1 /* $NetBSD: genfs_vnops.c,v 1.70 2003/01/21 00:01:14 christos Exp $ */ 2 3 /* 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by the University of 18 * California, Berkeley and its contributors. 19 * 4. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 */ 36 37 #include <sys/cdefs.h> 38 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.70 2003/01/21 00:01:14 christos Exp $"); 39 40 #include "opt_nfsserver.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/proc.h> 45 #include <sys/kernel.h> 46 #include <sys/mount.h> 47 #include <sys/namei.h> 48 #include <sys/vnode.h> 49 #include <sys/fcntl.h> 50 #include <sys/malloc.h> 51 #include <sys/poll.h> 52 #include <sys/mman.h> 53 #include <sys/file.h> 54 55 #include <miscfs/genfs/genfs.h> 56 #include <miscfs/genfs/genfs_node.h> 57 #include <miscfs/specfs/specdev.h> 58 59 #include <uvm/uvm.h> 60 #include <uvm/uvm_pager.h> 61 62 #ifdef NFSSERVER 63 #include <nfs/rpcv2.h> 64 #include <nfs/nfsproto.h> 65 #include <nfs/nfs.h> 66 #include <nfs/nqnfs.h> 67 #include <nfs/nfs_var.h> 68 #endif 69 70 static __inline void genfs_rel_pages(struct vm_page **, int); 71 static void filt_genfsdetach(struct knote *); 72 static int filt_genfsread(struct knote *, long); 73 static int filt_genfsvnode(struct knote *, long); 74 75 76 #define MAX_READ_AHEAD 16 /* XXXUBC 16 */ 77 int genfs_rapages = MAX_READ_AHEAD; /* # of pages in each chunk of readahead */ 78 int genfs_racount = 2; /* # of page chunks to readahead */ 79 int genfs_raskip = 2; /* # of busy page chunks allowed to skip */ 80 81 int 82 genfs_poll(void *v) 83 { 84 struct vop_poll_args /* { 85 struct vnode *a_vp; 86 int a_events; 87 struct proc *a_p; 88 } */ *ap = v; 89 90 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM)); 91 } 92 93 int 94 genfs_fsync(void *v) 95 { 96 struct vop_fsync_args /* { 97 struct vnode *a_vp; 98 struct ucred *a_cred; 99 int a_flags; 100 off_t offlo; 101 off_t offhi; 102 struct proc *a_p; 103 } */ *ap = v; 104 struct vnode *vp = ap->a_vp; 105 int wait; 106 107 wait = (ap->a_flags & FSYNC_WAIT) != 0; 108 vflushbuf(vp, wait); 109 if ((ap->a_flags & FSYNC_DATAONLY) != 0) 110 return (0); 111 else 112 return (VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0)); 113 } 114 115 int 116 genfs_seek(void *v) 117 { 118 struct vop_seek_args /* { 119 struct vnode *a_vp; 120 off_t a_oldoff; 121 off_t a_newoff; 122 struct ucred *a_ucred; 123 } */ *ap = v; 124 125 if (ap->a_newoff < 0) 126 return (EINVAL); 127 128 return (0); 129 } 130 131 int 132 genfs_abortop(void *v) 133 { 134 struct vop_abortop_args /* { 135 struct vnode *a_dvp; 136 struct componentname *a_cnp; 137 } */ *ap = v; 138 139 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF) 140 PNBUF_PUT(ap->a_cnp->cn_pnbuf); 141 return (0); 142 } 143 144 int 145 genfs_fcntl(void *v) 146 { 147 struct vop_fcntl_args /* { 148 struct vnode *a_vp; 149 u_int a_command; 150 caddr_t a_data; 151 int a_fflag; 152 struct ucred *a_cred; 153 struct proc *a_p; 154 } */ *ap = v; 155 156 if (ap->a_command == F_SETFL) 157 return (0); 158 else 159 return (EOPNOTSUPP); 160 } 161 162 /*ARGSUSED*/ 163 int 164 genfs_badop(void *v) 165 { 166 167 panic("genfs: bad op"); 168 } 169 170 /*ARGSUSED*/ 171 int 172 genfs_nullop(void *v) 173 { 174 175 return (0); 176 } 177 178 /*ARGSUSED*/ 179 int 180 genfs_einval(void *v) 181 { 182 183 return (EINVAL); 184 } 185 186 /*ARGSUSED*/ 187 int 188 genfs_eopnotsupp(void *v) 189 { 190 191 return (EOPNOTSUPP); 192 } 193 194 /* 195 * Called when an fs doesn't support a particular vop but the vop needs to 196 * vrele, vput, or vunlock passed in vnodes. 197 */ 198 int 199 genfs_eopnotsupp_rele(void *v) 200 { 201 struct vop_generic_args /* 202 struct vnodeop_desc *a_desc; 203 / * other random data follows, presumably * / 204 } */ *ap = v; 205 struct vnodeop_desc *desc = ap->a_desc; 206 struct vnode *vp; 207 int flags, i, j, offset; 208 209 flags = desc->vdesc_flags; 210 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) { 211 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET) 212 break; /* stop at end of list */ 213 if ((j = flags & VDESC_VP0_WILLPUT)) { 214 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap); 215 switch (j) { 216 case VDESC_VP0_WILLPUT: 217 vput(vp); 218 break; 219 case VDESC_VP0_WILLUNLOCK: 220 VOP_UNLOCK(vp, 0); 221 break; 222 case VDESC_VP0_WILLRELE: 223 vrele(vp); 224 break; 225 } 226 } 227 } 228 229 return (EOPNOTSUPP); 230 } 231 232 /*ARGSUSED*/ 233 int 234 genfs_ebadf(void *v) 235 { 236 237 return (EBADF); 238 } 239 240 /* ARGSUSED */ 241 int 242 genfs_enoioctl(void *v) 243 { 244 245 return (EPASSTHROUGH); 246 } 247 248 249 /* 250 * Eliminate all activity associated with the requested vnode 251 * and with all vnodes aliased to the requested vnode. 252 */ 253 int 254 genfs_revoke(void *v) 255 { 256 struct vop_revoke_args /* { 257 struct vnode *a_vp; 258 int a_flags; 259 } */ *ap = v; 260 struct vnode *vp, *vq; 261 struct proc *p = curproc; /* XXX */ 262 263 #ifdef DIAGNOSTIC 264 if ((ap->a_flags & REVOKEALL) == 0) 265 panic("genfs_revoke: not revokeall"); 266 #endif 267 268 vp = ap->a_vp; 269 simple_lock(&vp->v_interlock); 270 271 if (vp->v_flag & VALIASED) { 272 /* 273 * If a vgone (or vclean) is already in progress, 274 * wait until it is done and return. 275 */ 276 if (vp->v_flag & VXLOCK) { 277 vp->v_flag |= VXWANT; 278 simple_unlock(&vp->v_interlock); 279 tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0); 280 return (0); 281 } 282 /* 283 * Ensure that vp will not be vgone'd while we 284 * are eliminating its aliases. 285 */ 286 vp->v_flag |= VXLOCK; 287 simple_unlock(&vp->v_interlock); 288 while (vp->v_flag & VALIASED) { 289 simple_lock(&spechash_slock); 290 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) { 291 if (vq->v_rdev != vp->v_rdev || 292 vq->v_type != vp->v_type || vp == vq) 293 continue; 294 simple_unlock(&spechash_slock); 295 vgone(vq); 296 break; 297 } 298 if (vq == NULLVP) 299 simple_unlock(&spechash_slock); 300 } 301 /* 302 * Remove the lock so that vgone below will 303 * really eliminate the vnode after which time 304 * vgone will awaken any sleepers. 305 */ 306 simple_lock(&vp->v_interlock); 307 vp->v_flag &= ~VXLOCK; 308 } 309 vgonel(vp, p); 310 return (0); 311 } 312 313 /* 314 * Lock the node. 315 */ 316 int 317 genfs_lock(void *v) 318 { 319 struct vop_lock_args /* { 320 struct vnode *a_vp; 321 int a_flags; 322 } */ *ap = v; 323 struct vnode *vp = ap->a_vp; 324 325 return (lockmgr(&vp->v_lock, ap->a_flags, &vp->v_interlock)); 326 } 327 328 /* 329 * Unlock the node. 330 */ 331 int 332 genfs_unlock(void *v) 333 { 334 struct vop_unlock_args /* { 335 struct vnode *a_vp; 336 int a_flags; 337 } */ *ap = v; 338 struct vnode *vp = ap->a_vp; 339 340 return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE, 341 &vp->v_interlock)); 342 } 343 344 /* 345 * Return whether or not the node is locked. 346 */ 347 int 348 genfs_islocked(void *v) 349 { 350 struct vop_islocked_args /* { 351 struct vnode *a_vp; 352 } */ *ap = v; 353 struct vnode *vp = ap->a_vp; 354 355 return (lockstatus(&vp->v_lock)); 356 } 357 358 /* 359 * Stubs to use when there is no locking to be done on the underlying object. 360 */ 361 int 362 genfs_nolock(void *v) 363 { 364 struct vop_lock_args /* { 365 struct vnode *a_vp; 366 int a_flags; 367 struct proc *a_p; 368 } */ *ap = v; 369 370 /* 371 * Since we are not using the lock manager, we must clear 372 * the interlock here. 373 */ 374 if (ap->a_flags & LK_INTERLOCK) 375 simple_unlock(&ap->a_vp->v_interlock); 376 return (0); 377 } 378 379 int 380 genfs_nounlock(void *v) 381 { 382 383 return (0); 384 } 385 386 int 387 genfs_noislocked(void *v) 388 { 389 390 return (0); 391 } 392 393 /* 394 * Local lease check for NFS servers. Just set up args and let 395 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel, 396 * this is a null operation. 397 */ 398 int 399 genfs_lease_check(void *v) 400 { 401 #ifdef NFSSERVER 402 struct vop_lease_args /* { 403 struct vnode *a_vp; 404 struct proc *a_p; 405 struct ucred *a_cred; 406 int a_flag; 407 } */ *ap = v; 408 u_int32_t duration = 0; 409 int cache; 410 u_quad_t frev; 411 412 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag, 413 NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred); 414 return (0); 415 #else 416 return (0); 417 #endif /* NFSSERVER */ 418 } 419 420 int 421 genfs_mmap(void *v) 422 { 423 424 return (0); 425 } 426 427 static __inline void 428 genfs_rel_pages(struct vm_page **pgs, int npages) 429 { 430 int i; 431 432 for (i = 0; i < npages; i++) { 433 struct vm_page *pg = pgs[i]; 434 435 if (pg == NULL) 436 continue; 437 if (pg->flags & PG_FAKE) { 438 pg->flags |= PG_RELEASED; 439 } 440 } 441 uvm_lock_pageq(); 442 uvm_page_unbusy(pgs, npages); 443 uvm_unlock_pageq(); 444 } 445 446 /* 447 * generic VM getpages routine. 448 * Return PG_BUSY pages for the given range, 449 * reading from backing store if necessary. 450 */ 451 452 int 453 genfs_getpages(void *v) 454 { 455 struct vop_getpages_args /* { 456 struct vnode *a_vp; 457 voff_t a_offset; 458 struct vm_page **a_m; 459 int *a_count; 460 int a_centeridx; 461 vm_prot_t a_access_type; 462 int a_advice; 463 int a_flags; 464 } */ *ap = v; 465 466 off_t newsize, diskeof, memeof; 467 off_t offset, origoffset, startoffset, endoffset, raoffset; 468 daddr_t lbn, blkno; 469 int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount; 470 int fs_bshift, fs_bsize, dev_bshift; 471 int flags = ap->a_flags; 472 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes; 473 vaddr_t kva; 474 struct buf *bp, *mbp; 475 struct vnode *vp = ap->a_vp; 476 struct vnode *devvp; 477 struct genfs_node *gp = VTOG(vp); 478 struct uvm_object *uobj = &vp->v_uobj; 479 struct vm_page *pg, *pgs[MAX_READ_AHEAD]; 480 struct ucred *cred = curproc->p_ucred; /* XXXUBC curlwp */ 481 boolean_t async = (flags & PGO_SYNCIO) == 0; 482 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0; 483 boolean_t sawhole = FALSE; 484 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0; 485 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist); 486 487 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d", 488 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count); 489 490 /* XXXUBC temp limit */ 491 if (*ap->a_count > MAX_READ_AHEAD) { 492 panic("genfs_getpages: too many pages"); 493 } 494 495 error = 0; 496 origoffset = ap->a_offset; 497 orignpages = *ap->a_count; 498 GOP_SIZE(vp, vp->v_size, &diskeof); 499 if (flags & PGO_PASTEOF) { 500 newsize = MAX(vp->v_size, 501 origoffset + (orignpages << PAGE_SHIFT)); 502 GOP_SIZE(vp, newsize, &memeof); 503 } else { 504 memeof = diskeof; 505 } 506 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages); 507 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0); 508 KASSERT(orignpages > 0); 509 510 /* 511 * Bounds-check the request. 512 */ 513 514 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) { 515 if ((flags & PGO_LOCKED) == 0) { 516 simple_unlock(&uobj->vmobjlock); 517 } 518 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x", 519 origoffset, *ap->a_count, memeof,0); 520 return (EINVAL); 521 } 522 523 /* 524 * For PGO_LOCKED requests, just return whatever's in memory. 525 */ 526 527 if (flags & PGO_LOCKED) { 528 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, 529 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0)); 530 531 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0); 532 } 533 534 /* vnode is VOP_LOCKed, uobj is locked */ 535 536 if (write && (vp->v_flag & VONWORKLST) == 0) { 537 vn_syncer_add_to_worklist(vp, filedelay); 538 } 539 540 /* 541 * find the requested pages and make some simple checks. 542 * leave space in the page array for a whole block. 543 */ 544 545 if (vp->v_type == VREG) { 546 fs_bshift = vp->v_mount->mnt_fs_bshift; 547 dev_bshift = vp->v_mount->mnt_dev_bshift; 548 } else { 549 fs_bshift = DEV_BSHIFT; 550 dev_bshift = DEV_BSHIFT; 551 } 552 fs_bsize = 1 << fs_bshift; 553 554 orignpages = MIN(orignpages, 555 round_page(memeof - origoffset) >> PAGE_SHIFT); 556 npages = orignpages; 557 startoffset = origoffset & ~(fs_bsize - 1); 558 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) + 559 fs_bsize - 1) & ~(fs_bsize - 1)); 560 endoffset = MIN(endoffset, round_page(memeof)); 561 ridx = (origoffset - startoffset) >> PAGE_SHIFT; 562 563 memset(pgs, 0, sizeof(pgs)); 564 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld", 565 ridx, npages, startoffset, endoffset); 566 KASSERT(&pgs[ridx + npages] <= &pgs[MAX_READ_AHEAD]); 567 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], 568 async ? UFP_NOWAIT : UFP_ALL) != orignpages) { 569 KASSERT(async != 0); 570 genfs_rel_pages(&pgs[ridx], orignpages); 571 simple_unlock(&uobj->vmobjlock); 572 return (EBUSY); 573 } 574 575 /* 576 * if the pages are already resident, just return them. 577 */ 578 579 for (i = 0; i < npages; i++) { 580 struct vm_page *pg = pgs[ridx + i]; 581 582 if ((pg->flags & PG_FAKE) || 583 (write && (pg->flags & PG_RDONLY))) { 584 break; 585 } 586 } 587 if (i == npages) { 588 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0); 589 raoffset = origoffset + (orignpages << PAGE_SHIFT); 590 npages += ridx; 591 goto raout; 592 } 593 594 /* 595 * if PGO_OVERWRITE is set, don't bother reading the pages. 596 */ 597 598 if (flags & PGO_OVERWRITE) { 599 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0); 600 601 for (i = 0; i < npages; i++) { 602 struct vm_page *pg = pgs[ridx + i]; 603 604 pg->flags &= ~(PG_RDONLY|PG_CLEAN); 605 } 606 npages += ridx; 607 goto out; 608 } 609 610 /* 611 * the page wasn't resident and we're not overwriting, 612 * so we're going to have to do some i/o. 613 * find any additional pages needed to cover the expanded range. 614 */ 615 616 npages = (endoffset - startoffset) >> PAGE_SHIFT; 617 if (startoffset != origoffset || npages != orignpages) { 618 619 /* 620 * we need to avoid deadlocks caused by locking 621 * additional pages at lower offsets than pages we 622 * already have locked. unlock them all and start over. 623 */ 624 625 genfs_rel_pages(&pgs[ridx], orignpages); 626 memset(pgs, 0, sizeof(pgs)); 627 628 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x", 629 startoffset, endoffset, 0,0); 630 npgs = npages; 631 if (uvn_findpages(uobj, startoffset, &npgs, pgs, 632 async ? UFP_NOWAIT : UFP_ALL) != npages) { 633 KASSERT(async != 0); 634 genfs_rel_pages(pgs, npages); 635 simple_unlock(&uobj->vmobjlock); 636 return (EBUSY); 637 } 638 } 639 simple_unlock(&uobj->vmobjlock); 640 641 /* 642 * read the desired page(s). 643 */ 644 645 totalbytes = npages << PAGE_SHIFT; 646 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0)); 647 tailbytes = totalbytes - bytes; 648 skipbytes = 0; 649 650 kva = uvm_pagermapin(pgs, npages, 651 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK); 652 653 s = splbio(); 654 mbp = pool_get(&bufpool, PR_WAITOK); 655 splx(s); 656 mbp->b_bufsize = totalbytes; 657 mbp->b_data = (void *)kva; 658 mbp->b_resid = mbp->b_bcount = bytes; 659 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0); 660 mbp->b_iodone = (async ? uvm_aio_biodone : 0); 661 mbp->b_vp = vp; 662 LIST_INIT(&mbp->b_dep); 663 664 /* 665 * if EOF is in the middle of the range, zero the part past EOF. 666 * if the page including EOF is not PG_FAKE, skip over it since 667 * in that case it has valid data that we need to preserve. 668 */ 669 670 if (tailbytes > 0) { 671 size_t tailstart = bytes; 672 673 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) { 674 tailstart = round_page(tailstart); 675 tailbytes -= tailstart - bytes; 676 } 677 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x", 678 kva, tailstart, tailbytes,0); 679 memset((void *)(kva + tailstart), 0, tailbytes); 680 } 681 682 /* 683 * now loop over the pages, reading as needed. 684 */ 685 686 if (write) { 687 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL); 688 } else { 689 lockmgr(&gp->g_glock, LK_SHARED, NULL); 690 } 691 692 bp = NULL; 693 for (offset = startoffset; 694 bytes > 0; 695 offset += iobytes, bytes -= iobytes) { 696 697 /* 698 * skip pages which don't need to be read. 699 */ 700 701 pidx = (offset - startoffset) >> PAGE_SHIFT; 702 while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) { 703 size_t b; 704 705 KASSERT((offset & (PAGE_SIZE - 1)) == 0); 706 b = MIN(PAGE_SIZE, bytes); 707 offset += b; 708 bytes -= b; 709 skipbytes += b; 710 pidx++; 711 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x", 712 offset, 0,0,0); 713 if (bytes == 0) { 714 goto loopdone; 715 } 716 } 717 718 /* 719 * bmap the file to find out the blkno to read from and 720 * how much we can read in one i/o. if bmap returns an error, 721 * skip the rest of the top-level i/o. 722 */ 723 724 lbn = offset >> fs_bshift; 725 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run); 726 if (error) { 727 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n", 728 lbn, error,0,0); 729 skipbytes += bytes; 730 goto loopdone; 731 } 732 733 /* 734 * see how many pages can be read with this i/o. 735 * reduce the i/o size if necessary to avoid 736 * overwriting pages with valid data. 737 */ 738 739 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset, 740 bytes); 741 if (offset + iobytes > round_page(offset)) { 742 pcount = 1; 743 while (pidx + pcount < npages && 744 pgs[pidx + pcount]->flags & PG_FAKE) { 745 pcount++; 746 } 747 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) - 748 (offset - trunc_page(offset))); 749 } 750 751 /* 752 * if this block isn't allocated, zero it instead of 753 * reading it. if this is a read access, mark the 754 * pages we zeroed PG_RDONLY. 755 */ 756 757 if (blkno < 0) { 758 int holepages = (round_page(offset + iobytes) - 759 trunc_page(offset)) >> PAGE_SHIFT; 760 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0); 761 762 sawhole = TRUE; 763 memset((char *)kva + (offset - startoffset), 0, 764 iobytes); 765 skipbytes += iobytes; 766 767 for (i = 0; i < holepages; i++) { 768 if (write) { 769 pgs[pidx + i]->flags &= ~PG_CLEAN; 770 } else { 771 pgs[pidx + i]->flags |= PG_RDONLY; 772 } 773 } 774 continue; 775 } 776 777 /* 778 * allocate a sub-buf for this piece of the i/o 779 * (or just use mbp if there's only 1 piece), 780 * and start it going. 781 */ 782 783 if (offset == startoffset && iobytes == bytes) { 784 bp = mbp; 785 } else { 786 s = splbio(); 787 bp = pool_get(&bufpool, PR_WAITOK); 788 splx(s); 789 bp->b_data = (char *)kva + offset - startoffset; 790 bp->b_resid = bp->b_bcount = iobytes; 791 bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC; 792 bp->b_iodone = uvm_aio_biodone1; 793 bp->b_vp = vp; 794 bp->b_proc = NULL; 795 LIST_INIT(&bp->b_dep); 796 } 797 bp->b_lblkno = 0; 798 bp->b_private = mbp; 799 if (devvp->v_type == VBLK) { 800 bp->b_dev = devvp->v_rdev; 801 } 802 803 /* adjust physical blkno for partial blocks */ 804 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >> 805 dev_bshift); 806 807 UVMHIST_LOG(ubchist, 808 "bp %p offset 0x%x bcount 0x%x blkno 0x%x", 809 bp, offset, iobytes, bp->b_blkno); 810 811 VOP_STRATEGY(bp); 812 } 813 814 loopdone: 815 if (skipbytes) { 816 s = splbio(); 817 if (error) { 818 mbp->b_flags |= B_ERROR; 819 mbp->b_error = error; 820 } 821 mbp->b_resid -= skipbytes; 822 if (mbp->b_resid == 0) { 823 biodone(mbp); 824 } 825 splx(s); 826 } 827 828 if (async) { 829 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0); 830 lockmgr(&gp->g_glock, LK_RELEASE, NULL); 831 return (0); 832 } 833 if (bp != NULL) { 834 error = biowait(mbp); 835 } 836 s = splbio(); 837 pool_put(&bufpool, mbp); 838 splx(s); 839 uvm_pagermapout(kva, npages); 840 raoffset = startoffset + totalbytes; 841 842 /* 843 * if this we encountered a hole then we have to do a little more work. 844 * for read faults, we marked the page PG_RDONLY so that future 845 * write accesses to the page will fault again. 846 * for write faults, we must make sure that the backing store for 847 * the page is completely allocated while the pages are locked. 848 */ 849 850 if (!error && sawhole && write) { 851 for (i = 0; i < npages; i++) { 852 if (pgs[i] == NULL) { 853 continue; 854 } 855 pgs[i]->flags &= ~PG_CLEAN; 856 UVMHIST_LOG(ubchist, "mark dirty pg %p", pgs[i],0,0,0); 857 } 858 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0, 859 cred); 860 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d", 861 startoffset, npages << PAGE_SHIFT, error,0); 862 } 863 lockmgr(&gp->g_glock, LK_RELEASE, NULL); 864 simple_lock(&uobj->vmobjlock); 865 866 /* 867 * see if we want to start any readahead. 868 * XXXUBC for now, just read the next 128k on 64k boundaries. 869 * this is pretty nonsensical, but it is 50% faster than reading 870 * just the next 64k. 871 */ 872 873 raout: 874 if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 && 875 PAGE_SHIFT <= 16) { 876 off_t rasize; 877 int rapages, err, i, skipped; 878 879 /* XXXUBC temp limit, from above */ 880 rapages = MIN(MIN(1 << (16 - PAGE_SHIFT), MAX_READ_AHEAD), 881 genfs_rapages); 882 rasize = rapages << PAGE_SHIFT; 883 for (i = skipped = 0; i < genfs_racount; i++) { 884 err = VOP_GETPAGES(vp, raoffset, NULL, &rapages, 0, 885 VM_PROT_READ, 0, 0); 886 simple_lock(&uobj->vmobjlock); 887 if (err) { 888 if (err != EBUSY || 889 skipped++ == genfs_raskip) 890 break; 891 } 892 raoffset += rasize; 893 rapages = rasize >> PAGE_SHIFT; 894 } 895 } 896 897 /* 898 * we're almost done! release the pages... 899 * for errors, we free the pages. 900 * otherwise we activate them and mark them as valid and clean. 901 * also, unbusy pages that were not actually requested. 902 */ 903 904 if (error) { 905 for (i = 0; i < npages; i++) { 906 if (pgs[i] == NULL) { 907 continue; 908 } 909 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x", 910 pgs[i], pgs[i]->flags, 0,0); 911 if (pgs[i]->flags & PG_FAKE) { 912 pgs[i]->flags |= PG_RELEASED; 913 } 914 } 915 uvm_lock_pageq(); 916 uvm_page_unbusy(pgs, npages); 917 uvm_unlock_pageq(); 918 simple_unlock(&uobj->vmobjlock); 919 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0); 920 return (error); 921 } 922 923 out: 924 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0); 925 uvm_lock_pageq(); 926 for (i = 0; i < npages; i++) { 927 pg = pgs[i]; 928 if (pg == NULL) { 929 continue; 930 } 931 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x", 932 pg, pg->flags, 0,0); 933 if (pg->flags & PG_FAKE && !overwrite) { 934 pg->flags &= ~(PG_FAKE); 935 pmap_clear_modify(pgs[i]); 936 } 937 if (write) { 938 pg->flags &= ~(PG_RDONLY); 939 } 940 if (i < ridx || i >= ridx + orignpages || async) { 941 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x", 942 pg, pg->offset,0,0); 943 if (pg->flags & PG_WANTED) { 944 wakeup(pg); 945 } 946 if (pg->flags & PG_FAKE) { 947 KASSERT(overwrite); 948 uvm_pagezero(pg); 949 } 950 if (pg->flags & PG_RELEASED) { 951 uvm_pagefree(pg); 952 continue; 953 } 954 uvm_pageactivate(pg); 955 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE); 956 UVM_PAGE_OWN(pg, NULL); 957 } 958 } 959 uvm_unlock_pageq(); 960 simple_unlock(&uobj->vmobjlock); 961 if (ap->a_m != NULL) { 962 memcpy(ap->a_m, &pgs[ridx], 963 orignpages * sizeof(struct vm_page *)); 964 } 965 return (0); 966 } 967 968 /* 969 * generic VM putpages routine. 970 * Write the given range of pages to backing store. 971 * 972 * => "offhi == 0" means flush all pages at or after "offlo". 973 * => object should be locked by caller. we may _unlock_ the object 974 * if (and only if) we need to clean a page (PGO_CLEANIT), or 975 * if PGO_SYNCIO is set and there are pages busy. 976 * we return with the object locked. 977 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O). 978 * thus, a caller might want to unlock higher level resources 979 * (e.g. vm_map) before calling flush. 980 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither 981 * unlock the object nor block. 982 * => if PGO_ALLPAGES is set, then all pages in the object will be processed. 983 * => NOTE: we rely on the fact that the object's memq is a TAILQ and 984 * that new pages are inserted on the tail end of the list. thus, 985 * we can make a complete pass through the object in one go by starting 986 * at the head and working towards the tail (new pages are put in 987 * front of us). 988 * => NOTE: we are allowed to lock the page queues, so the caller 989 * must not be holding the page queue lock. 990 * 991 * note on "cleaning" object and PG_BUSY pages: 992 * this routine is holding the lock on the object. the only time 993 * that it can run into a PG_BUSY page that it does not own is if 994 * some other process has started I/O on the page (e.g. either 995 * a pagein, or a pageout). if the PG_BUSY page is being paged 996 * in, then it can not be dirty (!PG_CLEAN) because no one has 997 * had a chance to modify it yet. if the PG_BUSY page is being 998 * paged out then it means that someone else has already started 999 * cleaning the page for us (how nice!). in this case, if we 1000 * have syncio specified, then after we make our pass through the 1001 * object we need to wait for the other PG_BUSY pages to clear 1002 * off (i.e. we need to do an iosync). also note that once a 1003 * page is PG_BUSY it must stay in its object until it is un-busyed. 1004 * 1005 * note on page traversal: 1006 * we can traverse the pages in an object either by going down the 1007 * linked list in "uobj->memq", or we can go over the address range 1008 * by page doing hash table lookups for each address. depending 1009 * on how many pages are in the object it may be cheaper to do one 1010 * or the other. we set "by_list" to true if we are using memq. 1011 * if the cost of a hash lookup was equal to the cost of the list 1012 * traversal we could compare the number of pages in the start->stop 1013 * range to the total number of pages in the object. however, it 1014 * seems that a hash table lookup is more expensive than the linked 1015 * list traversal, so we multiply the number of pages in the 1016 * range by an estimate of the relatively higher cost of the hash lookup. 1017 */ 1018 1019 int 1020 genfs_putpages(void *v) 1021 { 1022 struct vop_putpages_args /* { 1023 struct vnode *a_vp; 1024 voff_t a_offlo; 1025 voff_t a_offhi; 1026 int a_flags; 1027 } */ *ap = v; 1028 struct vnode *vp = ap->a_vp; 1029 struct uvm_object *uobj = &vp->v_uobj; 1030 struct simplelock *slock = &uobj->vmobjlock; 1031 off_t startoff = ap->a_offlo; 1032 off_t endoff = ap->a_offhi; 1033 off_t off; 1034 int flags = ap->a_flags; 1035 const int maxpages = MAXBSIZE >> PAGE_SHIFT; 1036 int i, s, error, npages, nback; 1037 int freeflag; 1038 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp; 1039 boolean_t wasclean, by_list, needs_clean, yield; 1040 boolean_t async = (flags & PGO_SYNCIO) == 0; 1041 boolean_t pagedaemon = curproc == uvm.pagedaemon_proc; 1042 struct lwp *l = curlwp ? curlwp : &lwp0; 1043 1044 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist); 1045 1046 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)); 1047 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0); 1048 KASSERT(startoff < endoff || endoff == 0); 1049 1050 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x", 1051 vp, uobj->uo_npages, startoff, endoff - startoff); 1052 if (uobj->uo_npages == 0) { 1053 s = splbio(); 1054 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL && 1055 (vp->v_flag & VONWORKLST)) { 1056 vp->v_flag &= ~VONWORKLST; 1057 LIST_REMOVE(vp, v_synclist); 1058 } 1059 splx(s); 1060 simple_unlock(slock); 1061 return (0); 1062 } 1063 1064 /* 1065 * the vnode has pages, set up to process the request. 1066 */ 1067 1068 error = 0; 1069 s = splbio(); 1070 wasclean = (vp->v_numoutput == 0); 1071 splx(s); 1072 off = startoff; 1073 if (endoff == 0 || flags & PGO_ALLPAGES) { 1074 endoff = trunc_page(LLONG_MAX); 1075 } 1076 by_list = (uobj->uo_npages <= 1077 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY); 1078 1079 /* 1080 * start the loop. when scanning by list, hold the last page 1081 * in the list before we start. pages allocated after we start 1082 * will be added to the end of the list, so we can stop at the 1083 * current last page. 1084 */ 1085 1086 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED; 1087 curmp.uobject = uobj; 1088 curmp.offset = (voff_t)-1; 1089 curmp.flags = PG_BUSY; 1090 endmp.uobject = uobj; 1091 endmp.offset = (voff_t)-1; 1092 endmp.flags = PG_BUSY; 1093 if (by_list) { 1094 pg = TAILQ_FIRST(&uobj->memq); 1095 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq); 1096 PHOLD(l); 1097 } else { 1098 pg = uvm_pagelookup(uobj, off); 1099 } 1100 nextpg = NULL; 1101 while (by_list || off < endoff) { 1102 1103 /* 1104 * if the current page is not interesting, move on to the next. 1105 */ 1106 1107 KASSERT(pg == NULL || pg->uobject == uobj); 1108 KASSERT(pg == NULL || 1109 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 || 1110 (pg->flags & PG_BUSY) != 0); 1111 if (by_list) { 1112 if (pg == &endmp) { 1113 break; 1114 } 1115 if (pg->offset < startoff || pg->offset >= endoff || 1116 pg->flags & (PG_RELEASED|PG_PAGEOUT)) { 1117 pg = TAILQ_NEXT(pg, listq); 1118 continue; 1119 } 1120 off = pg->offset; 1121 } else if (pg == NULL || 1122 pg->flags & (PG_RELEASED|PG_PAGEOUT)) { 1123 off += PAGE_SIZE; 1124 if (off < endoff) { 1125 pg = uvm_pagelookup(uobj, off); 1126 } 1127 continue; 1128 } 1129 1130 /* 1131 * if the current page needs to be cleaned and it's busy, 1132 * wait for it to become unbusy. 1133 */ 1134 1135 yield = (l->l_cpu->ci_schedstate.spc_flags & 1136 SPCF_SHOULDYIELD) && !pagedaemon; 1137 if (pg->flags & PG_BUSY || yield) { 1138 KASSERT(!pagedaemon); 1139 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0); 1140 if (by_list) { 1141 TAILQ_INSERT_BEFORE(pg, &curmp, listq); 1142 UVMHIST_LOG(ubchist, "curmp next %p", 1143 TAILQ_NEXT(&curmp, listq), 0,0,0); 1144 } 1145 if (yield) { 1146 simple_unlock(slock); 1147 preempt(1); 1148 simple_lock(slock); 1149 } else { 1150 pg->flags |= PG_WANTED; 1151 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0); 1152 simple_lock(slock); 1153 } 1154 if (by_list) { 1155 UVMHIST_LOG(ubchist, "after next %p", 1156 TAILQ_NEXT(&curmp, listq), 0,0,0); 1157 pg = TAILQ_NEXT(&curmp, listq); 1158 TAILQ_REMOVE(&uobj->memq, &curmp, listq); 1159 } else { 1160 pg = uvm_pagelookup(uobj, off); 1161 } 1162 continue; 1163 } 1164 1165 /* 1166 * if we're freeing, remove all mappings of the page now. 1167 * if we're cleaning, check if the page is needs to be cleaned. 1168 */ 1169 1170 if (flags & PGO_FREE) { 1171 pmap_page_protect(pg, VM_PROT_NONE); 1172 } 1173 if (flags & PGO_CLEANIT) { 1174 needs_clean = pmap_clear_modify(pg) || 1175 (pg->flags & PG_CLEAN) == 0; 1176 pg->flags |= PG_CLEAN; 1177 } else { 1178 needs_clean = FALSE; 1179 } 1180 1181 /* 1182 * if we're cleaning, build a cluster. 1183 * the cluster will consist of pages which are currently dirty, 1184 * but they will be returned to us marked clean. 1185 * if not cleaning, just operate on the one page. 1186 */ 1187 1188 if (needs_clean) { 1189 wasclean = FALSE; 1190 memset(pgs, 0, sizeof(pgs)); 1191 pg->flags |= PG_BUSY; 1192 UVM_PAGE_OWN(pg, "genfs_putpages"); 1193 1194 /* 1195 * first look backward. 1196 */ 1197 1198 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT); 1199 nback = npages; 1200 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0], 1201 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD); 1202 if (nback) { 1203 memmove(&pgs[0], &pgs[npages - nback], 1204 nback * sizeof(pgs[0])); 1205 if (npages - nback < nback) 1206 memset(&pgs[nback], 0, 1207 (npages - nback) * sizeof(pgs[0])); 1208 else 1209 memset(&pgs[npages - nback], 0, 1210 nback * sizeof(pgs[0])); 1211 } 1212 1213 /* 1214 * then plug in our page of interest. 1215 */ 1216 1217 pgs[nback] = pg; 1218 1219 /* 1220 * then look forward to fill in the remaining space in 1221 * the array of pages. 1222 */ 1223 1224 npages = maxpages - nback - 1; 1225 uvn_findpages(uobj, off + PAGE_SIZE, &npages, 1226 &pgs[nback + 1], 1227 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY); 1228 npages += nback + 1; 1229 } else { 1230 pgs[0] = pg; 1231 npages = 1; 1232 nback = 0; 1233 } 1234 1235 /* 1236 * apply FREE or DEACTIVATE options if requested. 1237 */ 1238 1239 if (flags & (PGO_DEACTIVATE|PGO_FREE)) { 1240 uvm_lock_pageq(); 1241 } 1242 for (i = 0; i < npages; i++) { 1243 tpg = pgs[i]; 1244 KASSERT(tpg->uobject == uobj); 1245 if (by_list && tpg == TAILQ_NEXT(pg, listq)) 1246 pg = tpg; 1247 if (tpg->offset < startoff || tpg->offset >= endoff) 1248 continue; 1249 if (flags & PGO_DEACTIVATE && 1250 (tpg->pqflags & PQ_INACTIVE) == 0 && 1251 tpg->wire_count == 0) { 1252 (void) pmap_clear_reference(tpg); 1253 uvm_pagedeactivate(tpg); 1254 } else if (flags & PGO_FREE) { 1255 pmap_page_protect(tpg, VM_PROT_NONE); 1256 if (tpg->flags & PG_BUSY) { 1257 tpg->flags |= freeflag; 1258 if (pagedaemon) { 1259 uvmexp.paging++; 1260 uvm_pagedequeue(tpg); 1261 } 1262 } else { 1263 1264 /* 1265 * ``page is not busy'' 1266 * implies that npages is 1 1267 * and needs_clean is false. 1268 */ 1269 1270 nextpg = TAILQ_NEXT(tpg, listq); 1271 uvm_pagefree(tpg); 1272 } 1273 } 1274 } 1275 if (flags & (PGO_DEACTIVATE|PGO_FREE)) { 1276 uvm_unlock_pageq(); 1277 } 1278 if (needs_clean) { 1279 1280 /* 1281 * start the i/o. if we're traversing by list, 1282 * keep our place in the list with a marker page. 1283 */ 1284 1285 if (by_list) { 1286 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp, 1287 listq); 1288 } 1289 simple_unlock(slock); 1290 error = GOP_WRITE(vp, pgs, npages, flags); 1291 simple_lock(slock); 1292 if (by_list) { 1293 pg = TAILQ_NEXT(&curmp, listq); 1294 TAILQ_REMOVE(&uobj->memq, &curmp, listq); 1295 } 1296 if (error) { 1297 break; 1298 } 1299 if (by_list) { 1300 continue; 1301 } 1302 } 1303 1304 /* 1305 * find the next page and continue if there was no error. 1306 */ 1307 1308 if (by_list) { 1309 if (nextpg) { 1310 pg = nextpg; 1311 nextpg = NULL; 1312 } else { 1313 pg = TAILQ_NEXT(pg, listq); 1314 } 1315 } else { 1316 off += (npages - nback) << PAGE_SHIFT; 1317 if (off < endoff) { 1318 pg = uvm_pagelookup(uobj, off); 1319 } 1320 } 1321 } 1322 if (by_list) { 1323 TAILQ_REMOVE(&uobj->memq, &endmp, listq); 1324 PRELE(l); 1325 } 1326 1327 /* 1328 * if we're cleaning and there was nothing to clean, 1329 * take us off the syncer list. if we started any i/o 1330 * and we're doing sync i/o, wait for all writes to finish. 1331 */ 1332 1333 s = splbio(); 1334 if ((flags & PGO_CLEANIT) && wasclean && 1335 startoff == 0 && endoff == trunc_page(LLONG_MAX) && 1336 LIST_FIRST(&vp->v_dirtyblkhd) == NULL && 1337 (vp->v_flag & VONWORKLST)) { 1338 vp->v_flag &= ~VONWORKLST; 1339 LIST_REMOVE(vp, v_synclist); 1340 } 1341 splx(s); 1342 if (!wasclean && !async) { 1343 s = splbio(); 1344 while (vp->v_numoutput != 0) { 1345 vp->v_flag |= VBWAIT; 1346 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE, 1347 "genput2", 0); 1348 simple_lock(slock); 1349 } 1350 splx(s); 1351 } 1352 simple_unlock(&uobj->vmobjlock); 1353 return (error); 1354 } 1355 1356 int 1357 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags) 1358 { 1359 int s, error, run; 1360 int fs_bshift, dev_bshift; 1361 vaddr_t kva; 1362 off_t eof, offset, startoffset; 1363 size_t bytes, iobytes, skipbytes; 1364 daddr_t lbn, blkno; 1365 struct vm_page *pg; 1366 struct buf *mbp, *bp; 1367 struct vnode *devvp; 1368 boolean_t async = (flags & PGO_SYNCIO) == 0; 1369 UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist); 1370 1371 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x", 1372 vp, pgs, npages, flags); 1373 1374 GOP_SIZE(vp, vp->v_size, &eof); 1375 if (vp->v_type == VREG) { 1376 fs_bshift = vp->v_mount->mnt_fs_bshift; 1377 dev_bshift = vp->v_mount->mnt_dev_bshift; 1378 } else { 1379 fs_bshift = DEV_BSHIFT; 1380 dev_bshift = DEV_BSHIFT; 1381 } 1382 error = 0; 1383 pg = pgs[0]; 1384 startoffset = pg->offset; 1385 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset); 1386 skipbytes = 0; 1387 KASSERT(bytes != 0); 1388 1389 kva = uvm_pagermapin(pgs, npages, 1390 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK); 1391 1392 s = splbio(); 1393 vp->v_numoutput += 2; 1394 mbp = pool_get(&bufpool, PR_WAITOK); 1395 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x", 1396 vp, mbp, vp->v_numoutput, bytes); 1397 splx(s); 1398 mbp->b_bufsize = npages << PAGE_SHIFT; 1399 mbp->b_data = (void *)kva; 1400 mbp->b_resid = mbp->b_bcount = bytes; 1401 mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0); 1402 mbp->b_iodone = uvm_aio_biodone; 1403 mbp->b_vp = vp; 1404 LIST_INIT(&mbp->b_dep); 1405 1406 bp = NULL; 1407 for (offset = startoffset; 1408 bytes > 0; 1409 offset += iobytes, bytes -= iobytes) { 1410 lbn = offset >> fs_bshift; 1411 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run); 1412 if (error) { 1413 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0); 1414 skipbytes += bytes; 1415 bytes = 0; 1416 break; 1417 } 1418 1419 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset, 1420 bytes); 1421 if (blkno == (daddr_t)-1) { 1422 skipbytes += iobytes; 1423 continue; 1424 } 1425 1426 /* if it's really one i/o, don't make a second buf */ 1427 if (offset == startoffset && iobytes == bytes) { 1428 bp = mbp; 1429 } else { 1430 s = splbio(); 1431 vp->v_numoutput++; 1432 bp = pool_get(&bufpool, PR_WAITOK); 1433 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d", 1434 vp, bp, vp->v_numoutput, 0); 1435 splx(s); 1436 bp->b_data = (char *)kva + 1437 (vaddr_t)(offset - pg->offset); 1438 bp->b_resid = bp->b_bcount = iobytes; 1439 bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC; 1440 bp->b_iodone = uvm_aio_biodone1; 1441 bp->b_vp = vp; 1442 LIST_INIT(&bp->b_dep); 1443 } 1444 bp->b_lblkno = 0; 1445 bp->b_private = mbp; 1446 if (devvp->v_type == VBLK) { 1447 bp->b_dev = devvp->v_rdev; 1448 } 1449 1450 /* adjust physical blkno for partial blocks */ 1451 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >> 1452 dev_bshift); 1453 UVMHIST_LOG(ubchist, 1454 "vp %p offset 0x%x bcount 0x%x blkno 0x%x", 1455 vp, offset, bp->b_bcount, bp->b_blkno); 1456 VOP_STRATEGY(bp); 1457 } 1458 if (skipbytes) { 1459 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0); 1460 s = splbio(); 1461 if (error) { 1462 mbp->b_flags |= B_ERROR; 1463 mbp->b_error = error; 1464 } 1465 mbp->b_resid -= skipbytes; 1466 if (mbp->b_resid == 0) { 1467 biodone(mbp); 1468 } 1469 splx(s); 1470 } 1471 if (async) { 1472 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0); 1473 return (0); 1474 } 1475 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0); 1476 error = biowait(mbp); 1477 uvm_aio_aiodone(mbp); 1478 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0); 1479 return (error); 1480 } 1481 1482 /* 1483 * VOP_PUTPAGES() for vnodes which never have pages. 1484 */ 1485 1486 int 1487 genfs_null_putpages(void *v) 1488 { 1489 struct vop_putpages_args /* { 1490 struct vnode *a_vp; 1491 voff_t a_offlo; 1492 voff_t a_offhi; 1493 int a_flags; 1494 } */ *ap = v; 1495 struct vnode *vp = ap->a_vp; 1496 1497 KASSERT(vp->v_uobj.uo_npages == 0); 1498 simple_unlock(&vp->v_interlock); 1499 return (0); 1500 } 1501 1502 void 1503 genfs_node_init(struct vnode *vp, struct genfs_ops *ops) 1504 { 1505 struct genfs_node *gp = VTOG(vp); 1506 1507 lockinit(&gp->g_glock, PINOD, "glock", 0, 0); 1508 gp->g_op = ops; 1509 } 1510 1511 void 1512 genfs_size(struct vnode *vp, off_t size, off_t *eobp) 1513 { 1514 int bsize; 1515 1516 bsize = 1 << vp->v_mount->mnt_fs_bshift; 1517 *eobp = (size + bsize - 1) & ~(bsize - 1); 1518 } 1519 1520 int 1521 genfs_compat_getpages(void *v) 1522 { 1523 struct vop_getpages_args /* { 1524 struct vnode *a_vp; 1525 voff_t a_offset; 1526 struct vm_page **a_m; 1527 int *a_count; 1528 int a_centeridx; 1529 vm_prot_t a_access_type; 1530 int a_advice; 1531 int a_flags; 1532 } */ *ap = v; 1533 1534 off_t origoffset; 1535 struct vnode *vp = ap->a_vp; 1536 struct uvm_object *uobj = &vp->v_uobj; 1537 struct vm_page *pg, **pgs; 1538 vaddr_t kva; 1539 int i, error, orignpages, npages; 1540 struct iovec iov; 1541 struct uio uio; 1542 struct ucred *cred = curproc->p_ucred; 1543 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0; 1544 1545 error = 0; 1546 origoffset = ap->a_offset; 1547 orignpages = *ap->a_count; 1548 pgs = ap->a_m; 1549 1550 if (write && (vp->v_flag & VONWORKLST) == 0) { 1551 vn_syncer_add_to_worklist(vp, filedelay); 1552 } 1553 if (ap->a_flags & PGO_LOCKED) { 1554 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, 1555 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0)); 1556 1557 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0); 1558 } 1559 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) { 1560 simple_unlock(&uobj->vmobjlock); 1561 return (EINVAL); 1562 } 1563 npages = orignpages; 1564 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL); 1565 simple_unlock(&uobj->vmobjlock); 1566 kva = uvm_pagermapin(pgs, npages, 1567 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK); 1568 for (i = 0; i < npages; i++) { 1569 pg = pgs[i]; 1570 if ((pg->flags & PG_FAKE) == 0) { 1571 continue; 1572 } 1573 iov.iov_base = (char *)kva + (i << PAGE_SHIFT); 1574 iov.iov_len = PAGE_SIZE; 1575 uio.uio_iov = &iov; 1576 uio.uio_iovcnt = 1; 1577 uio.uio_offset = origoffset + (i << PAGE_SHIFT); 1578 uio.uio_segflg = UIO_SYSSPACE; 1579 uio.uio_rw = UIO_READ; 1580 uio.uio_resid = PAGE_SIZE; 1581 uio.uio_procp = curproc; 1582 error = VOP_READ(vp, &uio, 0, cred); 1583 if (error) { 1584 break; 1585 } 1586 if (uio.uio_resid) { 1587 memset(iov.iov_base, 0, uio.uio_resid); 1588 } 1589 } 1590 uvm_pagermapout(kva, npages); 1591 simple_lock(&uobj->vmobjlock); 1592 uvm_lock_pageq(); 1593 for (i = 0; i < npages; i++) { 1594 pg = pgs[i]; 1595 if (error && (pg->flags & PG_FAKE) != 0) { 1596 pg->flags |= PG_RELEASED; 1597 } else { 1598 pmap_clear_modify(pg); 1599 uvm_pageactivate(pg); 1600 } 1601 } 1602 if (error) { 1603 uvm_page_unbusy(pgs, npages); 1604 } 1605 uvm_unlock_pageq(); 1606 simple_unlock(&uobj->vmobjlock); 1607 return (error); 1608 } 1609 1610 int 1611 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, 1612 int flags) 1613 { 1614 off_t offset; 1615 struct iovec iov; 1616 struct uio uio; 1617 struct ucred *cred = curproc->p_ucred; 1618 struct buf *bp; 1619 vaddr_t kva; 1620 int s, error; 1621 1622 offset = pgs[0]->offset; 1623 kva = uvm_pagermapin(pgs, npages, 1624 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK); 1625 1626 iov.iov_base = (void *)kva; 1627 iov.iov_len = npages << PAGE_SHIFT; 1628 uio.uio_iov = &iov; 1629 uio.uio_iovcnt = 1; 1630 uio.uio_offset = offset; 1631 uio.uio_segflg = UIO_SYSSPACE; 1632 uio.uio_rw = UIO_WRITE; 1633 uio.uio_resid = npages << PAGE_SHIFT; 1634 uio.uio_procp = curproc; 1635 error = VOP_WRITE(vp, &uio, 0, cred); 1636 1637 s = splbio(); 1638 vp->v_numoutput++; 1639 bp = pool_get(&bufpool, PR_WAITOK); 1640 splx(s); 1641 1642 bp->b_flags = B_BUSY | B_WRITE | B_AGE; 1643 bp->b_vp = vp; 1644 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift; 1645 bp->b_data = (char *)kva; 1646 bp->b_bcount = npages << PAGE_SHIFT; 1647 bp->b_bufsize = npages << PAGE_SHIFT; 1648 bp->b_resid = 0; 1649 LIST_INIT(&bp->b_dep); 1650 if (error) { 1651 bp->b_flags |= B_ERROR; 1652 bp->b_error = error; 1653 } 1654 uvm_aio_aiodone(bp); 1655 return (error); 1656 } 1657 1658 static void 1659 filt_genfsdetach(struct knote *kn) 1660 { 1661 struct vnode *vp = (struct vnode *)kn->kn_hook; 1662 1663 /* XXXLUKEM lock the struct? */ 1664 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext); 1665 } 1666 1667 static int 1668 filt_genfsread(struct knote *kn, long hint) 1669 { 1670 struct vnode *vp = (struct vnode *)kn->kn_hook; 1671 1672 /* 1673 * filesystem is gone, so set the EOF flag and schedule 1674 * the knote for deletion. 1675 */ 1676 if (hint == NOTE_REVOKE) { 1677 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 1678 return (1); 1679 } 1680 1681 /* XXXLUKEM lock the struct? */ 1682 kn->kn_data = vp->v_size - kn->kn_fp->f_offset; 1683 return (kn->kn_data != 0); 1684 } 1685 1686 static int 1687 filt_genfsvnode(struct knote *kn, long hint) 1688 { 1689 1690 if (kn->kn_sfflags & hint) 1691 kn->kn_fflags |= hint; 1692 if (hint == NOTE_REVOKE) { 1693 kn->kn_flags |= EV_EOF; 1694 return (1); 1695 } 1696 return (kn->kn_fflags != 0); 1697 } 1698 1699 static const struct filterops genfsread_filtops = 1700 { 1, NULL, filt_genfsdetach, filt_genfsread }; 1701 static const struct filterops genfsvnode_filtops = 1702 { 1, NULL, filt_genfsdetach, filt_genfsvnode }; 1703 1704 int 1705 genfs_kqfilter(void *v) 1706 { 1707 struct vop_kqfilter_args /* { 1708 struct vnode *a_vp; 1709 struct knote *a_kn; 1710 } */ *ap = v; 1711 struct vnode *vp; 1712 struct knote *kn; 1713 1714 vp = ap->a_vp; 1715 kn = ap->a_kn; 1716 switch (kn->kn_filter) { 1717 case EVFILT_READ: 1718 kn->kn_fop = &genfsread_filtops; 1719 break; 1720 case EVFILT_VNODE: 1721 kn->kn_fop = &genfsvnode_filtops; 1722 break; 1723 default: 1724 return (1); 1725 } 1726 1727 kn->kn_hook = vp; 1728 1729 /* XXXLUKEM lock the struct? */ 1730 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext); 1731 1732 return (0); 1733 } 1734