xref: /netbsd-src/sys/miscfs/genfs/genfs_vnops.c (revision d710132b4b8ce7f7cccaaf660cb16aa16b4077a0)
1 /*	$NetBSD: genfs_vnops.c,v 1.78 2003/06/17 04:17:37 simonb Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.78 2003/06/17 04:17:37 simonb Exp $");
39 
40 #include "opt_nfsserver.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/mount.h>
47 #include <sys/namei.h>
48 #include <sys/vnode.h>
49 #include <sys/fcntl.h>
50 #include <sys/malloc.h>
51 #include <sys/poll.h>
52 #include <sys/mman.h>
53 #include <sys/file.h>
54 
55 #include <miscfs/genfs/genfs.h>
56 #include <miscfs/genfs/genfs_node.h>
57 #include <miscfs/specfs/specdev.h>
58 
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_pager.h>
61 
62 #ifdef NFSSERVER
63 #include <nfs/rpcv2.h>
64 #include <nfs/nfsproto.h>
65 #include <nfs/nfs.h>
66 #include <nfs/nqnfs.h>
67 #include <nfs/nfs_var.h>
68 #endif
69 
70 static __inline void genfs_rel_pages(struct vm_page **, int);
71 static void filt_genfsdetach(struct knote *);
72 static int filt_genfsread(struct knote *, long);
73 static int filt_genfsvnode(struct knote *, long);
74 
75 
76 #define MAX_READ_AHEAD	16 	/* XXXUBC 16 */
77 int genfs_rapages = MAX_READ_AHEAD; /* # of pages in each chunk of readahead */
78 int genfs_racount = 2;		/* # of page chunks to readahead */
79 int genfs_raskip = 2;		/* # of busy page chunks allowed to skip */
80 
81 int
82 genfs_poll(void *v)
83 {
84 	struct vop_poll_args /* {
85 		struct vnode *a_vp;
86 		int a_events;
87 		struct proc *a_p;
88 	} */ *ap = v;
89 
90 	return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
91 }
92 
93 int
94 genfs_fsync(void *v)
95 {
96 	struct vop_fsync_args /* {
97 		struct vnode *a_vp;
98 		struct ucred *a_cred;
99 		int a_flags;
100 		off_t offlo;
101 		off_t offhi;
102 		struct proc *a_p;
103 	} */ *ap = v;
104 	struct vnode *vp = ap->a_vp;
105 	int wait;
106 
107 	wait = (ap->a_flags & FSYNC_WAIT) != 0;
108 	vflushbuf(vp, wait);
109 	if ((ap->a_flags & FSYNC_DATAONLY) != 0)
110 		return (0);
111 	else
112 		return (VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0));
113 }
114 
115 int
116 genfs_seek(void *v)
117 {
118 	struct vop_seek_args /* {
119 		struct vnode *a_vp;
120 		off_t a_oldoff;
121 		off_t a_newoff;
122 		struct ucred *a_ucred;
123 	} */ *ap = v;
124 
125 	if (ap->a_newoff < 0)
126 		return (EINVAL);
127 
128 	return (0);
129 }
130 
131 int
132 genfs_abortop(void *v)
133 {
134 	struct vop_abortop_args /* {
135 		struct vnode *a_dvp;
136 		struct componentname *a_cnp;
137 	} */ *ap = v;
138 
139 	if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
140 		PNBUF_PUT(ap->a_cnp->cn_pnbuf);
141 	return (0);
142 }
143 
144 int
145 genfs_fcntl(void *v)
146 {
147 	struct vop_fcntl_args /* {
148 		struct vnode *a_vp;
149 		u_int a_command;
150 		caddr_t a_data;
151 		int a_fflag;
152 		struct ucred *a_cred;
153 		struct proc *a_p;
154 	} */ *ap = v;
155 
156 	if (ap->a_command == F_SETFL)
157 		return (0);
158 	else
159 		return (EOPNOTSUPP);
160 }
161 
162 /*ARGSUSED*/
163 int
164 genfs_badop(void *v)
165 {
166 
167 	panic("genfs: bad op");
168 }
169 
170 /*ARGSUSED*/
171 int
172 genfs_nullop(void *v)
173 {
174 
175 	return (0);
176 }
177 
178 /*ARGSUSED*/
179 int
180 genfs_einval(void *v)
181 {
182 
183 	return (EINVAL);
184 }
185 
186 /*
187  * Called when an fs doesn't support a particular vop.
188  * This takes care to vrele, vput, or vunlock passed in vnodes.
189  */
190 int
191 genfs_eopnotsupp(void *v)
192 {
193 	struct vop_generic_args /*
194 		struct vnodeop_desc *a_desc;
195 		/ * other random data follows, presumably * /
196 	} */ *ap = v;
197 	struct vnodeop_desc *desc = ap->a_desc;
198 	struct vnode *vp, *vp_last = NULL;
199 	int flags, i, j, offset;
200 
201 	flags = desc->vdesc_flags;
202 	for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
203 		if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
204 			break;	/* stop at end of list */
205 		if ((j = flags & VDESC_VP0_WILLPUT)) {
206 			vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
207 
208 			/* Skip if NULL */
209 			if (!vp)
210 				continue;
211 
212 			switch (j) {
213 			case VDESC_VP0_WILLPUT:
214 				/* Check for dvp == vp cases */
215 				if (vp == vp_last)
216 					vrele(vp);
217 				else {
218 					vput(vp);
219 					vp_last = vp;
220 				}
221 				break;
222 			case VDESC_VP0_WILLUNLOCK:
223 				VOP_UNLOCK(vp, 0);
224 				break;
225 			case VDESC_VP0_WILLRELE:
226 				vrele(vp);
227 				break;
228 			}
229 		}
230 	}
231 
232 	return (EOPNOTSUPP);
233 }
234 
235 /*ARGSUSED*/
236 int
237 genfs_ebadf(void *v)
238 {
239 
240 	return (EBADF);
241 }
242 
243 /* ARGSUSED */
244 int
245 genfs_enoioctl(void *v)
246 {
247 
248 	return (EPASSTHROUGH);
249 }
250 
251 
252 /*
253  * Eliminate all activity associated with the requested vnode
254  * and with all vnodes aliased to the requested vnode.
255  */
256 int
257 genfs_revoke(void *v)
258 {
259 	struct vop_revoke_args /* {
260 		struct vnode *a_vp;
261 		int a_flags;
262 	} */ *ap = v;
263 	struct vnode *vp, *vq;
264 	struct proc *p = curproc;	/* XXX */
265 
266 #ifdef DIAGNOSTIC
267 	if ((ap->a_flags & REVOKEALL) == 0)
268 		panic("genfs_revoke: not revokeall");
269 #endif
270 
271 	vp = ap->a_vp;
272 	simple_lock(&vp->v_interlock);
273 
274 	if (vp->v_flag & VALIASED) {
275 		/*
276 		 * If a vgone (or vclean) is already in progress,
277 		 * wait until it is done and return.
278 		 */
279 		if (vp->v_flag & VXLOCK) {
280 			vp->v_flag |= VXWANT;
281 			simple_unlock(&vp->v_interlock);
282 			tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
283 			return (0);
284 		}
285 		/*
286 		 * Ensure that vp will not be vgone'd while we
287 		 * are eliminating its aliases.
288 		 */
289 		vp->v_flag |= VXLOCK;
290 		simple_unlock(&vp->v_interlock);
291 		while (vp->v_flag & VALIASED) {
292 			simple_lock(&spechash_slock);
293 			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
294 				if (vq->v_rdev != vp->v_rdev ||
295 				    vq->v_type != vp->v_type || vp == vq)
296 					continue;
297 				simple_unlock(&spechash_slock);
298 				vgone(vq);
299 				break;
300 			}
301 			if (vq == NULLVP)
302 				simple_unlock(&spechash_slock);
303 		}
304 		/*
305 		 * Remove the lock so that vgone below will
306 		 * really eliminate the vnode after which time
307 		 * vgone will awaken any sleepers.
308 		 */
309 		simple_lock(&vp->v_interlock);
310 		vp->v_flag &= ~VXLOCK;
311 	}
312 	vgonel(vp, p);
313 	return (0);
314 }
315 
316 /*
317  * Lock the node.
318  */
319 int
320 genfs_lock(void *v)
321 {
322 	struct vop_lock_args /* {
323 		struct vnode *a_vp;
324 		int a_flags;
325 	} */ *ap = v;
326 	struct vnode *vp = ap->a_vp;
327 
328 	return (lockmgr(&vp->v_lock, ap->a_flags, &vp->v_interlock));
329 }
330 
331 /*
332  * Unlock the node.
333  */
334 int
335 genfs_unlock(void *v)
336 {
337 	struct vop_unlock_args /* {
338 		struct vnode *a_vp;
339 		int a_flags;
340 	} */ *ap = v;
341 	struct vnode *vp = ap->a_vp;
342 
343 	return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
344 	    &vp->v_interlock));
345 }
346 
347 /*
348  * Return whether or not the node is locked.
349  */
350 int
351 genfs_islocked(void *v)
352 {
353 	struct vop_islocked_args /* {
354 		struct vnode *a_vp;
355 	} */ *ap = v;
356 	struct vnode *vp = ap->a_vp;
357 
358 	return (lockstatus(&vp->v_lock));
359 }
360 
361 /*
362  * Stubs to use when there is no locking to be done on the underlying object.
363  */
364 int
365 genfs_nolock(void *v)
366 {
367 	struct vop_lock_args /* {
368 		struct vnode *a_vp;
369 		int a_flags;
370 		struct proc *a_p;
371 	} */ *ap = v;
372 
373 	/*
374 	 * Since we are not using the lock manager, we must clear
375 	 * the interlock here.
376 	 */
377 	if (ap->a_flags & LK_INTERLOCK)
378 		simple_unlock(&ap->a_vp->v_interlock);
379 	return (0);
380 }
381 
382 int
383 genfs_nounlock(void *v)
384 {
385 
386 	return (0);
387 }
388 
389 int
390 genfs_noislocked(void *v)
391 {
392 
393 	return (0);
394 }
395 
396 /*
397  * Local lease check for NFS servers.  Just set up args and let
398  * nqsrv_getlease() do the rest.  If NFSSERVER is not in the kernel,
399  * this is a null operation.
400  */
401 int
402 genfs_lease_check(void *v)
403 {
404 #ifdef NFSSERVER
405 	struct vop_lease_args /* {
406 		struct vnode *a_vp;
407 		struct proc *a_p;
408 		struct ucred *a_cred;
409 		int a_flag;
410 	} */ *ap = v;
411 	u_int32_t duration = 0;
412 	int cache;
413 	u_quad_t frev;
414 
415 	(void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
416 	    NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
417 	return (0);
418 #else
419 	return (0);
420 #endif /* NFSSERVER */
421 }
422 
423 int
424 genfs_mmap(void *v)
425 {
426 
427 	return (0);
428 }
429 
430 static __inline void
431 genfs_rel_pages(struct vm_page **pgs, int npages)
432 {
433 	int i;
434 
435 	for (i = 0; i < npages; i++) {
436 		struct vm_page *pg = pgs[i];
437 
438 		if (pg == NULL)
439 			continue;
440 		if (pg->flags & PG_FAKE) {
441 			pg->flags |= PG_RELEASED;
442 		}
443 	}
444 	uvm_lock_pageq();
445 	uvm_page_unbusy(pgs, npages);
446 	uvm_unlock_pageq();
447 }
448 
449 /*
450  * generic VM getpages routine.
451  * Return PG_BUSY pages for the given range,
452  * reading from backing store if necessary.
453  */
454 
455 int
456 genfs_getpages(void *v)
457 {
458 	struct vop_getpages_args /* {
459 		struct vnode *a_vp;
460 		voff_t a_offset;
461 		struct vm_page **a_m;
462 		int *a_count;
463 		int a_centeridx;
464 		vm_prot_t a_access_type;
465 		int a_advice;
466 		int a_flags;
467 	} */ *ap = v;
468 
469 	off_t newsize, diskeof, memeof;
470 	off_t offset, origoffset, startoffset, endoffset, raoffset;
471 	daddr_t lbn, blkno;
472 	int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
473 	int fs_bshift, fs_bsize, dev_bshift;
474 	int flags = ap->a_flags;
475 	size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
476 	vaddr_t kva;
477 	struct buf *bp, *mbp;
478 	struct vnode *vp = ap->a_vp;
479 	struct vnode *devvp;
480 	struct genfs_node *gp = VTOG(vp);
481 	struct uvm_object *uobj = &vp->v_uobj;
482 	struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_AHEAD];
483 	int pgs_size;
484 	struct ucred *cred = curproc->p_ucred;		/* XXXUBC curlwp */
485 	boolean_t async = (flags & PGO_SYNCIO) == 0;
486 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
487 	boolean_t sawhole = FALSE;
488 	boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
489 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
490 
491 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
492 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
493 
494 	/* XXXUBC temp limit */
495 	if (*ap->a_count > MAX_READ_AHEAD) {
496 		panic("genfs_getpages: too many pages");
497 	}
498 
499 	error = 0;
500 	origoffset = ap->a_offset;
501 	orignpages = *ap->a_count;
502 	GOP_SIZE(vp, vp->v_size, &diskeof, GOP_SIZE_READ);
503 	if (flags & PGO_PASTEOF) {
504 		newsize = MAX(vp->v_size,
505 		    origoffset + (orignpages << PAGE_SHIFT));
506 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_READ);
507 	} else {
508 		memeof = diskeof;
509 	}
510 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
511 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
512 	KASSERT(orignpages > 0);
513 
514 	/*
515 	 * Bounds-check the request.
516 	 */
517 
518 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
519 		if ((flags & PGO_LOCKED) == 0) {
520 			simple_unlock(&uobj->vmobjlock);
521 		}
522 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
523 		    origoffset, *ap->a_count, memeof,0);
524 		return (EINVAL);
525 	}
526 
527 	/*
528 	 * For PGO_LOCKED requests, just return whatever's in memory.
529 	 */
530 
531 	if (flags & PGO_LOCKED) {
532 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
533 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
534 
535 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
536 	}
537 
538 	/* vnode is VOP_LOCKed, uobj is locked */
539 
540 	if (write && (vp->v_flag & VONWORKLST) == 0) {
541 		vn_syncer_add_to_worklist(vp, filedelay);
542 	}
543 
544 	/*
545 	 * find the requested pages and make some simple checks.
546 	 * leave space in the page array for a whole block.
547 	 */
548 
549 	if (vp->v_type == VREG) {
550 		fs_bshift = vp->v_mount->mnt_fs_bshift;
551 		dev_bshift = vp->v_mount->mnt_dev_bshift;
552 	} else {
553 		fs_bshift = DEV_BSHIFT;
554 		dev_bshift = DEV_BSHIFT;
555 	}
556 	fs_bsize = 1 << fs_bshift;
557 
558 	orignpages = MIN(orignpages,
559 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
560 	npages = orignpages;
561 	startoffset = origoffset & ~(fs_bsize - 1);
562 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
563 	    fs_bsize - 1) & ~(fs_bsize - 1));
564 	endoffset = MIN(endoffset, round_page(memeof));
565 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
566 
567 	pgs_size = sizeof(struct vm_page *) *
568 	    ((endoffset - startoffset) >> PAGE_SHIFT);
569 	if (pgs_size > sizeof(pgs_onstack)) {
570 		pgs = malloc(pgs_size, M_DEVBUF, M_NOWAIT | M_ZERO);
571 		if (pgs == NULL) {
572 			simple_unlock(&uobj->vmobjlock);
573 			return (ENOMEM);
574 		}
575 	} else {
576 		pgs = pgs_onstack;
577 		memset(pgs, 0, pgs_size);
578 	}
579 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
580 	    ridx, npages, startoffset, endoffset);
581 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
582 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
583 		KASSERT(async != 0);
584 		genfs_rel_pages(&pgs[ridx], orignpages);
585 		simple_unlock(&uobj->vmobjlock);
586 		if (pgs != pgs_onstack)
587 			free(pgs, M_DEVBUF);
588 		return (EBUSY);
589 	}
590 
591 	/*
592 	 * if the pages are already resident, just return them.
593 	 */
594 
595 	for (i = 0; i < npages; i++) {
596 		struct vm_page *pg = pgs[ridx + i];
597 
598 		if ((pg->flags & PG_FAKE) ||
599 		    (write && (pg->flags & PG_RDONLY))) {
600 			break;
601 		}
602 	}
603 	if (i == npages) {
604 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
605 		raoffset = origoffset + (orignpages << PAGE_SHIFT);
606 		npages += ridx;
607 		goto raout;
608 	}
609 
610 	/*
611 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
612 	 */
613 
614 	if (flags & PGO_OVERWRITE) {
615 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
616 
617 		for (i = 0; i < npages; i++) {
618 			struct vm_page *pg = pgs[ridx + i];
619 
620 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
621 		}
622 		npages += ridx;
623 		goto out;
624 	}
625 
626 	/*
627 	 * the page wasn't resident and we're not overwriting,
628 	 * so we're going to have to do some i/o.
629 	 * find any additional pages needed to cover the expanded range.
630 	 */
631 
632 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
633 	if (startoffset != origoffset || npages != orignpages) {
634 
635 		/*
636 		 * we need to avoid deadlocks caused by locking
637 		 * additional pages at lower offsets than pages we
638 		 * already have locked.  unlock them all and start over.
639 		 */
640 
641 		genfs_rel_pages(&pgs[ridx], orignpages);
642 		memset(pgs, 0, pgs_size);
643 
644 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
645 		    startoffset, endoffset, 0,0);
646 		npgs = npages;
647 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
648 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
649 			KASSERT(async != 0);
650 			genfs_rel_pages(pgs, npages);
651 			simple_unlock(&uobj->vmobjlock);
652 			if (pgs != pgs_onstack)
653 				free(pgs, M_DEVBUF);
654 			return (EBUSY);
655 		}
656 	}
657 	simple_unlock(&uobj->vmobjlock);
658 
659 	/*
660 	 * read the desired page(s).
661 	 */
662 
663 	totalbytes = npages << PAGE_SHIFT;
664 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
665 	tailbytes = totalbytes - bytes;
666 	skipbytes = 0;
667 
668 	kva = uvm_pagermapin(pgs, npages,
669 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
670 
671 	s = splbio();
672 	mbp = pool_get(&bufpool, PR_WAITOK);
673 	splx(s);
674 	BUF_INIT(mbp);
675 	mbp->b_bufsize = totalbytes;
676 	mbp->b_data = (void *)kva;
677 	mbp->b_resid = mbp->b_bcount = bytes;
678 	mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
679 	mbp->b_iodone = (async ? uvm_aio_biodone : 0);
680 	mbp->b_vp = vp;
681 
682 	/*
683 	 * if EOF is in the middle of the range, zero the part past EOF.
684 	 * if the page including EOF is not PG_FAKE, skip over it since
685 	 * in that case it has valid data that we need to preserve.
686 	 */
687 
688 	if (tailbytes > 0) {
689 		size_t tailstart = bytes;
690 
691 		if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
692 			tailstart = round_page(tailstart);
693 			tailbytes -= tailstart - bytes;
694 		}
695 		UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
696 		    kva, tailstart, tailbytes,0);
697 		memset((void *)(kva + tailstart), 0, tailbytes);
698 	}
699 
700 	/*
701 	 * now loop over the pages, reading as needed.
702 	 */
703 
704 	if (write) {
705 		lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
706 	} else {
707 		lockmgr(&gp->g_glock, LK_SHARED, NULL);
708 	}
709 
710 	bp = NULL;
711 	for (offset = startoffset;
712 	    bytes > 0;
713 	    offset += iobytes, bytes -= iobytes) {
714 
715 		/*
716 		 * skip pages which don't need to be read.
717 		 */
718 
719 		pidx = (offset - startoffset) >> PAGE_SHIFT;
720 		while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) {
721 			size_t b;
722 
723 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
724 			b = MIN(PAGE_SIZE, bytes);
725 			offset += b;
726 			bytes -= b;
727 			skipbytes += b;
728 			pidx++;
729 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
730 			    offset, 0,0,0);
731 			if (bytes == 0) {
732 				goto loopdone;
733 			}
734 		}
735 
736 		/*
737 		 * bmap the file to find out the blkno to read from and
738 		 * how much we can read in one i/o.  if bmap returns an error,
739 		 * skip the rest of the top-level i/o.
740 		 */
741 
742 		lbn = offset >> fs_bshift;
743 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
744 		if (error) {
745 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
746 			    lbn, error,0,0);
747 			skipbytes += bytes;
748 			goto loopdone;
749 		}
750 
751 		/*
752 		 * see how many pages can be read with this i/o.
753 		 * reduce the i/o size if necessary to avoid
754 		 * overwriting pages with valid data.
755 		 */
756 
757 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
758 		    bytes);
759 		if (offset + iobytes > round_page(offset)) {
760 			pcount = 1;
761 			while (pidx + pcount < npages &&
762 			    pgs[pidx + pcount]->flags & PG_FAKE) {
763 				pcount++;
764 			}
765 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
766 			    (offset - trunc_page(offset)));
767 		}
768 
769 		/*
770 		 * if this block isn't allocated, zero it instead of
771 		 * reading it.  if this is a read access, mark the
772 		 * pages we zeroed PG_RDONLY.
773 		 */
774 
775 		if (blkno < 0) {
776 			int holepages = (round_page(offset + iobytes) -
777 			    trunc_page(offset)) >> PAGE_SHIFT;
778 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
779 
780 			sawhole = TRUE;
781 			memset((char *)kva + (offset - startoffset), 0,
782 			    iobytes);
783 			skipbytes += iobytes;
784 
785 			for (i = 0; i < holepages; i++) {
786 				if (write) {
787 					pgs[pidx + i]->flags &= ~PG_CLEAN;
788 				} else {
789 					pgs[pidx + i]->flags |= PG_RDONLY;
790 				}
791 			}
792 			continue;
793 		}
794 
795 		/*
796 		 * allocate a sub-buf for this piece of the i/o
797 		 * (or just use mbp if there's only 1 piece),
798 		 * and start it going.
799 		 */
800 
801 		if (offset == startoffset && iobytes == bytes) {
802 			bp = mbp;
803 		} else {
804 			s = splbio();
805 			bp = pool_get(&bufpool, PR_WAITOK);
806 			splx(s);
807 			BUF_INIT(bp);
808 			bp->b_data = (char *)kva + offset - startoffset;
809 			bp->b_resid = bp->b_bcount = iobytes;
810 			bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC;
811 			bp->b_iodone = uvm_aio_biodone1;
812 			bp->b_vp = vp;
813 			bp->b_proc = NULL;
814 		}
815 		bp->b_lblkno = 0;
816 		bp->b_private = mbp;
817 		if (devvp->v_type == VBLK) {
818 			bp->b_dev = devvp->v_rdev;
819 		}
820 
821 		/* adjust physical blkno for partial blocks */
822 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
823 		    dev_bshift);
824 
825 		UVMHIST_LOG(ubchist,
826 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
827 		    bp, offset, iobytes, bp->b_blkno);
828 
829 		VOP_STRATEGY(bp);
830 	}
831 
832 loopdone:
833 	if (skipbytes) {
834 		s = splbio();
835 		if (error) {
836 			mbp->b_flags |= B_ERROR;
837 			mbp->b_error = error;
838 		}
839 		mbp->b_resid -= skipbytes;
840 		if (mbp->b_resid == 0) {
841 			biodone(mbp);
842 		}
843 		splx(s);
844 	}
845 
846 	if (async) {
847 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
848 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
849 		if (pgs != pgs_onstack)
850 			free(pgs, M_DEVBUF);
851 		return (0);
852 	}
853 	if (bp != NULL) {
854 		error = biowait(mbp);
855 	}
856 	s = splbio();
857 	pool_put(&bufpool, mbp);
858 	splx(s);
859 	uvm_pagermapout(kva, npages);
860 	raoffset = startoffset + totalbytes;
861 
862 	/*
863 	 * if this we encountered a hole then we have to do a little more work.
864 	 * for read faults, we marked the page PG_RDONLY so that future
865 	 * write accesses to the page will fault again.
866 	 * for write faults, we must make sure that the backing store for
867 	 * the page is completely allocated while the pages are locked.
868 	 */
869 
870 	if (!error && sawhole && write) {
871 		for (i = 0; i < npages; i++) {
872 			if (pgs[i] == NULL) {
873 				continue;
874 			}
875 			pgs[i]->flags &= ~PG_CLEAN;
876 			UVMHIST_LOG(ubchist, "mark dirty pg %p", pgs[i],0,0,0);
877 		}
878 		error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
879 		    cred);
880 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
881 		    startoffset, npages << PAGE_SHIFT, error,0);
882 	}
883 	lockmgr(&gp->g_glock, LK_RELEASE, NULL);
884 	simple_lock(&uobj->vmobjlock);
885 
886 	/*
887 	 * see if we want to start any readahead.
888 	 * XXXUBC for now, just read the next 128k on 64k boundaries.
889 	 * this is pretty nonsensical, but it is 50% faster than reading
890 	 * just the next 64k.
891 	 */
892 
893 raout:
894 	if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
895 	    PAGE_SHIFT <= 16) {
896 		off_t rasize;
897 		int rapages, err, i, skipped;
898 
899 		/* XXXUBC temp limit, from above */
900 		rapages = MIN(MIN(1 << (16 - PAGE_SHIFT), MAX_READ_AHEAD),
901 		    genfs_rapages);
902 		rasize = rapages << PAGE_SHIFT;
903 		for (i = skipped = 0; i < genfs_racount; i++) {
904 			err = VOP_GETPAGES(vp, raoffset, NULL, &rapages, 0,
905 			    VM_PROT_READ, 0, 0);
906 			simple_lock(&uobj->vmobjlock);
907 			if (err) {
908 				if (err != EBUSY ||
909 				    skipped++ == genfs_raskip)
910 					break;
911 			}
912 			raoffset += rasize;
913 			rapages = rasize >> PAGE_SHIFT;
914 		}
915 	}
916 
917 	/*
918 	 * we're almost done!  release the pages...
919 	 * for errors, we free the pages.
920 	 * otherwise we activate them and mark them as valid and clean.
921 	 * also, unbusy pages that were not actually requested.
922 	 */
923 
924 	if (error) {
925 		for (i = 0; i < npages; i++) {
926 			if (pgs[i] == NULL) {
927 				continue;
928 			}
929 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
930 			    pgs[i], pgs[i]->flags, 0,0);
931 			if (pgs[i]->flags & PG_FAKE) {
932 				pgs[i]->flags |= PG_RELEASED;
933 			}
934 		}
935 		uvm_lock_pageq();
936 		uvm_page_unbusy(pgs, npages);
937 		uvm_unlock_pageq();
938 		simple_unlock(&uobj->vmobjlock);
939 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
940 		if (pgs != pgs_onstack)
941 			free(pgs, M_DEVBUF);
942 		return (error);
943 	}
944 
945 out:
946 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
947 	uvm_lock_pageq();
948 	for (i = 0; i < npages; i++) {
949 		pg = pgs[i];
950 		if (pg == NULL) {
951 			continue;
952 		}
953 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
954 		    pg, pg->flags, 0,0);
955 		if (pg->flags & PG_FAKE && !overwrite) {
956 			pg->flags &= ~(PG_FAKE);
957 			pmap_clear_modify(pgs[i]);
958 		}
959 		if (write) {
960 			pg->flags &= ~(PG_RDONLY);
961 		}
962 		if (i < ridx || i >= ridx + orignpages || async) {
963 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
964 			    pg, pg->offset,0,0);
965 			if (pg->flags & PG_WANTED) {
966 				wakeup(pg);
967 			}
968 			if (pg->flags & PG_FAKE) {
969 				KASSERT(overwrite);
970 				uvm_pagezero(pg);
971 			}
972 			if (pg->flags & PG_RELEASED) {
973 				uvm_pagefree(pg);
974 				continue;
975 			}
976 			uvm_pageactivate(pg);
977 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
978 			UVM_PAGE_OWN(pg, NULL);
979 		}
980 	}
981 	uvm_unlock_pageq();
982 	simple_unlock(&uobj->vmobjlock);
983 	if (ap->a_m != NULL) {
984 		memcpy(ap->a_m, &pgs[ridx],
985 		    orignpages * sizeof(struct vm_page *));
986 	}
987 	if (pgs != pgs_onstack)
988 		free(pgs, M_DEVBUF);
989 	return (0);
990 }
991 
992 /*
993  * generic VM putpages routine.
994  * Write the given range of pages to backing store.
995  *
996  * => "offhi == 0" means flush all pages at or after "offlo".
997  * => object should be locked by caller.   we may _unlock_ the object
998  *	if (and only if) we need to clean a page (PGO_CLEANIT), or
999  *	if PGO_SYNCIO is set and there are pages busy.
1000  *	we return with the object locked.
1001  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
1002  *	thus, a caller might want to unlock higher level resources
1003  *	(e.g. vm_map) before calling flush.
1004  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
1005  *	unlock the object nor block.
1006  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
1007  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
1008  *	that new pages are inserted on the tail end of the list.   thus,
1009  *	we can make a complete pass through the object in one go by starting
1010  *	at the head and working towards the tail (new pages are put in
1011  *	front of us).
1012  * => NOTE: we are allowed to lock the page queues, so the caller
1013  *	must not be holding the page queue lock.
1014  *
1015  * note on "cleaning" object and PG_BUSY pages:
1016  *	this routine is holding the lock on the object.   the only time
1017  *	that it can run into a PG_BUSY page that it does not own is if
1018  *	some other process has started I/O on the page (e.g. either
1019  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
1020  *	in, then it can not be dirty (!PG_CLEAN) because no one has
1021  *	had a chance to modify it yet.    if the PG_BUSY page is being
1022  *	paged out then it means that someone else has already started
1023  *	cleaning the page for us (how nice!).    in this case, if we
1024  *	have syncio specified, then after we make our pass through the
1025  *	object we need to wait for the other PG_BUSY pages to clear
1026  *	off (i.e. we need to do an iosync).   also note that once a
1027  *	page is PG_BUSY it must stay in its object until it is un-busyed.
1028  *
1029  * note on page traversal:
1030  *	we can traverse the pages in an object either by going down the
1031  *	linked list in "uobj->memq", or we can go over the address range
1032  *	by page doing hash table lookups for each address.    depending
1033  *	on how many pages are in the object it may be cheaper to do one
1034  *	or the other.   we set "by_list" to true if we are using memq.
1035  *	if the cost of a hash lookup was equal to the cost of the list
1036  *	traversal we could compare the number of pages in the start->stop
1037  *	range to the total number of pages in the object.   however, it
1038  *	seems that a hash table lookup is more expensive than the linked
1039  *	list traversal, so we multiply the number of pages in the
1040  *	range by an estimate of the relatively higher cost of the hash lookup.
1041  */
1042 
1043 int
1044 genfs_putpages(void *v)
1045 {
1046 	struct vop_putpages_args /* {
1047 		struct vnode *a_vp;
1048 		voff_t a_offlo;
1049 		voff_t a_offhi;
1050 		int a_flags;
1051 	} */ *ap = v;
1052 	struct vnode *vp = ap->a_vp;
1053 	struct uvm_object *uobj = &vp->v_uobj;
1054 	struct simplelock *slock = &uobj->vmobjlock;
1055 	off_t startoff = ap->a_offlo;
1056 	off_t endoff = ap->a_offhi;
1057 	off_t off;
1058 	int flags = ap->a_flags;
1059 	/* Even for strange MAXPHYS, the shift rounds down to a page */
1060 	const int maxpages = MAXPHYS >> PAGE_SHIFT;
1061 	int i, s, error, npages, nback;
1062 	int freeflag;
1063 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1064 	boolean_t wasclean, by_list, needs_clean, yield;
1065 	boolean_t async = (flags & PGO_SYNCIO) == 0;
1066 	boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1067 	struct lwp *l = curlwp ? curlwp : &lwp0;
1068 
1069 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1070 
1071 	KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1072 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1073 	KASSERT(startoff < endoff || endoff == 0);
1074 
1075 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1076 	    vp, uobj->uo_npages, startoff, endoff - startoff);
1077 	if (uobj->uo_npages == 0) {
1078 		s = splbio();
1079 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1080 		    (vp->v_flag & VONWORKLST)) {
1081 			vp->v_flag &= ~VONWORKLST;
1082 			LIST_REMOVE(vp, v_synclist);
1083 		}
1084 		splx(s);
1085 		simple_unlock(slock);
1086 		return (0);
1087 	}
1088 
1089 	/*
1090 	 * the vnode has pages, set up to process the request.
1091 	 */
1092 
1093 	error = 0;
1094 	s = splbio();
1095 	simple_lock(&global_v_numoutput_slock);
1096 	wasclean = (vp->v_numoutput == 0);
1097 	simple_unlock(&global_v_numoutput_slock);
1098 	splx(s);
1099 	off = startoff;
1100 	if (endoff == 0 || flags & PGO_ALLPAGES) {
1101 		endoff = trunc_page(LLONG_MAX);
1102 	}
1103 	by_list = (uobj->uo_npages <=
1104 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1105 
1106 	/*
1107 	 * start the loop.  when scanning by list, hold the last page
1108 	 * in the list before we start.  pages allocated after we start
1109 	 * will be added to the end of the list, so we can stop at the
1110 	 * current last page.
1111 	 */
1112 
1113 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1114 	curmp.uobject = uobj;
1115 	curmp.offset = (voff_t)-1;
1116 	curmp.flags = PG_BUSY;
1117 	endmp.uobject = uobj;
1118 	endmp.offset = (voff_t)-1;
1119 	endmp.flags = PG_BUSY;
1120 	if (by_list) {
1121 		pg = TAILQ_FIRST(&uobj->memq);
1122 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1123 		PHOLD(l);
1124 	} else {
1125 		pg = uvm_pagelookup(uobj, off);
1126 	}
1127 	nextpg = NULL;
1128 	while (by_list || off < endoff) {
1129 
1130 		/*
1131 		 * if the current page is not interesting, move on to the next.
1132 		 */
1133 
1134 		KASSERT(pg == NULL || pg->uobject == uobj);
1135 		KASSERT(pg == NULL ||
1136 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1137 		    (pg->flags & PG_BUSY) != 0);
1138 		if (by_list) {
1139 			if (pg == &endmp) {
1140 				break;
1141 			}
1142 			if (pg->offset < startoff || pg->offset >= endoff ||
1143 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1144 				pg = TAILQ_NEXT(pg, listq);
1145 				continue;
1146 			}
1147 			off = pg->offset;
1148 		} else if (pg == NULL ||
1149 		    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1150 			off += PAGE_SIZE;
1151 			if (off < endoff) {
1152 				pg = uvm_pagelookup(uobj, off);
1153 			}
1154 			continue;
1155 		}
1156 
1157 		/*
1158 		 * if the current page needs to be cleaned and it's busy,
1159 		 * wait for it to become unbusy.
1160 		 */
1161 
1162 		yield = (l->l_cpu->ci_schedstate.spc_flags &
1163 		    SPCF_SHOULDYIELD) && !pagedaemon;
1164 		if (pg->flags & PG_BUSY || yield) {
1165 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1166 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1167 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1168 				error = EDEADLK;
1169 				break;
1170 			}
1171 			KASSERT(!pagedaemon);
1172 			if (by_list) {
1173 				TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1174 				UVMHIST_LOG(ubchist, "curmp next %p",
1175 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
1176 			}
1177 			if (yield) {
1178 				simple_unlock(slock);
1179 				preempt(1);
1180 				simple_lock(slock);
1181 			} else {
1182 				pg->flags |= PG_WANTED;
1183 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1184 				simple_lock(slock);
1185 			}
1186 			if (by_list) {
1187 				UVMHIST_LOG(ubchist, "after next %p",
1188 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
1189 				pg = TAILQ_NEXT(&curmp, listq);
1190 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1191 			} else {
1192 				pg = uvm_pagelookup(uobj, off);
1193 			}
1194 			continue;
1195 		}
1196 
1197 		/*
1198 		 * if we're freeing, remove all mappings of the page now.
1199 		 * if we're cleaning, check if the page is needs to be cleaned.
1200 		 */
1201 
1202 		if (flags & PGO_FREE) {
1203 			pmap_page_protect(pg, VM_PROT_NONE);
1204 		}
1205 		if (flags & PGO_CLEANIT) {
1206 			needs_clean = pmap_clear_modify(pg) ||
1207 			    (pg->flags & PG_CLEAN) == 0;
1208 			pg->flags |= PG_CLEAN;
1209 		} else {
1210 			needs_clean = FALSE;
1211 		}
1212 
1213 		/*
1214 		 * if we're cleaning, build a cluster.
1215 		 * the cluster will consist of pages which are currently dirty,
1216 		 * but they will be returned to us marked clean.
1217 		 * if not cleaning, just operate on the one page.
1218 		 */
1219 
1220 		if (needs_clean) {
1221 			wasclean = FALSE;
1222 			memset(pgs, 0, sizeof(pgs));
1223 			pg->flags |= PG_BUSY;
1224 			UVM_PAGE_OWN(pg, "genfs_putpages");
1225 
1226 			/*
1227 			 * first look backward.
1228 			 */
1229 
1230 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1231 			nback = npages;
1232 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1233 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1234 			if (nback) {
1235 				memmove(&pgs[0], &pgs[npages - nback],
1236 				    nback * sizeof(pgs[0]));
1237 				if (npages - nback < nback)
1238 					memset(&pgs[nback], 0,
1239 					    (npages - nback) * sizeof(pgs[0]));
1240 				else
1241 					memset(&pgs[npages - nback], 0,
1242 					    nback * sizeof(pgs[0]));
1243 			}
1244 
1245 			/*
1246 			 * then plug in our page of interest.
1247 			 */
1248 
1249 			pgs[nback] = pg;
1250 
1251 			/*
1252 			 * then look forward to fill in the remaining space in
1253 			 * the array of pages.
1254 			 */
1255 
1256 			npages = maxpages - nback - 1;
1257 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1258 			    &pgs[nback + 1],
1259 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1260 			npages += nback + 1;
1261 		} else {
1262 			pgs[0] = pg;
1263 			npages = 1;
1264 			nback = 0;
1265 		}
1266 
1267 		/*
1268 		 * apply FREE or DEACTIVATE options if requested.
1269 		 */
1270 
1271 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1272 			uvm_lock_pageq();
1273 		}
1274 		for (i = 0; i < npages; i++) {
1275 			tpg = pgs[i];
1276 			KASSERT(tpg->uobject == uobj);
1277 			if (by_list && tpg == TAILQ_NEXT(pg, listq))
1278 				pg = tpg;
1279 			if (tpg->offset < startoff || tpg->offset >= endoff)
1280 				continue;
1281 			if (flags & PGO_DEACTIVATE &&
1282 			    (tpg->pqflags & PQ_INACTIVE) == 0 &&
1283 			    tpg->wire_count == 0) {
1284 				(void) pmap_clear_reference(tpg);
1285 				uvm_pagedeactivate(tpg);
1286 			} else if (flags & PGO_FREE) {
1287 				pmap_page_protect(tpg, VM_PROT_NONE);
1288 				if (tpg->flags & PG_BUSY) {
1289 					tpg->flags |= freeflag;
1290 					if (pagedaemon) {
1291 						uvmexp.paging++;
1292 						uvm_pagedequeue(tpg);
1293 					}
1294 				} else {
1295 
1296 					/*
1297 					 * ``page is not busy''
1298 					 * implies that npages is 1
1299 					 * and needs_clean is false.
1300 					 */
1301 
1302 					nextpg = TAILQ_NEXT(tpg, listq);
1303 					uvm_pagefree(tpg);
1304 				}
1305 			}
1306 		}
1307 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1308 			uvm_unlock_pageq();
1309 		}
1310 		if (needs_clean) {
1311 
1312 			/*
1313 			 * start the i/o.  if we're traversing by list,
1314 			 * keep our place in the list with a marker page.
1315 			 */
1316 
1317 			if (by_list) {
1318 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1319 				    listq);
1320 			}
1321 			simple_unlock(slock);
1322 			error = GOP_WRITE(vp, pgs, npages, flags);
1323 			simple_lock(slock);
1324 			if (by_list) {
1325 				pg = TAILQ_NEXT(&curmp, listq);
1326 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1327 			}
1328 			if (error) {
1329 				break;
1330 			}
1331 			if (by_list) {
1332 				continue;
1333 			}
1334 		}
1335 
1336 		/*
1337 		 * find the next page and continue if there was no error.
1338 		 */
1339 
1340 		if (by_list) {
1341 			if (nextpg) {
1342 				pg = nextpg;
1343 				nextpg = NULL;
1344 			} else {
1345 				pg = TAILQ_NEXT(pg, listq);
1346 			}
1347 		} else {
1348 			off += (npages - nback) << PAGE_SHIFT;
1349 			if (off < endoff) {
1350 				pg = uvm_pagelookup(uobj, off);
1351 			}
1352 		}
1353 	}
1354 	if (by_list) {
1355 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1356 		PRELE(l);
1357 	}
1358 
1359 	/*
1360 	 * if we're cleaning and there was nothing to clean,
1361 	 * take us off the syncer list.  if we started any i/o
1362 	 * and we're doing sync i/o, wait for all writes to finish.
1363 	 */
1364 
1365 	s = splbio();
1366 	if ((flags & PGO_CLEANIT) && wasclean &&
1367 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1368 	    LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1369 	    (vp->v_flag & VONWORKLST)) {
1370 		vp->v_flag &= ~VONWORKLST;
1371 		LIST_REMOVE(vp, v_synclist);
1372 	}
1373 	splx(s);
1374 	if (!wasclean && !async) {
1375 		s = splbio();
1376 		/*
1377 		 * XXX - we want simple_unlock(&global_v_numoutput_slock);
1378 		 *	 but the slot in ltsleep() is taken!
1379 		 * XXX - try to recover from missed wakeups with a timeout..
1380 		 *	 must think of something better.
1381 		 */
1382 		while (vp->v_numoutput != 0) {
1383 			vp->v_flag |= VBWAIT;
1384 			UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1385 			    "genput2", hz);
1386 			simple_lock(slock);
1387 		}
1388 		splx(s);
1389 	}
1390 	simple_unlock(&uobj->vmobjlock);
1391 	return (error);
1392 }
1393 
1394 int
1395 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1396 {
1397 	int s, error, run;
1398 	int fs_bshift, dev_bshift;
1399 	vaddr_t kva;
1400 	off_t eof, offset, startoffset;
1401 	size_t bytes, iobytes, skipbytes;
1402 	daddr_t lbn, blkno;
1403 	struct vm_page *pg;
1404 	struct buf *mbp, *bp;
1405 	struct vnode *devvp;
1406 	boolean_t async = (flags & PGO_SYNCIO) == 0;
1407 	UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
1408 
1409 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1410 	    vp, pgs, npages, flags);
1411 
1412 	GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_WRITE);
1413 	if (vp->v_type == VREG) {
1414 		fs_bshift = vp->v_mount->mnt_fs_bshift;
1415 		dev_bshift = vp->v_mount->mnt_dev_bshift;
1416 	} else {
1417 		fs_bshift = DEV_BSHIFT;
1418 		dev_bshift = DEV_BSHIFT;
1419 	}
1420 	error = 0;
1421 	pg = pgs[0];
1422 	startoffset = pg->offset;
1423 	bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1424 	skipbytes = 0;
1425 	KASSERT(bytes != 0);
1426 
1427 	kva = uvm_pagermapin(pgs, npages,
1428 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1429 
1430 	s = splbio();
1431 	simple_lock(&global_v_numoutput_slock);
1432 	vp->v_numoutput += 2;
1433 	simple_unlock(&global_v_numoutput_slock);
1434 	mbp = pool_get(&bufpool, PR_WAITOK);
1435 	BUF_INIT(mbp);
1436 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1437 	    vp, mbp, vp->v_numoutput, bytes);
1438 	splx(s);
1439 	mbp->b_bufsize = npages << PAGE_SHIFT;
1440 	mbp->b_data = (void *)kva;
1441 	mbp->b_resid = mbp->b_bcount = bytes;
1442 	mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
1443 	mbp->b_iodone = uvm_aio_biodone;
1444 	mbp->b_vp = vp;
1445 
1446 	bp = NULL;
1447 	for (offset = startoffset;
1448 	    bytes > 0;
1449 	    offset += iobytes, bytes -= iobytes) {
1450 		lbn = offset >> fs_bshift;
1451 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1452 		if (error) {
1453 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1454 			skipbytes += bytes;
1455 			bytes = 0;
1456 			break;
1457 		}
1458 
1459 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1460 		    bytes);
1461 		if (blkno == (daddr_t)-1) {
1462 			skipbytes += iobytes;
1463 			continue;
1464 		}
1465 
1466 		/* if it's really one i/o, don't make a second buf */
1467 		if (offset == startoffset && iobytes == bytes) {
1468 			bp = mbp;
1469 		} else {
1470 			s = splbio();
1471 			V_INCR_NUMOUTPUT(vp);
1472 			bp = pool_get(&bufpool, PR_WAITOK);
1473 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1474 			    vp, bp, vp->v_numoutput, 0);
1475 			splx(s);
1476 			BUF_INIT(bp);
1477 			bp->b_data = (char *)kva +
1478 			    (vaddr_t)(offset - pg->offset);
1479 			bp->b_resid = bp->b_bcount = iobytes;
1480 			bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
1481 			bp->b_iodone = uvm_aio_biodone1;
1482 			bp->b_vp = vp;
1483 		}
1484 		bp->b_lblkno = 0;
1485 		bp->b_private = mbp;
1486 		if (devvp->v_type == VBLK) {
1487 			bp->b_dev = devvp->v_rdev;
1488 		}
1489 
1490 		/* adjust physical blkno for partial blocks */
1491 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1492 		    dev_bshift);
1493 		UVMHIST_LOG(ubchist,
1494 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1495 		    vp, offset, bp->b_bcount, bp->b_blkno);
1496 		VOP_STRATEGY(bp);
1497 	}
1498 	if (skipbytes) {
1499 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1500 		s = splbio();
1501 		if (error) {
1502 			mbp->b_flags |= B_ERROR;
1503 			mbp->b_error = error;
1504 		}
1505 		mbp->b_resid -= skipbytes;
1506 		if (mbp->b_resid == 0) {
1507 			biodone(mbp);
1508 		}
1509 		splx(s);
1510 	}
1511 	if (async) {
1512 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1513 		return (0);
1514 	}
1515 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1516 	error = biowait(mbp);
1517 	uvm_aio_aiodone(mbp);
1518 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1519 	return (error);
1520 }
1521 
1522 /*
1523  * VOP_PUTPAGES() for vnodes which never have pages.
1524  */
1525 
1526 int
1527 genfs_null_putpages(void *v)
1528 {
1529 	struct vop_putpages_args /* {
1530 		struct vnode *a_vp;
1531 		voff_t a_offlo;
1532 		voff_t a_offhi;
1533 		int a_flags;
1534 	} */ *ap = v;
1535 	struct vnode *vp = ap->a_vp;
1536 
1537 	KASSERT(vp->v_uobj.uo_npages == 0);
1538 	simple_unlock(&vp->v_interlock);
1539 	return (0);
1540 }
1541 
1542 void
1543 genfs_node_init(struct vnode *vp, struct genfs_ops *ops)
1544 {
1545 	struct genfs_node *gp = VTOG(vp);
1546 
1547 	lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1548 	gp->g_op = ops;
1549 }
1550 
1551 void
1552 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1553 {
1554 	int bsize;
1555 
1556 	bsize = 1 << vp->v_mount->mnt_fs_bshift;
1557 	*eobp = (size + bsize - 1) & ~(bsize - 1);
1558 }
1559 
1560 int
1561 genfs_compat_getpages(void *v)
1562 {
1563 	struct vop_getpages_args /* {
1564 		struct vnode *a_vp;
1565 		voff_t a_offset;
1566 		struct vm_page **a_m;
1567 		int *a_count;
1568 		int a_centeridx;
1569 		vm_prot_t a_access_type;
1570 		int a_advice;
1571 		int a_flags;
1572 	} */ *ap = v;
1573 
1574 	off_t origoffset;
1575 	struct vnode *vp = ap->a_vp;
1576 	struct uvm_object *uobj = &vp->v_uobj;
1577 	struct vm_page *pg, **pgs;
1578 	vaddr_t kva;
1579 	int i, error, orignpages, npages;
1580 	struct iovec iov;
1581 	struct uio uio;
1582 	struct ucred *cred = curproc->p_ucred;
1583 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1584 
1585 	error = 0;
1586 	origoffset = ap->a_offset;
1587 	orignpages = *ap->a_count;
1588 	pgs = ap->a_m;
1589 
1590 	if (write && (vp->v_flag & VONWORKLST) == 0) {
1591 		vn_syncer_add_to_worklist(vp, filedelay);
1592 	}
1593 	if (ap->a_flags & PGO_LOCKED) {
1594 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1595 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1596 
1597 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1598 	}
1599 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1600 		simple_unlock(&uobj->vmobjlock);
1601 		return (EINVAL);
1602 	}
1603 	npages = orignpages;
1604 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1605 	simple_unlock(&uobj->vmobjlock);
1606 	kva = uvm_pagermapin(pgs, npages,
1607 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1608 	for (i = 0; i < npages; i++) {
1609 		pg = pgs[i];
1610 		if ((pg->flags & PG_FAKE) == 0) {
1611 			continue;
1612 		}
1613 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1614 		iov.iov_len = PAGE_SIZE;
1615 		uio.uio_iov = &iov;
1616 		uio.uio_iovcnt = 1;
1617 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1618 		uio.uio_segflg = UIO_SYSSPACE;
1619 		uio.uio_rw = UIO_READ;
1620 		uio.uio_resid = PAGE_SIZE;
1621 		uio.uio_procp = curproc;
1622 		error = VOP_READ(vp, &uio, 0, cred);
1623 		if (error) {
1624 			break;
1625 		}
1626 		if (uio.uio_resid) {
1627 			memset(iov.iov_base, 0, uio.uio_resid);
1628 		}
1629 	}
1630 	uvm_pagermapout(kva, npages);
1631 	simple_lock(&uobj->vmobjlock);
1632 	uvm_lock_pageq();
1633 	for (i = 0; i < npages; i++) {
1634 		pg = pgs[i];
1635 		if (error && (pg->flags & PG_FAKE) != 0) {
1636 			pg->flags |= PG_RELEASED;
1637 		} else {
1638 			pmap_clear_modify(pg);
1639 			uvm_pageactivate(pg);
1640 		}
1641 	}
1642 	if (error) {
1643 		uvm_page_unbusy(pgs, npages);
1644 	}
1645 	uvm_unlock_pageq();
1646 	simple_unlock(&uobj->vmobjlock);
1647 	return (error);
1648 }
1649 
1650 int
1651 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1652     int flags)
1653 {
1654 	off_t offset;
1655 	struct iovec iov;
1656 	struct uio uio;
1657 	struct ucred *cred = curproc->p_ucred;
1658 	struct buf *bp;
1659 	vaddr_t kva;
1660 	int s, error;
1661 
1662 	offset = pgs[0]->offset;
1663 	kva = uvm_pagermapin(pgs, npages,
1664 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1665 
1666 	iov.iov_base = (void *)kva;
1667 	iov.iov_len = npages << PAGE_SHIFT;
1668 	uio.uio_iov = &iov;
1669 	uio.uio_iovcnt = 1;
1670 	uio.uio_offset = offset;
1671 	uio.uio_segflg = UIO_SYSSPACE;
1672 	uio.uio_rw = UIO_WRITE;
1673 	uio.uio_resid = npages << PAGE_SHIFT;
1674 	uio.uio_procp = curproc;
1675 	error = VOP_WRITE(vp, &uio, 0, cred);
1676 
1677 	s = splbio();
1678 	V_INCR_NUMOUTPUT(vp);
1679 	bp = pool_get(&bufpool, PR_WAITOK);
1680 	splx(s);
1681 
1682 	BUF_INIT(bp);
1683 	bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1684 	bp->b_vp = vp;
1685 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1686 	bp->b_data = (char *)kva;
1687 	bp->b_bcount = npages << PAGE_SHIFT;
1688 	bp->b_bufsize = npages << PAGE_SHIFT;
1689 	bp->b_resid = 0;
1690 	if (error) {
1691 		bp->b_flags |= B_ERROR;
1692 		bp->b_error = error;
1693 	}
1694 	uvm_aio_aiodone(bp);
1695 	return (error);
1696 }
1697 
1698 static void
1699 filt_genfsdetach(struct knote *kn)
1700 {
1701 	struct vnode *vp = (struct vnode *)kn->kn_hook;
1702 
1703 	/* XXXLUKEM lock the struct? */
1704 	SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
1705 }
1706 
1707 static int
1708 filt_genfsread(struct knote *kn, long hint)
1709 {
1710 	struct vnode *vp = (struct vnode *)kn->kn_hook;
1711 
1712 	/*
1713 	 * filesystem is gone, so set the EOF flag and schedule
1714 	 * the knote for deletion.
1715 	 */
1716 	if (hint == NOTE_REVOKE) {
1717 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1718 		return (1);
1719 	}
1720 
1721 	/* XXXLUKEM lock the struct? */
1722 	kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
1723         return (kn->kn_data != 0);
1724 }
1725 
1726 static int
1727 filt_genfsvnode(struct knote *kn, long hint)
1728 {
1729 
1730 	if (kn->kn_sfflags & hint)
1731 		kn->kn_fflags |= hint;
1732 	if (hint == NOTE_REVOKE) {
1733 		kn->kn_flags |= EV_EOF;
1734 		return (1);
1735 	}
1736 	return (kn->kn_fflags != 0);
1737 }
1738 
1739 static const struct filterops genfsread_filtops =
1740 	{ 1, NULL, filt_genfsdetach, filt_genfsread };
1741 static const struct filterops genfsvnode_filtops =
1742 	{ 1, NULL, filt_genfsdetach, filt_genfsvnode };
1743 
1744 int
1745 genfs_kqfilter(void *v)
1746 {
1747 	struct vop_kqfilter_args /* {
1748 		struct vnode	*a_vp;
1749 		struct knote	*a_kn;
1750 	} */ *ap = v;
1751 	struct vnode *vp;
1752 	struct knote *kn;
1753 
1754 	vp = ap->a_vp;
1755 	kn = ap->a_kn;
1756 	switch (kn->kn_filter) {
1757 	case EVFILT_READ:
1758 		kn->kn_fop = &genfsread_filtops;
1759 		break;
1760 	case EVFILT_VNODE:
1761 		kn->kn_fop = &genfsvnode_filtops;
1762 		break;
1763 	default:
1764 		return (1);
1765 	}
1766 
1767 	kn->kn_hook = vp;
1768 
1769 	/* XXXLUKEM lock the struct? */
1770 	SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
1771 
1772 	return (0);
1773 }
1774