1 /* $NetBSD: genfs_vnops.c,v 1.78 2003/06/17 04:17:37 simonb Exp $ */ 2 3 /* 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by the University of 18 * California, Berkeley and its contributors. 19 * 4. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 */ 36 37 #include <sys/cdefs.h> 38 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.78 2003/06/17 04:17:37 simonb Exp $"); 39 40 #include "opt_nfsserver.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/proc.h> 45 #include <sys/kernel.h> 46 #include <sys/mount.h> 47 #include <sys/namei.h> 48 #include <sys/vnode.h> 49 #include <sys/fcntl.h> 50 #include <sys/malloc.h> 51 #include <sys/poll.h> 52 #include <sys/mman.h> 53 #include <sys/file.h> 54 55 #include <miscfs/genfs/genfs.h> 56 #include <miscfs/genfs/genfs_node.h> 57 #include <miscfs/specfs/specdev.h> 58 59 #include <uvm/uvm.h> 60 #include <uvm/uvm_pager.h> 61 62 #ifdef NFSSERVER 63 #include <nfs/rpcv2.h> 64 #include <nfs/nfsproto.h> 65 #include <nfs/nfs.h> 66 #include <nfs/nqnfs.h> 67 #include <nfs/nfs_var.h> 68 #endif 69 70 static __inline void genfs_rel_pages(struct vm_page **, int); 71 static void filt_genfsdetach(struct knote *); 72 static int filt_genfsread(struct knote *, long); 73 static int filt_genfsvnode(struct knote *, long); 74 75 76 #define MAX_READ_AHEAD 16 /* XXXUBC 16 */ 77 int genfs_rapages = MAX_READ_AHEAD; /* # of pages in each chunk of readahead */ 78 int genfs_racount = 2; /* # of page chunks to readahead */ 79 int genfs_raskip = 2; /* # of busy page chunks allowed to skip */ 80 81 int 82 genfs_poll(void *v) 83 { 84 struct vop_poll_args /* { 85 struct vnode *a_vp; 86 int a_events; 87 struct proc *a_p; 88 } */ *ap = v; 89 90 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM)); 91 } 92 93 int 94 genfs_fsync(void *v) 95 { 96 struct vop_fsync_args /* { 97 struct vnode *a_vp; 98 struct ucred *a_cred; 99 int a_flags; 100 off_t offlo; 101 off_t offhi; 102 struct proc *a_p; 103 } */ *ap = v; 104 struct vnode *vp = ap->a_vp; 105 int wait; 106 107 wait = (ap->a_flags & FSYNC_WAIT) != 0; 108 vflushbuf(vp, wait); 109 if ((ap->a_flags & FSYNC_DATAONLY) != 0) 110 return (0); 111 else 112 return (VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0)); 113 } 114 115 int 116 genfs_seek(void *v) 117 { 118 struct vop_seek_args /* { 119 struct vnode *a_vp; 120 off_t a_oldoff; 121 off_t a_newoff; 122 struct ucred *a_ucred; 123 } */ *ap = v; 124 125 if (ap->a_newoff < 0) 126 return (EINVAL); 127 128 return (0); 129 } 130 131 int 132 genfs_abortop(void *v) 133 { 134 struct vop_abortop_args /* { 135 struct vnode *a_dvp; 136 struct componentname *a_cnp; 137 } */ *ap = v; 138 139 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF) 140 PNBUF_PUT(ap->a_cnp->cn_pnbuf); 141 return (0); 142 } 143 144 int 145 genfs_fcntl(void *v) 146 { 147 struct vop_fcntl_args /* { 148 struct vnode *a_vp; 149 u_int a_command; 150 caddr_t a_data; 151 int a_fflag; 152 struct ucred *a_cred; 153 struct proc *a_p; 154 } */ *ap = v; 155 156 if (ap->a_command == F_SETFL) 157 return (0); 158 else 159 return (EOPNOTSUPP); 160 } 161 162 /*ARGSUSED*/ 163 int 164 genfs_badop(void *v) 165 { 166 167 panic("genfs: bad op"); 168 } 169 170 /*ARGSUSED*/ 171 int 172 genfs_nullop(void *v) 173 { 174 175 return (0); 176 } 177 178 /*ARGSUSED*/ 179 int 180 genfs_einval(void *v) 181 { 182 183 return (EINVAL); 184 } 185 186 /* 187 * Called when an fs doesn't support a particular vop. 188 * This takes care to vrele, vput, or vunlock passed in vnodes. 189 */ 190 int 191 genfs_eopnotsupp(void *v) 192 { 193 struct vop_generic_args /* 194 struct vnodeop_desc *a_desc; 195 / * other random data follows, presumably * / 196 } */ *ap = v; 197 struct vnodeop_desc *desc = ap->a_desc; 198 struct vnode *vp, *vp_last = NULL; 199 int flags, i, j, offset; 200 201 flags = desc->vdesc_flags; 202 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) { 203 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET) 204 break; /* stop at end of list */ 205 if ((j = flags & VDESC_VP0_WILLPUT)) { 206 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap); 207 208 /* Skip if NULL */ 209 if (!vp) 210 continue; 211 212 switch (j) { 213 case VDESC_VP0_WILLPUT: 214 /* Check for dvp == vp cases */ 215 if (vp == vp_last) 216 vrele(vp); 217 else { 218 vput(vp); 219 vp_last = vp; 220 } 221 break; 222 case VDESC_VP0_WILLUNLOCK: 223 VOP_UNLOCK(vp, 0); 224 break; 225 case VDESC_VP0_WILLRELE: 226 vrele(vp); 227 break; 228 } 229 } 230 } 231 232 return (EOPNOTSUPP); 233 } 234 235 /*ARGSUSED*/ 236 int 237 genfs_ebadf(void *v) 238 { 239 240 return (EBADF); 241 } 242 243 /* ARGSUSED */ 244 int 245 genfs_enoioctl(void *v) 246 { 247 248 return (EPASSTHROUGH); 249 } 250 251 252 /* 253 * Eliminate all activity associated with the requested vnode 254 * and with all vnodes aliased to the requested vnode. 255 */ 256 int 257 genfs_revoke(void *v) 258 { 259 struct vop_revoke_args /* { 260 struct vnode *a_vp; 261 int a_flags; 262 } */ *ap = v; 263 struct vnode *vp, *vq; 264 struct proc *p = curproc; /* XXX */ 265 266 #ifdef DIAGNOSTIC 267 if ((ap->a_flags & REVOKEALL) == 0) 268 panic("genfs_revoke: not revokeall"); 269 #endif 270 271 vp = ap->a_vp; 272 simple_lock(&vp->v_interlock); 273 274 if (vp->v_flag & VALIASED) { 275 /* 276 * If a vgone (or vclean) is already in progress, 277 * wait until it is done and return. 278 */ 279 if (vp->v_flag & VXLOCK) { 280 vp->v_flag |= VXWANT; 281 simple_unlock(&vp->v_interlock); 282 tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0); 283 return (0); 284 } 285 /* 286 * Ensure that vp will not be vgone'd while we 287 * are eliminating its aliases. 288 */ 289 vp->v_flag |= VXLOCK; 290 simple_unlock(&vp->v_interlock); 291 while (vp->v_flag & VALIASED) { 292 simple_lock(&spechash_slock); 293 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) { 294 if (vq->v_rdev != vp->v_rdev || 295 vq->v_type != vp->v_type || vp == vq) 296 continue; 297 simple_unlock(&spechash_slock); 298 vgone(vq); 299 break; 300 } 301 if (vq == NULLVP) 302 simple_unlock(&spechash_slock); 303 } 304 /* 305 * Remove the lock so that vgone below will 306 * really eliminate the vnode after which time 307 * vgone will awaken any sleepers. 308 */ 309 simple_lock(&vp->v_interlock); 310 vp->v_flag &= ~VXLOCK; 311 } 312 vgonel(vp, p); 313 return (0); 314 } 315 316 /* 317 * Lock the node. 318 */ 319 int 320 genfs_lock(void *v) 321 { 322 struct vop_lock_args /* { 323 struct vnode *a_vp; 324 int a_flags; 325 } */ *ap = v; 326 struct vnode *vp = ap->a_vp; 327 328 return (lockmgr(&vp->v_lock, ap->a_flags, &vp->v_interlock)); 329 } 330 331 /* 332 * Unlock the node. 333 */ 334 int 335 genfs_unlock(void *v) 336 { 337 struct vop_unlock_args /* { 338 struct vnode *a_vp; 339 int a_flags; 340 } */ *ap = v; 341 struct vnode *vp = ap->a_vp; 342 343 return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE, 344 &vp->v_interlock)); 345 } 346 347 /* 348 * Return whether or not the node is locked. 349 */ 350 int 351 genfs_islocked(void *v) 352 { 353 struct vop_islocked_args /* { 354 struct vnode *a_vp; 355 } */ *ap = v; 356 struct vnode *vp = ap->a_vp; 357 358 return (lockstatus(&vp->v_lock)); 359 } 360 361 /* 362 * Stubs to use when there is no locking to be done on the underlying object. 363 */ 364 int 365 genfs_nolock(void *v) 366 { 367 struct vop_lock_args /* { 368 struct vnode *a_vp; 369 int a_flags; 370 struct proc *a_p; 371 } */ *ap = v; 372 373 /* 374 * Since we are not using the lock manager, we must clear 375 * the interlock here. 376 */ 377 if (ap->a_flags & LK_INTERLOCK) 378 simple_unlock(&ap->a_vp->v_interlock); 379 return (0); 380 } 381 382 int 383 genfs_nounlock(void *v) 384 { 385 386 return (0); 387 } 388 389 int 390 genfs_noislocked(void *v) 391 { 392 393 return (0); 394 } 395 396 /* 397 * Local lease check for NFS servers. Just set up args and let 398 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel, 399 * this is a null operation. 400 */ 401 int 402 genfs_lease_check(void *v) 403 { 404 #ifdef NFSSERVER 405 struct vop_lease_args /* { 406 struct vnode *a_vp; 407 struct proc *a_p; 408 struct ucred *a_cred; 409 int a_flag; 410 } */ *ap = v; 411 u_int32_t duration = 0; 412 int cache; 413 u_quad_t frev; 414 415 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag, 416 NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred); 417 return (0); 418 #else 419 return (0); 420 #endif /* NFSSERVER */ 421 } 422 423 int 424 genfs_mmap(void *v) 425 { 426 427 return (0); 428 } 429 430 static __inline void 431 genfs_rel_pages(struct vm_page **pgs, int npages) 432 { 433 int i; 434 435 for (i = 0; i < npages; i++) { 436 struct vm_page *pg = pgs[i]; 437 438 if (pg == NULL) 439 continue; 440 if (pg->flags & PG_FAKE) { 441 pg->flags |= PG_RELEASED; 442 } 443 } 444 uvm_lock_pageq(); 445 uvm_page_unbusy(pgs, npages); 446 uvm_unlock_pageq(); 447 } 448 449 /* 450 * generic VM getpages routine. 451 * Return PG_BUSY pages for the given range, 452 * reading from backing store if necessary. 453 */ 454 455 int 456 genfs_getpages(void *v) 457 { 458 struct vop_getpages_args /* { 459 struct vnode *a_vp; 460 voff_t a_offset; 461 struct vm_page **a_m; 462 int *a_count; 463 int a_centeridx; 464 vm_prot_t a_access_type; 465 int a_advice; 466 int a_flags; 467 } */ *ap = v; 468 469 off_t newsize, diskeof, memeof; 470 off_t offset, origoffset, startoffset, endoffset, raoffset; 471 daddr_t lbn, blkno; 472 int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount; 473 int fs_bshift, fs_bsize, dev_bshift; 474 int flags = ap->a_flags; 475 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes; 476 vaddr_t kva; 477 struct buf *bp, *mbp; 478 struct vnode *vp = ap->a_vp; 479 struct vnode *devvp; 480 struct genfs_node *gp = VTOG(vp); 481 struct uvm_object *uobj = &vp->v_uobj; 482 struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_AHEAD]; 483 int pgs_size; 484 struct ucred *cred = curproc->p_ucred; /* XXXUBC curlwp */ 485 boolean_t async = (flags & PGO_SYNCIO) == 0; 486 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0; 487 boolean_t sawhole = FALSE; 488 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0; 489 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist); 490 491 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d", 492 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count); 493 494 /* XXXUBC temp limit */ 495 if (*ap->a_count > MAX_READ_AHEAD) { 496 panic("genfs_getpages: too many pages"); 497 } 498 499 error = 0; 500 origoffset = ap->a_offset; 501 orignpages = *ap->a_count; 502 GOP_SIZE(vp, vp->v_size, &diskeof, GOP_SIZE_READ); 503 if (flags & PGO_PASTEOF) { 504 newsize = MAX(vp->v_size, 505 origoffset + (orignpages << PAGE_SHIFT)); 506 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_READ); 507 } else { 508 memeof = diskeof; 509 } 510 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages); 511 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0); 512 KASSERT(orignpages > 0); 513 514 /* 515 * Bounds-check the request. 516 */ 517 518 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) { 519 if ((flags & PGO_LOCKED) == 0) { 520 simple_unlock(&uobj->vmobjlock); 521 } 522 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x", 523 origoffset, *ap->a_count, memeof,0); 524 return (EINVAL); 525 } 526 527 /* 528 * For PGO_LOCKED requests, just return whatever's in memory. 529 */ 530 531 if (flags & PGO_LOCKED) { 532 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, 533 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0)); 534 535 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0); 536 } 537 538 /* vnode is VOP_LOCKed, uobj is locked */ 539 540 if (write && (vp->v_flag & VONWORKLST) == 0) { 541 vn_syncer_add_to_worklist(vp, filedelay); 542 } 543 544 /* 545 * find the requested pages and make some simple checks. 546 * leave space in the page array for a whole block. 547 */ 548 549 if (vp->v_type == VREG) { 550 fs_bshift = vp->v_mount->mnt_fs_bshift; 551 dev_bshift = vp->v_mount->mnt_dev_bshift; 552 } else { 553 fs_bshift = DEV_BSHIFT; 554 dev_bshift = DEV_BSHIFT; 555 } 556 fs_bsize = 1 << fs_bshift; 557 558 orignpages = MIN(orignpages, 559 round_page(memeof - origoffset) >> PAGE_SHIFT); 560 npages = orignpages; 561 startoffset = origoffset & ~(fs_bsize - 1); 562 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) + 563 fs_bsize - 1) & ~(fs_bsize - 1)); 564 endoffset = MIN(endoffset, round_page(memeof)); 565 ridx = (origoffset - startoffset) >> PAGE_SHIFT; 566 567 pgs_size = sizeof(struct vm_page *) * 568 ((endoffset - startoffset) >> PAGE_SHIFT); 569 if (pgs_size > sizeof(pgs_onstack)) { 570 pgs = malloc(pgs_size, M_DEVBUF, M_NOWAIT | M_ZERO); 571 if (pgs == NULL) { 572 simple_unlock(&uobj->vmobjlock); 573 return (ENOMEM); 574 } 575 } else { 576 pgs = pgs_onstack; 577 memset(pgs, 0, pgs_size); 578 } 579 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld", 580 ridx, npages, startoffset, endoffset); 581 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], 582 async ? UFP_NOWAIT : UFP_ALL) != orignpages) { 583 KASSERT(async != 0); 584 genfs_rel_pages(&pgs[ridx], orignpages); 585 simple_unlock(&uobj->vmobjlock); 586 if (pgs != pgs_onstack) 587 free(pgs, M_DEVBUF); 588 return (EBUSY); 589 } 590 591 /* 592 * if the pages are already resident, just return them. 593 */ 594 595 for (i = 0; i < npages; i++) { 596 struct vm_page *pg = pgs[ridx + i]; 597 598 if ((pg->flags & PG_FAKE) || 599 (write && (pg->flags & PG_RDONLY))) { 600 break; 601 } 602 } 603 if (i == npages) { 604 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0); 605 raoffset = origoffset + (orignpages << PAGE_SHIFT); 606 npages += ridx; 607 goto raout; 608 } 609 610 /* 611 * if PGO_OVERWRITE is set, don't bother reading the pages. 612 */ 613 614 if (flags & PGO_OVERWRITE) { 615 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0); 616 617 for (i = 0; i < npages; i++) { 618 struct vm_page *pg = pgs[ridx + i]; 619 620 pg->flags &= ~(PG_RDONLY|PG_CLEAN); 621 } 622 npages += ridx; 623 goto out; 624 } 625 626 /* 627 * the page wasn't resident and we're not overwriting, 628 * so we're going to have to do some i/o. 629 * find any additional pages needed to cover the expanded range. 630 */ 631 632 npages = (endoffset - startoffset) >> PAGE_SHIFT; 633 if (startoffset != origoffset || npages != orignpages) { 634 635 /* 636 * we need to avoid deadlocks caused by locking 637 * additional pages at lower offsets than pages we 638 * already have locked. unlock them all and start over. 639 */ 640 641 genfs_rel_pages(&pgs[ridx], orignpages); 642 memset(pgs, 0, pgs_size); 643 644 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x", 645 startoffset, endoffset, 0,0); 646 npgs = npages; 647 if (uvn_findpages(uobj, startoffset, &npgs, pgs, 648 async ? UFP_NOWAIT : UFP_ALL) != npages) { 649 KASSERT(async != 0); 650 genfs_rel_pages(pgs, npages); 651 simple_unlock(&uobj->vmobjlock); 652 if (pgs != pgs_onstack) 653 free(pgs, M_DEVBUF); 654 return (EBUSY); 655 } 656 } 657 simple_unlock(&uobj->vmobjlock); 658 659 /* 660 * read the desired page(s). 661 */ 662 663 totalbytes = npages << PAGE_SHIFT; 664 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0)); 665 tailbytes = totalbytes - bytes; 666 skipbytes = 0; 667 668 kva = uvm_pagermapin(pgs, npages, 669 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK); 670 671 s = splbio(); 672 mbp = pool_get(&bufpool, PR_WAITOK); 673 splx(s); 674 BUF_INIT(mbp); 675 mbp->b_bufsize = totalbytes; 676 mbp->b_data = (void *)kva; 677 mbp->b_resid = mbp->b_bcount = bytes; 678 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0); 679 mbp->b_iodone = (async ? uvm_aio_biodone : 0); 680 mbp->b_vp = vp; 681 682 /* 683 * if EOF is in the middle of the range, zero the part past EOF. 684 * if the page including EOF is not PG_FAKE, skip over it since 685 * in that case it has valid data that we need to preserve. 686 */ 687 688 if (tailbytes > 0) { 689 size_t tailstart = bytes; 690 691 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) { 692 tailstart = round_page(tailstart); 693 tailbytes -= tailstart - bytes; 694 } 695 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x", 696 kva, tailstart, tailbytes,0); 697 memset((void *)(kva + tailstart), 0, tailbytes); 698 } 699 700 /* 701 * now loop over the pages, reading as needed. 702 */ 703 704 if (write) { 705 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL); 706 } else { 707 lockmgr(&gp->g_glock, LK_SHARED, NULL); 708 } 709 710 bp = NULL; 711 for (offset = startoffset; 712 bytes > 0; 713 offset += iobytes, bytes -= iobytes) { 714 715 /* 716 * skip pages which don't need to be read. 717 */ 718 719 pidx = (offset - startoffset) >> PAGE_SHIFT; 720 while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) { 721 size_t b; 722 723 KASSERT((offset & (PAGE_SIZE - 1)) == 0); 724 b = MIN(PAGE_SIZE, bytes); 725 offset += b; 726 bytes -= b; 727 skipbytes += b; 728 pidx++; 729 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x", 730 offset, 0,0,0); 731 if (bytes == 0) { 732 goto loopdone; 733 } 734 } 735 736 /* 737 * bmap the file to find out the blkno to read from and 738 * how much we can read in one i/o. if bmap returns an error, 739 * skip the rest of the top-level i/o. 740 */ 741 742 lbn = offset >> fs_bshift; 743 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run); 744 if (error) { 745 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n", 746 lbn, error,0,0); 747 skipbytes += bytes; 748 goto loopdone; 749 } 750 751 /* 752 * see how many pages can be read with this i/o. 753 * reduce the i/o size if necessary to avoid 754 * overwriting pages with valid data. 755 */ 756 757 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset, 758 bytes); 759 if (offset + iobytes > round_page(offset)) { 760 pcount = 1; 761 while (pidx + pcount < npages && 762 pgs[pidx + pcount]->flags & PG_FAKE) { 763 pcount++; 764 } 765 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) - 766 (offset - trunc_page(offset))); 767 } 768 769 /* 770 * if this block isn't allocated, zero it instead of 771 * reading it. if this is a read access, mark the 772 * pages we zeroed PG_RDONLY. 773 */ 774 775 if (blkno < 0) { 776 int holepages = (round_page(offset + iobytes) - 777 trunc_page(offset)) >> PAGE_SHIFT; 778 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0); 779 780 sawhole = TRUE; 781 memset((char *)kva + (offset - startoffset), 0, 782 iobytes); 783 skipbytes += iobytes; 784 785 for (i = 0; i < holepages; i++) { 786 if (write) { 787 pgs[pidx + i]->flags &= ~PG_CLEAN; 788 } else { 789 pgs[pidx + i]->flags |= PG_RDONLY; 790 } 791 } 792 continue; 793 } 794 795 /* 796 * allocate a sub-buf for this piece of the i/o 797 * (or just use mbp if there's only 1 piece), 798 * and start it going. 799 */ 800 801 if (offset == startoffset && iobytes == bytes) { 802 bp = mbp; 803 } else { 804 s = splbio(); 805 bp = pool_get(&bufpool, PR_WAITOK); 806 splx(s); 807 BUF_INIT(bp); 808 bp->b_data = (char *)kva + offset - startoffset; 809 bp->b_resid = bp->b_bcount = iobytes; 810 bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC; 811 bp->b_iodone = uvm_aio_biodone1; 812 bp->b_vp = vp; 813 bp->b_proc = NULL; 814 } 815 bp->b_lblkno = 0; 816 bp->b_private = mbp; 817 if (devvp->v_type == VBLK) { 818 bp->b_dev = devvp->v_rdev; 819 } 820 821 /* adjust physical blkno for partial blocks */ 822 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >> 823 dev_bshift); 824 825 UVMHIST_LOG(ubchist, 826 "bp %p offset 0x%x bcount 0x%x blkno 0x%x", 827 bp, offset, iobytes, bp->b_blkno); 828 829 VOP_STRATEGY(bp); 830 } 831 832 loopdone: 833 if (skipbytes) { 834 s = splbio(); 835 if (error) { 836 mbp->b_flags |= B_ERROR; 837 mbp->b_error = error; 838 } 839 mbp->b_resid -= skipbytes; 840 if (mbp->b_resid == 0) { 841 biodone(mbp); 842 } 843 splx(s); 844 } 845 846 if (async) { 847 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0); 848 lockmgr(&gp->g_glock, LK_RELEASE, NULL); 849 if (pgs != pgs_onstack) 850 free(pgs, M_DEVBUF); 851 return (0); 852 } 853 if (bp != NULL) { 854 error = biowait(mbp); 855 } 856 s = splbio(); 857 pool_put(&bufpool, mbp); 858 splx(s); 859 uvm_pagermapout(kva, npages); 860 raoffset = startoffset + totalbytes; 861 862 /* 863 * if this we encountered a hole then we have to do a little more work. 864 * for read faults, we marked the page PG_RDONLY so that future 865 * write accesses to the page will fault again. 866 * for write faults, we must make sure that the backing store for 867 * the page is completely allocated while the pages are locked. 868 */ 869 870 if (!error && sawhole && write) { 871 for (i = 0; i < npages; i++) { 872 if (pgs[i] == NULL) { 873 continue; 874 } 875 pgs[i]->flags &= ~PG_CLEAN; 876 UVMHIST_LOG(ubchist, "mark dirty pg %p", pgs[i],0,0,0); 877 } 878 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0, 879 cred); 880 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d", 881 startoffset, npages << PAGE_SHIFT, error,0); 882 } 883 lockmgr(&gp->g_glock, LK_RELEASE, NULL); 884 simple_lock(&uobj->vmobjlock); 885 886 /* 887 * see if we want to start any readahead. 888 * XXXUBC for now, just read the next 128k on 64k boundaries. 889 * this is pretty nonsensical, but it is 50% faster than reading 890 * just the next 64k. 891 */ 892 893 raout: 894 if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 && 895 PAGE_SHIFT <= 16) { 896 off_t rasize; 897 int rapages, err, i, skipped; 898 899 /* XXXUBC temp limit, from above */ 900 rapages = MIN(MIN(1 << (16 - PAGE_SHIFT), MAX_READ_AHEAD), 901 genfs_rapages); 902 rasize = rapages << PAGE_SHIFT; 903 for (i = skipped = 0; i < genfs_racount; i++) { 904 err = VOP_GETPAGES(vp, raoffset, NULL, &rapages, 0, 905 VM_PROT_READ, 0, 0); 906 simple_lock(&uobj->vmobjlock); 907 if (err) { 908 if (err != EBUSY || 909 skipped++ == genfs_raskip) 910 break; 911 } 912 raoffset += rasize; 913 rapages = rasize >> PAGE_SHIFT; 914 } 915 } 916 917 /* 918 * we're almost done! release the pages... 919 * for errors, we free the pages. 920 * otherwise we activate them and mark them as valid and clean. 921 * also, unbusy pages that were not actually requested. 922 */ 923 924 if (error) { 925 for (i = 0; i < npages; i++) { 926 if (pgs[i] == NULL) { 927 continue; 928 } 929 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x", 930 pgs[i], pgs[i]->flags, 0,0); 931 if (pgs[i]->flags & PG_FAKE) { 932 pgs[i]->flags |= PG_RELEASED; 933 } 934 } 935 uvm_lock_pageq(); 936 uvm_page_unbusy(pgs, npages); 937 uvm_unlock_pageq(); 938 simple_unlock(&uobj->vmobjlock); 939 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0); 940 if (pgs != pgs_onstack) 941 free(pgs, M_DEVBUF); 942 return (error); 943 } 944 945 out: 946 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0); 947 uvm_lock_pageq(); 948 for (i = 0; i < npages; i++) { 949 pg = pgs[i]; 950 if (pg == NULL) { 951 continue; 952 } 953 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x", 954 pg, pg->flags, 0,0); 955 if (pg->flags & PG_FAKE && !overwrite) { 956 pg->flags &= ~(PG_FAKE); 957 pmap_clear_modify(pgs[i]); 958 } 959 if (write) { 960 pg->flags &= ~(PG_RDONLY); 961 } 962 if (i < ridx || i >= ridx + orignpages || async) { 963 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x", 964 pg, pg->offset,0,0); 965 if (pg->flags & PG_WANTED) { 966 wakeup(pg); 967 } 968 if (pg->flags & PG_FAKE) { 969 KASSERT(overwrite); 970 uvm_pagezero(pg); 971 } 972 if (pg->flags & PG_RELEASED) { 973 uvm_pagefree(pg); 974 continue; 975 } 976 uvm_pageactivate(pg); 977 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE); 978 UVM_PAGE_OWN(pg, NULL); 979 } 980 } 981 uvm_unlock_pageq(); 982 simple_unlock(&uobj->vmobjlock); 983 if (ap->a_m != NULL) { 984 memcpy(ap->a_m, &pgs[ridx], 985 orignpages * sizeof(struct vm_page *)); 986 } 987 if (pgs != pgs_onstack) 988 free(pgs, M_DEVBUF); 989 return (0); 990 } 991 992 /* 993 * generic VM putpages routine. 994 * Write the given range of pages to backing store. 995 * 996 * => "offhi == 0" means flush all pages at or after "offlo". 997 * => object should be locked by caller. we may _unlock_ the object 998 * if (and only if) we need to clean a page (PGO_CLEANIT), or 999 * if PGO_SYNCIO is set and there are pages busy. 1000 * we return with the object locked. 1001 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O). 1002 * thus, a caller might want to unlock higher level resources 1003 * (e.g. vm_map) before calling flush. 1004 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither 1005 * unlock the object nor block. 1006 * => if PGO_ALLPAGES is set, then all pages in the object will be processed. 1007 * => NOTE: we rely on the fact that the object's memq is a TAILQ and 1008 * that new pages are inserted on the tail end of the list. thus, 1009 * we can make a complete pass through the object in one go by starting 1010 * at the head and working towards the tail (new pages are put in 1011 * front of us). 1012 * => NOTE: we are allowed to lock the page queues, so the caller 1013 * must not be holding the page queue lock. 1014 * 1015 * note on "cleaning" object and PG_BUSY pages: 1016 * this routine is holding the lock on the object. the only time 1017 * that it can run into a PG_BUSY page that it does not own is if 1018 * some other process has started I/O on the page (e.g. either 1019 * a pagein, or a pageout). if the PG_BUSY page is being paged 1020 * in, then it can not be dirty (!PG_CLEAN) because no one has 1021 * had a chance to modify it yet. if the PG_BUSY page is being 1022 * paged out then it means that someone else has already started 1023 * cleaning the page for us (how nice!). in this case, if we 1024 * have syncio specified, then after we make our pass through the 1025 * object we need to wait for the other PG_BUSY pages to clear 1026 * off (i.e. we need to do an iosync). also note that once a 1027 * page is PG_BUSY it must stay in its object until it is un-busyed. 1028 * 1029 * note on page traversal: 1030 * we can traverse the pages in an object either by going down the 1031 * linked list in "uobj->memq", or we can go over the address range 1032 * by page doing hash table lookups for each address. depending 1033 * on how many pages are in the object it may be cheaper to do one 1034 * or the other. we set "by_list" to true if we are using memq. 1035 * if the cost of a hash lookup was equal to the cost of the list 1036 * traversal we could compare the number of pages in the start->stop 1037 * range to the total number of pages in the object. however, it 1038 * seems that a hash table lookup is more expensive than the linked 1039 * list traversal, so we multiply the number of pages in the 1040 * range by an estimate of the relatively higher cost of the hash lookup. 1041 */ 1042 1043 int 1044 genfs_putpages(void *v) 1045 { 1046 struct vop_putpages_args /* { 1047 struct vnode *a_vp; 1048 voff_t a_offlo; 1049 voff_t a_offhi; 1050 int a_flags; 1051 } */ *ap = v; 1052 struct vnode *vp = ap->a_vp; 1053 struct uvm_object *uobj = &vp->v_uobj; 1054 struct simplelock *slock = &uobj->vmobjlock; 1055 off_t startoff = ap->a_offlo; 1056 off_t endoff = ap->a_offhi; 1057 off_t off; 1058 int flags = ap->a_flags; 1059 /* Even for strange MAXPHYS, the shift rounds down to a page */ 1060 const int maxpages = MAXPHYS >> PAGE_SHIFT; 1061 int i, s, error, npages, nback; 1062 int freeflag; 1063 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp; 1064 boolean_t wasclean, by_list, needs_clean, yield; 1065 boolean_t async = (flags & PGO_SYNCIO) == 0; 1066 boolean_t pagedaemon = curproc == uvm.pagedaemon_proc; 1067 struct lwp *l = curlwp ? curlwp : &lwp0; 1068 1069 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist); 1070 1071 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)); 1072 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0); 1073 KASSERT(startoff < endoff || endoff == 0); 1074 1075 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x", 1076 vp, uobj->uo_npages, startoff, endoff - startoff); 1077 if (uobj->uo_npages == 0) { 1078 s = splbio(); 1079 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL && 1080 (vp->v_flag & VONWORKLST)) { 1081 vp->v_flag &= ~VONWORKLST; 1082 LIST_REMOVE(vp, v_synclist); 1083 } 1084 splx(s); 1085 simple_unlock(slock); 1086 return (0); 1087 } 1088 1089 /* 1090 * the vnode has pages, set up to process the request. 1091 */ 1092 1093 error = 0; 1094 s = splbio(); 1095 simple_lock(&global_v_numoutput_slock); 1096 wasclean = (vp->v_numoutput == 0); 1097 simple_unlock(&global_v_numoutput_slock); 1098 splx(s); 1099 off = startoff; 1100 if (endoff == 0 || flags & PGO_ALLPAGES) { 1101 endoff = trunc_page(LLONG_MAX); 1102 } 1103 by_list = (uobj->uo_npages <= 1104 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY); 1105 1106 /* 1107 * start the loop. when scanning by list, hold the last page 1108 * in the list before we start. pages allocated after we start 1109 * will be added to the end of the list, so we can stop at the 1110 * current last page. 1111 */ 1112 1113 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED; 1114 curmp.uobject = uobj; 1115 curmp.offset = (voff_t)-1; 1116 curmp.flags = PG_BUSY; 1117 endmp.uobject = uobj; 1118 endmp.offset = (voff_t)-1; 1119 endmp.flags = PG_BUSY; 1120 if (by_list) { 1121 pg = TAILQ_FIRST(&uobj->memq); 1122 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq); 1123 PHOLD(l); 1124 } else { 1125 pg = uvm_pagelookup(uobj, off); 1126 } 1127 nextpg = NULL; 1128 while (by_list || off < endoff) { 1129 1130 /* 1131 * if the current page is not interesting, move on to the next. 1132 */ 1133 1134 KASSERT(pg == NULL || pg->uobject == uobj); 1135 KASSERT(pg == NULL || 1136 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 || 1137 (pg->flags & PG_BUSY) != 0); 1138 if (by_list) { 1139 if (pg == &endmp) { 1140 break; 1141 } 1142 if (pg->offset < startoff || pg->offset >= endoff || 1143 pg->flags & (PG_RELEASED|PG_PAGEOUT)) { 1144 pg = TAILQ_NEXT(pg, listq); 1145 continue; 1146 } 1147 off = pg->offset; 1148 } else if (pg == NULL || 1149 pg->flags & (PG_RELEASED|PG_PAGEOUT)) { 1150 off += PAGE_SIZE; 1151 if (off < endoff) { 1152 pg = uvm_pagelookup(uobj, off); 1153 } 1154 continue; 1155 } 1156 1157 /* 1158 * if the current page needs to be cleaned and it's busy, 1159 * wait for it to become unbusy. 1160 */ 1161 1162 yield = (l->l_cpu->ci_schedstate.spc_flags & 1163 SPCF_SHOULDYIELD) && !pagedaemon; 1164 if (pg->flags & PG_BUSY || yield) { 1165 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0); 1166 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) { 1167 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0); 1168 error = EDEADLK; 1169 break; 1170 } 1171 KASSERT(!pagedaemon); 1172 if (by_list) { 1173 TAILQ_INSERT_BEFORE(pg, &curmp, listq); 1174 UVMHIST_LOG(ubchist, "curmp next %p", 1175 TAILQ_NEXT(&curmp, listq), 0,0,0); 1176 } 1177 if (yield) { 1178 simple_unlock(slock); 1179 preempt(1); 1180 simple_lock(slock); 1181 } else { 1182 pg->flags |= PG_WANTED; 1183 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0); 1184 simple_lock(slock); 1185 } 1186 if (by_list) { 1187 UVMHIST_LOG(ubchist, "after next %p", 1188 TAILQ_NEXT(&curmp, listq), 0,0,0); 1189 pg = TAILQ_NEXT(&curmp, listq); 1190 TAILQ_REMOVE(&uobj->memq, &curmp, listq); 1191 } else { 1192 pg = uvm_pagelookup(uobj, off); 1193 } 1194 continue; 1195 } 1196 1197 /* 1198 * if we're freeing, remove all mappings of the page now. 1199 * if we're cleaning, check if the page is needs to be cleaned. 1200 */ 1201 1202 if (flags & PGO_FREE) { 1203 pmap_page_protect(pg, VM_PROT_NONE); 1204 } 1205 if (flags & PGO_CLEANIT) { 1206 needs_clean = pmap_clear_modify(pg) || 1207 (pg->flags & PG_CLEAN) == 0; 1208 pg->flags |= PG_CLEAN; 1209 } else { 1210 needs_clean = FALSE; 1211 } 1212 1213 /* 1214 * if we're cleaning, build a cluster. 1215 * the cluster will consist of pages which are currently dirty, 1216 * but they will be returned to us marked clean. 1217 * if not cleaning, just operate on the one page. 1218 */ 1219 1220 if (needs_clean) { 1221 wasclean = FALSE; 1222 memset(pgs, 0, sizeof(pgs)); 1223 pg->flags |= PG_BUSY; 1224 UVM_PAGE_OWN(pg, "genfs_putpages"); 1225 1226 /* 1227 * first look backward. 1228 */ 1229 1230 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT); 1231 nback = npages; 1232 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0], 1233 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD); 1234 if (nback) { 1235 memmove(&pgs[0], &pgs[npages - nback], 1236 nback * sizeof(pgs[0])); 1237 if (npages - nback < nback) 1238 memset(&pgs[nback], 0, 1239 (npages - nback) * sizeof(pgs[0])); 1240 else 1241 memset(&pgs[npages - nback], 0, 1242 nback * sizeof(pgs[0])); 1243 } 1244 1245 /* 1246 * then plug in our page of interest. 1247 */ 1248 1249 pgs[nback] = pg; 1250 1251 /* 1252 * then look forward to fill in the remaining space in 1253 * the array of pages. 1254 */ 1255 1256 npages = maxpages - nback - 1; 1257 uvn_findpages(uobj, off + PAGE_SIZE, &npages, 1258 &pgs[nback + 1], 1259 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY); 1260 npages += nback + 1; 1261 } else { 1262 pgs[0] = pg; 1263 npages = 1; 1264 nback = 0; 1265 } 1266 1267 /* 1268 * apply FREE or DEACTIVATE options if requested. 1269 */ 1270 1271 if (flags & (PGO_DEACTIVATE|PGO_FREE)) { 1272 uvm_lock_pageq(); 1273 } 1274 for (i = 0; i < npages; i++) { 1275 tpg = pgs[i]; 1276 KASSERT(tpg->uobject == uobj); 1277 if (by_list && tpg == TAILQ_NEXT(pg, listq)) 1278 pg = tpg; 1279 if (tpg->offset < startoff || tpg->offset >= endoff) 1280 continue; 1281 if (flags & PGO_DEACTIVATE && 1282 (tpg->pqflags & PQ_INACTIVE) == 0 && 1283 tpg->wire_count == 0) { 1284 (void) pmap_clear_reference(tpg); 1285 uvm_pagedeactivate(tpg); 1286 } else if (flags & PGO_FREE) { 1287 pmap_page_protect(tpg, VM_PROT_NONE); 1288 if (tpg->flags & PG_BUSY) { 1289 tpg->flags |= freeflag; 1290 if (pagedaemon) { 1291 uvmexp.paging++; 1292 uvm_pagedequeue(tpg); 1293 } 1294 } else { 1295 1296 /* 1297 * ``page is not busy'' 1298 * implies that npages is 1 1299 * and needs_clean is false. 1300 */ 1301 1302 nextpg = TAILQ_NEXT(tpg, listq); 1303 uvm_pagefree(tpg); 1304 } 1305 } 1306 } 1307 if (flags & (PGO_DEACTIVATE|PGO_FREE)) { 1308 uvm_unlock_pageq(); 1309 } 1310 if (needs_clean) { 1311 1312 /* 1313 * start the i/o. if we're traversing by list, 1314 * keep our place in the list with a marker page. 1315 */ 1316 1317 if (by_list) { 1318 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp, 1319 listq); 1320 } 1321 simple_unlock(slock); 1322 error = GOP_WRITE(vp, pgs, npages, flags); 1323 simple_lock(slock); 1324 if (by_list) { 1325 pg = TAILQ_NEXT(&curmp, listq); 1326 TAILQ_REMOVE(&uobj->memq, &curmp, listq); 1327 } 1328 if (error) { 1329 break; 1330 } 1331 if (by_list) { 1332 continue; 1333 } 1334 } 1335 1336 /* 1337 * find the next page and continue if there was no error. 1338 */ 1339 1340 if (by_list) { 1341 if (nextpg) { 1342 pg = nextpg; 1343 nextpg = NULL; 1344 } else { 1345 pg = TAILQ_NEXT(pg, listq); 1346 } 1347 } else { 1348 off += (npages - nback) << PAGE_SHIFT; 1349 if (off < endoff) { 1350 pg = uvm_pagelookup(uobj, off); 1351 } 1352 } 1353 } 1354 if (by_list) { 1355 TAILQ_REMOVE(&uobj->memq, &endmp, listq); 1356 PRELE(l); 1357 } 1358 1359 /* 1360 * if we're cleaning and there was nothing to clean, 1361 * take us off the syncer list. if we started any i/o 1362 * and we're doing sync i/o, wait for all writes to finish. 1363 */ 1364 1365 s = splbio(); 1366 if ((flags & PGO_CLEANIT) && wasclean && 1367 startoff == 0 && endoff == trunc_page(LLONG_MAX) && 1368 LIST_FIRST(&vp->v_dirtyblkhd) == NULL && 1369 (vp->v_flag & VONWORKLST)) { 1370 vp->v_flag &= ~VONWORKLST; 1371 LIST_REMOVE(vp, v_synclist); 1372 } 1373 splx(s); 1374 if (!wasclean && !async) { 1375 s = splbio(); 1376 /* 1377 * XXX - we want simple_unlock(&global_v_numoutput_slock); 1378 * but the slot in ltsleep() is taken! 1379 * XXX - try to recover from missed wakeups with a timeout.. 1380 * must think of something better. 1381 */ 1382 while (vp->v_numoutput != 0) { 1383 vp->v_flag |= VBWAIT; 1384 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE, 1385 "genput2", hz); 1386 simple_lock(slock); 1387 } 1388 splx(s); 1389 } 1390 simple_unlock(&uobj->vmobjlock); 1391 return (error); 1392 } 1393 1394 int 1395 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags) 1396 { 1397 int s, error, run; 1398 int fs_bshift, dev_bshift; 1399 vaddr_t kva; 1400 off_t eof, offset, startoffset; 1401 size_t bytes, iobytes, skipbytes; 1402 daddr_t lbn, blkno; 1403 struct vm_page *pg; 1404 struct buf *mbp, *bp; 1405 struct vnode *devvp; 1406 boolean_t async = (flags & PGO_SYNCIO) == 0; 1407 UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist); 1408 1409 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x", 1410 vp, pgs, npages, flags); 1411 1412 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_WRITE); 1413 if (vp->v_type == VREG) { 1414 fs_bshift = vp->v_mount->mnt_fs_bshift; 1415 dev_bshift = vp->v_mount->mnt_dev_bshift; 1416 } else { 1417 fs_bshift = DEV_BSHIFT; 1418 dev_bshift = DEV_BSHIFT; 1419 } 1420 error = 0; 1421 pg = pgs[0]; 1422 startoffset = pg->offset; 1423 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset); 1424 skipbytes = 0; 1425 KASSERT(bytes != 0); 1426 1427 kva = uvm_pagermapin(pgs, npages, 1428 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK); 1429 1430 s = splbio(); 1431 simple_lock(&global_v_numoutput_slock); 1432 vp->v_numoutput += 2; 1433 simple_unlock(&global_v_numoutput_slock); 1434 mbp = pool_get(&bufpool, PR_WAITOK); 1435 BUF_INIT(mbp); 1436 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x", 1437 vp, mbp, vp->v_numoutput, bytes); 1438 splx(s); 1439 mbp->b_bufsize = npages << PAGE_SHIFT; 1440 mbp->b_data = (void *)kva; 1441 mbp->b_resid = mbp->b_bcount = bytes; 1442 mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0); 1443 mbp->b_iodone = uvm_aio_biodone; 1444 mbp->b_vp = vp; 1445 1446 bp = NULL; 1447 for (offset = startoffset; 1448 bytes > 0; 1449 offset += iobytes, bytes -= iobytes) { 1450 lbn = offset >> fs_bshift; 1451 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run); 1452 if (error) { 1453 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0); 1454 skipbytes += bytes; 1455 bytes = 0; 1456 break; 1457 } 1458 1459 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset, 1460 bytes); 1461 if (blkno == (daddr_t)-1) { 1462 skipbytes += iobytes; 1463 continue; 1464 } 1465 1466 /* if it's really one i/o, don't make a second buf */ 1467 if (offset == startoffset && iobytes == bytes) { 1468 bp = mbp; 1469 } else { 1470 s = splbio(); 1471 V_INCR_NUMOUTPUT(vp); 1472 bp = pool_get(&bufpool, PR_WAITOK); 1473 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d", 1474 vp, bp, vp->v_numoutput, 0); 1475 splx(s); 1476 BUF_INIT(bp); 1477 bp->b_data = (char *)kva + 1478 (vaddr_t)(offset - pg->offset); 1479 bp->b_resid = bp->b_bcount = iobytes; 1480 bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC; 1481 bp->b_iodone = uvm_aio_biodone1; 1482 bp->b_vp = vp; 1483 } 1484 bp->b_lblkno = 0; 1485 bp->b_private = mbp; 1486 if (devvp->v_type == VBLK) { 1487 bp->b_dev = devvp->v_rdev; 1488 } 1489 1490 /* adjust physical blkno for partial blocks */ 1491 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >> 1492 dev_bshift); 1493 UVMHIST_LOG(ubchist, 1494 "vp %p offset 0x%x bcount 0x%x blkno 0x%x", 1495 vp, offset, bp->b_bcount, bp->b_blkno); 1496 VOP_STRATEGY(bp); 1497 } 1498 if (skipbytes) { 1499 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0); 1500 s = splbio(); 1501 if (error) { 1502 mbp->b_flags |= B_ERROR; 1503 mbp->b_error = error; 1504 } 1505 mbp->b_resid -= skipbytes; 1506 if (mbp->b_resid == 0) { 1507 biodone(mbp); 1508 } 1509 splx(s); 1510 } 1511 if (async) { 1512 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0); 1513 return (0); 1514 } 1515 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0); 1516 error = biowait(mbp); 1517 uvm_aio_aiodone(mbp); 1518 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0); 1519 return (error); 1520 } 1521 1522 /* 1523 * VOP_PUTPAGES() for vnodes which never have pages. 1524 */ 1525 1526 int 1527 genfs_null_putpages(void *v) 1528 { 1529 struct vop_putpages_args /* { 1530 struct vnode *a_vp; 1531 voff_t a_offlo; 1532 voff_t a_offhi; 1533 int a_flags; 1534 } */ *ap = v; 1535 struct vnode *vp = ap->a_vp; 1536 1537 KASSERT(vp->v_uobj.uo_npages == 0); 1538 simple_unlock(&vp->v_interlock); 1539 return (0); 1540 } 1541 1542 void 1543 genfs_node_init(struct vnode *vp, struct genfs_ops *ops) 1544 { 1545 struct genfs_node *gp = VTOG(vp); 1546 1547 lockinit(&gp->g_glock, PINOD, "glock", 0, 0); 1548 gp->g_op = ops; 1549 } 1550 1551 void 1552 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags) 1553 { 1554 int bsize; 1555 1556 bsize = 1 << vp->v_mount->mnt_fs_bshift; 1557 *eobp = (size + bsize - 1) & ~(bsize - 1); 1558 } 1559 1560 int 1561 genfs_compat_getpages(void *v) 1562 { 1563 struct vop_getpages_args /* { 1564 struct vnode *a_vp; 1565 voff_t a_offset; 1566 struct vm_page **a_m; 1567 int *a_count; 1568 int a_centeridx; 1569 vm_prot_t a_access_type; 1570 int a_advice; 1571 int a_flags; 1572 } */ *ap = v; 1573 1574 off_t origoffset; 1575 struct vnode *vp = ap->a_vp; 1576 struct uvm_object *uobj = &vp->v_uobj; 1577 struct vm_page *pg, **pgs; 1578 vaddr_t kva; 1579 int i, error, orignpages, npages; 1580 struct iovec iov; 1581 struct uio uio; 1582 struct ucred *cred = curproc->p_ucred; 1583 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0; 1584 1585 error = 0; 1586 origoffset = ap->a_offset; 1587 orignpages = *ap->a_count; 1588 pgs = ap->a_m; 1589 1590 if (write && (vp->v_flag & VONWORKLST) == 0) { 1591 vn_syncer_add_to_worklist(vp, filedelay); 1592 } 1593 if (ap->a_flags & PGO_LOCKED) { 1594 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, 1595 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0)); 1596 1597 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0); 1598 } 1599 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) { 1600 simple_unlock(&uobj->vmobjlock); 1601 return (EINVAL); 1602 } 1603 npages = orignpages; 1604 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL); 1605 simple_unlock(&uobj->vmobjlock); 1606 kva = uvm_pagermapin(pgs, npages, 1607 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK); 1608 for (i = 0; i < npages; i++) { 1609 pg = pgs[i]; 1610 if ((pg->flags & PG_FAKE) == 0) { 1611 continue; 1612 } 1613 iov.iov_base = (char *)kva + (i << PAGE_SHIFT); 1614 iov.iov_len = PAGE_SIZE; 1615 uio.uio_iov = &iov; 1616 uio.uio_iovcnt = 1; 1617 uio.uio_offset = origoffset + (i << PAGE_SHIFT); 1618 uio.uio_segflg = UIO_SYSSPACE; 1619 uio.uio_rw = UIO_READ; 1620 uio.uio_resid = PAGE_SIZE; 1621 uio.uio_procp = curproc; 1622 error = VOP_READ(vp, &uio, 0, cred); 1623 if (error) { 1624 break; 1625 } 1626 if (uio.uio_resid) { 1627 memset(iov.iov_base, 0, uio.uio_resid); 1628 } 1629 } 1630 uvm_pagermapout(kva, npages); 1631 simple_lock(&uobj->vmobjlock); 1632 uvm_lock_pageq(); 1633 for (i = 0; i < npages; i++) { 1634 pg = pgs[i]; 1635 if (error && (pg->flags & PG_FAKE) != 0) { 1636 pg->flags |= PG_RELEASED; 1637 } else { 1638 pmap_clear_modify(pg); 1639 uvm_pageactivate(pg); 1640 } 1641 } 1642 if (error) { 1643 uvm_page_unbusy(pgs, npages); 1644 } 1645 uvm_unlock_pageq(); 1646 simple_unlock(&uobj->vmobjlock); 1647 return (error); 1648 } 1649 1650 int 1651 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, 1652 int flags) 1653 { 1654 off_t offset; 1655 struct iovec iov; 1656 struct uio uio; 1657 struct ucred *cred = curproc->p_ucred; 1658 struct buf *bp; 1659 vaddr_t kva; 1660 int s, error; 1661 1662 offset = pgs[0]->offset; 1663 kva = uvm_pagermapin(pgs, npages, 1664 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK); 1665 1666 iov.iov_base = (void *)kva; 1667 iov.iov_len = npages << PAGE_SHIFT; 1668 uio.uio_iov = &iov; 1669 uio.uio_iovcnt = 1; 1670 uio.uio_offset = offset; 1671 uio.uio_segflg = UIO_SYSSPACE; 1672 uio.uio_rw = UIO_WRITE; 1673 uio.uio_resid = npages << PAGE_SHIFT; 1674 uio.uio_procp = curproc; 1675 error = VOP_WRITE(vp, &uio, 0, cred); 1676 1677 s = splbio(); 1678 V_INCR_NUMOUTPUT(vp); 1679 bp = pool_get(&bufpool, PR_WAITOK); 1680 splx(s); 1681 1682 BUF_INIT(bp); 1683 bp->b_flags = B_BUSY | B_WRITE | B_AGE; 1684 bp->b_vp = vp; 1685 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift; 1686 bp->b_data = (char *)kva; 1687 bp->b_bcount = npages << PAGE_SHIFT; 1688 bp->b_bufsize = npages << PAGE_SHIFT; 1689 bp->b_resid = 0; 1690 if (error) { 1691 bp->b_flags |= B_ERROR; 1692 bp->b_error = error; 1693 } 1694 uvm_aio_aiodone(bp); 1695 return (error); 1696 } 1697 1698 static void 1699 filt_genfsdetach(struct knote *kn) 1700 { 1701 struct vnode *vp = (struct vnode *)kn->kn_hook; 1702 1703 /* XXXLUKEM lock the struct? */ 1704 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext); 1705 } 1706 1707 static int 1708 filt_genfsread(struct knote *kn, long hint) 1709 { 1710 struct vnode *vp = (struct vnode *)kn->kn_hook; 1711 1712 /* 1713 * filesystem is gone, so set the EOF flag and schedule 1714 * the knote for deletion. 1715 */ 1716 if (hint == NOTE_REVOKE) { 1717 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 1718 return (1); 1719 } 1720 1721 /* XXXLUKEM lock the struct? */ 1722 kn->kn_data = vp->v_size - kn->kn_fp->f_offset; 1723 return (kn->kn_data != 0); 1724 } 1725 1726 static int 1727 filt_genfsvnode(struct knote *kn, long hint) 1728 { 1729 1730 if (kn->kn_sfflags & hint) 1731 kn->kn_fflags |= hint; 1732 if (hint == NOTE_REVOKE) { 1733 kn->kn_flags |= EV_EOF; 1734 return (1); 1735 } 1736 return (kn->kn_fflags != 0); 1737 } 1738 1739 static const struct filterops genfsread_filtops = 1740 { 1, NULL, filt_genfsdetach, filt_genfsread }; 1741 static const struct filterops genfsvnode_filtops = 1742 { 1, NULL, filt_genfsdetach, filt_genfsvnode }; 1743 1744 int 1745 genfs_kqfilter(void *v) 1746 { 1747 struct vop_kqfilter_args /* { 1748 struct vnode *a_vp; 1749 struct knote *a_kn; 1750 } */ *ap = v; 1751 struct vnode *vp; 1752 struct knote *kn; 1753 1754 vp = ap->a_vp; 1755 kn = ap->a_kn; 1756 switch (kn->kn_filter) { 1757 case EVFILT_READ: 1758 kn->kn_fop = &genfsread_filtops; 1759 break; 1760 case EVFILT_VNODE: 1761 kn->kn_fop = &genfsvnode_filtops; 1762 break; 1763 default: 1764 return (1); 1765 } 1766 1767 kn->kn_hook = vp; 1768 1769 /* XXXLUKEM lock the struct? */ 1770 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext); 1771 1772 return (0); 1773 } 1774