1 /* $NetBSD: genfs_vnops.c,v 1.120 2006/01/11 00:46:54 yamt Exp $ */ 2 3 /* 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 */ 32 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.120 2006/01/11 00:46:54 yamt Exp $"); 35 36 #if defined(_KERNEL_OPT) 37 #include "opt_nfsserver.h" 38 #endif 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/proc.h> 43 #include <sys/kernel.h> 44 #include <sys/mount.h> 45 #include <sys/namei.h> 46 #include <sys/vnode.h> 47 #include <sys/fcntl.h> 48 #include <sys/malloc.h> 49 #include <sys/poll.h> 50 #include <sys/mman.h> 51 #include <sys/file.h> 52 53 #include <miscfs/genfs/genfs.h> 54 #include <miscfs/genfs/genfs_node.h> 55 #include <miscfs/specfs/specdev.h> 56 57 #include <uvm/uvm.h> 58 #include <uvm/uvm_pager.h> 59 60 #ifdef NFSSERVER 61 #include <nfs/rpcv2.h> 62 #include <nfs/nfsproto.h> 63 #include <nfs/nfs.h> 64 #include <nfs/nqnfs.h> 65 #include <nfs/nfs_var.h> 66 #endif 67 68 static inline void genfs_rel_pages(struct vm_page **, int); 69 static void filt_genfsdetach(struct knote *); 70 static int filt_genfsread(struct knote *, long); 71 static int filt_genfsvnode(struct knote *, long); 72 73 #define MAX_READ_PAGES 16 /* XXXUBC 16 */ 74 75 int 76 genfs_poll(void *v) 77 { 78 struct vop_poll_args /* { 79 struct vnode *a_vp; 80 int a_events; 81 struct lwp *a_l; 82 } */ *ap = v; 83 84 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM)); 85 } 86 87 int 88 genfs_seek(void *v) 89 { 90 struct vop_seek_args /* { 91 struct vnode *a_vp; 92 off_t a_oldoff; 93 off_t a_newoff; 94 struct ucred *a_ucred; 95 } */ *ap = v; 96 97 if (ap->a_newoff < 0) 98 return (EINVAL); 99 100 return (0); 101 } 102 103 int 104 genfs_abortop(void *v) 105 { 106 struct vop_abortop_args /* { 107 struct vnode *a_dvp; 108 struct componentname *a_cnp; 109 } */ *ap = v; 110 111 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF) 112 PNBUF_PUT(ap->a_cnp->cn_pnbuf); 113 return (0); 114 } 115 116 int 117 genfs_fcntl(void *v) 118 { 119 struct vop_fcntl_args /* { 120 struct vnode *a_vp; 121 u_int a_command; 122 caddr_t a_data; 123 int a_fflag; 124 struct ucred *a_cred; 125 struct lwp *a_l; 126 } */ *ap = v; 127 128 if (ap->a_command == F_SETFL) 129 return (0); 130 else 131 return (EOPNOTSUPP); 132 } 133 134 /*ARGSUSED*/ 135 int 136 genfs_badop(void *v) 137 { 138 139 panic("genfs: bad op"); 140 } 141 142 /*ARGSUSED*/ 143 int 144 genfs_nullop(void *v) 145 { 146 147 return (0); 148 } 149 150 /*ARGSUSED*/ 151 int 152 genfs_einval(void *v) 153 { 154 155 return (EINVAL); 156 } 157 158 /* 159 * Called when an fs doesn't support a particular vop. 160 * This takes care to vrele, vput, or vunlock passed in vnodes. 161 */ 162 int 163 genfs_eopnotsupp(void *v) 164 { 165 struct vop_generic_args /* 166 struct vnodeop_desc *a_desc; 167 / * other random data follows, presumably * / 168 } */ *ap = v; 169 struct vnodeop_desc *desc = ap->a_desc; 170 struct vnode *vp, *vp_last = NULL; 171 int flags, i, j, offset; 172 173 flags = desc->vdesc_flags; 174 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) { 175 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET) 176 break; /* stop at end of list */ 177 if ((j = flags & VDESC_VP0_WILLPUT)) { 178 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap); 179 180 /* Skip if NULL */ 181 if (!vp) 182 continue; 183 184 switch (j) { 185 case VDESC_VP0_WILLPUT: 186 /* Check for dvp == vp cases */ 187 if (vp == vp_last) 188 vrele(vp); 189 else { 190 vput(vp); 191 vp_last = vp; 192 } 193 break; 194 case VDESC_VP0_WILLUNLOCK: 195 VOP_UNLOCK(vp, 0); 196 break; 197 case VDESC_VP0_WILLRELE: 198 vrele(vp); 199 break; 200 } 201 } 202 } 203 204 return (EOPNOTSUPP); 205 } 206 207 /*ARGSUSED*/ 208 int 209 genfs_ebadf(void *v) 210 { 211 212 return (EBADF); 213 } 214 215 /* ARGSUSED */ 216 int 217 genfs_enoioctl(void *v) 218 { 219 220 return (EPASSTHROUGH); 221 } 222 223 224 /* 225 * Eliminate all activity associated with the requested vnode 226 * and with all vnodes aliased to the requested vnode. 227 */ 228 int 229 genfs_revoke(void *v) 230 { 231 struct vop_revoke_args /* { 232 struct vnode *a_vp; 233 int a_flags; 234 } */ *ap = v; 235 struct vnode *vp, *vq; 236 struct lwp *l = curlwp; /* XXX */ 237 238 #ifdef DIAGNOSTIC 239 if ((ap->a_flags & REVOKEALL) == 0) 240 panic("genfs_revoke: not revokeall"); 241 #endif 242 243 vp = ap->a_vp; 244 simple_lock(&vp->v_interlock); 245 246 if (vp->v_flag & VALIASED) { 247 /* 248 * If a vgone (or vclean) is already in progress, 249 * wait until it is done and return. 250 */ 251 if (vp->v_flag & VXLOCK) { 252 vp->v_flag |= VXWANT; 253 ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0, 254 &vp->v_interlock); 255 return (0); 256 } 257 /* 258 * Ensure that vp will not be vgone'd while we 259 * are eliminating its aliases. 260 */ 261 vp->v_flag |= VXLOCK; 262 simple_unlock(&vp->v_interlock); 263 while (vp->v_flag & VALIASED) { 264 simple_lock(&spechash_slock); 265 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) { 266 if (vq->v_rdev != vp->v_rdev || 267 vq->v_type != vp->v_type || vp == vq) 268 continue; 269 simple_unlock(&spechash_slock); 270 vgone(vq); 271 break; 272 } 273 if (vq == NULLVP) 274 simple_unlock(&spechash_slock); 275 } 276 /* 277 * Remove the lock so that vgone below will 278 * really eliminate the vnode after which time 279 * vgone will awaken any sleepers. 280 */ 281 simple_lock(&vp->v_interlock); 282 vp->v_flag &= ~VXLOCK; 283 } 284 vgonel(vp, l); 285 return (0); 286 } 287 288 /* 289 * Lock the node. 290 */ 291 int 292 genfs_lock(void *v) 293 { 294 struct vop_lock_args /* { 295 struct vnode *a_vp; 296 int a_flags; 297 } */ *ap = v; 298 struct vnode *vp = ap->a_vp; 299 300 return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock)); 301 } 302 303 /* 304 * Unlock the node. 305 */ 306 int 307 genfs_unlock(void *v) 308 { 309 struct vop_unlock_args /* { 310 struct vnode *a_vp; 311 int a_flags; 312 } */ *ap = v; 313 struct vnode *vp = ap->a_vp; 314 315 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE, 316 &vp->v_interlock)); 317 } 318 319 /* 320 * Return whether or not the node is locked. 321 */ 322 int 323 genfs_islocked(void *v) 324 { 325 struct vop_islocked_args /* { 326 struct vnode *a_vp; 327 } */ *ap = v; 328 struct vnode *vp = ap->a_vp; 329 330 return (lockstatus(vp->v_vnlock)); 331 } 332 333 /* 334 * Stubs to use when there is no locking to be done on the underlying object. 335 */ 336 int 337 genfs_nolock(void *v) 338 { 339 struct vop_lock_args /* { 340 struct vnode *a_vp; 341 int a_flags; 342 struct lwp *a_l; 343 } */ *ap = v; 344 345 /* 346 * Since we are not using the lock manager, we must clear 347 * the interlock here. 348 */ 349 if (ap->a_flags & LK_INTERLOCK) 350 simple_unlock(&ap->a_vp->v_interlock); 351 return (0); 352 } 353 354 int 355 genfs_nounlock(void *v) 356 { 357 358 return (0); 359 } 360 361 int 362 genfs_noislocked(void *v) 363 { 364 365 return (0); 366 } 367 368 /* 369 * Local lease check for NFS servers. Just set up args and let 370 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel, 371 * this is a null operation. 372 */ 373 int 374 genfs_lease_check(void *v) 375 { 376 #ifdef NFSSERVER 377 struct vop_lease_args /* { 378 struct vnode *a_vp; 379 struct lwp *a_l; 380 struct ucred *a_cred; 381 int a_flag; 382 } */ *ap = v; 383 u_int32_t duration = 0; 384 int cache; 385 u_quad_t frev; 386 387 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag, 388 NQLOCALSLP, ap->a_l, (struct mbuf *)0, &cache, &frev, ap->a_cred); 389 return (0); 390 #else 391 return (0); 392 #endif /* NFSSERVER */ 393 } 394 395 int 396 genfs_mmap(void *v) 397 { 398 399 return (0); 400 } 401 402 static inline void 403 genfs_rel_pages(struct vm_page **pgs, int npages) 404 { 405 int i; 406 407 for (i = 0; i < npages; i++) { 408 struct vm_page *pg = pgs[i]; 409 410 if (pg == NULL) 411 continue; 412 if (pg->flags & PG_FAKE) { 413 pg->flags |= PG_RELEASED; 414 } 415 } 416 uvm_lock_pageq(); 417 uvm_page_unbusy(pgs, npages); 418 uvm_unlock_pageq(); 419 } 420 421 /* 422 * generic VM getpages routine. 423 * Return PG_BUSY pages for the given range, 424 * reading from backing store if necessary. 425 */ 426 427 int 428 genfs_getpages(void *v) 429 { 430 struct vop_getpages_args /* { 431 struct vnode *a_vp; 432 voff_t a_offset; 433 struct vm_page **a_m; 434 int *a_count; 435 int a_centeridx; 436 vm_prot_t a_access_type; 437 int a_advice; 438 int a_flags; 439 } */ *ap = v; 440 441 off_t newsize, diskeof, memeof; 442 off_t offset, origoffset, startoffset, endoffset, raoffset; 443 daddr_t lbn, blkno; 444 int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount; 445 int fs_bshift, fs_bsize, dev_bshift; 446 int flags = ap->a_flags; 447 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes; 448 vaddr_t kva; 449 struct buf *bp, *mbp; 450 struct vnode *vp = ap->a_vp; 451 struct vnode *devvp; 452 struct genfs_node *gp = VTOG(vp); 453 struct uvm_object *uobj = &vp->v_uobj; 454 struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES]; 455 int pgs_size; 456 struct ucred *cred = curproc->p_ucred; /* XXXUBC curlwp */ 457 boolean_t async = (flags & PGO_SYNCIO) == 0; 458 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0; 459 boolean_t sawhole = FALSE; 460 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0; 461 boolean_t blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0; 462 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist); 463 464 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d", 465 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count); 466 467 KASSERT(vp->v_type == VREG || vp->v_type == VBLK); 468 469 /* XXXUBC temp limit */ 470 if (*ap->a_count > MAX_READ_PAGES) { 471 panic("genfs_getpages: too many pages"); 472 } 473 474 error = 0; 475 origoffset = ap->a_offset; 476 orignpages = *ap->a_count; 477 GOP_SIZE(vp, vp->v_size, &diskeof, GOP_SIZE_READ); 478 if (flags & PGO_PASTEOF) { 479 newsize = MAX(vp->v_size, 480 origoffset + (orignpages << PAGE_SHIFT)); 481 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM); 482 } else { 483 GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM); 484 } 485 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages); 486 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0); 487 KASSERT(orignpages > 0); 488 489 /* 490 * Bounds-check the request. 491 */ 492 493 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) { 494 if ((flags & PGO_LOCKED) == 0) { 495 simple_unlock(&uobj->vmobjlock); 496 } 497 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x", 498 origoffset, *ap->a_count, memeof,0); 499 return (EINVAL); 500 } 501 502 /* uobj is locked */ 503 504 if ((flags & PGO_NOTIMESTAMP) == 0 && 505 (vp->v_type == VREG || 506 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) { 507 int updflags = 0; 508 509 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) { 510 updflags = GOP_UPDATE_ACCESSED; 511 } 512 if (write) { 513 updflags |= GOP_UPDATE_MODIFIED; 514 } 515 if (updflags != 0) { 516 GOP_MARKUPDATE(vp, updflags); 517 } 518 } 519 520 if (write) { 521 gp->g_dirtygen++; 522 if ((vp->v_flag & VONWORKLST) == 0) { 523 vn_syncer_add_to_worklist(vp, filedelay); 524 } 525 if ((vp->v_flag & (VWRITEMAP|VWRITEMAPDIRTY)) == VWRITEMAP) { 526 vp->v_flag |= VWRITEMAPDIRTY; 527 } 528 } 529 530 /* 531 * For PGO_LOCKED requests, just return whatever's in memory. 532 */ 533 534 if (flags & PGO_LOCKED) { 535 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, 536 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0)); 537 538 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0); 539 } 540 541 /* 542 * find the requested pages and make some simple checks. 543 * leave space in the page array for a whole block. 544 */ 545 546 if (vp->v_type == VREG) { 547 fs_bshift = vp->v_mount->mnt_fs_bshift; 548 dev_bshift = vp->v_mount->mnt_dev_bshift; 549 } else { 550 fs_bshift = DEV_BSHIFT; 551 dev_bshift = DEV_BSHIFT; 552 } 553 fs_bsize = 1 << fs_bshift; 554 555 orignpages = MIN(orignpages, 556 round_page(memeof - origoffset) >> PAGE_SHIFT); 557 npages = orignpages; 558 startoffset = origoffset & ~(fs_bsize - 1); 559 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) + 560 fs_bsize - 1) & ~(fs_bsize - 1)); 561 endoffset = MIN(endoffset, round_page(memeof)); 562 ridx = (origoffset - startoffset) >> PAGE_SHIFT; 563 564 pgs_size = sizeof(struct vm_page *) * 565 ((endoffset - startoffset) >> PAGE_SHIFT); 566 if (pgs_size > sizeof(pgs_onstack)) { 567 pgs = malloc(pgs_size, M_DEVBUF, M_NOWAIT | M_ZERO); 568 if (pgs == NULL) { 569 simple_unlock(&uobj->vmobjlock); 570 return (ENOMEM); 571 } 572 } else { 573 pgs = pgs_onstack; 574 memset(pgs, 0, pgs_size); 575 } 576 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld", 577 ridx, npages, startoffset, endoffset); 578 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], 579 async ? UFP_NOWAIT : UFP_ALL) != orignpages) { 580 KASSERT(async != 0); 581 genfs_rel_pages(&pgs[ridx], orignpages); 582 simple_unlock(&uobj->vmobjlock); 583 if (pgs != pgs_onstack) 584 free(pgs, M_DEVBUF); 585 return (EBUSY); 586 } 587 588 /* 589 * if the pages are already resident, just return them. 590 */ 591 592 for (i = 0; i < npages; i++) { 593 struct vm_page *pg1 = pgs[ridx + i]; 594 595 if ((pg1->flags & PG_FAKE) || 596 (blockalloc && (pg1->flags & PG_RDONLY))) { 597 break; 598 } 599 } 600 if (i == npages) { 601 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0); 602 raoffset = origoffset + (orignpages << PAGE_SHIFT); 603 npages += ridx; 604 goto out; 605 } 606 607 /* 608 * if PGO_OVERWRITE is set, don't bother reading the pages. 609 */ 610 611 if (flags & PGO_OVERWRITE) { 612 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0); 613 614 for (i = 0; i < npages; i++) { 615 struct vm_page *pg1 = pgs[ridx + i]; 616 617 pg1->flags &= ~(PG_RDONLY|PG_CLEAN); 618 } 619 npages += ridx; 620 goto out; 621 } 622 623 /* 624 * the page wasn't resident and we're not overwriting, 625 * so we're going to have to do some i/o. 626 * find any additional pages needed to cover the expanded range. 627 */ 628 629 npages = (endoffset - startoffset) >> PAGE_SHIFT; 630 if (startoffset != origoffset || npages != orignpages) { 631 632 /* 633 * we need to avoid deadlocks caused by locking 634 * additional pages at lower offsets than pages we 635 * already have locked. unlock them all and start over. 636 */ 637 638 genfs_rel_pages(&pgs[ridx], orignpages); 639 memset(pgs, 0, pgs_size); 640 641 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x", 642 startoffset, endoffset, 0,0); 643 npgs = npages; 644 if (uvn_findpages(uobj, startoffset, &npgs, pgs, 645 async ? UFP_NOWAIT : UFP_ALL) != npages) { 646 KASSERT(async != 0); 647 genfs_rel_pages(pgs, npages); 648 simple_unlock(&uobj->vmobjlock); 649 if (pgs != pgs_onstack) 650 free(pgs, M_DEVBUF); 651 return (EBUSY); 652 } 653 } 654 simple_unlock(&uobj->vmobjlock); 655 656 /* 657 * read the desired page(s). 658 */ 659 660 totalbytes = npages << PAGE_SHIFT; 661 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0)); 662 tailbytes = totalbytes - bytes; 663 skipbytes = 0; 664 665 kva = uvm_pagermapin(pgs, npages, 666 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK); 667 668 mbp = getiobuf(); 669 mbp->b_bufsize = totalbytes; 670 mbp->b_data = (void *)kva; 671 mbp->b_resid = mbp->b_bcount = bytes; 672 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0); 673 mbp->b_iodone = (async ? uvm_aio_biodone : 0); 674 mbp->b_vp = vp; 675 if (async) 676 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED); 677 else 678 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL); 679 680 /* 681 * if EOF is in the middle of the range, zero the part past EOF. 682 * if the page including EOF is not PG_FAKE, skip over it since 683 * in that case it has valid data that we need to preserve. 684 */ 685 686 if (tailbytes > 0) { 687 size_t tailstart = bytes; 688 689 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) { 690 tailstart = round_page(tailstart); 691 tailbytes -= tailstart - bytes; 692 } 693 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x", 694 kva, tailstart, tailbytes,0); 695 memset((void *)(kva + tailstart), 0, tailbytes); 696 } 697 698 /* 699 * now loop over the pages, reading as needed. 700 */ 701 702 if (blockalloc) { 703 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL); 704 } else { 705 lockmgr(&gp->g_glock, LK_SHARED, NULL); 706 } 707 708 bp = NULL; 709 for (offset = startoffset; 710 bytes > 0; 711 offset += iobytes, bytes -= iobytes) { 712 713 /* 714 * skip pages which don't need to be read. 715 */ 716 717 pidx = (offset - startoffset) >> PAGE_SHIFT; 718 while ((pgs[pidx]->flags & PG_FAKE) == 0) { 719 size_t b; 720 721 KASSERT((offset & (PAGE_SIZE - 1)) == 0); 722 if ((pgs[pidx]->flags & PG_RDONLY)) { 723 sawhole = TRUE; 724 } 725 b = MIN(PAGE_SIZE, bytes); 726 offset += b; 727 bytes -= b; 728 skipbytes += b; 729 pidx++; 730 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x", 731 offset, 0,0,0); 732 if (bytes == 0) { 733 goto loopdone; 734 } 735 } 736 737 /* 738 * bmap the file to find out the blkno to read from and 739 * how much we can read in one i/o. if bmap returns an error, 740 * skip the rest of the top-level i/o. 741 */ 742 743 lbn = offset >> fs_bshift; 744 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run); 745 if (error) { 746 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n", 747 lbn, error,0,0); 748 skipbytes += bytes; 749 goto loopdone; 750 } 751 752 /* 753 * see how many pages can be read with this i/o. 754 * reduce the i/o size if necessary to avoid 755 * overwriting pages with valid data. 756 */ 757 758 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset, 759 bytes); 760 if (offset + iobytes > round_page(offset)) { 761 pcount = 1; 762 while (pidx + pcount < npages && 763 pgs[pidx + pcount]->flags & PG_FAKE) { 764 pcount++; 765 } 766 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) - 767 (offset - trunc_page(offset))); 768 } 769 770 /* 771 * if this block isn't allocated, zero it instead of 772 * reading it. unless we are going to allocate blocks, 773 * mark the pages we zeroed PG_RDONLY. 774 */ 775 776 if (blkno < 0) { 777 int holepages = (round_page(offset + iobytes) - 778 trunc_page(offset)) >> PAGE_SHIFT; 779 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0); 780 781 sawhole = TRUE; 782 memset((char *)kva + (offset - startoffset), 0, 783 iobytes); 784 skipbytes += iobytes; 785 786 for (i = 0; i < holepages; i++) { 787 if (write) { 788 pgs[pidx + i]->flags &= ~PG_CLEAN; 789 } 790 if (!blockalloc) { 791 pgs[pidx + i]->flags |= PG_RDONLY; 792 } 793 } 794 continue; 795 } 796 797 /* 798 * allocate a sub-buf for this piece of the i/o 799 * (or just use mbp if there's only 1 piece), 800 * and start it going. 801 */ 802 803 if (offset == startoffset && iobytes == bytes) { 804 bp = mbp; 805 } else { 806 bp = getiobuf(); 807 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes); 808 } 809 bp->b_lblkno = 0; 810 811 /* adjust physical blkno for partial blocks */ 812 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >> 813 dev_bshift); 814 815 UVMHIST_LOG(ubchist, 816 "bp %p offset 0x%x bcount 0x%x blkno 0x%x", 817 bp, offset, iobytes, bp->b_blkno); 818 819 VOP_STRATEGY(devvp, bp); 820 } 821 822 loopdone: 823 nestiobuf_done(mbp, skipbytes, error); 824 if (async) { 825 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0); 826 lockmgr(&gp->g_glock, LK_RELEASE, NULL); 827 if (pgs != pgs_onstack) 828 free(pgs, M_DEVBUF); 829 return (0); 830 } 831 if (bp != NULL) { 832 error = biowait(mbp); 833 } 834 putiobuf(mbp); 835 uvm_pagermapout(kva, npages); 836 raoffset = startoffset + totalbytes; 837 838 /* 839 * if this we encountered a hole then we have to do a little more work. 840 * for read faults, we marked the page PG_RDONLY so that future 841 * write accesses to the page will fault again. 842 * for write faults, we must make sure that the backing store for 843 * the page is completely allocated while the pages are locked. 844 */ 845 846 if (!error && sawhole && blockalloc) { 847 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0, 848 cred); 849 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d", 850 startoffset, npages << PAGE_SHIFT, error,0); 851 if (!error) { 852 for (i = 0; i < npages; i++) { 853 if (pgs[i] == NULL) { 854 continue; 855 } 856 pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY); 857 UVMHIST_LOG(ubchist, "mark dirty pg %p", 858 pgs[i],0,0,0); 859 } 860 } 861 } 862 lockmgr(&gp->g_glock, LK_RELEASE, NULL); 863 simple_lock(&uobj->vmobjlock); 864 865 /* 866 * we're almost done! release the pages... 867 * for errors, we free the pages. 868 * otherwise we activate them and mark them as valid and clean. 869 * also, unbusy pages that were not actually requested. 870 */ 871 872 if (error) { 873 for (i = 0; i < npages; i++) { 874 if (pgs[i] == NULL) { 875 continue; 876 } 877 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x", 878 pgs[i], pgs[i]->flags, 0,0); 879 if (pgs[i]->flags & PG_FAKE) { 880 pgs[i]->flags |= PG_RELEASED; 881 } 882 } 883 uvm_lock_pageq(); 884 uvm_page_unbusy(pgs, npages); 885 uvm_unlock_pageq(); 886 simple_unlock(&uobj->vmobjlock); 887 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0); 888 if (pgs != pgs_onstack) 889 free(pgs, M_DEVBUF); 890 return (error); 891 } 892 893 out: 894 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0); 895 uvm_lock_pageq(); 896 for (i = 0; i < npages; i++) { 897 pg = pgs[i]; 898 if (pg == NULL) { 899 continue; 900 } 901 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x", 902 pg, pg->flags, 0,0); 903 if (pg->flags & PG_FAKE && !overwrite) { 904 pg->flags &= ~(PG_FAKE); 905 pmap_clear_modify(pgs[i]); 906 } 907 KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0); 908 if (i < ridx || i >= ridx + orignpages || async) { 909 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x", 910 pg, pg->offset,0,0); 911 if (pg->flags & PG_WANTED) { 912 wakeup(pg); 913 } 914 if (pg->flags & PG_FAKE) { 915 KASSERT(overwrite); 916 uvm_pagezero(pg); 917 } 918 if (pg->flags & PG_RELEASED) { 919 uvm_pagefree(pg); 920 continue; 921 } 922 uvm_pageactivate(pg); 923 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE); 924 UVM_PAGE_OWN(pg, NULL); 925 } 926 } 927 uvm_unlock_pageq(); 928 simple_unlock(&uobj->vmobjlock); 929 if (ap->a_m != NULL) { 930 memcpy(ap->a_m, &pgs[ridx], 931 orignpages * sizeof(struct vm_page *)); 932 } 933 if (pgs != pgs_onstack) 934 free(pgs, M_DEVBUF); 935 return (0); 936 } 937 938 /* 939 * generic VM putpages routine. 940 * Write the given range of pages to backing store. 941 * 942 * => "offhi == 0" means flush all pages at or after "offlo". 943 * => object should be locked by caller. we may _unlock_ the object 944 * if (and only if) we need to clean a page (PGO_CLEANIT), or 945 * if PGO_SYNCIO is set and there are pages busy. 946 * we return with the object locked. 947 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O). 948 * thus, a caller might want to unlock higher level resources 949 * (e.g. vm_map) before calling flush. 950 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither 951 * unlock the object nor block. 952 * => if PGO_ALLPAGES is set, then all pages in the object will be processed. 953 * => NOTE: we rely on the fact that the object's memq is a TAILQ and 954 * that new pages are inserted on the tail end of the list. thus, 955 * we can make a complete pass through the object in one go by starting 956 * at the head and working towards the tail (new pages are put in 957 * front of us). 958 * => NOTE: we are allowed to lock the page queues, so the caller 959 * must not be holding the page queue lock. 960 * 961 * note on "cleaning" object and PG_BUSY pages: 962 * this routine is holding the lock on the object. the only time 963 * that it can run into a PG_BUSY page that it does not own is if 964 * some other process has started I/O on the page (e.g. either 965 * a pagein, or a pageout). if the PG_BUSY page is being paged 966 * in, then it can not be dirty (!PG_CLEAN) because no one has 967 * had a chance to modify it yet. if the PG_BUSY page is being 968 * paged out then it means that someone else has already started 969 * cleaning the page for us (how nice!). in this case, if we 970 * have syncio specified, then after we make our pass through the 971 * object we need to wait for the other PG_BUSY pages to clear 972 * off (i.e. we need to do an iosync). also note that once a 973 * page is PG_BUSY it must stay in its object until it is un-busyed. 974 * 975 * note on page traversal: 976 * we can traverse the pages in an object either by going down the 977 * linked list in "uobj->memq", or we can go over the address range 978 * by page doing hash table lookups for each address. depending 979 * on how many pages are in the object it may be cheaper to do one 980 * or the other. we set "by_list" to true if we are using memq. 981 * if the cost of a hash lookup was equal to the cost of the list 982 * traversal we could compare the number of pages in the start->stop 983 * range to the total number of pages in the object. however, it 984 * seems that a hash table lookup is more expensive than the linked 985 * list traversal, so we multiply the number of pages in the 986 * range by an estimate of the relatively higher cost of the hash lookup. 987 */ 988 989 int 990 genfs_putpages(void *v) 991 { 992 struct vop_putpages_args /* { 993 struct vnode *a_vp; 994 voff_t a_offlo; 995 voff_t a_offhi; 996 int a_flags; 997 } */ *ap = v; 998 struct vnode *vp = ap->a_vp; 999 struct uvm_object *uobj = &vp->v_uobj; 1000 struct simplelock *slock = &uobj->vmobjlock; 1001 off_t startoff = ap->a_offlo; 1002 off_t endoff = ap->a_offhi; 1003 off_t off; 1004 int flags = ap->a_flags; 1005 /* Even for strange MAXPHYS, the shift rounds down to a page */ 1006 const int maxpages = MAXPHYS >> PAGE_SHIFT; 1007 int i, s, error, npages, nback; 1008 int freeflag; 1009 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp; 1010 boolean_t wasclean, by_list, needs_clean, yld; 1011 boolean_t async = (flags & PGO_SYNCIO) == 0; 1012 boolean_t pagedaemon = curproc == uvm.pagedaemon_proc; 1013 struct lwp *l = curlwp ? curlwp : &lwp0; 1014 struct genfs_node *gp = VTOG(vp); 1015 int dirtygen; 1016 boolean_t modified = FALSE; 1017 boolean_t cleanall; 1018 1019 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist); 1020 1021 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)); 1022 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0); 1023 KASSERT(startoff < endoff || endoff == 0); 1024 1025 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x", 1026 vp, uobj->uo_npages, startoff, endoff - startoff); 1027 1028 KASSERT((vp->v_flag & VONWORKLST) != 0 || 1029 (vp->v_flag & VWRITEMAPDIRTY) == 0); 1030 if (uobj->uo_npages == 0) { 1031 s = splbio(); 1032 if (vp->v_flag & VONWORKLST) { 1033 vp->v_flag &= ~VWRITEMAPDIRTY; 1034 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { 1035 vp->v_flag &= ~VONWORKLST; 1036 LIST_REMOVE(vp, v_synclist); 1037 } 1038 } 1039 splx(s); 1040 simple_unlock(slock); 1041 return (0); 1042 } 1043 1044 /* 1045 * the vnode has pages, set up to process the request. 1046 */ 1047 1048 error = 0; 1049 s = splbio(); 1050 simple_lock(&global_v_numoutput_slock); 1051 wasclean = (vp->v_numoutput == 0); 1052 simple_unlock(&global_v_numoutput_slock); 1053 splx(s); 1054 off = startoff; 1055 if (endoff == 0 || flags & PGO_ALLPAGES) { 1056 endoff = trunc_page(LLONG_MAX); 1057 } 1058 by_list = (uobj->uo_npages <= 1059 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY); 1060 1061 #if !defined(DEBUG) 1062 /* 1063 * if this vnode is known not to have dirty pages, 1064 * don't bother to clean it out. 1065 */ 1066 1067 if ((vp->v_flag & VONWORKLST) == 0) { 1068 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) { 1069 goto skip_scan; 1070 } 1071 flags &= ~PGO_CLEANIT; 1072 } 1073 #endif /* !defined(DEBUG) */ 1074 1075 /* 1076 * start the loop. when scanning by list, hold the last page 1077 * in the list before we start. pages allocated after we start 1078 * will be added to the end of the list, so we can stop at the 1079 * current last page. 1080 */ 1081 1082 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean && 1083 startoff == 0 && endoff == trunc_page(LLONG_MAX) && 1084 (vp->v_flag & VONWORKLST) != 0; 1085 dirtygen = gp->g_dirtygen; 1086 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED; 1087 if (by_list) { 1088 curmp.uobject = uobj; 1089 curmp.offset = (voff_t)-1; 1090 curmp.flags = PG_BUSY; 1091 endmp.uobject = uobj; 1092 endmp.offset = (voff_t)-1; 1093 endmp.flags = PG_BUSY; 1094 pg = TAILQ_FIRST(&uobj->memq); 1095 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq); 1096 PHOLD(l); 1097 } else { 1098 pg = uvm_pagelookup(uobj, off); 1099 } 1100 nextpg = NULL; 1101 while (by_list || off < endoff) { 1102 1103 /* 1104 * if the current page is not interesting, move on to the next. 1105 */ 1106 1107 KASSERT(pg == NULL || pg->uobject == uobj); 1108 KASSERT(pg == NULL || 1109 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 || 1110 (pg->flags & PG_BUSY) != 0); 1111 if (by_list) { 1112 if (pg == &endmp) { 1113 break; 1114 } 1115 if (pg->offset < startoff || pg->offset >= endoff || 1116 pg->flags & (PG_RELEASED|PG_PAGEOUT)) { 1117 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) { 1118 wasclean = FALSE; 1119 } 1120 pg = TAILQ_NEXT(pg, listq); 1121 continue; 1122 } 1123 off = pg->offset; 1124 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) { 1125 if (pg != NULL) { 1126 wasclean = FALSE; 1127 } 1128 off += PAGE_SIZE; 1129 if (off < endoff) { 1130 pg = uvm_pagelookup(uobj, off); 1131 } 1132 continue; 1133 } 1134 1135 /* 1136 * if the current page needs to be cleaned and it's busy, 1137 * wait for it to become unbusy. 1138 */ 1139 1140 yld = (l->l_cpu->ci_schedstate.spc_flags & 1141 SPCF_SHOULDYIELD) && !pagedaemon; 1142 if (pg->flags & PG_BUSY || yld) { 1143 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0); 1144 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) { 1145 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0); 1146 error = EDEADLK; 1147 break; 1148 } 1149 KASSERT(!pagedaemon); 1150 if (by_list) { 1151 TAILQ_INSERT_BEFORE(pg, &curmp, listq); 1152 UVMHIST_LOG(ubchist, "curmp next %p", 1153 TAILQ_NEXT(&curmp, listq), 0,0,0); 1154 } 1155 if (yld) { 1156 simple_unlock(slock); 1157 preempt(1); 1158 simple_lock(slock); 1159 } else { 1160 pg->flags |= PG_WANTED; 1161 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0); 1162 simple_lock(slock); 1163 } 1164 if (by_list) { 1165 UVMHIST_LOG(ubchist, "after next %p", 1166 TAILQ_NEXT(&curmp, listq), 0,0,0); 1167 pg = TAILQ_NEXT(&curmp, listq); 1168 TAILQ_REMOVE(&uobj->memq, &curmp, listq); 1169 } else { 1170 pg = uvm_pagelookup(uobj, off); 1171 } 1172 continue; 1173 } 1174 1175 /* 1176 * if we're freeing, remove all mappings of the page now. 1177 * if we're cleaning, check if the page is needs to be cleaned. 1178 */ 1179 1180 if (flags & PGO_FREE) { 1181 pmap_page_protect(pg, VM_PROT_NONE); 1182 } else if (flags & PGO_CLEANIT) { 1183 1184 /* 1185 * if we still have some hope to pull this vnode off 1186 * from the syncer queue, write-protect the page. 1187 */ 1188 1189 if (cleanall && wasclean && 1190 gp->g_dirtygen == dirtygen) { 1191 1192 /* 1193 * uobj pages get wired only by uvm_fault 1194 * where uobj is locked. 1195 */ 1196 1197 if (pg->wire_count == 0) { 1198 pmap_page_protect(pg, 1199 VM_PROT_READ|VM_PROT_EXECUTE); 1200 } else { 1201 cleanall = FALSE; 1202 } 1203 } 1204 } 1205 1206 if (flags & PGO_CLEANIT) { 1207 needs_clean = pmap_clear_modify(pg) || 1208 (pg->flags & PG_CLEAN) == 0; 1209 pg->flags |= PG_CLEAN; 1210 } else { 1211 needs_clean = FALSE; 1212 } 1213 1214 /* 1215 * if we're cleaning, build a cluster. 1216 * the cluster will consist of pages which are currently dirty, 1217 * but they will be returned to us marked clean. 1218 * if not cleaning, just operate on the one page. 1219 */ 1220 1221 if (needs_clean) { 1222 KDASSERT((vp->v_flag & VONWORKLST)); 1223 wasclean = FALSE; 1224 memset(pgs, 0, sizeof(pgs)); 1225 pg->flags |= PG_BUSY; 1226 UVM_PAGE_OWN(pg, "genfs_putpages"); 1227 1228 /* 1229 * first look backward. 1230 */ 1231 1232 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT); 1233 nback = npages; 1234 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0], 1235 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD); 1236 if (nback) { 1237 memmove(&pgs[0], &pgs[npages - nback], 1238 nback * sizeof(pgs[0])); 1239 if (npages - nback < nback) 1240 memset(&pgs[nback], 0, 1241 (npages - nback) * sizeof(pgs[0])); 1242 else 1243 memset(&pgs[npages - nback], 0, 1244 nback * sizeof(pgs[0])); 1245 } 1246 1247 /* 1248 * then plug in our page of interest. 1249 */ 1250 1251 pgs[nback] = pg; 1252 1253 /* 1254 * then look forward to fill in the remaining space in 1255 * the array of pages. 1256 */ 1257 1258 npages = maxpages - nback - 1; 1259 uvn_findpages(uobj, off + PAGE_SIZE, &npages, 1260 &pgs[nback + 1], 1261 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY); 1262 npages += nback + 1; 1263 } else { 1264 pgs[0] = pg; 1265 npages = 1; 1266 nback = 0; 1267 } 1268 1269 /* 1270 * apply FREE or DEACTIVATE options if requested. 1271 */ 1272 1273 if (flags & (PGO_DEACTIVATE|PGO_FREE)) { 1274 uvm_lock_pageq(); 1275 } 1276 for (i = 0; i < npages; i++) { 1277 tpg = pgs[i]; 1278 KASSERT(tpg->uobject == uobj); 1279 if (by_list && tpg == TAILQ_NEXT(pg, listq)) 1280 pg = tpg; 1281 if (tpg->offset < startoff || tpg->offset >= endoff) 1282 continue; 1283 if (flags & PGO_DEACTIVATE && 1284 (tpg->pqflags & PQ_INACTIVE) == 0 && 1285 tpg->wire_count == 0) { 1286 (void) pmap_clear_reference(tpg); 1287 uvm_pagedeactivate(tpg); 1288 } else if (flags & PGO_FREE) { 1289 pmap_page_protect(tpg, VM_PROT_NONE); 1290 if (tpg->flags & PG_BUSY) { 1291 tpg->flags |= freeflag; 1292 if (pagedaemon) { 1293 uvmexp.paging++; 1294 uvm_pagedequeue(tpg); 1295 } 1296 } else { 1297 1298 /* 1299 * ``page is not busy'' 1300 * implies that npages is 1 1301 * and needs_clean is false. 1302 */ 1303 1304 nextpg = TAILQ_NEXT(tpg, listq); 1305 uvm_pagefree(tpg); 1306 if (pagedaemon) 1307 uvmexp.pdfreed++; 1308 } 1309 } 1310 } 1311 if (flags & (PGO_DEACTIVATE|PGO_FREE)) { 1312 uvm_unlock_pageq(); 1313 } 1314 if (needs_clean) { 1315 modified = TRUE; 1316 1317 /* 1318 * start the i/o. if we're traversing by list, 1319 * keep our place in the list with a marker page. 1320 */ 1321 1322 if (by_list) { 1323 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp, 1324 listq); 1325 } 1326 simple_unlock(slock); 1327 error = GOP_WRITE(vp, pgs, npages, flags); 1328 simple_lock(slock); 1329 if (by_list) { 1330 pg = TAILQ_NEXT(&curmp, listq); 1331 TAILQ_REMOVE(&uobj->memq, &curmp, listq); 1332 } 1333 if (error) { 1334 break; 1335 } 1336 if (by_list) { 1337 continue; 1338 } 1339 } 1340 1341 /* 1342 * find the next page and continue if there was no error. 1343 */ 1344 1345 if (by_list) { 1346 if (nextpg) { 1347 pg = nextpg; 1348 nextpg = NULL; 1349 } else { 1350 pg = TAILQ_NEXT(pg, listq); 1351 } 1352 } else { 1353 off += (npages - nback) << PAGE_SHIFT; 1354 if (off < endoff) { 1355 pg = uvm_pagelookup(uobj, off); 1356 } 1357 } 1358 } 1359 if (by_list) { 1360 TAILQ_REMOVE(&uobj->memq, &endmp, listq); 1361 PRELE(l); 1362 } 1363 1364 if (modified && (vp->v_flag & VWRITEMAPDIRTY) != 0 && 1365 (vp->v_type == VREG || 1366 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) { 1367 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED); 1368 } 1369 1370 /* 1371 * if we're cleaning and there was nothing to clean, 1372 * take us off the syncer list. if we started any i/o 1373 * and we're doing sync i/o, wait for all writes to finish. 1374 */ 1375 1376 s = splbio(); 1377 if (cleanall && wasclean && gp->g_dirtygen == dirtygen && 1378 (vp->v_flag & VONWORKLST) != 0) { 1379 vp->v_flag &= ~VWRITEMAPDIRTY; 1380 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { 1381 vp->v_flag &= ~VONWORKLST; 1382 LIST_REMOVE(vp, v_synclist); 1383 } 1384 } 1385 splx(s); 1386 1387 #if !defined(DEBUG) 1388 skip_scan: 1389 #endif /* !defined(DEBUG) */ 1390 if (!wasclean && !async) { 1391 s = splbio(); 1392 /* 1393 * XXX - we want simple_unlock(&global_v_numoutput_slock); 1394 * but the slot in ltsleep() is taken! 1395 * XXX - try to recover from missed wakeups with a timeout.. 1396 * must think of something better. 1397 */ 1398 while (vp->v_numoutput != 0) { 1399 vp->v_flag |= VBWAIT; 1400 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE, 1401 "genput2", hz); 1402 simple_lock(slock); 1403 } 1404 splx(s); 1405 } 1406 simple_unlock(&uobj->vmobjlock); 1407 return (error); 1408 } 1409 1410 int 1411 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags) 1412 { 1413 int s, error, run; 1414 int fs_bshift, dev_bshift; 1415 vaddr_t kva; 1416 off_t eof, offset, startoffset; 1417 size_t bytes, iobytes, skipbytes; 1418 daddr_t lbn, blkno; 1419 struct vm_page *pg; 1420 struct buf *mbp, *bp; 1421 struct vnode *devvp; 1422 boolean_t async = (flags & PGO_SYNCIO) == 0; 1423 UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist); 1424 1425 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x", 1426 vp, pgs, npages, flags); 1427 1428 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_WRITE); 1429 if (vp->v_type == VREG) { 1430 fs_bshift = vp->v_mount->mnt_fs_bshift; 1431 dev_bshift = vp->v_mount->mnt_dev_bshift; 1432 } else { 1433 fs_bshift = DEV_BSHIFT; 1434 dev_bshift = DEV_BSHIFT; 1435 } 1436 error = 0; 1437 pg = pgs[0]; 1438 startoffset = pg->offset; 1439 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset); 1440 skipbytes = 0; 1441 KASSERT(bytes != 0); 1442 1443 kva = uvm_pagermapin(pgs, npages, 1444 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK); 1445 1446 s = splbio(); 1447 simple_lock(&global_v_numoutput_slock); 1448 vp->v_numoutput += 2; 1449 simple_unlock(&global_v_numoutput_slock); 1450 splx(s); 1451 mbp = getiobuf(); 1452 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x", 1453 vp, mbp, vp->v_numoutput, bytes); 1454 mbp->b_bufsize = npages << PAGE_SHIFT; 1455 mbp->b_data = (void *)kva; 1456 mbp->b_resid = mbp->b_bcount = bytes; 1457 mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0); 1458 mbp->b_iodone = uvm_aio_biodone; 1459 mbp->b_vp = vp; 1460 if (curproc == uvm.pagedaemon_proc) 1461 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED); 1462 else if (async) 1463 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL); 1464 else 1465 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL); 1466 1467 bp = NULL; 1468 for (offset = startoffset; 1469 bytes > 0; 1470 offset += iobytes, bytes -= iobytes) { 1471 lbn = offset >> fs_bshift; 1472 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run); 1473 if (error) { 1474 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0); 1475 skipbytes += bytes; 1476 bytes = 0; 1477 break; 1478 } 1479 1480 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset, 1481 bytes); 1482 if (blkno == (daddr_t)-1) { 1483 skipbytes += iobytes; 1484 continue; 1485 } 1486 1487 /* if it's really one i/o, don't make a second buf */ 1488 if (offset == startoffset && iobytes == bytes) { 1489 bp = mbp; 1490 } else { 1491 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d", 1492 vp, bp, vp->v_numoutput, 0); 1493 bp = getiobuf(); 1494 nestiobuf_setup(mbp, bp, offset - pg->offset, iobytes); 1495 } 1496 bp->b_lblkno = 0; 1497 1498 /* adjust physical blkno for partial blocks */ 1499 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >> 1500 dev_bshift); 1501 UVMHIST_LOG(ubchist, 1502 "vp %p offset 0x%x bcount 0x%x blkno 0x%x", 1503 vp, offset, bp->b_bcount, bp->b_blkno); 1504 1505 VOP_STRATEGY(devvp, bp); 1506 } 1507 if (skipbytes) { 1508 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0); 1509 } 1510 nestiobuf_done(mbp, skipbytes, error); 1511 if (async) { 1512 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0); 1513 return (0); 1514 } 1515 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0); 1516 error = biowait(mbp); 1517 uvm_aio_aiodone(mbp); 1518 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0); 1519 return (error); 1520 } 1521 1522 /* 1523 * VOP_PUTPAGES() for vnodes which never have pages. 1524 */ 1525 1526 int 1527 genfs_null_putpages(void *v) 1528 { 1529 struct vop_putpages_args /* { 1530 struct vnode *a_vp; 1531 voff_t a_offlo; 1532 voff_t a_offhi; 1533 int a_flags; 1534 } */ *ap = v; 1535 struct vnode *vp = ap->a_vp; 1536 1537 KASSERT(vp->v_uobj.uo_npages == 0); 1538 simple_unlock(&vp->v_interlock); 1539 return (0); 1540 } 1541 1542 void 1543 genfs_node_init(struct vnode *vp, const struct genfs_ops *ops) 1544 { 1545 struct genfs_node *gp = VTOG(vp); 1546 1547 lockinit(&gp->g_glock, PINOD, "glock", 0, 0); 1548 gp->g_op = ops; 1549 } 1550 1551 void 1552 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags) 1553 { 1554 int bsize; 1555 1556 bsize = 1 << vp->v_mount->mnt_fs_bshift; 1557 *eobp = (size + bsize - 1) & ~(bsize - 1); 1558 } 1559 1560 int 1561 genfs_compat_getpages(void *v) 1562 { 1563 struct vop_getpages_args /* { 1564 struct vnode *a_vp; 1565 voff_t a_offset; 1566 struct vm_page **a_m; 1567 int *a_count; 1568 int a_centeridx; 1569 vm_prot_t a_access_type; 1570 int a_advice; 1571 int a_flags; 1572 } */ *ap = v; 1573 1574 off_t origoffset; 1575 struct vnode *vp = ap->a_vp; 1576 struct uvm_object *uobj = &vp->v_uobj; 1577 struct vm_page *pg, **pgs; 1578 vaddr_t kva; 1579 int i, error, orignpages, npages; 1580 struct iovec iov; 1581 struct uio uio; 1582 struct ucred *cred = curproc->p_ucred; 1583 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0; 1584 1585 error = 0; 1586 origoffset = ap->a_offset; 1587 orignpages = *ap->a_count; 1588 pgs = ap->a_m; 1589 1590 if (write && (vp->v_flag & VONWORKLST) == 0) { 1591 vn_syncer_add_to_worklist(vp, filedelay); 1592 } 1593 if (ap->a_flags & PGO_LOCKED) { 1594 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, 1595 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0)); 1596 1597 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0); 1598 } 1599 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) { 1600 simple_unlock(&uobj->vmobjlock); 1601 return (EINVAL); 1602 } 1603 if ((ap->a_flags & PGO_SYNCIO) == 0) { 1604 simple_unlock(&uobj->vmobjlock); 1605 return 0; 1606 } 1607 npages = orignpages; 1608 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL); 1609 simple_unlock(&uobj->vmobjlock); 1610 kva = uvm_pagermapin(pgs, npages, 1611 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK); 1612 for (i = 0; i < npages; i++) { 1613 pg = pgs[i]; 1614 if ((pg->flags & PG_FAKE) == 0) { 1615 continue; 1616 } 1617 iov.iov_base = (char *)kva + (i << PAGE_SHIFT); 1618 iov.iov_len = PAGE_SIZE; 1619 uio.uio_iov = &iov; 1620 uio.uio_iovcnt = 1; 1621 uio.uio_offset = origoffset + (i << PAGE_SHIFT); 1622 uio.uio_segflg = UIO_SYSSPACE; 1623 uio.uio_rw = UIO_READ; 1624 uio.uio_resid = PAGE_SIZE; 1625 uio.uio_lwp = NULL; 1626 /* XXX vn_lock */ 1627 error = VOP_READ(vp, &uio, 0, cred); 1628 if (error) { 1629 break; 1630 } 1631 if (uio.uio_resid) { 1632 memset(iov.iov_base, 0, uio.uio_resid); 1633 } 1634 } 1635 uvm_pagermapout(kva, npages); 1636 simple_lock(&uobj->vmobjlock); 1637 uvm_lock_pageq(); 1638 for (i = 0; i < npages; i++) { 1639 pg = pgs[i]; 1640 if (error && (pg->flags & PG_FAKE) != 0) { 1641 pg->flags |= PG_RELEASED; 1642 } else { 1643 pmap_clear_modify(pg); 1644 uvm_pageactivate(pg); 1645 } 1646 } 1647 if (error) { 1648 uvm_page_unbusy(pgs, npages); 1649 } 1650 uvm_unlock_pageq(); 1651 simple_unlock(&uobj->vmobjlock); 1652 return (error); 1653 } 1654 1655 int 1656 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, 1657 int flags) 1658 { 1659 off_t offset; 1660 struct iovec iov; 1661 struct uio uio; 1662 struct ucred *cred = curproc->p_ucred; 1663 struct buf *bp; 1664 vaddr_t kva; 1665 int s, error; 1666 1667 offset = pgs[0]->offset; 1668 kva = uvm_pagermapin(pgs, npages, 1669 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK); 1670 1671 iov.iov_base = (void *)kva; 1672 iov.iov_len = npages << PAGE_SHIFT; 1673 uio.uio_iov = &iov; 1674 uio.uio_iovcnt = 1; 1675 uio.uio_offset = offset; 1676 uio.uio_segflg = UIO_SYSSPACE; 1677 uio.uio_rw = UIO_WRITE; 1678 uio.uio_resid = npages << PAGE_SHIFT; 1679 uio.uio_lwp = NULL; 1680 /* XXX vn_lock */ 1681 error = VOP_WRITE(vp, &uio, 0, cred); 1682 1683 s = splbio(); 1684 V_INCR_NUMOUTPUT(vp); 1685 splx(s); 1686 1687 bp = getiobuf(); 1688 bp->b_flags = B_BUSY | B_WRITE | B_AGE; 1689 bp->b_vp = vp; 1690 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift; 1691 bp->b_data = (char *)kva; 1692 bp->b_bcount = npages << PAGE_SHIFT; 1693 bp->b_bufsize = npages << PAGE_SHIFT; 1694 bp->b_resid = 0; 1695 if (error) { 1696 bp->b_flags |= B_ERROR; 1697 bp->b_error = error; 1698 } 1699 uvm_aio_aiodone(bp); 1700 return (error); 1701 } 1702 1703 static void 1704 filt_genfsdetach(struct knote *kn) 1705 { 1706 struct vnode *vp = (struct vnode *)kn->kn_hook; 1707 1708 /* XXXLUKEM lock the struct? */ 1709 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext); 1710 } 1711 1712 static int 1713 filt_genfsread(struct knote *kn, long hint) 1714 { 1715 struct vnode *vp = (struct vnode *)kn->kn_hook; 1716 1717 /* 1718 * filesystem is gone, so set the EOF flag and schedule 1719 * the knote for deletion. 1720 */ 1721 if (hint == NOTE_REVOKE) { 1722 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 1723 return (1); 1724 } 1725 1726 /* XXXLUKEM lock the struct? */ 1727 kn->kn_data = vp->v_size - kn->kn_fp->f_offset; 1728 return (kn->kn_data != 0); 1729 } 1730 1731 static int 1732 filt_genfsvnode(struct knote *kn, long hint) 1733 { 1734 1735 if (kn->kn_sfflags & hint) 1736 kn->kn_fflags |= hint; 1737 if (hint == NOTE_REVOKE) { 1738 kn->kn_flags |= EV_EOF; 1739 return (1); 1740 } 1741 return (kn->kn_fflags != 0); 1742 } 1743 1744 static const struct filterops genfsread_filtops = 1745 { 1, NULL, filt_genfsdetach, filt_genfsread }; 1746 static const struct filterops genfsvnode_filtops = 1747 { 1, NULL, filt_genfsdetach, filt_genfsvnode }; 1748 1749 int 1750 genfs_kqfilter(void *v) 1751 { 1752 struct vop_kqfilter_args /* { 1753 struct vnode *a_vp; 1754 struct knote *a_kn; 1755 } */ *ap = v; 1756 struct vnode *vp; 1757 struct knote *kn; 1758 1759 vp = ap->a_vp; 1760 kn = ap->a_kn; 1761 switch (kn->kn_filter) { 1762 case EVFILT_READ: 1763 kn->kn_fop = &genfsread_filtops; 1764 break; 1765 case EVFILT_VNODE: 1766 kn->kn_fop = &genfsvnode_filtops; 1767 break; 1768 default: 1769 return (1); 1770 } 1771 1772 kn->kn_hook = vp; 1773 1774 /* XXXLUKEM lock the struct? */ 1775 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext); 1776 1777 return (0); 1778 } 1779