip_scan: 1416 #endif /* !defined(DEBUG) */ 1417 if (!wasclean && !async) { 1418 s = splbio(); 1419 /* 1420 * XXX - we want simple_unlock(&global_v_numoutput_slock); 1421 * but the slot in ltsleep() is taken! 1422 * XXX - try to recover from missed wakeups with a timeout.. 1423 * must think of something better. 1424 */ 1425 while (vp->v_numoutput != 0) { 1426 vp->v_flag |= VBWAIT; 1427 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE, 1428 "genput2", hz); 1429 simple_lock(slock); 1430 } 1431 splx(s); 1432 } 1433 simple_unlock(&uobj->vmobjlock); 1434 return (error); 1435 } 1436 1437 int 1438 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags) 1439 { 1440 int s, error, run; 1441 int fs_bshift, dev_bshift; 1442 vaddr_t kva; 1443 off_t eof, offset, startoffset; 1444 size_t bytes, iobytes, skipbytes; 1445 daddr_t lbn, blkno; 1446 struct vm_page *pg; 1447 struct buf *mbp, *bp; 1448 struct vnode *devvp; 1449 boolean_t async = (flags & PGO_SYNCIO) == 0; 1450 UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist); 1451 1452 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x", 1453 vp, pgs, npages, flags); 1454 1455 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_WRITE); 1456 if (vp->v_type == VREG) { 1457 fs_bshift = vp->v_mount->mnt_fs_bshift; 1458 dev_bshift = vp->v_mount->mnt_dev_bshift; 1459 } else { 1460 fs_bshift = DEV_BSHIFT; 1461 dev_bshift = DEV_BSHIFT; 1462 } 1463 error = 0; 1464 pg = pgs[0]; 1465 startoffset = pg->offset; 1466 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset); 1467 skipbytes = 0; 1468 KASSERT(bytes != 0); 1469 1470 kva = uvm_pagermapin(pgs, npages, 1471 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK); 1472 1473 s = splbio(); 1474 simple_lock(&global_v_numoutput_slock); 1475 vp->v_numoutput += 2; 1476 simple_unlock(&global_v_numoutput_slock); 1477 mbp = pool_get(&bufpool, PR_WAITOK); 1478 BUF_INIT(mbp); 1479 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x", 1480 vp, mbp, vp->v_numoutput, bytes); 1481 splx(s); 1482 mbp->b_bufsize = npages << PAGE_SHIFT; 1483 mbp->b_data = (void *)kva; 1484 mbp->b_resid = mbp->b_bcount = bytes; 1485 mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0); 1486 mbp->b_iodone = uvm_aio_biodone; 1487 mbp->b_vp = vp; 1488 1489 bp = NULL; 1490 for (offset = startoffset; 1491 bytes > 0; 1492 offset += iobytes, bytes -= iobytes) { 1493 lbn = offset >> fs_bshift; 1494 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run); 1495 if (error) { 1496 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0); 1497 skipbytes += bytes; 1498 bytes = 0; 1499 break; 1500 } 1501 1502 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset, 1503 bytes); 1504 if (blkno == (daddr_t)-1) { 1505 skipbytes += iobytes; 1506 continue; 1507 } 1508 1509 /* if it's really one i/o, don't make a second buf */ 1510 if (offset == startoffset && iobytes == bytes) { 1511 bp = mbp; 1512 } else { 1513 s = splbio(); 1514 V_INCR_NUMOUTPUT(vp); 1515 bp = pool_get(&bufpool, PR_WAITOK); 1516 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d", 1517 vp, bp, vp->v_numoutput, 0); 1518 splx(s); 1519 BUF_INIT(bp); 1520 bp->b_data = (char *)kva + 1521 (vaddr_t)(offset - pg->offset); 1522 bp->b_resid = bp->b_bcount = iobytes; 1523 bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC; 1524 bp->b_iodone = uvm_aio_biodone1; 1525 bp->b_vp = vp; 1526 } 1527 bp->b_lblkno = 0; 1528 bp->b_private = mbp; 1529 1530 /* adjust physical blkno for partial blocks */ 1531 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >> 1532 dev_bshift); 1533 UVMHIST_LOG(ubchist, 1534 "vp %p offset 0x%x bcount 0x%x blkno 0x%x", 1535 vp, offset, bp->b_bcount, bp->b_blkno); 1536 if (curproc == uvm.pagedaemon_proc) 1537 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 1538 else if (async) 1539 BIO_SETPRIO(bp, BPRIO_TIMENONCRITICAL); 1540 else 1541 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 1542 1543 VOP_STRATEGY(devvp, bp); 1544 } 1545 if (skipbytes) { 1546 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0); 1547 s = splbio(); 1548 if (error) { 1549 mbp->b_flags |= B_ERROR; 1550 mbp->b_error = error; 1551 } 1552 mbp->b_resid -= skipbytes; 1553 if (mbp->b_resid == 0) { 1554 biodone(mbp); 1555 } 1556 splx(s); 1557 } 1558 if (async) { 1559 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0); 1560 return (0); 1561 } 1562 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0); 1563 error = biowait(mbp); 1564 uvm_aio_aiodone(mbp); 1565 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0); 1566 return (error); 1567 } 1568 1569 /* 1570 * VOP_PUTPAGES() for vnodes which never have pages. 1571 */ 1572 1573 int 1574 genfs_null_putpages(void *v) 1575 { 1576 struct vop_putpages_args /* { 1577 struct vnode *a_vp; 1578 voff_t a_offlo; 1579 voff_t a_offhi; 1580 int a_flags; 1581 } */ *ap = v; 1582 struct vnode *vp = ap->a_vp; 1583 1584 KASSERT(vp->v_uobj.uo_npages == 0); 1585 simple_unlock(&vp->v_interlock); 1586 return (0); 1587 } 1588 1589 void 1590 genfs_node_init(struct vnode *vp, const struct genfs_ops *ops) 1591 { 1592 struct genfs_node *gp = VTOG(vp); 1593 1594 lockinit(&gp->g_glock, PINOD, "glock", 0, 0); 1595 gp->g_op = ops; 1596 } 1597 1598 void 1599 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags) 1600 { 1601 int bsize; 1602 1603 bsize = 1 << vp->v_mount->mnt_fs_bshift; 1604 *eobp = (size + bsize - 1) & ~(bsize - 1); 1605 } 1606 1607 int 1608 genfs_compat_getpages(void *v) 1609 { 1610 struct vop_getpages_args /* { 1611 struct vnode *a_vp; 1612 voff_t a_offset; 1613 struct vm_page **a_m; 1614 int *a_count; 1615 int a_centeridx; 1616 vm_prot_t a_access_type; 1617 int a_advice; 1618 int a_flags; 1619 } */ *ap = v; 1620 1621 off_t origoffset; 1622 struct vnode *vp = ap->a_vp; 1623 struct uvm_object *uobj = &vp->v_uobj; 1624 struct vm_page *pg, **pgs; 1625 vaddr_t kva; 1626 int i, error, orignpages, npages; 1627 struct iovec iov; 1628 struct uio uio; 1629 struct ucred *cred = curproc->p_ucred; 1630 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0; 1631 1632 error = 0; 1633 origoffset = ap->a_offset; 1634 orignpages = *ap->a_count; 1635 pgs = ap->a_m; 1636 1637 if (write && (vp->v_flag & VONWORKLST) == 0) { 1638 vn_syncer_add_to_worklist(vp, filedelay); 1639 } 1640 if (ap->a_flags & PGO_LOCKED) { 1641 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, 1642 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0)); 1643 1644 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0); 1645 } 1646 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) { 1647 simple_unlock(&uobj->vmobjlock); 1648 return (EINVAL); 1649 } 1650 if ((ap->a_flags & PGO_SYNCIO) == 0) { 1651 simple_unlock(&uobj->vmobjlock); 1652 return 0; 1653 } 1654 npages = orignpages; 1655 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL); 1656 simple_unlock(&uobj->vmobjlock); 1657 kva = uvm_pagermapin(pgs, npages, 1658 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK); 1659 for (i = 0; i < npages; i++) { 1660 pg = pgs[i]; 1661 if ((pg->flags & PG_FAKE) == 0) { 1662 continue; 1663 } 1664 iov.iov_base = (char *)kva + (i << PAGE_SHIFT); 1665 iov.iov_len = PAGE_SIZE; 1666 uio.uio_iov = &iov; 1667 uio.uio_iovcnt = 1; 1668 uio.uio_offset = origoffset + (i << PAGE_SHIFT); 1669 uio.uio_segflg = UIO_SYSSPACE; 1670 uio.uio_rw = UIO_READ; 1671 uio.uio_resid = PAGE_SIZE; 1672 uio.uio_lwp = NULL; 1673 /* XXX vn_lock */ 1674 error = VOP_READ(vp, &uio, 0, cred); 1675 if (error) { 1676 break; 1677 } 1678 if (uio.uio_resid) { 1679 memset(iov.iov_base, 0, uio.uio_resid); 1680 } 1681 } 1682 uvm_pagermapout(kva, npages); 1683 simple_lock(&uobj->vmobjlock); 1684 uvm_lock_pageq(); 1685 for (i = 0; i < npages; i++) { 1686 pg = pgs[i]; 1687 if (error && (pg->flags & PG_FAKE) != 0) { 1688 pg->flags |= PG_RELEASED; 1689 } else { 1690 pmap_clear_modify(pg); 1691 uvm_pageactivate(pg); 1692 } 1693 } 1694 if (error) { 1695 uvm_page_unbusy(pgs, npages); 1696 } 1697 uvm_unlock_pageq(); 1698 simple_unlock(&uobj->vmobjlock); 1699 return (error); 1700 } 1701 1702 int 1703 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, 1704 int flags) 1705 { 1706 off_t offset; 1707 struct iovec iov; 1708 struct uio uio; 1709 struct ucred *cred = curproc->p_ucred; 1710 struct buf *bp; 1711 vaddr_t kva; 1712 int s, error; 1713 1714 offset = pgs[0]->offset; 1715 kva = uvm_pagermapin(pgs, npages, 1716 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK); 1717 1718 iov.iov_base = (void *)kva; 1719 iov.iov_len = npages << PAGE_SHIFT; 1720 uio.uio_iov = &iov; 1721 uio.uio_iovcnt = 1; 1722 uio.uio_offset = offset; 1723 uio.uio_segflg = UIO_SYSSPACE; 1724 uio.uio_rw = UIO_WRITE; 1725 uio.uio_resid = npages << PAGE_SHIFT; 1726 uio.uio_lwp = NULL; 1727 /* XXX vn_lock */ 1728 error = VOP_WRITE(vp, &uio, 0, cred); 1729 1730 s = splbio(); 1731 V_INCR_NUMOUTPUT(vp); 1732 bp = pool_get(&bufpool, PR_WAITOK); 1733 splx(s); 1734 1735 BUF_INIT(bp); 1736 bp->b_flags = B_BUSY | B_WRITE | B_AGE; 1737 bp->b_vp = vp; 1738 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift; 1739 bp->b_data = (char *)kva; 1740 bp->b_bcount = npages << PAGE_SHIFT; 1741 bp->b_bufsize = npages << PAGE_SHIFT; 1742 bp->b_resid = 0; 1743 if (error) { 1744 bp->b_flags |= B_ERROR; 1745 bp->b_error = error; 1746 } 1747 uvm_aio_aiodone(bp); 1748 return (error); 1749 } 1750 1751 static void 1752 filt_genfsdetach(struct knote *kn) 1753 { 1754 struct vnode *vp = (struct vnode *)kn->kn_hook; 1755 1756 /* XXXLUKEM lock the struct? */ 1757 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext); 1758 } 1759 1760 static int 1761 filt_genfsread(struct knote *kn, long hint) 1762 { 1763 struct vnode *vp = (struct vnode *)kn->kn_hook; 1764 1765 /* 1766 * filesystem is gone, so set the EOF flag and schedule 1767 * the knote for deletion. 1768 */ 1769 if (hint == NOTE_REVOKE) { 1770 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 1771 return (1); 1772 } 1773 1774 /* XXXLUKEM lock the struct? */ 1775 kn->kn_data = vp->v_size - kn->kn_fp->f_offset; 1776 return (kn->kn_data != 0); 1777 } 1778 1779 static int 1780 filt_genfsvnode(struct knote *kn, long hint) 1781 { 1782 1783 if (kn->kn_sfflags & hint) 1784 kn->kn_fflags |= hint; 1785 if (hint == NOTE_REVOKE) { 1786 kn->kn_flags |= EV_EOF; 1787 return (1); 1788 } 1789 return (kn->kn_fflags != 0); 1790 } 1791 1792 static const struct filterops genfsread_filtops = 1793 { 1, NULL, filt_genfsdetach, filt_genfsread }; 1794 static const struct filterops genfsvnode_filtops = 1795 { 1, NULL, filt_genfsdetach, filt_genfsvnode }; 1796 1797 int 1798 genfs_kqfilter(void *v) 1799 { 1800 struct vop_kqfilter_args /* { 1801 struct vnode *a_vp; 1802 struct knote *a_kn; 1803 } */ *ap = v; 1804 struct vnode *vp; 1805 struct knote *kn; 1806 1807 vp = ap->a_vp; 1808 kn = ap->a_kn; 1809 switch (kn->kn_filter) { 1810 case EVFILT_READ: 1811 kn->kn_fop = &genfsread_filtops; 1812 break; 1813 case EVFILT_VNODE: 1814 kn->kn_fop = &genfsvnode_filtops; 1815 break; 1816 default: 1817 return (1); 1818 } 1819 1820 kn->kn_hook = vp; 1821 1822 /* XXXLUKEM lock the struct? */ 1823 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext); 1824 1825 return (0); 1826 } 1827