xref: /netbsd-src/sys/miscfs/genfs/genfs_vnops.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*	$NetBSD: genfs_vnops.c,v 1.136 2006/10/14 09:16:28 yamt Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.136 2006/10/14 09:16:28 yamt Exp $");
35 
36 #if defined(_KERNEL_OPT)
37 #include "opt_nfsserver.h"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/mount.h>
45 #include <sys/namei.h>
46 #include <sys/vnode.h>
47 #include <sys/fcntl.h>
48 #include <sys/kmem.h>
49 #include <sys/poll.h>
50 #include <sys/mman.h>
51 #include <sys/file.h>
52 #include <sys/kauth.h>
53 
54 #include <miscfs/genfs/genfs.h>
55 #include <miscfs/genfs/genfs_node.h>
56 #include <miscfs/specfs/specdev.h>
57 
58 #include <uvm/uvm.h>
59 #include <uvm/uvm_pager.h>
60 
61 #ifdef NFSSERVER
62 #include <nfs/rpcv2.h>
63 #include <nfs/nfsproto.h>
64 #include <nfs/nfs.h>
65 #include <nfs/nqnfs.h>
66 #include <nfs/nfs_var.h>
67 #endif
68 
69 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
70     off_t, enum uio_rw);
71 static void genfs_dio_iodone(struct buf *);
72 
73 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
74     void (*)(struct buf *));
75 static inline void genfs_rel_pages(struct vm_page **, int);
76 static void filt_genfsdetach(struct knote *);
77 static int filt_genfsread(struct knote *, long);
78 static int filt_genfsvnode(struct knote *, long);
79 
80 #define MAX_READ_PAGES	16 	/* XXXUBC 16 */
81 
82 int genfs_maxdio = MAXPHYS;
83 
84 int
85 genfs_poll(void *v)
86 {
87 	struct vop_poll_args /* {
88 		struct vnode *a_vp;
89 		int a_events;
90 		struct lwp *a_l;
91 	} */ *ap = v;
92 
93 	return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
94 }
95 
96 int
97 genfs_seek(void *v)
98 {
99 	struct vop_seek_args /* {
100 		struct vnode *a_vp;
101 		off_t a_oldoff;
102 		off_t a_newoff;
103 		kauth_cred_t cred;
104 	} */ *ap = v;
105 
106 	if (ap->a_newoff < 0)
107 		return (EINVAL);
108 
109 	return (0);
110 }
111 
112 int
113 genfs_abortop(void *v)
114 {
115 	struct vop_abortop_args /* {
116 		struct vnode *a_dvp;
117 		struct componentname *a_cnp;
118 	} */ *ap = v;
119 
120 	if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
121 		PNBUF_PUT(ap->a_cnp->cn_pnbuf);
122 	return (0);
123 }
124 
125 int
126 genfs_fcntl(void *v)
127 {
128 	struct vop_fcntl_args /* {
129 		struct vnode *a_vp;
130 		u_int a_command;
131 		caddr_t a_data;
132 		int a_fflag;
133 		kauth_cred_t a_cred;
134 		struct lwp *a_l;
135 	} */ *ap = v;
136 
137 	if (ap->a_command == F_SETFL)
138 		return (0);
139 	else
140 		return (EOPNOTSUPP);
141 }
142 
143 /*ARGSUSED*/
144 int
145 genfs_badop(void *v __unused)
146 {
147 
148 	panic("genfs: bad op");
149 }
150 
151 /*ARGSUSED*/
152 int
153 genfs_nullop(void *v __unused)
154 {
155 
156 	return (0);
157 }
158 
159 /*ARGSUSED*/
160 int
161 genfs_einval(void *v __unused)
162 {
163 
164 	return (EINVAL);
165 }
166 
167 /*
168  * Called when an fs doesn't support a particular vop.
169  * This takes care to vrele, vput, or vunlock passed in vnodes.
170  */
171 int
172 genfs_eopnotsupp(void *v)
173 {
174 	struct vop_generic_args /*
175 		struct vnodeop_desc *a_desc;
176 		/ * other random data follows, presumably * /
177 	} */ *ap = v;
178 	struct vnodeop_desc *desc = ap->a_desc;
179 	struct vnode *vp, *vp_last = NULL;
180 	int flags, i, j, offset;
181 
182 	flags = desc->vdesc_flags;
183 	for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
184 		if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
185 			break;	/* stop at end of list */
186 		if ((j = flags & VDESC_VP0_WILLPUT)) {
187 			vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
188 
189 			/* Skip if NULL */
190 			if (!vp)
191 				continue;
192 
193 			switch (j) {
194 			case VDESC_VP0_WILLPUT:
195 				/* Check for dvp == vp cases */
196 				if (vp == vp_last)
197 					vrele(vp);
198 				else {
199 					vput(vp);
200 					vp_last = vp;
201 				}
202 				break;
203 			case VDESC_VP0_WILLUNLOCK:
204 				VOP_UNLOCK(vp, 0);
205 				break;
206 			case VDESC_VP0_WILLRELE:
207 				vrele(vp);
208 				break;
209 			}
210 		}
211 	}
212 
213 	return (EOPNOTSUPP);
214 }
215 
216 /*ARGSUSED*/
217 int
218 genfs_ebadf(void *v __unused)
219 {
220 
221 	return (EBADF);
222 }
223 
224 /* ARGSUSED */
225 int
226 genfs_enoioctl(void *v __unused)
227 {
228 
229 	return (EPASSTHROUGH);
230 }
231 
232 
233 /*
234  * Eliminate all activity associated with the requested vnode
235  * and with all vnodes aliased to the requested vnode.
236  */
237 int
238 genfs_revoke(void *v)
239 {
240 	struct vop_revoke_args /* {
241 		struct vnode *a_vp;
242 		int a_flags;
243 	} */ *ap = v;
244 	struct vnode *vp, *vq;
245 	struct lwp *l = curlwp;		/* XXX */
246 
247 #ifdef DIAGNOSTIC
248 	if ((ap->a_flags & REVOKEALL) == 0)
249 		panic("genfs_revoke: not revokeall");
250 #endif
251 
252 	vp = ap->a_vp;
253 	simple_lock(&vp->v_interlock);
254 
255 	if (vp->v_flag & VALIASED) {
256 		/*
257 		 * If a vgone (or vclean) is already in progress,
258 		 * wait until it is done and return.
259 		 */
260 		if (vp->v_flag & VXLOCK) {
261 			vp->v_flag |= VXWANT;
262 			ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
263 				&vp->v_interlock);
264 			return (0);
265 		}
266 		/*
267 		 * Ensure that vp will not be vgone'd while we
268 		 * are eliminating its aliases.
269 		 */
270 		vp->v_flag |= VXLOCK;
271 		simple_unlock(&vp->v_interlock);
272 		while (vp->v_flag & VALIASED) {
273 			simple_lock(&spechash_slock);
274 			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
275 				if (vq->v_rdev != vp->v_rdev ||
276 				    vq->v_type != vp->v_type || vp == vq)
277 					continue;
278 				simple_unlock(&spechash_slock);
279 				vgone(vq);
280 				break;
281 			}
282 			if (vq == NULLVP)
283 				simple_unlock(&spechash_slock);
284 		}
285 		/*
286 		 * Remove the lock so that vgone below will
287 		 * really eliminate the vnode after which time
288 		 * vgone will awaken any sleepers.
289 		 */
290 		simple_lock(&vp->v_interlock);
291 		vp->v_flag &= ~VXLOCK;
292 	}
293 	vgonel(vp, l);
294 	return (0);
295 }
296 
297 /*
298  * Lock the node.
299  */
300 int
301 genfs_lock(void *v)
302 {
303 	struct vop_lock_args /* {
304 		struct vnode *a_vp;
305 		int a_flags;
306 	} */ *ap = v;
307 	struct vnode *vp = ap->a_vp;
308 
309 	return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
310 }
311 
312 /*
313  * Unlock the node.
314  */
315 int
316 genfs_unlock(void *v)
317 {
318 	struct vop_unlock_args /* {
319 		struct vnode *a_vp;
320 		int a_flags;
321 	} */ *ap = v;
322 	struct vnode *vp = ap->a_vp;
323 
324 	return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
325 	    &vp->v_interlock));
326 }
327 
328 /*
329  * Return whether or not the node is locked.
330  */
331 int
332 genfs_islocked(void *v)
333 {
334 	struct vop_islocked_args /* {
335 		struct vnode *a_vp;
336 	} */ *ap = v;
337 	struct vnode *vp = ap->a_vp;
338 
339 	return (lockstatus(vp->v_vnlock));
340 }
341 
342 /*
343  * Stubs to use when there is no locking to be done on the underlying object.
344  */
345 int
346 genfs_nolock(void *v)
347 {
348 	struct vop_lock_args /* {
349 		struct vnode *a_vp;
350 		int a_flags;
351 		struct lwp *a_l;
352 	} */ *ap = v;
353 
354 	/*
355 	 * Since we are not using the lock manager, we must clear
356 	 * the interlock here.
357 	 */
358 	if (ap->a_flags & LK_INTERLOCK)
359 		simple_unlock(&ap->a_vp->v_interlock);
360 	return (0);
361 }
362 
363 int
364 genfs_nounlock(void *v __unused)
365 {
366 
367 	return (0);
368 }
369 
370 int
371 genfs_noislocked(void *v __unused)
372 {
373 
374 	return (0);
375 }
376 
377 /*
378  * Local lease check for NFS servers.  Just set up args and let
379  * nqsrv_getlease() do the rest.  If NFSSERVER is not in the kernel,
380  * this is a null operation.
381  */
382 int
383 genfs_lease_check(void *v)
384 {
385 #ifdef NFSSERVER
386 	struct vop_lease_args /* {
387 		struct vnode *a_vp;
388 		struct lwp *a_l;
389 		kauth_cred_t a_cred;
390 		int a_flag;
391 	} */ *ap = v;
392 	u_int32_t duration = 0;
393 	int cache;
394 	u_quad_t frev;
395 
396 	(void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
397 	    NQLOCALSLP, ap->a_l, (struct mbuf *)0, &cache, &frev, ap->a_cred);
398 	return (0);
399 #else
400 	(void) v;
401 	return (0);
402 #endif /* NFSSERVER */
403 }
404 
405 int
406 genfs_mmap(void *v __unused)
407 {
408 
409 	return (0);
410 }
411 
412 static inline void
413 genfs_rel_pages(struct vm_page **pgs, int npages)
414 {
415 	int i;
416 
417 	for (i = 0; i < npages; i++) {
418 		struct vm_page *pg = pgs[i];
419 
420 		if (pg == NULL || pg == PGO_DONTCARE)
421 			continue;
422 		if (pg->flags & PG_FAKE) {
423 			pg->flags |= PG_RELEASED;
424 		}
425 	}
426 	uvm_lock_pageq();
427 	uvm_page_unbusy(pgs, npages);
428 	uvm_unlock_pageq();
429 }
430 
431 /*
432  * generic VM getpages routine.
433  * Return PG_BUSY pages for the given range,
434  * reading from backing store if necessary.
435  */
436 
437 int
438 genfs_getpages(void *v)
439 {
440 	struct vop_getpages_args /* {
441 		struct vnode *a_vp;
442 		voff_t a_offset;
443 		struct vm_page **a_m;
444 		int *a_count;
445 		int a_centeridx;
446 		vm_prot_t a_access_type;
447 		int a_advice;
448 		int a_flags;
449 	} */ *ap = v;
450 
451 	off_t newsize, diskeof, memeof;
452 	off_t offset, origoffset, startoffset, endoffset;
453 	daddr_t lbn, blkno;
454 	int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
455 	int fs_bshift, fs_bsize, dev_bshift;
456 	int flags = ap->a_flags;
457 	size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
458 	vaddr_t kva;
459 	struct buf *bp, *mbp;
460 	struct vnode *vp = ap->a_vp;
461 	struct vnode *devvp;
462 	struct genfs_node *gp = VTOG(vp);
463 	struct uvm_object *uobj = &vp->v_uobj;
464 	struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES];
465 	int pgs_size;
466 	kauth_cred_t cred = curlwp->l_cred;		/* XXXUBC curlwp */
467 	boolean_t async = (flags & PGO_SYNCIO) == 0;
468 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
469 	boolean_t sawhole = FALSE;
470 	boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
471 	boolean_t blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
472 	voff_t origvsize;
473 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
474 
475 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
476 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
477 
478 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
479 	    vp->v_type == VLNK || vp->v_type == VBLK);
480 
481 	/* XXXUBC temp limit */
482 	if (*ap->a_count > MAX_READ_PAGES) {
483 		panic("genfs_getpages: too many pages");
484 	}
485 
486 startover:
487 	error = 0;
488 	origvsize = vp->v_size;
489 	origoffset = ap->a_offset;
490 	orignpages = *ap->a_count;
491 	GOP_SIZE(vp, vp->v_size, &diskeof, 0);
492 	if (flags & PGO_PASTEOF) {
493 		newsize = MAX(vp->v_size,
494 		    origoffset + (orignpages << PAGE_SHIFT));
495 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
496 	} else {
497 		GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_MEM);
498 	}
499 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
500 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
501 	KASSERT(orignpages > 0);
502 
503 	/*
504 	 * Bounds-check the request.
505 	 */
506 
507 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
508 		if ((flags & PGO_LOCKED) == 0) {
509 			simple_unlock(&uobj->vmobjlock);
510 		}
511 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
512 		    origoffset, *ap->a_count, memeof,0);
513 		return (EINVAL);
514 	}
515 
516 	/* uobj is locked */
517 
518 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
519 	    (vp->v_type != VBLK ||
520 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
521 		int updflags = 0;
522 
523 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
524 			updflags = GOP_UPDATE_ACCESSED;
525 		}
526 		if (write) {
527 			updflags |= GOP_UPDATE_MODIFIED;
528 		}
529 		if (updflags != 0) {
530 			GOP_MARKUPDATE(vp, updflags);
531 		}
532 	}
533 
534 	if (write) {
535 		gp->g_dirtygen++;
536 		if ((vp->v_flag & VONWORKLST) == 0) {
537 			vn_syncer_add_to_worklist(vp, filedelay);
538 		}
539 		if ((vp->v_flag & (VWRITEMAP|VWRITEMAPDIRTY)) == VWRITEMAP) {
540 			vp->v_flag |= VWRITEMAPDIRTY;
541 		}
542 	}
543 
544 	/*
545 	 * For PGO_LOCKED requests, just return whatever's in memory.
546 	 */
547 
548 	if (flags & PGO_LOCKED) {
549 		int nfound;
550 
551 		npages = *ap->a_count;
552 #if defined(DEBUG)
553 		for (i = 0; i < npages; i++) {
554 			pg = ap->a_m[i];
555 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
556 		}
557 #endif /* defined(DEBUG) */
558 		nfound = uvn_findpages(uobj, origoffset, &npages,
559 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
560 		KASSERT(npages == *ap->a_count);
561 		if (nfound == 0) {
562 			return EBUSY;
563 		}
564 		if (lockmgr(&gp->g_glock, LK_SHARED | LK_NOWAIT, NULL)) {
565 			genfs_rel_pages(ap->a_m, npages);
566 
567 			/*
568 			 * restore the array.
569 			 */
570 
571 			for (i = 0; i < npages; i++) {
572 				pg = ap->a_m[i];
573 
574 				if (pg != NULL || pg != PGO_DONTCARE) {
575 					ap->a_m[i] = NULL;
576 				}
577 			}
578 		} else {
579 			lockmgr(&gp->g_glock, LK_RELEASE, NULL);
580 		}
581 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
582 	}
583 	simple_unlock(&uobj->vmobjlock);
584 
585 	/*
586 	 * find the requested pages and make some simple checks.
587 	 * leave space in the page array for a whole block.
588 	 */
589 
590 	if (vp->v_type != VBLK) {
591 		fs_bshift = vp->v_mount->mnt_fs_bshift;
592 		dev_bshift = vp->v_mount->mnt_dev_bshift;
593 	} else {
594 		fs_bshift = DEV_BSHIFT;
595 		dev_bshift = DEV_BSHIFT;
596 	}
597 	fs_bsize = 1 << fs_bshift;
598 
599 	orignpages = MIN(orignpages,
600 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
601 	npages = orignpages;
602 	startoffset = origoffset & ~(fs_bsize - 1);
603 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
604 	    fs_bsize - 1) & ~(fs_bsize - 1));
605 	endoffset = MIN(endoffset, round_page(memeof));
606 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
607 
608 	pgs_size = sizeof(struct vm_page *) *
609 	    ((endoffset - startoffset) >> PAGE_SHIFT);
610 	if (pgs_size > sizeof(pgs_onstack)) {
611 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
612 		if (pgs == NULL) {
613 			return (ENOMEM);
614 		}
615 	} else {
616 		pgs = pgs_onstack;
617 		memset(pgs, 0, pgs_size);
618 	}
619 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
620 	    ridx, npages, startoffset, endoffset);
621 
622 	/*
623 	 * hold g_glock to prevent a race with truncate.
624 	 *
625 	 * check if our idea of v_size is still valid.
626 	 */
627 
628 	if (blockalloc) {
629 		lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
630 	} else {
631 		lockmgr(&gp->g_glock, LK_SHARED, NULL);
632 	}
633 	simple_lock(&uobj->vmobjlock);
634 	if (vp->v_size < origvsize) {
635 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
636 		if (pgs != pgs_onstack)
637 			kmem_free(pgs, pgs_size);
638 		goto startover;
639 	}
640 
641 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
642 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
643 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
644 		KASSERT(async != 0);
645 		genfs_rel_pages(&pgs[ridx], orignpages);
646 		simple_unlock(&uobj->vmobjlock);
647 		if (pgs != pgs_onstack)
648 			kmem_free(pgs, pgs_size);
649 		return (EBUSY);
650 	}
651 
652 	/*
653 	 * if the pages are already resident, just return them.
654 	 */
655 
656 	for (i = 0; i < npages; i++) {
657 		struct vm_page *pg1 = pgs[ridx + i];
658 
659 		if ((pg1->flags & PG_FAKE) ||
660 		    (blockalloc && (pg1->flags & PG_RDONLY))) {
661 			break;
662 		}
663 	}
664 	if (i == npages) {
665 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
666 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
667 		npages += ridx;
668 		goto out;
669 	}
670 
671 	/*
672 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
673 	 */
674 
675 	if (overwrite) {
676 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
677 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
678 
679 		for (i = 0; i < npages; i++) {
680 			struct vm_page *pg1 = pgs[ridx + i];
681 
682 			pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
683 		}
684 		npages += ridx;
685 		goto out;
686 	}
687 
688 	/*
689 	 * the page wasn't resident and we're not overwriting,
690 	 * so we're going to have to do some i/o.
691 	 * find any additional pages needed to cover the expanded range.
692 	 */
693 
694 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
695 	if (startoffset != origoffset || npages != orignpages) {
696 
697 		/*
698 		 * we need to avoid deadlocks caused by locking
699 		 * additional pages at lower offsets than pages we
700 		 * already have locked.  unlock them all and start over.
701 		 */
702 
703 		genfs_rel_pages(&pgs[ridx], orignpages);
704 		memset(pgs, 0, pgs_size);
705 
706 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
707 		    startoffset, endoffset, 0,0);
708 		npgs = npages;
709 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
710 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
711 			lockmgr(&gp->g_glock, LK_RELEASE, NULL);
712 			KASSERT(async != 0);
713 			genfs_rel_pages(pgs, npages);
714 			simple_unlock(&uobj->vmobjlock);
715 			if (pgs != pgs_onstack)
716 				kmem_free(pgs, pgs_size);
717 			return (EBUSY);
718 		}
719 	}
720 	simple_unlock(&uobj->vmobjlock);
721 
722 	/*
723 	 * read the desired page(s).
724 	 */
725 
726 	totalbytes = npages << PAGE_SHIFT;
727 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
728 	tailbytes = totalbytes - bytes;
729 	skipbytes = 0;
730 
731 	kva = uvm_pagermapin(pgs, npages,
732 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
733 
734 	mbp = getiobuf();
735 	mbp->b_bufsize = totalbytes;
736 	mbp->b_data = (void *)kva;
737 	mbp->b_resid = mbp->b_bcount = bytes;
738 	mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
739 	mbp->b_iodone = (async ? uvm_aio_biodone : 0);
740 	mbp->b_vp = vp;
741 	if (async)
742 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
743 	else
744 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
745 
746 	/*
747 	 * if EOF is in the middle of the range, zero the part past EOF.
748 	 * if the page including EOF is not PG_FAKE, skip over it since
749 	 * in that case it has valid data that we need to preserve.
750 	 */
751 
752 	if (tailbytes > 0) {
753 		size_t tailstart = bytes;
754 
755 		if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
756 			tailstart = round_page(tailstart);
757 			tailbytes -= tailstart - bytes;
758 		}
759 		UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
760 		    kva, tailstart, tailbytes,0);
761 		memset((void *)(kva + tailstart), 0, tailbytes);
762 	}
763 
764 	/*
765 	 * now loop over the pages, reading as needed.
766 	 */
767 
768 	bp = NULL;
769 	for (offset = startoffset;
770 	    bytes > 0;
771 	    offset += iobytes, bytes -= iobytes) {
772 
773 		/*
774 		 * skip pages which don't need to be read.
775 		 */
776 
777 		pidx = (offset - startoffset) >> PAGE_SHIFT;
778 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
779 			size_t b;
780 
781 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
782 			if ((pgs[pidx]->flags & PG_RDONLY)) {
783 				sawhole = TRUE;
784 			}
785 			b = MIN(PAGE_SIZE, bytes);
786 			offset += b;
787 			bytes -= b;
788 			skipbytes += b;
789 			pidx++;
790 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
791 			    offset, 0,0,0);
792 			if (bytes == 0) {
793 				goto loopdone;
794 			}
795 		}
796 
797 		/*
798 		 * bmap the file to find out the blkno to read from and
799 		 * how much we can read in one i/o.  if bmap returns an error,
800 		 * skip the rest of the top-level i/o.
801 		 */
802 
803 		lbn = offset >> fs_bshift;
804 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
805 		if (error) {
806 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
807 			    lbn, error,0,0);
808 			skipbytes += bytes;
809 			goto loopdone;
810 		}
811 
812 		/*
813 		 * see how many pages can be read with this i/o.
814 		 * reduce the i/o size if necessary to avoid
815 		 * overwriting pages with valid data.
816 		 */
817 
818 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
819 		    bytes);
820 		if (offset + iobytes > round_page(offset)) {
821 			pcount = 1;
822 			while (pidx + pcount < npages &&
823 			    pgs[pidx + pcount]->flags & PG_FAKE) {
824 				pcount++;
825 			}
826 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
827 			    (offset - trunc_page(offset)));
828 		}
829 
830 		/*
831 		 * if this block isn't allocated, zero it instead of
832 		 * reading it.  unless we are going to allocate blocks,
833 		 * mark the pages we zeroed PG_RDONLY.
834 		 */
835 
836 		if (blkno < 0) {
837 			int holepages = (round_page(offset + iobytes) -
838 			    trunc_page(offset)) >> PAGE_SHIFT;
839 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
840 
841 			sawhole = TRUE;
842 			memset((char *)kva + (offset - startoffset), 0,
843 			    iobytes);
844 			skipbytes += iobytes;
845 
846 			for (i = 0; i < holepages; i++) {
847 				if (write) {
848 					pgs[pidx + i]->flags &= ~PG_CLEAN;
849 				}
850 				if (!blockalloc) {
851 					pgs[pidx + i]->flags |= PG_RDONLY;
852 				}
853 			}
854 			continue;
855 		}
856 
857 		/*
858 		 * allocate a sub-buf for this piece of the i/o
859 		 * (or just use mbp if there's only 1 piece),
860 		 * and start it going.
861 		 */
862 
863 		if (offset == startoffset && iobytes == bytes) {
864 			bp = mbp;
865 		} else {
866 			bp = getiobuf();
867 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
868 		}
869 		bp->b_lblkno = 0;
870 
871 		/* adjust physical blkno for partial blocks */
872 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
873 		    dev_bshift);
874 
875 		UVMHIST_LOG(ubchist,
876 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
877 		    bp, offset, iobytes, bp->b_blkno);
878 
879 		VOP_STRATEGY(devvp, bp);
880 	}
881 
882 loopdone:
883 	nestiobuf_done(mbp, skipbytes, error);
884 	if (async) {
885 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
886 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
887 		if (pgs != pgs_onstack)
888 			kmem_free(pgs, pgs_size);
889 		return (0);
890 	}
891 	if (bp != NULL) {
892 		error = biowait(mbp);
893 	}
894 	putiobuf(mbp);
895 	uvm_pagermapout(kva, npages);
896 
897 	/*
898 	 * if this we encountered a hole then we have to do a little more work.
899 	 * for read faults, we marked the page PG_RDONLY so that future
900 	 * write accesses to the page will fault again.
901 	 * for write faults, we must make sure that the backing store for
902 	 * the page is completely allocated while the pages are locked.
903 	 */
904 
905 	if (!error && sawhole && blockalloc) {
906 		error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
907 		    cred);
908 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
909 		    startoffset, npages << PAGE_SHIFT, error,0);
910 		if (!error) {
911 			for (i = 0; i < npages; i++) {
912 				if (pgs[i] == NULL) {
913 					continue;
914 				}
915 				pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
916 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
917 				    pgs[i],0,0,0);
918 			}
919 		}
920 	}
921 	lockmgr(&gp->g_glock, LK_RELEASE, NULL);
922 	simple_lock(&uobj->vmobjlock);
923 
924 	/*
925 	 * we're almost done!  release the pages...
926 	 * for errors, we free the pages.
927 	 * otherwise we activate them and mark them as valid and clean.
928 	 * also, unbusy pages that were not actually requested.
929 	 */
930 
931 	if (error) {
932 		for (i = 0; i < npages; i++) {
933 			if (pgs[i] == NULL) {
934 				continue;
935 			}
936 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
937 			    pgs[i], pgs[i]->flags, 0,0);
938 			if (pgs[i]->flags & PG_FAKE) {
939 				pgs[i]->flags |= PG_RELEASED;
940 			}
941 		}
942 		uvm_lock_pageq();
943 		uvm_page_unbusy(pgs, npages);
944 		uvm_unlock_pageq();
945 		simple_unlock(&uobj->vmobjlock);
946 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
947 		if (pgs != pgs_onstack)
948 			kmem_free(pgs, pgs_size);
949 		return (error);
950 	}
951 
952 out:
953 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
954 	uvm_lock_pageq();
955 	for (i = 0; i < npages; i++) {
956 		pg = pgs[i];
957 		if (pg == NULL) {
958 			continue;
959 		}
960 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
961 		    pg, pg->flags, 0,0);
962 		if (pg->flags & PG_FAKE && !overwrite) {
963 			pg->flags &= ~(PG_FAKE);
964 			pmap_clear_modify(pgs[i]);
965 		}
966 		KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
967 		if (i < ridx || i >= ridx + orignpages || async) {
968 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
969 			    pg, pg->offset,0,0);
970 			if (pg->flags & PG_WANTED) {
971 				wakeup(pg);
972 			}
973 			if (pg->flags & PG_FAKE) {
974 				KASSERT(overwrite);
975 				uvm_pagezero(pg);
976 			}
977 			if (pg->flags & PG_RELEASED) {
978 				uvm_pagefree(pg);
979 				continue;
980 			}
981 			uvm_pageenqueue(pg);
982 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
983 			UVM_PAGE_OWN(pg, NULL);
984 		}
985 	}
986 	uvm_unlock_pageq();
987 	simple_unlock(&uobj->vmobjlock);
988 	if (ap->a_m != NULL) {
989 		memcpy(ap->a_m, &pgs[ridx],
990 		    orignpages * sizeof(struct vm_page *));
991 	}
992 	if (pgs != pgs_onstack)
993 		kmem_free(pgs, pgs_size);
994 	return (0);
995 }
996 
997 /*
998  * generic VM putpages routine.
999  * Write the given range of pages to backing store.
1000  *
1001  * => "offhi == 0" means flush all pages at or after "offlo".
1002  * => object should be locked by caller.   we may _unlock_ the object
1003  *	if (and only if) we need to clean a page (PGO_CLEANIT), or
1004  *	if PGO_SYNCIO is set and there are pages busy.
1005  *	we return with the object locked.
1006  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
1007  *	thus, a caller might want to unlock higher level resources
1008  *	(e.g. vm_map) before calling flush.
1009  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
1010  *	unlock the object nor block.
1011  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
1012  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
1013  *	that new pages are inserted on the tail end of the list.   thus,
1014  *	we can make a complete pass through the object in one go by starting
1015  *	at the head and working towards the tail (new pages are put in
1016  *	front of us).
1017  * => NOTE: we are allowed to lock the page queues, so the caller
1018  *	must not be holding the page queue lock.
1019  *
1020  * note on "cleaning" object and PG_BUSY pages:
1021  *	this routine is holding the lock on the object.   the only time
1022  *	that it can run into a PG_BUSY page that it does not own is if
1023  *	some other process has started I/O on the page (e.g. either
1024  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
1025  *	in, then it can not be dirty (!PG_CLEAN) because no one has
1026  *	had a chance to modify it yet.    if the PG_BUSY page is being
1027  *	paged out then it means that someone else has already started
1028  *	cleaning the page for us (how nice!).    in this case, if we
1029  *	have syncio specified, then after we make our pass through the
1030  *	object we need to wait for the other PG_BUSY pages to clear
1031  *	off (i.e. we need to do an iosync).   also note that once a
1032  *	page is PG_BUSY it must stay in its object until it is un-busyed.
1033  *
1034  * note on page traversal:
1035  *	we can traverse the pages in an object either by going down the
1036  *	linked list in "uobj->memq", or we can go over the address range
1037  *	by page doing hash table lookups for each address.    depending
1038  *	on how many pages are in the object it may be cheaper to do one
1039  *	or the other.   we set "by_list" to true if we are using memq.
1040  *	if the cost of a hash lookup was equal to the cost of the list
1041  *	traversal we could compare the number of pages in the start->stop
1042  *	range to the total number of pages in the object.   however, it
1043  *	seems that a hash table lookup is more expensive than the linked
1044  *	list traversal, so we multiply the number of pages in the
1045  *	range by an estimate of the relatively higher cost of the hash lookup.
1046  */
1047 
1048 int
1049 genfs_putpages(void *v)
1050 {
1051 	struct vop_putpages_args /* {
1052 		struct vnode *a_vp;
1053 		voff_t a_offlo;
1054 		voff_t a_offhi;
1055 		int a_flags;
1056 	} */ *ap = v;
1057 	struct vnode *vp = ap->a_vp;
1058 	struct uvm_object *uobj = &vp->v_uobj;
1059 	struct simplelock *slock = &uobj->vmobjlock;
1060 	off_t startoff = ap->a_offlo;
1061 	off_t endoff = ap->a_offhi;
1062 	off_t off;
1063 	int flags = ap->a_flags;
1064 	/* Even for strange MAXPHYS, the shift rounds down to a page */
1065 	const int maxpages = MAXPHYS >> PAGE_SHIFT;
1066 	int i, s, error, npages, nback;
1067 	int freeflag;
1068 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1069 	boolean_t wasclean, by_list, needs_clean, yld;
1070 	boolean_t async = (flags & PGO_SYNCIO) == 0;
1071 	boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1072 	struct lwp *l = curlwp ? curlwp : &lwp0;
1073 	struct genfs_node *gp = VTOG(vp);
1074 	int dirtygen;
1075 	boolean_t modified = FALSE;
1076 	boolean_t cleanall;
1077 
1078 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1079 
1080 	KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1081 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1082 	KASSERT(startoff < endoff || endoff == 0);
1083 
1084 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1085 	    vp, uobj->uo_npages, startoff, endoff - startoff);
1086 
1087 	KASSERT((vp->v_flag & VONWORKLST) != 0 ||
1088 	    (vp->v_flag & VWRITEMAPDIRTY) == 0);
1089 	if (uobj->uo_npages == 0) {
1090 		s = splbio();
1091 		if (vp->v_flag & VONWORKLST) {
1092 			vp->v_flag &= ~VWRITEMAPDIRTY;
1093 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1094 				vp->v_flag &= ~VONWORKLST;
1095 				LIST_REMOVE(vp, v_synclist);
1096 			}
1097 		}
1098 		splx(s);
1099 		simple_unlock(slock);
1100 		return (0);
1101 	}
1102 
1103 	/*
1104 	 * the vnode has pages, set up to process the request.
1105 	 */
1106 
1107 	error = 0;
1108 	s = splbio();
1109 	simple_lock(&global_v_numoutput_slock);
1110 	wasclean = (vp->v_numoutput == 0);
1111 	simple_unlock(&global_v_numoutput_slock);
1112 	splx(s);
1113 	off = startoff;
1114 	if (endoff == 0 || flags & PGO_ALLPAGES) {
1115 		endoff = trunc_page(LLONG_MAX);
1116 	}
1117 	by_list = (uobj->uo_npages <=
1118 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1119 
1120 #if !defined(DEBUG)
1121 	/*
1122 	 * if this vnode is known not to have dirty pages,
1123 	 * don't bother to clean it out.
1124 	 */
1125 
1126 	if ((vp->v_flag & VONWORKLST) == 0) {
1127 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1128 			goto skip_scan;
1129 		}
1130 		flags &= ~PGO_CLEANIT;
1131 	}
1132 #endif /* !defined(DEBUG) */
1133 
1134 	/*
1135 	 * start the loop.  when scanning by list, hold the last page
1136 	 * in the list before we start.  pages allocated after we start
1137 	 * will be added to the end of the list, so we can stop at the
1138 	 * current last page.
1139 	 */
1140 
1141 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1142 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1143 	    (vp->v_flag & VONWORKLST) != 0;
1144 	dirtygen = gp->g_dirtygen;
1145 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1146 	if (by_list) {
1147 		curmp.uobject = uobj;
1148 		curmp.offset = (voff_t)-1;
1149 		curmp.flags = PG_BUSY;
1150 		endmp.uobject = uobj;
1151 		endmp.offset = (voff_t)-1;
1152 		endmp.flags = PG_BUSY;
1153 		pg = TAILQ_FIRST(&uobj->memq);
1154 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1155 		PHOLD(l);
1156 	} else {
1157 		pg = uvm_pagelookup(uobj, off);
1158 	}
1159 	nextpg = NULL;
1160 	while (by_list || off < endoff) {
1161 
1162 		/*
1163 		 * if the current page is not interesting, move on to the next.
1164 		 */
1165 
1166 		KASSERT(pg == NULL || pg->uobject == uobj);
1167 		KASSERT(pg == NULL ||
1168 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1169 		    (pg->flags & PG_BUSY) != 0);
1170 		if (by_list) {
1171 			if (pg == &endmp) {
1172 				break;
1173 			}
1174 			if (pg->offset < startoff || pg->offset >= endoff ||
1175 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1176 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1177 					wasclean = FALSE;
1178 				}
1179 				pg = TAILQ_NEXT(pg, listq);
1180 				continue;
1181 			}
1182 			off = pg->offset;
1183 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1184 			if (pg != NULL) {
1185 				wasclean = FALSE;
1186 			}
1187 			off += PAGE_SIZE;
1188 			if (off < endoff) {
1189 				pg = uvm_pagelookup(uobj, off);
1190 			}
1191 			continue;
1192 		}
1193 
1194 		/*
1195 		 * if the current page needs to be cleaned and it's busy,
1196 		 * wait for it to become unbusy.
1197 		 */
1198 
1199 		yld = (l->l_cpu->ci_schedstate.spc_flags &
1200 		    SPCF_SHOULDYIELD) && !pagedaemon;
1201 		if (pg->flags & PG_BUSY || yld) {
1202 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1203 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1204 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1205 				error = EDEADLK;
1206 				break;
1207 			}
1208 			KASSERT(!pagedaemon);
1209 			if (by_list) {
1210 				TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1211 				UVMHIST_LOG(ubchist, "curmp next %p",
1212 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
1213 			}
1214 			if (yld) {
1215 				simple_unlock(slock);
1216 				preempt(1);
1217 				simple_lock(slock);
1218 			} else {
1219 				pg->flags |= PG_WANTED;
1220 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1221 				simple_lock(slock);
1222 			}
1223 			if (by_list) {
1224 				UVMHIST_LOG(ubchist, "after next %p",
1225 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
1226 				pg = TAILQ_NEXT(&curmp, listq);
1227 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1228 			} else {
1229 				pg = uvm_pagelookup(uobj, off);
1230 			}
1231 			continue;
1232 		}
1233 
1234 		/*
1235 		 * if we're freeing, remove all mappings of the page now.
1236 		 * if we're cleaning, check if the page is needs to be cleaned.
1237 		 */
1238 
1239 		if (flags & PGO_FREE) {
1240 			pmap_page_protect(pg, VM_PROT_NONE);
1241 		} else if (flags & PGO_CLEANIT) {
1242 
1243 			/*
1244 			 * if we still have some hope to pull this vnode off
1245 			 * from the syncer queue, write-protect the page.
1246 			 */
1247 
1248 			if (cleanall && wasclean &&
1249 			    gp->g_dirtygen == dirtygen) {
1250 
1251 				/*
1252 				 * uobj pages get wired only by uvm_fault
1253 				 * where uobj is locked.
1254 				 */
1255 
1256 				if (pg->wire_count == 0) {
1257 					pmap_page_protect(pg,
1258 					    VM_PROT_READ|VM_PROT_EXECUTE);
1259 				} else {
1260 					cleanall = FALSE;
1261 				}
1262 			}
1263 		}
1264 
1265 		if (flags & PGO_CLEANIT) {
1266 			needs_clean = pmap_clear_modify(pg) ||
1267 			    (pg->flags & PG_CLEAN) == 0;
1268 			pg->flags |= PG_CLEAN;
1269 		} else {
1270 			needs_clean = FALSE;
1271 		}
1272 
1273 		/*
1274 		 * if we're cleaning, build a cluster.
1275 		 * the cluster will consist of pages which are currently dirty,
1276 		 * but they will be returned to us marked clean.
1277 		 * if not cleaning, just operate on the one page.
1278 		 */
1279 
1280 		if (needs_clean) {
1281 			KDASSERT((vp->v_flag & VONWORKLST));
1282 			wasclean = FALSE;
1283 			memset(pgs, 0, sizeof(pgs));
1284 			pg->flags |= PG_BUSY;
1285 			UVM_PAGE_OWN(pg, "genfs_putpages");
1286 
1287 			/*
1288 			 * first look backward.
1289 			 */
1290 
1291 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1292 			nback = npages;
1293 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1294 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1295 			if (nback) {
1296 				memmove(&pgs[0], &pgs[npages - nback],
1297 				    nback * sizeof(pgs[0]));
1298 				if (npages - nback < nback)
1299 					memset(&pgs[nback], 0,
1300 					    (npages - nback) * sizeof(pgs[0]));
1301 				else
1302 					memset(&pgs[npages - nback], 0,
1303 					    nback * sizeof(pgs[0]));
1304 			}
1305 
1306 			/*
1307 			 * then plug in our page of interest.
1308 			 */
1309 
1310 			pgs[nback] = pg;
1311 
1312 			/*
1313 			 * then look forward to fill in the remaining space in
1314 			 * the array of pages.
1315 			 */
1316 
1317 			npages = maxpages - nback - 1;
1318 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1319 			    &pgs[nback + 1],
1320 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1321 			npages += nback + 1;
1322 		} else {
1323 			pgs[0] = pg;
1324 			npages = 1;
1325 			nback = 0;
1326 		}
1327 
1328 		/*
1329 		 * apply FREE or DEACTIVATE options if requested.
1330 		 */
1331 
1332 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1333 			uvm_lock_pageq();
1334 		}
1335 		for (i = 0; i < npages; i++) {
1336 			tpg = pgs[i];
1337 			KASSERT(tpg->uobject == uobj);
1338 			if (by_list && tpg == TAILQ_NEXT(pg, listq))
1339 				pg = tpg;
1340 			if (tpg->offset < startoff || tpg->offset >= endoff)
1341 				continue;
1342 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0
1343 			    && tpg->loan_count == 0) {
1344 				(void) pmap_clear_reference(tpg);
1345 				uvm_pagedeactivate(tpg);
1346 			} else if (flags & PGO_FREE) {
1347 				pmap_page_protect(tpg, VM_PROT_NONE);
1348 				if (tpg->flags & PG_BUSY) {
1349 					tpg->flags |= freeflag;
1350 					if (pagedaemon) {
1351 						uvmexp.paging++;
1352 						uvm_pagedequeue(tpg);
1353 					}
1354 				} else {
1355 
1356 					/*
1357 					 * ``page is not busy''
1358 					 * implies that npages is 1
1359 					 * and needs_clean is false.
1360 					 */
1361 
1362 					nextpg = TAILQ_NEXT(tpg, listq);
1363 					uvm_pagefree(tpg);
1364 					if (pagedaemon)
1365 						uvmexp.pdfreed++;
1366 				}
1367 			}
1368 		}
1369 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1370 			uvm_unlock_pageq();
1371 		}
1372 		if (needs_clean) {
1373 			modified = TRUE;
1374 
1375 			/*
1376 			 * start the i/o.  if we're traversing by list,
1377 			 * keep our place in the list with a marker page.
1378 			 */
1379 
1380 			if (by_list) {
1381 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1382 				    listq);
1383 			}
1384 			simple_unlock(slock);
1385 			error = GOP_WRITE(vp, pgs, npages, flags);
1386 			simple_lock(slock);
1387 			if (by_list) {
1388 				pg = TAILQ_NEXT(&curmp, listq);
1389 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1390 			}
1391 			if (error) {
1392 				break;
1393 			}
1394 			if (by_list) {
1395 				continue;
1396 			}
1397 		}
1398 
1399 		/*
1400 		 * find the next page and continue if there was no error.
1401 		 */
1402 
1403 		if (by_list) {
1404 			if (nextpg) {
1405 				pg = nextpg;
1406 				nextpg = NULL;
1407 			} else {
1408 				pg = TAILQ_NEXT(pg, listq);
1409 			}
1410 		} else {
1411 			off += (npages - nback) << PAGE_SHIFT;
1412 			if (off < endoff) {
1413 				pg = uvm_pagelookup(uobj, off);
1414 			}
1415 		}
1416 	}
1417 	if (by_list) {
1418 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1419 		PRELE(l);
1420 	}
1421 
1422 	if (modified && (vp->v_flag & VWRITEMAPDIRTY) != 0 &&
1423 	    (vp->v_type != VBLK ||
1424 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1425 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1426 	}
1427 
1428 	/*
1429 	 * if we're cleaning and there was nothing to clean,
1430 	 * take us off the syncer list.  if we started any i/o
1431 	 * and we're doing sync i/o, wait for all writes to finish.
1432 	 */
1433 
1434 	s = splbio();
1435 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1436 	    (vp->v_flag & VONWORKLST) != 0) {
1437 		vp->v_flag &= ~VWRITEMAPDIRTY;
1438 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1439 			vp->v_flag &= ~VONWORKLST;
1440 			LIST_REMOVE(vp, v_synclist);
1441 		}
1442 	}
1443 	splx(s);
1444 
1445 #if !defined(DEBUG)
1446 skip_scan:
1447 #endif /* !defined(DEBUG) */
1448 	if (!wasclean && !async) {
1449 		s = splbio();
1450 		/*
1451 		 * XXX - we want simple_unlock(&global_v_numoutput_slock);
1452 		 *	 but the slot in ltsleep() is taken!
1453 		 * XXX - try to recover from missed wakeups with a timeout..
1454 		 *	 must think of something better.
1455 		 */
1456 		while (vp->v_numoutput != 0) {
1457 			vp->v_flag |= VBWAIT;
1458 			UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1459 			    "genput2", hz);
1460 			simple_lock(slock);
1461 		}
1462 		splx(s);
1463 	}
1464 	simple_unlock(&uobj->vmobjlock);
1465 	return (error);
1466 }
1467 
1468 int
1469 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1470 {
1471 	off_t off;
1472 	vaddr_t kva;
1473 	size_t len;
1474 	int error;
1475 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1476 
1477 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1478 	    vp, pgs, npages, flags);
1479 
1480 	off = pgs[0]->offset;
1481 	kva = uvm_pagermapin(pgs, npages,
1482 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1483 	len = npages << PAGE_SHIFT;
1484 
1485 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1486 			    uvm_aio_biodone);
1487 
1488 	return error;
1489 }
1490 
1491 /*
1492  * Backend routine for doing I/O to vnode pages.  Pages are already locked
1493  * and mapped into kernel memory.  Here we just look up the underlying
1494  * device block addresses and call the strategy routine.
1495  */
1496 
1497 static int
1498 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1499     enum uio_rw rw, void (*iodone)(struct buf *))
1500 {
1501 	int s, error, run;
1502 	int fs_bshift, dev_bshift;
1503 	off_t eof, offset, startoffset;
1504 	size_t bytes, iobytes, skipbytes;
1505 	daddr_t lbn, blkno;
1506 	struct buf *mbp, *bp;
1507 	struct vnode *devvp;
1508 	boolean_t async = (flags & PGO_SYNCIO) == 0;
1509 	boolean_t write = rw == UIO_WRITE;
1510 	int brw = write ? B_WRITE : B_READ;
1511 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1512 
1513 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1514 	    vp, kva, len, flags);
1515 
1516 	GOP_SIZE(vp, vp->v_size, &eof, 0);
1517 	if (vp->v_type != VBLK) {
1518 		fs_bshift = vp->v_mount->mnt_fs_bshift;
1519 		dev_bshift = vp->v_mount->mnt_dev_bshift;
1520 	} else {
1521 		fs_bshift = DEV_BSHIFT;
1522 		dev_bshift = DEV_BSHIFT;
1523 	}
1524 	error = 0;
1525 	startoffset = off;
1526 	bytes = MIN(len, eof - startoffset);
1527 	skipbytes = 0;
1528 	KASSERT(bytes != 0);
1529 
1530 	if (write) {
1531 		s = splbio();
1532 		simple_lock(&global_v_numoutput_slock);
1533 		vp->v_numoutput += 2;
1534 		simple_unlock(&global_v_numoutput_slock);
1535 		splx(s);
1536 	}
1537 	mbp = getiobuf();
1538 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1539 	    vp, mbp, vp->v_numoutput, bytes);
1540 	mbp->b_bufsize = len;
1541 	mbp->b_data = (void *)kva;
1542 	mbp->b_resid = mbp->b_bcount = bytes;
1543 	mbp->b_flags = B_BUSY | brw | B_AGE | (async ? (B_CALL | B_ASYNC) : 0);
1544 	mbp->b_iodone = iodone;
1545 	mbp->b_vp = vp;
1546 	if (curproc == uvm.pagedaemon_proc)
1547 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1548 	else if (async)
1549 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1550 	else
1551 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1552 
1553 	bp = NULL;
1554 	for (offset = startoffset;
1555 	    bytes > 0;
1556 	    offset += iobytes, bytes -= iobytes) {
1557 		lbn = offset >> fs_bshift;
1558 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1559 		if (error) {
1560 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1561 			skipbytes += bytes;
1562 			bytes = 0;
1563 			break;
1564 		}
1565 
1566 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1567 		    bytes);
1568 		if (blkno == (daddr_t)-1) {
1569 			if (!write) {
1570 				memset((char *)kva + (offset - startoffset), 0,
1571 				   iobytes);
1572 			}
1573 			skipbytes += iobytes;
1574 			continue;
1575 		}
1576 
1577 		/* if it's really one i/o, don't make a second buf */
1578 		if (offset == startoffset && iobytes == bytes) {
1579 			bp = mbp;
1580 		} else {
1581 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1582 			    vp, bp, vp->v_numoutput, 0);
1583 			bp = getiobuf();
1584 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1585 		}
1586 		bp->b_lblkno = 0;
1587 
1588 		/* adjust physical blkno for partial blocks */
1589 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1590 		    dev_bshift);
1591 		UVMHIST_LOG(ubchist,
1592 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1593 		    vp, offset, bp->b_bcount, bp->b_blkno);
1594 
1595 		VOP_STRATEGY(devvp, bp);
1596 	}
1597 	if (skipbytes) {
1598 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1599 	}
1600 	nestiobuf_done(mbp, skipbytes, error);
1601 	if (async) {
1602 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1603 		return (0);
1604 	}
1605 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1606 	error = biowait(mbp);
1607 	s = splbio();
1608 	(*iodone)(mbp);
1609 	splx(s);
1610 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1611 	return (error);
1612 }
1613 
1614 /*
1615  * VOP_PUTPAGES() for vnodes which never have pages.
1616  */
1617 
1618 int
1619 genfs_null_putpages(void *v)
1620 {
1621 	struct vop_putpages_args /* {
1622 		struct vnode *a_vp;
1623 		voff_t a_offlo;
1624 		voff_t a_offhi;
1625 		int a_flags;
1626 	} */ *ap = v;
1627 	struct vnode *vp = ap->a_vp;
1628 
1629 	KASSERT(vp->v_uobj.uo_npages == 0);
1630 	simple_unlock(&vp->v_interlock);
1631 	return (0);
1632 }
1633 
1634 void
1635 genfs_node_init(struct vnode *vp, const struct genfs_ops *ops)
1636 {
1637 	struct genfs_node *gp = VTOG(vp);
1638 
1639 	lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1640 	gp->g_op = ops;
1641 }
1642 
1643 void
1644 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags __unused)
1645 {
1646 	int bsize;
1647 
1648 	bsize = 1 << vp->v_mount->mnt_fs_bshift;
1649 	*eobp = (size + bsize - 1) & ~(bsize - 1);
1650 }
1651 
1652 int
1653 genfs_compat_getpages(void *v)
1654 {
1655 	struct vop_getpages_args /* {
1656 		struct vnode *a_vp;
1657 		voff_t a_offset;
1658 		struct vm_page **a_m;
1659 		int *a_count;
1660 		int a_centeridx;
1661 		vm_prot_t a_access_type;
1662 		int a_advice;
1663 		int a_flags;
1664 	} */ *ap = v;
1665 
1666 	off_t origoffset;
1667 	struct vnode *vp = ap->a_vp;
1668 	struct uvm_object *uobj = &vp->v_uobj;
1669 	struct vm_page *pg, **pgs;
1670 	vaddr_t kva;
1671 	int i, error, orignpages, npages;
1672 	struct iovec iov;
1673 	struct uio uio;
1674 	kauth_cred_t cred = curlwp->l_cred;
1675 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1676 
1677 	error = 0;
1678 	origoffset = ap->a_offset;
1679 	orignpages = *ap->a_count;
1680 	pgs = ap->a_m;
1681 
1682 	if (write && (vp->v_flag & VONWORKLST) == 0) {
1683 		vn_syncer_add_to_worklist(vp, filedelay);
1684 	}
1685 	if (ap->a_flags & PGO_LOCKED) {
1686 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1687 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1688 
1689 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1690 	}
1691 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1692 		simple_unlock(&uobj->vmobjlock);
1693 		return (EINVAL);
1694 	}
1695 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
1696 		simple_unlock(&uobj->vmobjlock);
1697 		return 0;
1698 	}
1699 	npages = orignpages;
1700 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1701 	simple_unlock(&uobj->vmobjlock);
1702 	kva = uvm_pagermapin(pgs, npages,
1703 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1704 	for (i = 0; i < npages; i++) {
1705 		pg = pgs[i];
1706 		if ((pg->flags & PG_FAKE) == 0) {
1707 			continue;
1708 		}
1709 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1710 		iov.iov_len = PAGE_SIZE;
1711 		uio.uio_iov = &iov;
1712 		uio.uio_iovcnt = 1;
1713 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1714 		uio.uio_rw = UIO_READ;
1715 		uio.uio_resid = PAGE_SIZE;
1716 		UIO_SETUP_SYSSPACE(&uio);
1717 		/* XXX vn_lock */
1718 		error = VOP_READ(vp, &uio, 0, cred);
1719 		if (error) {
1720 			break;
1721 		}
1722 		if (uio.uio_resid) {
1723 			memset(iov.iov_base, 0, uio.uio_resid);
1724 		}
1725 	}
1726 	uvm_pagermapout(kva, npages);
1727 	simple_lock(&uobj->vmobjlock);
1728 	uvm_lock_pageq();
1729 	for (i = 0; i < npages; i++) {
1730 		pg = pgs[i];
1731 		if (error && (pg->flags & PG_FAKE) != 0) {
1732 			pg->flags |= PG_RELEASED;
1733 		} else {
1734 			pmap_clear_modify(pg);
1735 			uvm_pageactivate(pg);
1736 		}
1737 	}
1738 	if (error) {
1739 		uvm_page_unbusy(pgs, npages);
1740 	}
1741 	uvm_unlock_pageq();
1742 	simple_unlock(&uobj->vmobjlock);
1743 	return (error);
1744 }
1745 
1746 int
1747 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1748     int flags __unused)
1749 {
1750 	off_t offset;
1751 	struct iovec iov;
1752 	struct uio uio;
1753 	kauth_cred_t cred = curlwp->l_cred;
1754 	struct buf *bp;
1755 	vaddr_t kva;
1756 	int s, error;
1757 
1758 	offset = pgs[0]->offset;
1759 	kva = uvm_pagermapin(pgs, npages,
1760 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1761 
1762 	iov.iov_base = (void *)kva;
1763 	iov.iov_len = npages << PAGE_SHIFT;
1764 	uio.uio_iov = &iov;
1765 	uio.uio_iovcnt = 1;
1766 	uio.uio_offset = offset;
1767 	uio.uio_rw = UIO_WRITE;
1768 	uio.uio_resid = npages << PAGE_SHIFT;
1769 	UIO_SETUP_SYSSPACE(&uio);
1770 	/* XXX vn_lock */
1771 	error = VOP_WRITE(vp, &uio, 0, cred);
1772 
1773 	s = splbio();
1774 	V_INCR_NUMOUTPUT(vp);
1775 	splx(s);
1776 
1777 	bp = getiobuf();
1778 	bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1779 	bp->b_vp = vp;
1780 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1781 	bp->b_data = (char *)kva;
1782 	bp->b_bcount = npages << PAGE_SHIFT;
1783 	bp->b_bufsize = npages << PAGE_SHIFT;
1784 	bp->b_resid = 0;
1785 	if (error) {
1786 		bp->b_flags |= B_ERROR;
1787 		bp->b_error = error;
1788 	}
1789 	uvm_aio_aiodone(bp);
1790 	return (error);
1791 }
1792 
1793 /*
1794  * Process a uio using direct I/O.  If we reach a part of the request
1795  * which cannot be processed in this fashion for some reason, just return.
1796  * The caller must handle some additional part of the request using
1797  * buffered I/O before trying direct I/O again.
1798  */
1799 
1800 void
1801 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag __unused)
1802 {
1803 	struct vmspace *vs;
1804 	struct iovec *iov;
1805 	vaddr_t va;
1806 	size_t len;
1807 	const int mask = DEV_BSIZE - 1;
1808 	int error;
1809 
1810 	/*
1811 	 * We only support direct I/O to user space for now.
1812 	 */
1813 
1814 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1815 		return;
1816 	}
1817 
1818 	/*
1819 	 * If the vnode is mapped, we would need to get the getpages lock
1820 	 * to stabilize the bmap, but then we would get into trouble whil e
1821 	 * locking the pages if the pages belong to this same vnode (or a
1822 	 * multi-vnode cascade to the same effect).  Just fall back to
1823 	 * buffered I/O if the vnode is mapped to avoid this mess.
1824 	 */
1825 
1826 	if (vp->v_flag & VMAPPED) {
1827 		return;
1828 	}
1829 
1830 	/*
1831 	 * Do as much of the uio as possible with direct I/O.
1832 	 */
1833 
1834 	vs = uio->uio_vmspace;
1835 	while (uio->uio_resid) {
1836 		iov = uio->uio_iov;
1837 		if (iov->iov_len == 0) {
1838 			uio->uio_iov++;
1839 			uio->uio_iovcnt--;
1840 			continue;
1841 		}
1842 		va = (vaddr_t)iov->iov_base;
1843 		len = MIN(iov->iov_len, genfs_maxdio);
1844 		len &= ~mask;
1845 
1846 		/*
1847 		 * If the next chunk is smaller than DEV_BSIZE or extends past
1848 		 * the current EOF, then fall back to buffered I/O.
1849 		 */
1850 
1851 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
1852 			return;
1853 		}
1854 
1855 		/*
1856 		 * Check alignment.  The file offset must be at least
1857 		 * sector-aligned.  The exact constraint on memory alignment
1858 		 * is very hardware-dependent, but requiring sector-aligned
1859 		 * addresses there too is safe.
1860 		 */
1861 
1862 		if (uio->uio_offset & mask || va & mask) {
1863 			return;
1864 		}
1865 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1866 					  uio->uio_rw);
1867 		if (error) {
1868 			break;
1869 		}
1870 		iov->iov_base = (caddr_t)iov->iov_base + len;
1871 		iov->iov_len -= len;
1872 		uio->uio_offset += len;
1873 		uio->uio_resid -= len;
1874 	}
1875 }
1876 
1877 /*
1878  * Iodone routine for direct I/O.  We don't do much here since the request is
1879  * always synchronous, so the caller will do most of the work after biowait().
1880  */
1881 
1882 static void
1883 genfs_dio_iodone(struct buf *bp)
1884 {
1885 	int s;
1886 
1887 	KASSERT((bp->b_flags & B_ASYNC) == 0);
1888 	s = splbio();
1889 	if ((bp->b_flags & (B_READ | B_AGE)) == B_AGE) {
1890 		vwakeup(bp);
1891 	}
1892 	putiobuf(bp);
1893 	splx(s);
1894 }
1895 
1896 /*
1897  * Process one chunk of a direct I/O request.
1898  */
1899 
1900 static int
1901 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1902     off_t off, enum uio_rw rw)
1903 {
1904 	struct vm_map *map;
1905 	struct pmap *upm, *kpm;
1906 	size_t klen = round_page(uva + len) - trunc_page(uva);
1907 	off_t spoff, epoff;
1908 	vaddr_t kva, puva;
1909 	paddr_t pa;
1910 	vm_prot_t prot;
1911 	int error, rv, poff, koff;
1912 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO |
1913 		(rw == UIO_WRITE ? PGO_FREE : 0);
1914 
1915 	/*
1916 	 * For writes, verify that this range of the file already has fully
1917 	 * allocated backing store.  If there are any holes, just punt and
1918 	 * make the caller take the buffered write path.
1919 	 */
1920 
1921 	if (rw == UIO_WRITE) {
1922 		daddr_t lbn, elbn, blkno;
1923 		int bsize, bshift, run;
1924 
1925 		bshift = vp->v_mount->mnt_fs_bshift;
1926 		bsize = 1 << bshift;
1927 		lbn = off >> bshift;
1928 		elbn = (off + len + bsize - 1) >> bshift;
1929 		while (lbn < elbn) {
1930 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1931 			if (error) {
1932 				return error;
1933 			}
1934 			if (blkno == (daddr_t)-1) {
1935 				return ENOSPC;
1936 			}
1937 			lbn += 1 + run;
1938 		}
1939 	}
1940 
1941 	/*
1942 	 * Flush any cached pages for parts of the file that we're about to
1943 	 * access.  If we're writing, invalidate pages as well.
1944 	 */
1945 
1946 	spoff = trunc_page(off);
1947 	epoff = round_page(off + len);
1948 	simple_lock(&vp->v_interlock);
1949 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1950 	if (error) {
1951 		return error;
1952 	}
1953 
1954 	/*
1955 	 * Wire the user pages and remap them into kernel memory.
1956 	 */
1957 
1958 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1959 	error = uvm_vslock(vs, (void *)uva, len, prot);
1960 	if (error) {
1961 		return error;
1962 	}
1963 
1964 	map = &vs->vm_map;
1965 	upm = vm_map_pmap(map);
1966 	kpm = vm_map_pmap(kernel_map);
1967 	kva = uvm_km_alloc(kernel_map, klen, 0,
1968 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
1969 	puva = trunc_page(uva);
1970 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1971 		rv = pmap_extract(upm, puva + poff, &pa);
1972 		KASSERT(rv);
1973 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
1974 	}
1975 	pmap_update(kpm);
1976 
1977 	/*
1978 	 * Do the I/O.
1979 	 */
1980 
1981 	koff = uva - trunc_page(uva);
1982 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1983 			    genfs_dio_iodone);
1984 
1985 	/*
1986 	 * Tear down the kernel mapping.
1987 	 */
1988 
1989 	pmap_remove(kpm, kva, kva + klen);
1990 	pmap_update(kpm);
1991 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1992 
1993 	/*
1994 	 * Unwire the user pages.
1995 	 */
1996 
1997 	uvm_vsunlock(vs, (void *)uva, len);
1998 	return error;
1999 }
2000 
2001 
2002 static void
2003 filt_genfsdetach(struct knote *kn)
2004 {
2005 	struct vnode *vp = (struct vnode *)kn->kn_hook;
2006 
2007 	/* XXXLUKEM lock the struct? */
2008 	SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
2009 }
2010 
2011 static int
2012 filt_genfsread(struct knote *kn, long hint)
2013 {
2014 	struct vnode *vp = (struct vnode *)kn->kn_hook;
2015 
2016 	/*
2017 	 * filesystem is gone, so set the EOF flag and schedule
2018 	 * the knote for deletion.
2019 	 */
2020 	if (hint == NOTE_REVOKE) {
2021 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
2022 		return (1);
2023 	}
2024 
2025 	/* XXXLUKEM lock the struct? */
2026 	kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
2027         return (kn->kn_data != 0);
2028 }
2029 
2030 static int
2031 filt_genfsvnode(struct knote *kn, long hint)
2032 {
2033 
2034 	if (kn->kn_sfflags & hint)
2035 		kn->kn_fflags |= hint;
2036 	if (hint == NOTE_REVOKE) {
2037 		kn->kn_flags |= EV_EOF;
2038 		return (1);
2039 	}
2040 	return (kn->kn_fflags != 0);
2041 }
2042 
2043 static const struct filterops genfsread_filtops =
2044 	{ 1, NULL, filt_genfsdetach, filt_genfsread };
2045 static const struct filterops genfsvnode_filtops =
2046 	{ 1, NULL, filt_genfsdetach, filt_genfsvnode };
2047 
2048 int
2049 genfs_kqfilter(void *v)
2050 {
2051 	struct vop_kqfilter_args /* {
2052 		struct vnode	*a_vp;
2053 		struct knote	*a_kn;
2054 	} */ *ap = v;
2055 	struct vnode *vp;
2056 	struct knote *kn;
2057 
2058 	vp = ap->a_vp;
2059 	kn = ap->a_kn;
2060 	switch (kn->kn_filter) {
2061 	case EVFILT_READ:
2062 		kn->kn_fop = &genfsread_filtops;
2063 		break;
2064 	case EVFILT_VNODE:
2065 		kn->kn_fop = &genfsvnode_filtops;
2066 		break;
2067 	default:
2068 		return (1);
2069 	}
2070 
2071 	kn->kn_hook = vp;
2072 
2073 	/* XXXLUKEM lock the struct? */
2074 	SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
2075 
2076 	return (0);
2077 }
2078 
2079 void
2080 genfs_node_wrlock(struct vnode *vp)
2081 {
2082 	struct genfs_node *gp = VTOG(vp);
2083 
2084 	lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
2085 }
2086 
2087 void
2088 genfs_node_rdlock(struct vnode *vp)
2089 {
2090 	struct genfs_node *gp = VTOG(vp);
2091 
2092 	lockmgr(&gp->g_glock, LK_SHARED, NULL);
2093 }
2094 
2095 void
2096 genfs_node_unlock(struct vnode *vp)
2097 {
2098 	struct genfs_node *gp = VTOG(vp);
2099 
2100 	lockmgr(&gp->g_glock, LK_RELEASE, NULL);
2101 }
2102