1 /* $NetBSD: genfs_vnops.c,v 1.96 2005/02/26 22:59:00 perry Exp $ */ 2 3 /* 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 */ 32 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.96 2005/02/26 22:59:00 perry Exp $"); 35 36 #if defined(_KERNEL_OPT) 37 #include "opt_nfsserver.h" 38 #endif 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/proc.h> 43 #include <sys/kernel.h> 44 #include <sys/mount.h> 45 #include <sys/namei.h> 46 #include <sys/vnode.h> 47 #include <sys/fcntl.h> 48 #include <sys/malloc.h> 49 #include <sys/poll.h> 50 #include <sys/mman.h> 51 #include <sys/file.h> 52 53 #include <miscfs/genfs/genfs.h> 54 #include <miscfs/genfs/genfs_node.h> 55 #include <miscfs/specfs/specdev.h> 56 57 #include <uvm/uvm.h> 58 #include <uvm/uvm_pager.h> 59 60 #ifdef NFSSERVER 61 #include <nfs/rpcv2.h> 62 #include <nfs/nfsproto.h> 63 #include <nfs/nfs.h> 64 #include <nfs/nqnfs.h> 65 #include <nfs/nfs_var.h> 66 #endif 67 68 static __inline void genfs_rel_pages(struct vm_page **, int); 69 static void filt_genfsdetach(struct knote *); 70 static int filt_genfsread(struct knote *, long); 71 static int filt_genfsvnode(struct knote *, long); 72 73 74 #define MAX_READ_AHEAD 16 /* XXXUBC 16 */ 75 int genfs_rapages = MAX_READ_AHEAD; /* # of pages in each chunk of readahead */ 76 int genfs_racount = 2; /* # of page chunks to readahead */ 77 int genfs_raskip = 2; /* # of busy page chunks allowed to skip */ 78 79 int 80 genfs_poll(void *v) 81 { 82 struct vop_poll_args /* { 83 struct vnode *a_vp; 84 int a_events; 85 struct proc *a_p; 86 } */ *ap = v; 87 88 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM)); 89 } 90 91 int 92 genfs_fsync(void *v) 93 { 94 struct vop_fsync_args /* { 95 struct vnode *a_vp; 96 struct ucred *a_cred; 97 int a_flags; 98 off_t offlo; 99 off_t offhi; 100 struct proc *a_p; 101 } */ *ap = v; 102 struct vnode *vp = ap->a_vp, *dvp; 103 int wait; 104 int error; 105 106 wait = (ap->a_flags & FSYNC_WAIT) != 0; 107 vflushbuf(vp, wait); 108 if ((ap->a_flags & FSYNC_DATAONLY) != 0) 109 error = 0; 110 else 111 error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0); 112 113 if (error == 0 && ap->a_flags & FSYNC_CACHE) { 114 int l = 0; 115 if (VOP_BMAP(vp, 0, &dvp, NULL, NULL)) 116 error = ENXIO; 117 else 118 error = VOP_IOCTL(dvp, DIOCCACHESYNC, &l, FWRITE, 119 ap->a_p->p_ucred, ap->a_p); 120 } 121 122 return (error); 123 } 124 125 int 126 genfs_seek(void *v) 127 { 128 struct vop_seek_args /* { 129 struct vnode *a_vp; 130 off_t a_oldoff; 131 off_t a_newoff; 132 struct ucred *a_ucred; 133 } */ *ap = v; 134 135 if (ap->a_newoff < 0) 136 return (EINVAL); 137 138 return (0); 139 } 140 141 int 142 genfs_abortop(void *v) 143 { 144 struct vop_abortop_args /* { 145 struct vnode *a_dvp; 146 struct componentname *a_cnp; 147 } */ *ap = v; 148 149 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF) 150 PNBUF_PUT(ap->a_cnp->cn_pnbuf); 151 return (0); 152 } 153 154 int 155 genfs_fcntl(void *v) 156 { 157 struct vop_fcntl_args /* { 158 struct vnode *a_vp; 159 u_int a_command; 160 caddr_t a_data; 161 int a_fflag; 162 struct ucred *a_cred; 163 struct proc *a_p; 164 } */ *ap = v; 165 166 if (ap->a_command == F_SETFL) 167 return (0); 168 else 169 return (EOPNOTSUPP); 170 } 171 172 /*ARGSUSED*/ 173 int 174 genfs_badop(void *v) 175 { 176 177 panic("genfs: bad op"); 178 } 179 180 /*ARGSUSED*/ 181 int 182 genfs_nullop(void *v) 183 { 184 185 return (0); 186 } 187 188 /*ARGSUSED*/ 189 int 190 genfs_einval(void *v) 191 { 192 193 return (EINVAL); 194 } 195 196 /* 197 * Called when an fs doesn't support a particular vop. 198 * This takes care to vrele, vput, or vunlock passed in vnodes. 199 */ 200 int 201 genfs_eopnotsupp(void *v) 202 { 203 struct vop_generic_args /* 204 struct vnodeop_desc *a_desc; 205 / * other random data follows, presumably * / 206 } */ *ap = v; 207 struct vnodeop_desc *desc = ap->a_desc; 208 struct vnode *vp, *vp_last = NULL; 209 int flags, i, j, offset; 210 211 flags = desc->vdesc_flags; 212 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) { 213 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET) 214 break; /* stop at end of list */ 215 if ((j = flags & VDESC_VP0_WILLPUT)) { 216 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap); 217 218 /* Skip if NULL */ 219 if (!vp) 220 continue; 221 222 switch (j) { 223 case VDESC_VP0_WILLPUT: 224 /* Check for dvp == vp cases */ 225 if (vp == vp_last) 226 vrele(vp); 227 else { 228 vput(vp); 229 vp_last = vp; 230 } 231 break; 232 case VDESC_VP0_WILLUNLOCK: 233 VOP_UNLOCK(vp, 0); 234 break; 235 case VDESC_VP0_WILLRELE: 236 vrele(vp); 237 break; 238 } 239 } 240 } 241 242 return (EOPNOTSUPP); 243 } 244 245 /*ARGSUSED*/ 246 int 247 genfs_ebadf(void *v) 248 { 249 250 return (EBADF); 251 } 252 253 /* ARGSUSED */ 254 int 255 genfs_enoioctl(void *v) 256 { 257 258 return (EPASSTHROUGH); 259 } 260 261 262 /* 263 * Eliminate all activity associated with the requested vnode 264 * and with all vnodes aliased to the requested vnode. 265 */ 266 int 267 genfs_revoke(void *v) 268 { 269 struct vop_revoke_args /* { 270 struct vnode *a_vp; 271 int a_flags; 272 } */ *ap = v; 273 struct vnode *vp, *vq; 274 struct proc *p = curproc; /* XXX */ 275 276 #ifdef DIAGNOSTIC 277 if ((ap->a_flags & REVOKEALL) == 0) 278 panic("genfs_revoke: not revokeall"); 279 #endif 280 281 vp = ap->a_vp; 282 simple_lock(&vp->v_interlock); 283 284 if (vp->v_flag & VALIASED) { 285 /* 286 * If a vgone (or vclean) is already in progress, 287 * wait until it is done and return. 288 */ 289 if (vp->v_flag & VXLOCK) { 290 vp->v_flag |= VXWANT; 291 ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0, 292 &vp->v_interlock); 293 return (0); 294 } 295 /* 296 * Ensure that vp will not be vgone'd while we 297 * are eliminating its aliases. 298 */ 299 vp->v_flag |= VXLOCK; 300 simple_unlock(&vp->v_interlock); 301 while (vp->v_flag & VALIASED) { 302 simple_lock(&spechash_slock); 303 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) { 304 if (vq->v_rdev != vp->v_rdev || 305 vq->v_type != vp->v_type || vp == vq) 306 continue; 307 simple_unlock(&spechash_slock); 308 vgone(vq); 309 break; 310 } 311 if (vq == NULLVP) 312 simple_unlock(&spechash_slock); 313 } 314 /* 315 * Remove the lock so that vgone below will 316 * really eliminate the vnode after which time 317 * vgone will awaken any sleepers. 318 */ 319 simple_lock(&vp->v_interlock); 320 vp->v_flag &= ~VXLOCK; 321 } 322 vgonel(vp, p); 323 return (0); 324 } 325 326 /* 327 * Lock the node. 328 */ 329 int 330 genfs_lock(void *v) 331 { 332 struct vop_lock_args /* { 333 struct vnode *a_vp; 334 int a_flags; 335 } */ *ap = v; 336 struct vnode *vp = ap->a_vp; 337 338 return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock)); 339 } 340 341 /* 342 * Unlock the node. 343 */ 344 int 345 genfs_unlock(void *v) 346 { 347 struct vop_unlock_args /* { 348 struct vnode *a_vp; 349 int a_flags; 350 } */ *ap = v; 351 struct vnode *vp = ap->a_vp; 352 353 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE, 354 &vp->v_interlock)); 355 } 356 357 /* 358 * Return whether or not the node is locked. 359 */ 360 int 361 genfs_islocked(void *v) 362 { 363 struct vop_islocked_args /* { 364 struct vnode *a_vp; 365 } */ *ap = v; 366 struct vnode *vp = ap->a_vp; 367 368 return (lockstatus(vp->v_vnlock)); 369 } 370 371 /* 372 * Stubs to use when there is no locking to be done on the underlying object. 373 */ 374 int 375 genfs_nolock(void *v) 376 { 377 struct vop_lock_args /* { 378 struct vnode *a_vp; 379 int a_flags; 380 struct proc *a_p; 381 } */ *ap = v; 382 383 /* 384 * Since we are not using the lock manager, we must clear 385 * the interlock here. 386 */ 387 if (ap->a_flags & LK_INTERLOCK) 388 simple_unlock(&ap->a_vp->v_interlock); 389 return (0); 390 } 391 392 int 393 genfs_nounlock(void *v) 394 { 395 396 return (0); 397 } 398 399 int 400 genfs_noislocked(void *v) 401 { 402 403 return (0); 404 } 405 406 /* 407 * Local lease check for NFS servers. Just set up args and let 408 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel, 409 * this is a null operation. 410 */ 411 int 412 genfs_lease_check(void *v) 413 { 414 #ifdef NFSSERVER 415 struct vop_lease_args /* { 416 struct vnode *a_vp; 417 struct proc *a_p; 418 struct ucred *a_cred; 419 int a_flag; 420 } */ *ap = v; 421 u_int32_t duration = 0; 422 int cache; 423 u_quad_t frev; 424 425 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag, 426 NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred); 427 return (0); 428 #else 429 return (0); 430 #endif /* NFSSERVER */ 431 } 432 433 int 434 genfs_mmap(void *v) 435 { 436 437 return (0); 438 } 439 440 static __inline void 441 genfs_rel_pages(struct vm_page **pgs, int npages) 442 { 443 int i; 444 445 for (i = 0; i < npages; i++) { 446 struct vm_page *pg = pgs[i]; 447 448 if (pg == NULL) 449 continue; 450 if (pg->flags & PG_FAKE) { 451 pg->flags |= PG_RELEASED; 452 } 453 } 454 uvm_lock_pageq(); 455 uvm_page_unbusy(pgs, npages); 456 uvm_unlock_pageq(); 457 } 458 459 /* 460 * generic VM getpages routine. 461 * Return PG_BUSY pages for the given range, 462 * reading from backing store if necessary. 463 */ 464 465 int 466 genfs_getpages(void *v) 467 { 468 struct vop_getpages_args /* { 469 struct vnode *a_vp; 470 voff_t a_offset; 471 struct vm_page **a_m; 472 int *a_count; 473 int a_centeridx; 474 vm_prot_t a_access_type; 475 int a_advice; 476 int a_flags; 477 } */ *ap = v; 478 479 off_t newsize, diskeof, memeof; 480 off_t offset, origoffset, startoffset, endoffset, raoffset; 481 daddr_t lbn, blkno; 482 int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount; 483 int fs_bshift, fs_bsize, dev_bshift; 484 int flags = ap->a_flags; 485 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes; 486 vaddr_t kva; 487 struct buf *bp, *mbp; 488 struct vnode *vp = ap->a_vp; 489 struct vnode *devvp; 490 struct genfs_node *gp = VTOG(vp); 491 struct uvm_object *uobj = &vp->v_uobj; 492 struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_AHEAD]; 493 int pgs_size; 494 struct ucred *cred = curproc->p_ucred; /* XXXUBC curlwp */ 495 boolean_t async = (flags & PGO_SYNCIO) == 0; 496 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0; 497 boolean_t sawhole = FALSE; 498 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0; 499 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist); 500 501 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d", 502 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count); 503 504 /* XXXUBC temp limit */ 505 if (*ap->a_count > MAX_READ_AHEAD) { 506 panic("genfs_getpages: too many pages"); 507 } 508 509 error = 0; 510 origoffset = ap->a_offset; 511 orignpages = *ap->a_count; 512 GOP_SIZE(vp, vp->v_size, &diskeof, GOP_SIZE_READ); 513 if (flags & PGO_PASTEOF) { 514 newsize = MAX(vp->v_size, 515 origoffset + (orignpages << PAGE_SHIFT)); 516 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM); 517 } else { 518 GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM); 519 } 520 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages); 521 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0); 522 KASSERT(orignpages > 0); 523 524 /* 525 * Bounds-check the request. 526 */ 527 528 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) { 529 if ((flags & PGO_LOCKED) == 0) { 530 simple_unlock(&uobj->vmobjlock); 531 } 532 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x", 533 origoffset, *ap->a_count, memeof,0); 534 return (EINVAL); 535 } 536 537 /* 538 * For PGO_LOCKED requests, just return whatever's in memory. 539 */ 540 541 if (flags & PGO_LOCKED) { 542 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, 543 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0)); 544 545 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0); 546 } 547 548 /* uobj is locked */ 549 550 if (write && (vp->v_flag & VONWORKLST) == 0) { 551 vn_syncer_add_to_worklist(vp, filedelay); 552 } 553 554 /* 555 * find the requested pages and make some simple checks. 556 * leave space in the page array for a whole block. 557 */ 558 559 if (vp->v_type == VREG) { 560 fs_bshift = vp->v_mount->mnt_fs_bshift; 561 dev_bshift = vp->v_mount->mnt_dev_bshift; 562 } else { 563 fs_bshift = DEV_BSHIFT; 564 dev_bshift = DEV_BSHIFT; 565 } 566 fs_bsize = 1 << fs_bshift; 567 568 orignpages = MIN(orignpages, 569 round_page(memeof - origoffset) >> PAGE_SHIFT); 570 npages = orignpages; 571 startoffset = origoffset & ~(fs_bsize - 1); 572 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) + 573 fs_bsize - 1) & ~(fs_bsize - 1)); 574 endoffset = MIN(endoffset, round_page(memeof)); 575 ridx = (origoffset - startoffset) >> PAGE_SHIFT; 576 577 pgs_size = sizeof(struct vm_page *) * 578 ((endoffset - startoffset) >> PAGE_SHIFT); 579 if (pgs_size > sizeof(pgs_onstack)) { 580 pgs = malloc(pgs_size, M_DEVBUF, M_NOWAIT | M_ZERO); 581 if (pgs == NULL) { 582 simple_unlock(&uobj->vmobjlock); 583 return (ENOMEM); 584 } 585 } else { 586 pgs = pgs_onstack; 587 memset(pgs, 0, pgs_size); 588 } 589 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld", 590 ridx, npages, startoffset, endoffset); 591 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], 592 async ? UFP_NOWAIT : UFP_ALL) != orignpages) { 593 KASSERT(async != 0); 594 genfs_rel_pages(&pgs[ridx], orignpages); 595 simple_unlock(&uobj->vmobjlock); 596 if (pgs != pgs_onstack) 597 free(pgs, M_DEVBUF); 598 return (EBUSY); 599 } 600 601 /* 602 * if the pages are already resident, just return them. 603 */ 604 605 for (i = 0; i < npages; i++) { 606 struct vm_page *pg = pgs[ridx + i]; 607 608 if ((pg->flags & PG_FAKE) || 609 (write && (pg->flags & PG_RDONLY))) { 610 break; 611 } 612 } 613 if (i == npages) { 614 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0); 615 raoffset = origoffset + (orignpages << PAGE_SHIFT); 616 npages += ridx; 617 goto raout; 618 } 619 620 /* 621 * if PGO_OVERWRITE is set, don't bother reading the pages. 622 */ 623 624 if (flags & PGO_OVERWRITE) { 625 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0); 626 627 for (i = 0; i < npages; i++) { 628 struct vm_page *pg = pgs[ridx + i]; 629 630 pg->flags &= ~(PG_RDONLY|PG_CLEAN); 631 } 632 npages += ridx; 633 goto out; 634 } 635 636 /* 637 * the page wasn't resident and we're not overwriting, 638 * so we're going to have to do some i/o. 639 * find any additional pages needed to cover the expanded range. 640 */ 641 642 npages = (endoffset - startoffset) >> PAGE_SHIFT; 643 if (startoffset != origoffset || npages != orignpages) { 644 645 /* 646 * we need to avoid deadlocks caused by locking 647 * additional pages at lower offsets than pages we 648 * already have locked. unlock them all and start over. 649 */ 650 651 genfs_rel_pages(&pgs[ridx], orignpages); 652 memset(pgs, 0, pgs_size); 653 654 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x", 655 startoffset, endoffset, 0,0); 656 npgs = npages; 657 if (uvn_findpages(uobj, startoffset, &npgs, pgs, 658 async ? UFP_NOWAIT : UFP_ALL) != npages) { 659 KASSERT(async != 0); 660 genfs_rel_pages(pgs, npages); 661 simple_unlock(&uobj->vmobjlock); 662 if (pgs != pgs_onstack) 663 free(pgs, M_DEVBUF); 664 return (EBUSY); 665 } 666 } 667 simple_unlock(&uobj->vmobjlock); 668 669 /* 670 * read the desired page(s). 671 */ 672 673 totalbytes = npages << PAGE_SHIFT; 674 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0)); 675 tailbytes = totalbytes - bytes; 676 skipbytes = 0; 677 678 kva = uvm_pagermapin(pgs, npages, 679 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK); 680 681 s = splbio(); 682 mbp = pool_get(&bufpool, PR_WAITOK); 683 splx(s); 684 BUF_INIT(mbp); 685 mbp->b_bufsize = totalbytes; 686 mbp->b_data = (void *)kva; 687 mbp->b_resid = mbp->b_bcount = bytes; 688 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0); 689 mbp->b_iodone = (async ? uvm_aio_biodone : 0); 690 mbp->b_vp = vp; 691 692 /* 693 * if EOF is in the middle of the range, zero the part past EOF. 694 * if the page including EOF is not PG_FAKE, skip over it since 695 * in that case it has valid data that we need to preserve. 696 */ 697 698 if (tailbytes > 0) { 699 size_t tailstart = bytes; 700 701 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) { 702 tailstart = round_page(tailstart); 703 tailbytes -= tailstart - bytes; 704 } 705 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x", 706 kva, tailstart, tailbytes,0); 707 memset((void *)(kva + tailstart), 0, tailbytes); 708 } 709 710 /* 711 * now loop over the pages, reading as needed. 712 */ 713 714 if (write) { 715 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL); 716 } else { 717 lockmgr(&gp->g_glock, LK_SHARED, NULL); 718 } 719 720 bp = NULL; 721 for (offset = startoffset; 722 bytes > 0; 723 offset += iobytes, bytes -= iobytes) { 724 725 /* 726 * skip pages which don't need to be read. 727 */ 728 729 pidx = (offset - startoffset) >> PAGE_SHIFT; 730 while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) { 731 size_t b; 732 733 KASSERT((offset & (PAGE_SIZE - 1)) == 0); 734 b = MIN(PAGE_SIZE, bytes); 735 offset += b; 736 bytes -= b; 737 skipbytes += b; 738 pidx++; 739 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x", 740 offset, 0,0,0); 741 if (bytes == 0) { 742 goto loopdone; 743 } 744 } 745 746 /* 747 * bmap the file to find out the blkno to read from and 748 * how much we can read in one i/o. if bmap returns an error, 749 * skip the rest of the top-level i/o. 750 */ 751 752 lbn = offset >> fs_bshift; 753 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run); 754 if (error) { 755 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n", 756 lbn, error,0,0); 757 skipbytes += bytes; 758 goto loopdone; 759 } 760 761 /* 762 * see how many pages can be read with this i/o. 763 * reduce the i/o size if necessary to avoid 764 * overwriting pages with valid data. 765 */ 766 767 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset, 768 bytes); 769 if (offset + iobytes > round_page(offset)) { 770 pcount = 1; 771 while (pidx + pcount < npages && 772 pgs[pidx + pcount]->flags & PG_FAKE) { 773 pcount++; 774 } 775 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) - 776 (offset - trunc_page(offset))); 777 } 778 779 /* 780 * if this block isn't allocated, zero it instead of 781 * reading it. if this is a read access, mark the 782 * pages we zeroed PG_RDONLY. 783 */ 784 785 if (blkno < 0) { 786 int holepages = (round_page(offset + iobytes) - 787 trunc_page(offset)) >> PAGE_SHIFT; 788 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0); 789 790 sawhole = TRUE; 791 memset((char *)kva + (offset - startoffset), 0, 792 iobytes); 793 skipbytes += iobytes; 794 795 for (i = 0; i < holepages; i++) { 796 if (write) { 797 pgs[pidx + i]->flags &= ~PG_CLEAN; 798 } else { 799 pgs[pidx + i]->flags |= PG_RDONLY; 800 } 801 } 802 continue; 803 } 804 805 /* 806 * allocate a sub-buf for this piece of the i/o 807 * (or just use mbp if there's only 1 piece), 808 * and start it going. 809 */ 810 811 if (offset == startoffset && iobytes == bytes) { 812 bp = mbp; 813 } else { 814 s = splbio(); 815 bp = pool_get(&bufpool, PR_WAITOK); 816 splx(s); 817 BUF_INIT(bp); 818 bp->b_data = (char *)kva + offset - startoffset; 819 bp->b_resid = bp->b_bcount = iobytes; 820 bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC; 821 bp->b_iodone = uvm_aio_biodone1; 822 bp->b_vp = vp; 823 bp->b_proc = NULL; 824 } 825 bp->b_lblkno = 0; 826 bp->b_private = mbp; 827 if (devvp->v_type == VBLK) { 828 bp->b_dev = devvp->v_rdev; 829 } 830 831 /* adjust physical blkno for partial blocks */ 832 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >> 833 dev_bshift); 834 835 UVMHIST_LOG(ubchist, 836 "bp %p offset 0x%x bcount 0x%x blkno 0x%x", 837 bp, offset, iobytes, bp->b_blkno); 838 839 if (async) 840 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 841 else 842 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 843 VOP_STRATEGY(bp->b_vp, bp); 844 } 845 846 loopdone: 847 if (skipbytes) { 848 s = splbio(); 849 if (error) { 850 mbp->b_flags |= B_ERROR; 851 mbp->b_error = error; 852 } 853 mbp->b_resid -= skipbytes; 854 if (mbp->b_resid == 0) { 855 biodone(mbp); 856 } 857 splx(s); 858 } 859 860 if (async) { 861 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0); 862 lockmgr(&gp->g_glock, LK_RELEASE, NULL); 863 if (pgs != pgs_onstack) 864 free(pgs, M_DEVBUF); 865 return (0); 866 } 867 if (bp != NULL) { 868 error = biowait(mbp); 869 } 870 s = splbio(); 871 pool_put(&bufpool, mbp); 872 splx(s); 873 uvm_pagermapout(kva, npages); 874 raoffset = startoffset + totalbytes; 875 876 /* 877 * if this we encountered a hole then we have to do a little more work. 878 * for read faults, we marked the page PG_RDONLY so that future 879 * write accesses to the page will fault again. 880 * for write faults, we must make sure that the backing store for 881 * the page is completely allocated while the pages are locked. 882 */ 883 884 if (!error && sawhole && write) { 885 for (i = 0; i < npages; i++) { 886 if (pgs[i] == NULL) { 887 continue; 888 } 889 pgs[i]->flags &= ~PG_CLEAN; 890 UVMHIST_LOG(ubchist, "mark dirty pg %p", pgs[i],0,0,0); 891 } 892 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0, 893 cred); 894 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d", 895 startoffset, npages << PAGE_SHIFT, error,0); 896 } 897 lockmgr(&gp->g_glock, LK_RELEASE, NULL); 898 simple_lock(&uobj->vmobjlock); 899 900 /* 901 * see if we want to start any readahead. 902 * XXXUBC for now, just read the next 128k on 64k boundaries. 903 * this is pretty nonsensical, but it is 50% faster than reading 904 * just the next 64k. 905 */ 906 907 raout: 908 if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 && 909 PAGE_SHIFT <= 16) { 910 off_t rasize; 911 int rapages, err, i, skipped; 912 913 /* XXXUBC temp limit, from above */ 914 rapages = MIN(MIN(1 << (16 - PAGE_SHIFT), MAX_READ_AHEAD), 915 genfs_rapages); 916 rasize = rapages << PAGE_SHIFT; 917 for (i = skipped = 0; i < genfs_racount; i++) { 918 919 if (raoffset >= memeof) 920 break; 921 922 err = VOP_GETPAGES(vp, raoffset, NULL, &rapages, 0, 923 VM_PROT_READ, 0, 0); 924 simple_lock(&uobj->vmobjlock); 925 if (err) { 926 if (err != EBUSY || 927 skipped++ == genfs_raskip) 928 break; 929 } 930 raoffset += rasize; 931 rapages = rasize >> PAGE_SHIFT; 932 } 933 } 934 935 /* 936 * we're almost done! release the pages... 937 * for errors, we free the pages. 938 * otherwise we activate them and mark them as valid and clean. 939 * also, unbusy pages that were not actually requested. 940 */ 941 942 if (error) { 943 for (i = 0; i < npages; i++) { 944 if (pgs[i] == NULL) { 945 continue; 946 } 947 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x", 948 pgs[i], pgs[i]->flags, 0,0); 949 if (pgs[i]->flags & PG_FAKE) { 950 pgs[i]->flags |= PG_RELEASED; 951 } 952 } 953 uvm_lock_pageq(); 954 uvm_page_unbusy(pgs, npages); 955 uvm_unlock_pageq(); 956 simple_unlock(&uobj->vmobjlock); 957 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0); 958 if (pgs != pgs_onstack) 959 free(pgs, M_DEVBUF); 960 return (error); 961 } 962 963 out: 964 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0); 965 uvm_lock_pageq(); 966 for (i = 0; i < npages; i++) { 967 pg = pgs[i]; 968 if (pg == NULL) { 969 continue; 970 } 971 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x", 972 pg, pg->flags, 0,0); 973 if (pg->flags & PG_FAKE && !overwrite) { 974 pg->flags &= ~(PG_FAKE); 975 pmap_clear_modify(pgs[i]); 976 } 977 if (write) { 978 pg->flags &= ~(PG_RDONLY); 979 } 980 if (i < ridx || i >= ridx + orignpages || async) { 981 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x", 982 pg, pg->offset,0,0); 983 if (pg->flags & PG_WANTED) { 984 wakeup(pg); 985 } 986 if (pg->flags & PG_FAKE) { 987 KASSERT(overwrite); 988 uvm_pagezero(pg); 989 } 990 if (pg->flags & PG_RELEASED) { 991 uvm_pagefree(pg); 992 continue; 993 } 994 uvm_pageactivate(pg); 995 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE); 996 UVM_PAGE_OWN(pg, NULL); 997 } 998 } 999 uvm_unlock_pageq(); 1000 simple_unlock(&uobj->vmobjlock); 1001 if (ap->a_m != NULL) { 1002 memcpy(ap->a_m, &pgs[ridx], 1003 orignpages * sizeof(struct vm_page *)); 1004 } 1005 if (pgs != pgs_onstack) 1006 free(pgs, M_DEVBUF); 1007 return (0); 1008 } 1009 1010 /* 1011 * generic VM putpages routine. 1012 * Write the given range of pages to backing store. 1013 * 1014 * => "offhi == 0" means flush all pages at or after "offlo". 1015 * => object should be locked by caller. we may _unlock_ the object 1016 * if (and only if) we need to clean a page (PGO_CLEANIT), or 1017 * if PGO_SYNCIO is set and there are pages busy. 1018 * we return with the object locked. 1019 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O). 1020 * thus, a caller might want to unlock higher level resources 1021 * (e.g. vm_map) before calling flush. 1022 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither 1023 * unlock the object nor block. 1024 * => if PGO_ALLPAGES is set, then all pages in the object will be processed. 1025 * => NOTE: we rely on the fact that the object's memq is a TAILQ and 1026 * that new pages are inserted on the tail end of the list. thus, 1027 * we can make a complete pass through the object in one go by starting 1028 * at the head and working towards the tail (new pages are put in 1029 * front of us). 1030 * => NOTE: we are allowed to lock the page queues, so the caller 1031 * must not be holding the page queue lock. 1032 * 1033 * note on "cleaning" object and PG_BUSY pages: 1034 * this routine is holding the lock on the object. the only time 1035 * that it can run into a PG_BUSY page that it does not own is if 1036 * some other process has started I/O on the page (e.g. either 1037 * a pagein, or a pageout). if the PG_BUSY page is being paged 1038 * in, then it can not be dirty (!PG_CLEAN) because no one has 1039 * had a chance to modify it yet. if the PG_BUSY page is being 1040 * paged out then it means that someone else has already started 1041 * cleaning the page for us (how nice!). in this case, if we 1042 * have syncio specified, then after we make our pass through the 1043 * object we need to wait for the other PG_BUSY pages to clear 1044 * off (i.e. we need to do an iosync). also note that once a 1045 * page is PG_BUSY it must stay in its object until it is un-busyed. 1046 * 1047 * note on page traversal: 1048 * we can traverse the pages in an object either by going down the 1049 * linked list in "uobj->memq", or we can go over the address range 1050 * by page doing hash table lookups for each address. depending 1051 * on how many pages are in the object it may be cheaper to do one 1052 * or the other. we set "by_list" to true if we are using memq. 1053 * if the cost of a hash lookup was equal to the cost of the list 1054 * traversal we could compare the number of pages in the start->stop 1055 * range to the total number of pages in the object. however, it 1056 * seems that a hash table lookup is more expensive than the linked 1057 * list traversal, so we multiply the number of pages in the 1058 * range by an estimate of the relatively higher cost of the hash lookup. 1059 */ 1060 1061 int 1062 genfs_putpages(void *v) 1063 { 1064 struct vop_putpages_args /* { 1065 struct vnode *a_vp; 1066 voff_t a_offlo; 1067 voff_t a_offhi; 1068 int a_flags; 1069 } */ *ap = v; 1070 struct vnode *vp = ap->a_vp; 1071 struct uvm_object *uobj = &vp->v_uobj; 1072 struct simplelock *slock = &uobj->vmobjlock; 1073 off_t startoff = ap->a_offlo; 1074 off_t endoff = ap->a_offhi; 1075 off_t off; 1076 int flags = ap->a_flags; 1077 /* Even for strange MAXPHYS, the shift rounds down to a page */ 1078 const int maxpages = MAXPHYS >> PAGE_SHIFT; 1079 int i, s, error, npages, nback; 1080 int freeflag; 1081 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp; 1082 boolean_t wasclean, by_list, needs_clean, yield; 1083 boolean_t async = (flags & PGO_SYNCIO) == 0; 1084 boolean_t pagedaemon = curproc == uvm.pagedaemon_proc; 1085 struct lwp *l = curlwp ? curlwp : &lwp0; 1086 1087 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist); 1088 1089 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)); 1090 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0); 1091 KASSERT(startoff < endoff || endoff == 0); 1092 1093 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x", 1094 vp, uobj->uo_npages, startoff, endoff - startoff); 1095 if (uobj->uo_npages == 0) { 1096 s = splbio(); 1097 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL && 1098 (vp->v_flag & VONWORKLST)) { 1099 vp->v_flag &= ~VONWORKLST; 1100 LIST_REMOVE(vp, v_synclist); 1101 } 1102 splx(s); 1103 simple_unlock(slock); 1104 return (0); 1105 } 1106 1107 /* 1108 * the vnode has pages, set up to process the request. 1109 */ 1110 1111 error = 0; 1112 s = splbio(); 1113 simple_lock(&global_v_numoutput_slock); 1114 wasclean = (vp->v_numoutput == 0); 1115 simple_unlock(&global_v_numoutput_slock); 1116 splx(s); 1117 off = startoff; 1118 if (endoff == 0 || flags & PGO_ALLPAGES) { 1119 endoff = trunc_page(LLONG_MAX); 1120 } 1121 by_list = (uobj->uo_npages <= 1122 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY); 1123 1124 /* 1125 * start the loop. when scanning by list, hold the last page 1126 * in the list before we start. pages allocated after we start 1127 * will be added to the end of the list, so we can stop at the 1128 * current last page. 1129 */ 1130 1131 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED; 1132 curmp.uobject = uobj; 1133 curmp.offset = (voff_t)-1; 1134 curmp.flags = PG_BUSY; 1135 endmp.uobject = uobj; 1136 endmp.offset = (voff_t)-1; 1137 endmp.flags = PG_BUSY; 1138 if (by_list) { 1139 pg = TAILQ_FIRST(&uobj->memq); 1140 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq); 1141 PHOLD(l); 1142 } else { 1143 pg = uvm_pagelookup(uobj, off); 1144 } 1145 nextpg = NULL; 1146 while (by_list || off < endoff) { 1147 1148 /* 1149 * if the current page is not interesting, move on to the next. 1150 */ 1151 1152 KASSERT(pg == NULL || pg->uobject == uobj); 1153 KASSERT(pg == NULL || 1154 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 || 1155 (pg->flags & PG_BUSY) != 0); 1156 if (by_list) { 1157 if (pg == &endmp) { 1158 break; 1159 } 1160 if (pg->offset < startoff || pg->offset >= endoff || 1161 pg->flags & (PG_RELEASED|PG_PAGEOUT)) { 1162 pg = TAILQ_NEXT(pg, listq); 1163 continue; 1164 } 1165 off = pg->offset; 1166 } else if (pg == NULL || 1167 pg->flags & (PG_RELEASED|PG_PAGEOUT)) { 1168 off += PAGE_SIZE; 1169 if (off < endoff) { 1170 pg = uvm_pagelookup(uobj, off); 1171 } 1172 continue; 1173 } 1174 1175 /* 1176 * if the current page needs to be cleaned and it's busy, 1177 * wait for it to become unbusy. 1178 */ 1179 1180 yield = (l->l_cpu->ci_schedstate.spc_flags & 1181 SPCF_SHOULDYIELD) && !pagedaemon; 1182 if (pg->flags & PG_BUSY || yield) { 1183 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0); 1184 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) { 1185 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0); 1186 error = EDEADLK; 1187 break; 1188 } 1189 KASSERT(!pagedaemon); 1190 if (by_list) { 1191 TAILQ_INSERT_BEFORE(pg, &curmp, listq); 1192 UVMHIST_LOG(ubchist, "curmp next %p", 1193 TAILQ_NEXT(&curmp, listq), 0,0,0); 1194 } 1195 if (yield) { 1196 simple_unlock(slock); 1197 preempt(1); 1198 simple_lock(slock); 1199 } else { 1200 pg->flags |= PG_WANTED; 1201 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0); 1202 simple_lock(slock); 1203 } 1204 if (by_list) { 1205 UVMHIST_LOG(ubchist, "after next %p", 1206 TAILQ_NEXT(&curmp, listq), 0,0,0); 1207 pg = TAILQ_NEXT(&curmp, listq); 1208 TAILQ_REMOVE(&uobj->memq, &curmp, listq); 1209 } else { 1210 pg = uvm_pagelookup(uobj, off); 1211 } 1212 continue; 1213 } 1214 1215 /* 1216 * if we're freeing, remove all mappings of the page now. 1217 * if we're cleaning, check if the page is needs to be cleaned. 1218 */ 1219 1220 if (flags & PGO_FREE) { 1221 pmap_page_protect(pg, VM_PROT_NONE); 1222 } 1223 if (flags & PGO_CLEANIT) { 1224 needs_clean = pmap_clear_modify(pg) || 1225 (pg->flags & PG_CLEAN) == 0; 1226 pg->flags |= PG_CLEAN; 1227 } else { 1228 needs_clean = FALSE; 1229 } 1230 1231 /* 1232 * if we're cleaning, build a cluster. 1233 * the cluster will consist of pages which are currently dirty, 1234 * but they will be returned to us marked clean. 1235 * if not cleaning, just operate on the one page. 1236 */ 1237 1238 if (needs_clean) { 1239 wasclean = FALSE; 1240 memset(pgs, 0, sizeof(pgs)); 1241 pg->flags |= PG_BUSY; 1242 UVM_PAGE_OWN(pg, "genfs_putpages"); 1243 1244 /* 1245 * first look backward. 1246 */ 1247 1248 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT); 1249 nback = npages; 1250 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0], 1251 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD); 1252 if (nback) { 1253 memmove(&pgs[0], &pgs[npages - nback], 1254 nback * sizeof(pgs[0])); 1255 if (npages - nback < nback) 1256 memset(&pgs[nback], 0, 1257 (npages - nback) * sizeof(pgs[0])); 1258 else 1259 memset(&pgs[npages - nback], 0, 1260 nback * sizeof(pgs[0])); 1261 } 1262 1263 /* 1264 * then plug in our page of interest. 1265 */ 1266 1267 pgs[nback] = pg; 1268 1269 /* 1270 * then look forward to fill in the remaining space in 1271 * the array of pages. 1272 */ 1273 1274 npages = maxpages - nback - 1; 1275 uvn_findpages(uobj, off + PAGE_SIZE, &npages, 1276 &pgs[nback + 1], 1277 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY); 1278 npages += nback + 1; 1279 } else { 1280 pgs[0] = pg; 1281 npages = 1; 1282 nback = 0; 1283 } 1284 1285 /* 1286 * apply FREE or DEACTIVATE options if requested. 1287 */ 1288 1289 if (flags & (PGO_DEACTIVATE|PGO_FREE)) { 1290 uvm_lock_pageq(); 1291 } 1292 for (i = 0; i < npages; i++) { 1293 tpg = pgs[i]; 1294 KASSERT(tpg->uobject == uobj); 1295 if (by_list && tpg == TAILQ_NEXT(pg, listq)) 1296 pg = tpg; 1297 if (tpg->offset < startoff || tpg->offset >= endoff) 1298 continue; 1299 if (flags & PGO_DEACTIVATE && 1300 (tpg->pqflags & PQ_INACTIVE) == 0 && 1301 tpg->wire_count == 0) { 1302 (void) pmap_clear_reference(tpg); 1303 uvm_pagedeactivate(tpg); 1304 } else if (flags & PGO_FREE) { 1305 pmap_page_protect(tpg, VM_PROT_NONE); 1306 if (tpg->flags & PG_BUSY) { 1307 tpg->flags |= freeflag; 1308 if (pagedaemon) { 1309 uvmexp.paging++; 1310 uvm_pagedequeue(tpg); 1311 } 1312 } else { 1313 1314 /* 1315 * ``page is not busy'' 1316 * implies that npages is 1 1317 * and needs_clean is false. 1318 */ 1319 1320 nextpg = TAILQ_NEXT(tpg, listq); 1321 uvm_pagefree(tpg); 1322 if (pagedaemon) 1323 uvmexp.pdfreed++; 1324 } 1325 } 1326 } 1327 if (flags & (PGO_DEACTIVATE|PGO_FREE)) { 1328 uvm_unlock_pageq(); 1329 } 1330 if (needs_clean) { 1331 1332 /* 1333 * start the i/o. if we're traversing by list, 1334 * keep our place in the list with a marker page. 1335 */ 1336 1337 if (by_list) { 1338 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp, 1339 listq); 1340 } 1341 simple_unlock(slock); 1342 error = GOP_WRITE(vp, pgs, npages, flags); 1343 simple_lock(slock); 1344 if (by_list) { 1345 pg = TAILQ_NEXT(&curmp, listq); 1346 TAILQ_REMOVE(&uobj->memq, &curmp, listq); 1347 } 1348 if (error) { 1349 break; 1350 } 1351 if (by_list) { 1352 continue; 1353 } 1354 } 1355 1356 /* 1357 * find the next page and continue if there was no error. 1358 */ 1359 1360 if (by_list) { 1361 if (nextpg) { 1362 pg = nextpg; 1363 nextpg = NULL; 1364 } else { 1365 pg = TAILQ_NEXT(pg, listq); 1366 } 1367 } else { 1368 off += (npages - nback) << PAGE_SHIFT; 1369 if (off < endoff) { 1370 pg = uvm_pagelookup(uobj, off); 1371 } 1372 } 1373 } 1374 if (by_list) { 1375 TAILQ_REMOVE(&uobj->memq, &endmp, listq); 1376 PRELE(l); 1377 } 1378 1379 /* 1380 * if we're cleaning and there was nothing to clean, 1381 * take us off the syncer list. if we started any i/o 1382 * and we're doing sync i/o, wait for all writes to finish. 1383 */ 1384 1385 s = splbio(); 1386 if ((flags & PGO_CLEANIT) && wasclean && 1387 startoff == 0 && endoff == trunc_page(LLONG_MAX) && 1388 LIST_FIRST(&vp->v_dirtyblkhd) == NULL && 1389 (vp->v_flag & VONWORKLST)) { 1390 vp->v_flag &= ~VONWORKLST; 1391 LIST_REMOVE(vp, v_synclist); 1392 } 1393 splx(s); 1394 if (!wasclean && !async) { 1395 s = splbio(); 1396 /* 1397 * XXX - we want simple_unlock(&global_v_numoutput_slock); 1398 * but the slot in ltsleep() is taken! 1399 * XXX - try to recover from missed wakeups with a timeout.. 1400 * must think of something better. 1401 */ 1402 while (vp->v_numoutput != 0) { 1403 vp->v_flag |= VBWAIT; 1404 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE, 1405 "genput2", hz); 1406 simple_lock(slock); 1407 } 1408 splx(s); 1409 } 1410 simple_unlock(&uobj->vmobjlock); 1411 return (error); 1412 } 1413 1414 int 1415 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags) 1416 { 1417 int s, error, run; 1418 int fs_bshift, dev_bshift; 1419 vaddr_t kva; 1420 off_t eof, offset, startoffset; 1421 size_t bytes, iobytes, skipbytes; 1422 daddr_t lbn, blkno; 1423 struct vm_page *pg; 1424 struct buf *mbp, *bp; 1425 struct vnode *devvp; 1426 boolean_t async = (flags & PGO_SYNCIO) == 0; 1427 UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist); 1428 1429 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x", 1430 vp, pgs, npages, flags); 1431 1432 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_WRITE); 1433 if (vp->v_type == VREG) { 1434 fs_bshift = vp->v_mount->mnt_fs_bshift; 1435 dev_bshift = vp->v_mount->mnt_dev_bshift; 1436 } else { 1437 fs_bshift = DEV_BSHIFT; 1438 dev_bshift = DEV_BSHIFT; 1439 } 1440 error = 0; 1441 pg = pgs[0]; 1442 startoffset = pg->offset; 1443 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset); 1444 skipbytes = 0; 1445 KASSERT(bytes != 0); 1446 1447 kva = uvm_pagermapin(pgs, npages, 1448 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK); 1449 1450 s = splbio(); 1451 simple_lock(&global_v_numoutput_slock); 1452 vp->v_numoutput += 2; 1453 simple_unlock(&global_v_numoutput_slock); 1454 mbp = pool_get(&bufpool, PR_WAITOK); 1455 BUF_INIT(mbp); 1456 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x", 1457 vp, mbp, vp->v_numoutput, bytes); 1458 splx(s); 1459 mbp->b_bufsize = npages << PAGE_SHIFT; 1460 mbp->b_data = (void *)kva; 1461 mbp->b_resid = mbp->b_bcount = bytes; 1462 mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0); 1463 mbp->b_iodone = uvm_aio_biodone; 1464 mbp->b_vp = vp; 1465 1466 bp = NULL; 1467 for (offset = startoffset; 1468 bytes > 0; 1469 offset += iobytes, bytes -= iobytes) { 1470 lbn = offset >> fs_bshift; 1471 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run); 1472 if (error) { 1473 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0); 1474 skipbytes += bytes; 1475 bytes = 0; 1476 break; 1477 } 1478 1479 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset, 1480 bytes); 1481 if (blkno == (daddr_t)-1) { 1482 skipbytes += iobytes; 1483 continue; 1484 } 1485 1486 /* if it's really one i/o, don't make a second buf */ 1487 if (offset == startoffset && iobytes == bytes) { 1488 bp = mbp; 1489 } else { 1490 s = splbio(); 1491 V_INCR_NUMOUTPUT(vp); 1492 bp = pool_get(&bufpool, PR_WAITOK); 1493 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d", 1494 vp, bp, vp->v_numoutput, 0); 1495 splx(s); 1496 BUF_INIT(bp); 1497 bp->b_data = (char *)kva + 1498 (vaddr_t)(offset - pg->offset); 1499 bp->b_resid = bp->b_bcount = iobytes; 1500 bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC; 1501 bp->b_iodone = uvm_aio_biodone1; 1502 bp->b_vp = vp; 1503 } 1504 bp->b_lblkno = 0; 1505 bp->b_private = mbp; 1506 if (devvp->v_type == VBLK) { 1507 bp->b_dev = devvp->v_rdev; 1508 } 1509 1510 /* adjust physical blkno for partial blocks */ 1511 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >> 1512 dev_bshift); 1513 UVMHIST_LOG(ubchist, 1514 "vp %p offset 0x%x bcount 0x%x blkno 0x%x", 1515 vp, offset, bp->b_bcount, bp->b_blkno); 1516 if (curproc == uvm.pagedaemon_proc) 1517 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 1518 else if (async) 1519 BIO_SETPRIO(bp, BPRIO_TIMENONCRITICAL); 1520 else 1521 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 1522 VOP_STRATEGY(bp->b_vp, bp); 1523 } 1524 if (skipbytes) { 1525 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0); 1526 s = splbio(); 1527 if (error) { 1528 mbp->b_flags |= B_ERROR; 1529 mbp->b_error = error; 1530 } 1531 mbp->b_resid -= skipbytes; 1532 if (mbp->b_resid == 0) { 1533 biodone(mbp); 1534 } 1535 splx(s); 1536 } 1537 if (async) { 1538 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0); 1539 return (0); 1540 } 1541 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0); 1542 error = biowait(mbp); 1543 uvm_aio_aiodone(mbp); 1544 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0); 1545 return (error); 1546 } 1547 1548 /* 1549 * VOP_PUTPAGES() for vnodes which never have pages. 1550 */ 1551 1552 int 1553 genfs_null_putpages(void *v) 1554 { 1555 struct vop_putpages_args /* { 1556 struct vnode *a_vp; 1557 voff_t a_offlo; 1558 voff_t a_offhi; 1559 int a_flags; 1560 } */ *ap = v; 1561 struct vnode *vp = ap->a_vp; 1562 1563 KASSERT(vp->v_uobj.uo_npages == 0); 1564 simple_unlock(&vp->v_interlock); 1565 return (0); 1566 } 1567 1568 void 1569 genfs_node_init(struct vnode *vp, struct genfs_ops *ops) 1570 { 1571 struct genfs_node *gp = VTOG(vp); 1572 1573 lockinit(&gp->g_glock, PINOD, "glock", 0, 0); 1574 gp->g_op = ops; 1575 } 1576 1577 void 1578 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags) 1579 { 1580 int bsize; 1581 1582 bsize = 1 << vp->v_mount->mnt_fs_bshift; 1583 *eobp = (size + bsize - 1) & ~(bsize - 1); 1584 } 1585 1586 int 1587 genfs_compat_getpages(void *v) 1588 { 1589 struct vop_getpages_args /* { 1590 struct vnode *a_vp; 1591 voff_t a_offset; 1592 struct vm_page **a_m; 1593 int *a_count; 1594 int a_centeridx; 1595 vm_prot_t a_access_type; 1596 int a_advice; 1597 int a_flags; 1598 } */ *ap = v; 1599 1600 off_t origoffset; 1601 struct vnode *vp = ap->a_vp; 1602 struct uvm_object *uobj = &vp->v_uobj; 1603 struct vm_page *pg, **pgs; 1604 vaddr_t kva; 1605 int i, error, orignpages, npages; 1606 struct iovec iov; 1607 struct uio uio; 1608 struct ucred *cred = curproc->p_ucred; 1609 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0; 1610 1611 error = 0; 1612 origoffset = ap->a_offset; 1613 orignpages = *ap->a_count; 1614 pgs = ap->a_m; 1615 1616 if (write && (vp->v_flag & VONWORKLST) == 0) { 1617 vn_syncer_add_to_worklist(vp, filedelay); 1618 } 1619 if (ap->a_flags & PGO_LOCKED) { 1620 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, 1621 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0)); 1622 1623 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0); 1624 } 1625 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) { 1626 simple_unlock(&uobj->vmobjlock); 1627 return (EINVAL); 1628 } 1629 npages = orignpages; 1630 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL); 1631 simple_unlock(&uobj->vmobjlock); 1632 kva = uvm_pagermapin(pgs, npages, 1633 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK); 1634 for (i = 0; i < npages; i++) { 1635 pg = pgs[i]; 1636 if ((pg->flags & PG_FAKE) == 0) { 1637 continue; 1638 } 1639 iov.iov_base = (char *)kva + (i << PAGE_SHIFT); 1640 iov.iov_len = PAGE_SIZE; 1641 uio.uio_iov = &iov; 1642 uio.uio_iovcnt = 1; 1643 uio.uio_offset = origoffset + (i << PAGE_SHIFT); 1644 uio.uio_segflg = UIO_SYSSPACE; 1645 uio.uio_rw = UIO_READ; 1646 uio.uio_resid = PAGE_SIZE; 1647 uio.uio_procp = NULL; 1648 /* XXX vn_lock */ 1649 error = VOP_READ(vp, &uio, 0, cred); 1650 if (error) { 1651 break; 1652 } 1653 if (uio.uio_resid) { 1654 memset(iov.iov_base, 0, uio.uio_resid); 1655 } 1656 } 1657 uvm_pagermapout(kva, npages); 1658 simple_lock(&uobj->vmobjlock); 1659 uvm_lock_pageq(); 1660 for (i = 0; i < npages; i++) { 1661 pg = pgs[i]; 1662 if (error && (pg->flags & PG_FAKE) != 0) { 1663 pg->flags |= PG_RELEASED; 1664 } else { 1665 pmap_clear_modify(pg); 1666 uvm_pageactivate(pg); 1667 } 1668 } 1669 if (error) { 1670 uvm_page_unbusy(pgs, npages); 1671 } 1672 uvm_unlock_pageq(); 1673 simple_unlock(&uobj->vmobjlock); 1674 return (error); 1675 } 1676 1677 int 1678 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, 1679 int flags) 1680 { 1681 off_t offset; 1682 struct iovec iov; 1683 struct uio uio; 1684 struct ucred *cred = curproc->p_ucred; 1685 struct buf *bp; 1686 vaddr_t kva; 1687 int s, error; 1688 1689 offset = pgs[0]->offset; 1690 kva = uvm_pagermapin(pgs, npages, 1691 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK); 1692 1693 iov.iov_base = (void *)kva; 1694 iov.iov_len = npages << PAGE_SHIFT; 1695 uio.uio_iov = &iov; 1696 uio.uio_iovcnt = 1; 1697 uio.uio_offset = offset; 1698 uio.uio_segflg = UIO_SYSSPACE; 1699 uio.uio_rw = UIO_WRITE; 1700 uio.uio_resid = npages << PAGE_SHIFT; 1701 uio.uio_procp = NULL; 1702 /* XXX vn_lock */ 1703 error = VOP_WRITE(vp, &uio, 0, cred); 1704 1705 s = splbio(); 1706 V_INCR_NUMOUTPUT(vp); 1707 bp = pool_get(&bufpool, PR_WAITOK); 1708 splx(s); 1709 1710 BUF_INIT(bp); 1711 bp->b_flags = B_BUSY | B_WRITE | B_AGE; 1712 bp->b_vp = vp; 1713 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift; 1714 bp->b_data = (char *)kva; 1715 bp->b_bcount = npages << PAGE_SHIFT; 1716 bp->b_bufsize = npages << PAGE_SHIFT; 1717 bp->b_resid = 0; 1718 if (error) { 1719 bp->b_flags |= B_ERROR; 1720 bp->b_error = error; 1721 } 1722 uvm_aio_aiodone(bp); 1723 return (error); 1724 } 1725 1726 static void 1727 filt_genfsdetach(struct knote *kn) 1728 { 1729 struct vnode *vp = (struct vnode *)kn->kn_hook; 1730 1731 /* XXXLUKEM lock the struct? */ 1732 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext); 1733 } 1734 1735 static int 1736 filt_genfsread(struct knote *kn, long hint) 1737 { 1738 struct vnode *vp = (struct vnode *)kn->kn_hook; 1739 1740 /* 1741 * filesystem is gone, so set the EOF flag and schedule 1742 * the knote for deletion. 1743 */ 1744 if (hint == NOTE_REVOKE) { 1745 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 1746 return (1); 1747 } 1748 1749 /* XXXLUKEM lock the struct? */ 1750 kn->kn_data = vp->v_size - kn->kn_fp->f_offset; 1751 return (kn->kn_data != 0); 1752 } 1753 1754 static int 1755 filt_genfsvnode(struct knote *kn, long hint) 1756 { 1757 1758 if (kn->kn_sfflags & hint) 1759 kn->kn_fflags |= hint; 1760 if (hint == NOTE_REVOKE) { 1761 kn->kn_flags |= EV_EOF; 1762 return (1); 1763 } 1764 return (kn->kn_fflags != 0); 1765 } 1766 1767 static const struct filterops genfsread_filtops = 1768 { 1, NULL, filt_genfsdetach, filt_genfsread }; 1769 static const struct filterops genfsvnode_filtops = 1770 { 1, NULL, filt_genfsdetach, filt_genfsvnode }; 1771 1772 int 1773 genfs_kqfilter(void *v) 1774 { 1775 struct vop_kqfilter_args /* { 1776 struct vnode *a_vp; 1777 struct knote *a_kn; 1778 } */ *ap = v; 1779 struct vnode *vp; 1780 struct knote *kn; 1781 1782 vp = ap->a_vp; 1783 kn = ap->a_kn; 1784 switch (kn->kn_filter) { 1785 case EVFILT_READ: 1786 kn->kn_fop = &genfsread_filtops; 1787 break; 1788 case EVFILT_VNODE: 1789 kn->kn_fop = &genfsvnode_filtops; 1790 break; 1791 default: 1792 return (1); 1793 } 1794 1795 kn->kn_hook = vp; 1796 1797 /* XXXLUKEM lock the struct? */ 1798 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext); 1799 1800 return (0); 1801 } 1802