xref: /netbsd-src/sys/miscfs/genfs/genfs_vnops.c (revision aa73cae19608873cc4d1f712c4a0f8f8435f1ffa)
1 /*	$NetBSD: genfs_vnops.c,v 1.96 2005/02/26 22:59:00 perry Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.96 2005/02/26 22:59:00 perry Exp $");
35 
36 #if defined(_KERNEL_OPT)
37 #include "opt_nfsserver.h"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/mount.h>
45 #include <sys/namei.h>
46 #include <sys/vnode.h>
47 #include <sys/fcntl.h>
48 #include <sys/malloc.h>
49 #include <sys/poll.h>
50 #include <sys/mman.h>
51 #include <sys/file.h>
52 
53 #include <miscfs/genfs/genfs.h>
54 #include <miscfs/genfs/genfs_node.h>
55 #include <miscfs/specfs/specdev.h>
56 
57 #include <uvm/uvm.h>
58 #include <uvm/uvm_pager.h>
59 
60 #ifdef NFSSERVER
61 #include <nfs/rpcv2.h>
62 #include <nfs/nfsproto.h>
63 #include <nfs/nfs.h>
64 #include <nfs/nqnfs.h>
65 #include <nfs/nfs_var.h>
66 #endif
67 
68 static __inline void genfs_rel_pages(struct vm_page **, int);
69 static void filt_genfsdetach(struct knote *);
70 static int filt_genfsread(struct knote *, long);
71 static int filt_genfsvnode(struct knote *, long);
72 
73 
74 #define MAX_READ_AHEAD	16 	/* XXXUBC 16 */
75 int genfs_rapages = MAX_READ_AHEAD; /* # of pages in each chunk of readahead */
76 int genfs_racount = 2;		/* # of page chunks to readahead */
77 int genfs_raskip = 2;		/* # of busy page chunks allowed to skip */
78 
79 int
80 genfs_poll(void *v)
81 {
82 	struct vop_poll_args /* {
83 		struct vnode *a_vp;
84 		int a_events;
85 		struct proc *a_p;
86 	} */ *ap = v;
87 
88 	return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
89 }
90 
91 int
92 genfs_fsync(void *v)
93 {
94 	struct vop_fsync_args /* {
95 		struct vnode *a_vp;
96 		struct ucred *a_cred;
97 		int a_flags;
98 		off_t offlo;
99 		off_t offhi;
100 		struct proc *a_p;
101 	} */ *ap = v;
102 	struct vnode *vp = ap->a_vp, *dvp;
103 	int wait;
104 	int error;
105 
106 	wait = (ap->a_flags & FSYNC_WAIT) != 0;
107 	vflushbuf(vp, wait);
108 	if ((ap->a_flags & FSYNC_DATAONLY) != 0)
109 		error = 0;
110 	else
111 		error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
112 
113 	if (error == 0 && ap->a_flags & FSYNC_CACHE) {
114 		int l = 0;
115 		if (VOP_BMAP(vp, 0, &dvp, NULL, NULL))
116 			error = ENXIO;
117 		else
118 			error = VOP_IOCTL(dvp, DIOCCACHESYNC, &l, FWRITE,
119 					  ap->a_p->p_ucred, ap->a_p);
120 	}
121 
122 	return (error);
123 }
124 
125 int
126 genfs_seek(void *v)
127 {
128 	struct vop_seek_args /* {
129 		struct vnode *a_vp;
130 		off_t a_oldoff;
131 		off_t a_newoff;
132 		struct ucred *a_ucred;
133 	} */ *ap = v;
134 
135 	if (ap->a_newoff < 0)
136 		return (EINVAL);
137 
138 	return (0);
139 }
140 
141 int
142 genfs_abortop(void *v)
143 {
144 	struct vop_abortop_args /* {
145 		struct vnode *a_dvp;
146 		struct componentname *a_cnp;
147 	} */ *ap = v;
148 
149 	if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
150 		PNBUF_PUT(ap->a_cnp->cn_pnbuf);
151 	return (0);
152 }
153 
154 int
155 genfs_fcntl(void *v)
156 {
157 	struct vop_fcntl_args /* {
158 		struct vnode *a_vp;
159 		u_int a_command;
160 		caddr_t a_data;
161 		int a_fflag;
162 		struct ucred *a_cred;
163 		struct proc *a_p;
164 	} */ *ap = v;
165 
166 	if (ap->a_command == F_SETFL)
167 		return (0);
168 	else
169 		return (EOPNOTSUPP);
170 }
171 
172 /*ARGSUSED*/
173 int
174 genfs_badop(void *v)
175 {
176 
177 	panic("genfs: bad op");
178 }
179 
180 /*ARGSUSED*/
181 int
182 genfs_nullop(void *v)
183 {
184 
185 	return (0);
186 }
187 
188 /*ARGSUSED*/
189 int
190 genfs_einval(void *v)
191 {
192 
193 	return (EINVAL);
194 }
195 
196 /*
197  * Called when an fs doesn't support a particular vop.
198  * This takes care to vrele, vput, or vunlock passed in vnodes.
199  */
200 int
201 genfs_eopnotsupp(void *v)
202 {
203 	struct vop_generic_args /*
204 		struct vnodeop_desc *a_desc;
205 		/ * other random data follows, presumably * /
206 	} */ *ap = v;
207 	struct vnodeop_desc *desc = ap->a_desc;
208 	struct vnode *vp, *vp_last = NULL;
209 	int flags, i, j, offset;
210 
211 	flags = desc->vdesc_flags;
212 	for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
213 		if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
214 			break;	/* stop at end of list */
215 		if ((j = flags & VDESC_VP0_WILLPUT)) {
216 			vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
217 
218 			/* Skip if NULL */
219 			if (!vp)
220 				continue;
221 
222 			switch (j) {
223 			case VDESC_VP0_WILLPUT:
224 				/* Check for dvp == vp cases */
225 				if (vp == vp_last)
226 					vrele(vp);
227 				else {
228 					vput(vp);
229 					vp_last = vp;
230 				}
231 				break;
232 			case VDESC_VP0_WILLUNLOCK:
233 				VOP_UNLOCK(vp, 0);
234 				break;
235 			case VDESC_VP0_WILLRELE:
236 				vrele(vp);
237 				break;
238 			}
239 		}
240 	}
241 
242 	return (EOPNOTSUPP);
243 }
244 
245 /*ARGSUSED*/
246 int
247 genfs_ebadf(void *v)
248 {
249 
250 	return (EBADF);
251 }
252 
253 /* ARGSUSED */
254 int
255 genfs_enoioctl(void *v)
256 {
257 
258 	return (EPASSTHROUGH);
259 }
260 
261 
262 /*
263  * Eliminate all activity associated with the requested vnode
264  * and with all vnodes aliased to the requested vnode.
265  */
266 int
267 genfs_revoke(void *v)
268 {
269 	struct vop_revoke_args /* {
270 		struct vnode *a_vp;
271 		int a_flags;
272 	} */ *ap = v;
273 	struct vnode *vp, *vq;
274 	struct proc *p = curproc;	/* XXX */
275 
276 #ifdef DIAGNOSTIC
277 	if ((ap->a_flags & REVOKEALL) == 0)
278 		panic("genfs_revoke: not revokeall");
279 #endif
280 
281 	vp = ap->a_vp;
282 	simple_lock(&vp->v_interlock);
283 
284 	if (vp->v_flag & VALIASED) {
285 		/*
286 		 * If a vgone (or vclean) is already in progress,
287 		 * wait until it is done and return.
288 		 */
289 		if (vp->v_flag & VXLOCK) {
290 			vp->v_flag |= VXWANT;
291 			ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
292 				&vp->v_interlock);
293 			return (0);
294 		}
295 		/*
296 		 * Ensure that vp will not be vgone'd while we
297 		 * are eliminating its aliases.
298 		 */
299 		vp->v_flag |= VXLOCK;
300 		simple_unlock(&vp->v_interlock);
301 		while (vp->v_flag & VALIASED) {
302 			simple_lock(&spechash_slock);
303 			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
304 				if (vq->v_rdev != vp->v_rdev ||
305 				    vq->v_type != vp->v_type || vp == vq)
306 					continue;
307 				simple_unlock(&spechash_slock);
308 				vgone(vq);
309 				break;
310 			}
311 			if (vq == NULLVP)
312 				simple_unlock(&spechash_slock);
313 		}
314 		/*
315 		 * Remove the lock so that vgone below will
316 		 * really eliminate the vnode after which time
317 		 * vgone will awaken any sleepers.
318 		 */
319 		simple_lock(&vp->v_interlock);
320 		vp->v_flag &= ~VXLOCK;
321 	}
322 	vgonel(vp, p);
323 	return (0);
324 }
325 
326 /*
327  * Lock the node.
328  */
329 int
330 genfs_lock(void *v)
331 {
332 	struct vop_lock_args /* {
333 		struct vnode *a_vp;
334 		int a_flags;
335 	} */ *ap = v;
336 	struct vnode *vp = ap->a_vp;
337 
338 	return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
339 }
340 
341 /*
342  * Unlock the node.
343  */
344 int
345 genfs_unlock(void *v)
346 {
347 	struct vop_unlock_args /* {
348 		struct vnode *a_vp;
349 		int a_flags;
350 	} */ *ap = v;
351 	struct vnode *vp = ap->a_vp;
352 
353 	return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
354 	    &vp->v_interlock));
355 }
356 
357 /*
358  * Return whether or not the node is locked.
359  */
360 int
361 genfs_islocked(void *v)
362 {
363 	struct vop_islocked_args /* {
364 		struct vnode *a_vp;
365 	} */ *ap = v;
366 	struct vnode *vp = ap->a_vp;
367 
368 	return (lockstatus(vp->v_vnlock));
369 }
370 
371 /*
372  * Stubs to use when there is no locking to be done on the underlying object.
373  */
374 int
375 genfs_nolock(void *v)
376 {
377 	struct vop_lock_args /* {
378 		struct vnode *a_vp;
379 		int a_flags;
380 		struct proc *a_p;
381 	} */ *ap = v;
382 
383 	/*
384 	 * Since we are not using the lock manager, we must clear
385 	 * the interlock here.
386 	 */
387 	if (ap->a_flags & LK_INTERLOCK)
388 		simple_unlock(&ap->a_vp->v_interlock);
389 	return (0);
390 }
391 
392 int
393 genfs_nounlock(void *v)
394 {
395 
396 	return (0);
397 }
398 
399 int
400 genfs_noislocked(void *v)
401 {
402 
403 	return (0);
404 }
405 
406 /*
407  * Local lease check for NFS servers.  Just set up args and let
408  * nqsrv_getlease() do the rest.  If NFSSERVER is not in the kernel,
409  * this is a null operation.
410  */
411 int
412 genfs_lease_check(void *v)
413 {
414 #ifdef NFSSERVER
415 	struct vop_lease_args /* {
416 		struct vnode *a_vp;
417 		struct proc *a_p;
418 		struct ucred *a_cred;
419 		int a_flag;
420 	} */ *ap = v;
421 	u_int32_t duration = 0;
422 	int cache;
423 	u_quad_t frev;
424 
425 	(void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
426 	    NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
427 	return (0);
428 #else
429 	return (0);
430 #endif /* NFSSERVER */
431 }
432 
433 int
434 genfs_mmap(void *v)
435 {
436 
437 	return (0);
438 }
439 
440 static __inline void
441 genfs_rel_pages(struct vm_page **pgs, int npages)
442 {
443 	int i;
444 
445 	for (i = 0; i < npages; i++) {
446 		struct vm_page *pg = pgs[i];
447 
448 		if (pg == NULL)
449 			continue;
450 		if (pg->flags & PG_FAKE) {
451 			pg->flags |= PG_RELEASED;
452 		}
453 	}
454 	uvm_lock_pageq();
455 	uvm_page_unbusy(pgs, npages);
456 	uvm_unlock_pageq();
457 }
458 
459 /*
460  * generic VM getpages routine.
461  * Return PG_BUSY pages for the given range,
462  * reading from backing store if necessary.
463  */
464 
465 int
466 genfs_getpages(void *v)
467 {
468 	struct vop_getpages_args /* {
469 		struct vnode *a_vp;
470 		voff_t a_offset;
471 		struct vm_page **a_m;
472 		int *a_count;
473 		int a_centeridx;
474 		vm_prot_t a_access_type;
475 		int a_advice;
476 		int a_flags;
477 	} */ *ap = v;
478 
479 	off_t newsize, diskeof, memeof;
480 	off_t offset, origoffset, startoffset, endoffset, raoffset;
481 	daddr_t lbn, blkno;
482 	int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
483 	int fs_bshift, fs_bsize, dev_bshift;
484 	int flags = ap->a_flags;
485 	size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
486 	vaddr_t kva;
487 	struct buf *bp, *mbp;
488 	struct vnode *vp = ap->a_vp;
489 	struct vnode *devvp;
490 	struct genfs_node *gp = VTOG(vp);
491 	struct uvm_object *uobj = &vp->v_uobj;
492 	struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_AHEAD];
493 	int pgs_size;
494 	struct ucred *cred = curproc->p_ucred;		/* XXXUBC curlwp */
495 	boolean_t async = (flags & PGO_SYNCIO) == 0;
496 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
497 	boolean_t sawhole = FALSE;
498 	boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
499 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
500 
501 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
502 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
503 
504 	/* XXXUBC temp limit */
505 	if (*ap->a_count > MAX_READ_AHEAD) {
506 		panic("genfs_getpages: too many pages");
507 	}
508 
509 	error = 0;
510 	origoffset = ap->a_offset;
511 	orignpages = *ap->a_count;
512 	GOP_SIZE(vp, vp->v_size, &diskeof, GOP_SIZE_READ);
513 	if (flags & PGO_PASTEOF) {
514 		newsize = MAX(vp->v_size,
515 		    origoffset + (orignpages << PAGE_SHIFT));
516 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
517 	} else {
518 		GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
519 	}
520 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
521 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
522 	KASSERT(orignpages > 0);
523 
524 	/*
525 	 * Bounds-check the request.
526 	 */
527 
528 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
529 		if ((flags & PGO_LOCKED) == 0) {
530 			simple_unlock(&uobj->vmobjlock);
531 		}
532 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
533 		    origoffset, *ap->a_count, memeof,0);
534 		return (EINVAL);
535 	}
536 
537 	/*
538 	 * For PGO_LOCKED requests, just return whatever's in memory.
539 	 */
540 
541 	if (flags & PGO_LOCKED) {
542 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
543 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
544 
545 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
546 	}
547 
548 	/* uobj is locked */
549 
550 	if (write && (vp->v_flag & VONWORKLST) == 0) {
551 		vn_syncer_add_to_worklist(vp, filedelay);
552 	}
553 
554 	/*
555 	 * find the requested pages and make some simple checks.
556 	 * leave space in the page array for a whole block.
557 	 */
558 
559 	if (vp->v_type == VREG) {
560 		fs_bshift = vp->v_mount->mnt_fs_bshift;
561 		dev_bshift = vp->v_mount->mnt_dev_bshift;
562 	} else {
563 		fs_bshift = DEV_BSHIFT;
564 		dev_bshift = DEV_BSHIFT;
565 	}
566 	fs_bsize = 1 << fs_bshift;
567 
568 	orignpages = MIN(orignpages,
569 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
570 	npages = orignpages;
571 	startoffset = origoffset & ~(fs_bsize - 1);
572 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
573 	    fs_bsize - 1) & ~(fs_bsize - 1));
574 	endoffset = MIN(endoffset, round_page(memeof));
575 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
576 
577 	pgs_size = sizeof(struct vm_page *) *
578 	    ((endoffset - startoffset) >> PAGE_SHIFT);
579 	if (pgs_size > sizeof(pgs_onstack)) {
580 		pgs = malloc(pgs_size, M_DEVBUF, M_NOWAIT | M_ZERO);
581 		if (pgs == NULL) {
582 			simple_unlock(&uobj->vmobjlock);
583 			return (ENOMEM);
584 		}
585 	} else {
586 		pgs = pgs_onstack;
587 		memset(pgs, 0, pgs_size);
588 	}
589 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
590 	    ridx, npages, startoffset, endoffset);
591 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
592 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
593 		KASSERT(async != 0);
594 		genfs_rel_pages(&pgs[ridx], orignpages);
595 		simple_unlock(&uobj->vmobjlock);
596 		if (pgs != pgs_onstack)
597 			free(pgs, M_DEVBUF);
598 		return (EBUSY);
599 	}
600 
601 	/*
602 	 * if the pages are already resident, just return them.
603 	 */
604 
605 	for (i = 0; i < npages; i++) {
606 		struct vm_page *pg = pgs[ridx + i];
607 
608 		if ((pg->flags & PG_FAKE) ||
609 		    (write && (pg->flags & PG_RDONLY))) {
610 			break;
611 		}
612 	}
613 	if (i == npages) {
614 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
615 		raoffset = origoffset + (orignpages << PAGE_SHIFT);
616 		npages += ridx;
617 		goto raout;
618 	}
619 
620 	/*
621 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
622 	 */
623 
624 	if (flags & PGO_OVERWRITE) {
625 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
626 
627 		for (i = 0; i < npages; i++) {
628 			struct vm_page *pg = pgs[ridx + i];
629 
630 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
631 		}
632 		npages += ridx;
633 		goto out;
634 	}
635 
636 	/*
637 	 * the page wasn't resident and we're not overwriting,
638 	 * so we're going to have to do some i/o.
639 	 * find any additional pages needed to cover the expanded range.
640 	 */
641 
642 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
643 	if (startoffset != origoffset || npages != orignpages) {
644 
645 		/*
646 		 * we need to avoid deadlocks caused by locking
647 		 * additional pages at lower offsets than pages we
648 		 * already have locked.  unlock them all and start over.
649 		 */
650 
651 		genfs_rel_pages(&pgs[ridx], orignpages);
652 		memset(pgs, 0, pgs_size);
653 
654 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
655 		    startoffset, endoffset, 0,0);
656 		npgs = npages;
657 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
658 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
659 			KASSERT(async != 0);
660 			genfs_rel_pages(pgs, npages);
661 			simple_unlock(&uobj->vmobjlock);
662 			if (pgs != pgs_onstack)
663 				free(pgs, M_DEVBUF);
664 			return (EBUSY);
665 		}
666 	}
667 	simple_unlock(&uobj->vmobjlock);
668 
669 	/*
670 	 * read the desired page(s).
671 	 */
672 
673 	totalbytes = npages << PAGE_SHIFT;
674 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
675 	tailbytes = totalbytes - bytes;
676 	skipbytes = 0;
677 
678 	kva = uvm_pagermapin(pgs, npages,
679 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
680 
681 	s = splbio();
682 	mbp = pool_get(&bufpool, PR_WAITOK);
683 	splx(s);
684 	BUF_INIT(mbp);
685 	mbp->b_bufsize = totalbytes;
686 	mbp->b_data = (void *)kva;
687 	mbp->b_resid = mbp->b_bcount = bytes;
688 	mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
689 	mbp->b_iodone = (async ? uvm_aio_biodone : 0);
690 	mbp->b_vp = vp;
691 
692 	/*
693 	 * if EOF is in the middle of the range, zero the part past EOF.
694 	 * if the page including EOF is not PG_FAKE, skip over it since
695 	 * in that case it has valid data that we need to preserve.
696 	 */
697 
698 	if (tailbytes > 0) {
699 		size_t tailstart = bytes;
700 
701 		if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
702 			tailstart = round_page(tailstart);
703 			tailbytes -= tailstart - bytes;
704 		}
705 		UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
706 		    kva, tailstart, tailbytes,0);
707 		memset((void *)(kva + tailstart), 0, tailbytes);
708 	}
709 
710 	/*
711 	 * now loop over the pages, reading as needed.
712 	 */
713 
714 	if (write) {
715 		lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
716 	} else {
717 		lockmgr(&gp->g_glock, LK_SHARED, NULL);
718 	}
719 
720 	bp = NULL;
721 	for (offset = startoffset;
722 	    bytes > 0;
723 	    offset += iobytes, bytes -= iobytes) {
724 
725 		/*
726 		 * skip pages which don't need to be read.
727 		 */
728 
729 		pidx = (offset - startoffset) >> PAGE_SHIFT;
730 		while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) {
731 			size_t b;
732 
733 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
734 			b = MIN(PAGE_SIZE, bytes);
735 			offset += b;
736 			bytes -= b;
737 			skipbytes += b;
738 			pidx++;
739 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
740 			    offset, 0,0,0);
741 			if (bytes == 0) {
742 				goto loopdone;
743 			}
744 		}
745 
746 		/*
747 		 * bmap the file to find out the blkno to read from and
748 		 * how much we can read in one i/o.  if bmap returns an error,
749 		 * skip the rest of the top-level i/o.
750 		 */
751 
752 		lbn = offset >> fs_bshift;
753 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
754 		if (error) {
755 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
756 			    lbn, error,0,0);
757 			skipbytes += bytes;
758 			goto loopdone;
759 		}
760 
761 		/*
762 		 * see how many pages can be read with this i/o.
763 		 * reduce the i/o size if necessary to avoid
764 		 * overwriting pages with valid data.
765 		 */
766 
767 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
768 		    bytes);
769 		if (offset + iobytes > round_page(offset)) {
770 			pcount = 1;
771 			while (pidx + pcount < npages &&
772 			    pgs[pidx + pcount]->flags & PG_FAKE) {
773 				pcount++;
774 			}
775 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
776 			    (offset - trunc_page(offset)));
777 		}
778 
779 		/*
780 		 * if this block isn't allocated, zero it instead of
781 		 * reading it.  if this is a read access, mark the
782 		 * pages we zeroed PG_RDONLY.
783 		 */
784 
785 		if (blkno < 0) {
786 			int holepages = (round_page(offset + iobytes) -
787 			    trunc_page(offset)) >> PAGE_SHIFT;
788 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
789 
790 			sawhole = TRUE;
791 			memset((char *)kva + (offset - startoffset), 0,
792 			    iobytes);
793 			skipbytes += iobytes;
794 
795 			for (i = 0; i < holepages; i++) {
796 				if (write) {
797 					pgs[pidx + i]->flags &= ~PG_CLEAN;
798 				} else {
799 					pgs[pidx + i]->flags |= PG_RDONLY;
800 				}
801 			}
802 			continue;
803 		}
804 
805 		/*
806 		 * allocate a sub-buf for this piece of the i/o
807 		 * (or just use mbp if there's only 1 piece),
808 		 * and start it going.
809 		 */
810 
811 		if (offset == startoffset && iobytes == bytes) {
812 			bp = mbp;
813 		} else {
814 			s = splbio();
815 			bp = pool_get(&bufpool, PR_WAITOK);
816 			splx(s);
817 			BUF_INIT(bp);
818 			bp->b_data = (char *)kva + offset - startoffset;
819 			bp->b_resid = bp->b_bcount = iobytes;
820 			bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC;
821 			bp->b_iodone = uvm_aio_biodone1;
822 			bp->b_vp = vp;
823 			bp->b_proc = NULL;
824 		}
825 		bp->b_lblkno = 0;
826 		bp->b_private = mbp;
827 		if (devvp->v_type == VBLK) {
828 			bp->b_dev = devvp->v_rdev;
829 		}
830 
831 		/* adjust physical blkno for partial blocks */
832 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
833 		    dev_bshift);
834 
835 		UVMHIST_LOG(ubchist,
836 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
837 		    bp, offset, iobytes, bp->b_blkno);
838 
839 		if (async)
840 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
841 		else
842 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
843 		VOP_STRATEGY(bp->b_vp, bp);
844 	}
845 
846 loopdone:
847 	if (skipbytes) {
848 		s = splbio();
849 		if (error) {
850 			mbp->b_flags |= B_ERROR;
851 			mbp->b_error = error;
852 		}
853 		mbp->b_resid -= skipbytes;
854 		if (mbp->b_resid == 0) {
855 			biodone(mbp);
856 		}
857 		splx(s);
858 	}
859 
860 	if (async) {
861 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
862 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
863 		if (pgs != pgs_onstack)
864 			free(pgs, M_DEVBUF);
865 		return (0);
866 	}
867 	if (bp != NULL) {
868 		error = biowait(mbp);
869 	}
870 	s = splbio();
871 	pool_put(&bufpool, mbp);
872 	splx(s);
873 	uvm_pagermapout(kva, npages);
874 	raoffset = startoffset + totalbytes;
875 
876 	/*
877 	 * if this we encountered a hole then we have to do a little more work.
878 	 * for read faults, we marked the page PG_RDONLY so that future
879 	 * write accesses to the page will fault again.
880 	 * for write faults, we must make sure that the backing store for
881 	 * the page is completely allocated while the pages are locked.
882 	 */
883 
884 	if (!error && sawhole && write) {
885 		for (i = 0; i < npages; i++) {
886 			if (pgs[i] == NULL) {
887 				continue;
888 			}
889 			pgs[i]->flags &= ~PG_CLEAN;
890 			UVMHIST_LOG(ubchist, "mark dirty pg %p", pgs[i],0,0,0);
891 		}
892 		error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
893 		    cred);
894 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
895 		    startoffset, npages << PAGE_SHIFT, error,0);
896 	}
897 	lockmgr(&gp->g_glock, LK_RELEASE, NULL);
898 	simple_lock(&uobj->vmobjlock);
899 
900 	/*
901 	 * see if we want to start any readahead.
902 	 * XXXUBC for now, just read the next 128k on 64k boundaries.
903 	 * this is pretty nonsensical, but it is 50% faster than reading
904 	 * just the next 64k.
905 	 */
906 
907 raout:
908 	if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
909 	    PAGE_SHIFT <= 16) {
910 		off_t rasize;
911 		int rapages, err, i, skipped;
912 
913 		/* XXXUBC temp limit, from above */
914 		rapages = MIN(MIN(1 << (16 - PAGE_SHIFT), MAX_READ_AHEAD),
915 		    genfs_rapages);
916 		rasize = rapages << PAGE_SHIFT;
917 		for (i = skipped = 0; i < genfs_racount; i++) {
918 
919 			if (raoffset >= memeof)
920 				break;
921 
922 			err = VOP_GETPAGES(vp, raoffset, NULL, &rapages, 0,
923 			    VM_PROT_READ, 0, 0);
924 			simple_lock(&uobj->vmobjlock);
925 			if (err) {
926 				if (err != EBUSY ||
927 				    skipped++ == genfs_raskip)
928 					break;
929 			}
930 			raoffset += rasize;
931 			rapages = rasize >> PAGE_SHIFT;
932 		}
933 	}
934 
935 	/*
936 	 * we're almost done!  release the pages...
937 	 * for errors, we free the pages.
938 	 * otherwise we activate them and mark them as valid and clean.
939 	 * also, unbusy pages that were not actually requested.
940 	 */
941 
942 	if (error) {
943 		for (i = 0; i < npages; i++) {
944 			if (pgs[i] == NULL) {
945 				continue;
946 			}
947 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
948 			    pgs[i], pgs[i]->flags, 0,0);
949 			if (pgs[i]->flags & PG_FAKE) {
950 				pgs[i]->flags |= PG_RELEASED;
951 			}
952 		}
953 		uvm_lock_pageq();
954 		uvm_page_unbusy(pgs, npages);
955 		uvm_unlock_pageq();
956 		simple_unlock(&uobj->vmobjlock);
957 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
958 		if (pgs != pgs_onstack)
959 			free(pgs, M_DEVBUF);
960 		return (error);
961 	}
962 
963 out:
964 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
965 	uvm_lock_pageq();
966 	for (i = 0; i < npages; i++) {
967 		pg = pgs[i];
968 		if (pg == NULL) {
969 			continue;
970 		}
971 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
972 		    pg, pg->flags, 0,0);
973 		if (pg->flags & PG_FAKE && !overwrite) {
974 			pg->flags &= ~(PG_FAKE);
975 			pmap_clear_modify(pgs[i]);
976 		}
977 		if (write) {
978 			pg->flags &= ~(PG_RDONLY);
979 		}
980 		if (i < ridx || i >= ridx + orignpages || async) {
981 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
982 			    pg, pg->offset,0,0);
983 			if (pg->flags & PG_WANTED) {
984 				wakeup(pg);
985 			}
986 			if (pg->flags & PG_FAKE) {
987 				KASSERT(overwrite);
988 				uvm_pagezero(pg);
989 			}
990 			if (pg->flags & PG_RELEASED) {
991 				uvm_pagefree(pg);
992 				continue;
993 			}
994 			uvm_pageactivate(pg);
995 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
996 			UVM_PAGE_OWN(pg, NULL);
997 		}
998 	}
999 	uvm_unlock_pageq();
1000 	simple_unlock(&uobj->vmobjlock);
1001 	if (ap->a_m != NULL) {
1002 		memcpy(ap->a_m, &pgs[ridx],
1003 		    orignpages * sizeof(struct vm_page *));
1004 	}
1005 	if (pgs != pgs_onstack)
1006 		free(pgs, M_DEVBUF);
1007 	return (0);
1008 }
1009 
1010 /*
1011  * generic VM putpages routine.
1012  * Write the given range of pages to backing store.
1013  *
1014  * => "offhi == 0" means flush all pages at or after "offlo".
1015  * => object should be locked by caller.   we may _unlock_ the object
1016  *	if (and only if) we need to clean a page (PGO_CLEANIT), or
1017  *	if PGO_SYNCIO is set and there are pages busy.
1018  *	we return with the object locked.
1019  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
1020  *	thus, a caller might want to unlock higher level resources
1021  *	(e.g. vm_map) before calling flush.
1022  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
1023  *	unlock the object nor block.
1024  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
1025  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
1026  *	that new pages are inserted on the tail end of the list.   thus,
1027  *	we can make a complete pass through the object in one go by starting
1028  *	at the head and working towards the tail (new pages are put in
1029  *	front of us).
1030  * => NOTE: we are allowed to lock the page queues, so the caller
1031  *	must not be holding the page queue lock.
1032  *
1033  * note on "cleaning" object and PG_BUSY pages:
1034  *	this routine is holding the lock on the object.   the only time
1035  *	that it can run into a PG_BUSY page that it does not own is if
1036  *	some other process has started I/O on the page (e.g. either
1037  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
1038  *	in, then it can not be dirty (!PG_CLEAN) because no one has
1039  *	had a chance to modify it yet.    if the PG_BUSY page is being
1040  *	paged out then it means that someone else has already started
1041  *	cleaning the page for us (how nice!).    in this case, if we
1042  *	have syncio specified, then after we make our pass through the
1043  *	object we need to wait for the other PG_BUSY pages to clear
1044  *	off (i.e. we need to do an iosync).   also note that once a
1045  *	page is PG_BUSY it must stay in its object until it is un-busyed.
1046  *
1047  * note on page traversal:
1048  *	we can traverse the pages in an object either by going down the
1049  *	linked list in "uobj->memq", or we can go over the address range
1050  *	by page doing hash table lookups for each address.    depending
1051  *	on how many pages are in the object it may be cheaper to do one
1052  *	or the other.   we set "by_list" to true if we are using memq.
1053  *	if the cost of a hash lookup was equal to the cost of the list
1054  *	traversal we could compare the number of pages in the start->stop
1055  *	range to the total number of pages in the object.   however, it
1056  *	seems that a hash table lookup is more expensive than the linked
1057  *	list traversal, so we multiply the number of pages in the
1058  *	range by an estimate of the relatively higher cost of the hash lookup.
1059  */
1060 
1061 int
1062 genfs_putpages(void *v)
1063 {
1064 	struct vop_putpages_args /* {
1065 		struct vnode *a_vp;
1066 		voff_t a_offlo;
1067 		voff_t a_offhi;
1068 		int a_flags;
1069 	} */ *ap = v;
1070 	struct vnode *vp = ap->a_vp;
1071 	struct uvm_object *uobj = &vp->v_uobj;
1072 	struct simplelock *slock = &uobj->vmobjlock;
1073 	off_t startoff = ap->a_offlo;
1074 	off_t endoff = ap->a_offhi;
1075 	off_t off;
1076 	int flags = ap->a_flags;
1077 	/* Even for strange MAXPHYS, the shift rounds down to a page */
1078 	const int maxpages = MAXPHYS >> PAGE_SHIFT;
1079 	int i, s, error, npages, nback;
1080 	int freeflag;
1081 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1082 	boolean_t wasclean, by_list, needs_clean, yield;
1083 	boolean_t async = (flags & PGO_SYNCIO) == 0;
1084 	boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1085 	struct lwp *l = curlwp ? curlwp : &lwp0;
1086 
1087 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1088 
1089 	KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1090 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1091 	KASSERT(startoff < endoff || endoff == 0);
1092 
1093 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1094 	    vp, uobj->uo_npages, startoff, endoff - startoff);
1095 	if (uobj->uo_npages == 0) {
1096 		s = splbio();
1097 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1098 		    (vp->v_flag & VONWORKLST)) {
1099 			vp->v_flag &= ~VONWORKLST;
1100 			LIST_REMOVE(vp, v_synclist);
1101 		}
1102 		splx(s);
1103 		simple_unlock(slock);
1104 		return (0);
1105 	}
1106 
1107 	/*
1108 	 * the vnode has pages, set up to process the request.
1109 	 */
1110 
1111 	error = 0;
1112 	s = splbio();
1113 	simple_lock(&global_v_numoutput_slock);
1114 	wasclean = (vp->v_numoutput == 0);
1115 	simple_unlock(&global_v_numoutput_slock);
1116 	splx(s);
1117 	off = startoff;
1118 	if (endoff == 0 || flags & PGO_ALLPAGES) {
1119 		endoff = trunc_page(LLONG_MAX);
1120 	}
1121 	by_list = (uobj->uo_npages <=
1122 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1123 
1124 	/*
1125 	 * start the loop.  when scanning by list, hold the last page
1126 	 * in the list before we start.  pages allocated after we start
1127 	 * will be added to the end of the list, so we can stop at the
1128 	 * current last page.
1129 	 */
1130 
1131 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1132 	curmp.uobject = uobj;
1133 	curmp.offset = (voff_t)-1;
1134 	curmp.flags = PG_BUSY;
1135 	endmp.uobject = uobj;
1136 	endmp.offset = (voff_t)-1;
1137 	endmp.flags = PG_BUSY;
1138 	if (by_list) {
1139 		pg = TAILQ_FIRST(&uobj->memq);
1140 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1141 		PHOLD(l);
1142 	} else {
1143 		pg = uvm_pagelookup(uobj, off);
1144 	}
1145 	nextpg = NULL;
1146 	while (by_list || off < endoff) {
1147 
1148 		/*
1149 		 * if the current page is not interesting, move on to the next.
1150 		 */
1151 
1152 		KASSERT(pg == NULL || pg->uobject == uobj);
1153 		KASSERT(pg == NULL ||
1154 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1155 		    (pg->flags & PG_BUSY) != 0);
1156 		if (by_list) {
1157 			if (pg == &endmp) {
1158 				break;
1159 			}
1160 			if (pg->offset < startoff || pg->offset >= endoff ||
1161 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1162 				pg = TAILQ_NEXT(pg, listq);
1163 				continue;
1164 			}
1165 			off = pg->offset;
1166 		} else if (pg == NULL ||
1167 		    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1168 			off += PAGE_SIZE;
1169 			if (off < endoff) {
1170 				pg = uvm_pagelookup(uobj, off);
1171 			}
1172 			continue;
1173 		}
1174 
1175 		/*
1176 		 * if the current page needs to be cleaned and it's busy,
1177 		 * wait for it to become unbusy.
1178 		 */
1179 
1180 		yield = (l->l_cpu->ci_schedstate.spc_flags &
1181 		    SPCF_SHOULDYIELD) && !pagedaemon;
1182 		if (pg->flags & PG_BUSY || yield) {
1183 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1184 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1185 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1186 				error = EDEADLK;
1187 				break;
1188 			}
1189 			KASSERT(!pagedaemon);
1190 			if (by_list) {
1191 				TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1192 				UVMHIST_LOG(ubchist, "curmp next %p",
1193 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
1194 			}
1195 			if (yield) {
1196 				simple_unlock(slock);
1197 				preempt(1);
1198 				simple_lock(slock);
1199 			} else {
1200 				pg->flags |= PG_WANTED;
1201 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1202 				simple_lock(slock);
1203 			}
1204 			if (by_list) {
1205 				UVMHIST_LOG(ubchist, "after next %p",
1206 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
1207 				pg = TAILQ_NEXT(&curmp, listq);
1208 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1209 			} else {
1210 				pg = uvm_pagelookup(uobj, off);
1211 			}
1212 			continue;
1213 		}
1214 
1215 		/*
1216 		 * if we're freeing, remove all mappings of the page now.
1217 		 * if we're cleaning, check if the page is needs to be cleaned.
1218 		 */
1219 
1220 		if (flags & PGO_FREE) {
1221 			pmap_page_protect(pg, VM_PROT_NONE);
1222 		}
1223 		if (flags & PGO_CLEANIT) {
1224 			needs_clean = pmap_clear_modify(pg) ||
1225 			    (pg->flags & PG_CLEAN) == 0;
1226 			pg->flags |= PG_CLEAN;
1227 		} else {
1228 			needs_clean = FALSE;
1229 		}
1230 
1231 		/*
1232 		 * if we're cleaning, build a cluster.
1233 		 * the cluster will consist of pages which are currently dirty,
1234 		 * but they will be returned to us marked clean.
1235 		 * if not cleaning, just operate on the one page.
1236 		 */
1237 
1238 		if (needs_clean) {
1239 			wasclean = FALSE;
1240 			memset(pgs, 0, sizeof(pgs));
1241 			pg->flags |= PG_BUSY;
1242 			UVM_PAGE_OWN(pg, "genfs_putpages");
1243 
1244 			/*
1245 			 * first look backward.
1246 			 */
1247 
1248 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1249 			nback = npages;
1250 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1251 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1252 			if (nback) {
1253 				memmove(&pgs[0], &pgs[npages - nback],
1254 				    nback * sizeof(pgs[0]));
1255 				if (npages - nback < nback)
1256 					memset(&pgs[nback], 0,
1257 					    (npages - nback) * sizeof(pgs[0]));
1258 				else
1259 					memset(&pgs[npages - nback], 0,
1260 					    nback * sizeof(pgs[0]));
1261 			}
1262 
1263 			/*
1264 			 * then plug in our page of interest.
1265 			 */
1266 
1267 			pgs[nback] = pg;
1268 
1269 			/*
1270 			 * then look forward to fill in the remaining space in
1271 			 * the array of pages.
1272 			 */
1273 
1274 			npages = maxpages - nback - 1;
1275 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1276 			    &pgs[nback + 1],
1277 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1278 			npages += nback + 1;
1279 		} else {
1280 			pgs[0] = pg;
1281 			npages = 1;
1282 			nback = 0;
1283 		}
1284 
1285 		/*
1286 		 * apply FREE or DEACTIVATE options if requested.
1287 		 */
1288 
1289 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1290 			uvm_lock_pageq();
1291 		}
1292 		for (i = 0; i < npages; i++) {
1293 			tpg = pgs[i];
1294 			KASSERT(tpg->uobject == uobj);
1295 			if (by_list && tpg == TAILQ_NEXT(pg, listq))
1296 				pg = tpg;
1297 			if (tpg->offset < startoff || tpg->offset >= endoff)
1298 				continue;
1299 			if (flags & PGO_DEACTIVATE &&
1300 			    (tpg->pqflags & PQ_INACTIVE) == 0 &&
1301 			    tpg->wire_count == 0) {
1302 				(void) pmap_clear_reference(tpg);
1303 				uvm_pagedeactivate(tpg);
1304 			} else if (flags & PGO_FREE) {
1305 				pmap_page_protect(tpg, VM_PROT_NONE);
1306 				if (tpg->flags & PG_BUSY) {
1307 					tpg->flags |= freeflag;
1308 					if (pagedaemon) {
1309 						uvmexp.paging++;
1310 						uvm_pagedequeue(tpg);
1311 					}
1312 				} else {
1313 
1314 					/*
1315 					 * ``page is not busy''
1316 					 * implies that npages is 1
1317 					 * and needs_clean is false.
1318 					 */
1319 
1320 					nextpg = TAILQ_NEXT(tpg, listq);
1321 					uvm_pagefree(tpg);
1322 					if (pagedaemon)
1323 						uvmexp.pdfreed++;
1324 				}
1325 			}
1326 		}
1327 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1328 			uvm_unlock_pageq();
1329 		}
1330 		if (needs_clean) {
1331 
1332 			/*
1333 			 * start the i/o.  if we're traversing by list,
1334 			 * keep our place in the list with a marker page.
1335 			 */
1336 
1337 			if (by_list) {
1338 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1339 				    listq);
1340 			}
1341 			simple_unlock(slock);
1342 			error = GOP_WRITE(vp, pgs, npages, flags);
1343 			simple_lock(slock);
1344 			if (by_list) {
1345 				pg = TAILQ_NEXT(&curmp, listq);
1346 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1347 			}
1348 			if (error) {
1349 				break;
1350 			}
1351 			if (by_list) {
1352 				continue;
1353 			}
1354 		}
1355 
1356 		/*
1357 		 * find the next page and continue if there was no error.
1358 		 */
1359 
1360 		if (by_list) {
1361 			if (nextpg) {
1362 				pg = nextpg;
1363 				nextpg = NULL;
1364 			} else {
1365 				pg = TAILQ_NEXT(pg, listq);
1366 			}
1367 		} else {
1368 			off += (npages - nback) << PAGE_SHIFT;
1369 			if (off < endoff) {
1370 				pg = uvm_pagelookup(uobj, off);
1371 			}
1372 		}
1373 	}
1374 	if (by_list) {
1375 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1376 		PRELE(l);
1377 	}
1378 
1379 	/*
1380 	 * if we're cleaning and there was nothing to clean,
1381 	 * take us off the syncer list.  if we started any i/o
1382 	 * and we're doing sync i/o, wait for all writes to finish.
1383 	 */
1384 
1385 	s = splbio();
1386 	if ((flags & PGO_CLEANIT) && wasclean &&
1387 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1388 	    LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1389 	    (vp->v_flag & VONWORKLST)) {
1390 		vp->v_flag &= ~VONWORKLST;
1391 		LIST_REMOVE(vp, v_synclist);
1392 	}
1393 	splx(s);
1394 	if (!wasclean && !async) {
1395 		s = splbio();
1396 		/*
1397 		 * XXX - we want simple_unlock(&global_v_numoutput_slock);
1398 		 *	 but the slot in ltsleep() is taken!
1399 		 * XXX - try to recover from missed wakeups with a timeout..
1400 		 *	 must think of something better.
1401 		 */
1402 		while (vp->v_numoutput != 0) {
1403 			vp->v_flag |= VBWAIT;
1404 			UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1405 			    "genput2", hz);
1406 			simple_lock(slock);
1407 		}
1408 		splx(s);
1409 	}
1410 	simple_unlock(&uobj->vmobjlock);
1411 	return (error);
1412 }
1413 
1414 int
1415 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1416 {
1417 	int s, error, run;
1418 	int fs_bshift, dev_bshift;
1419 	vaddr_t kva;
1420 	off_t eof, offset, startoffset;
1421 	size_t bytes, iobytes, skipbytes;
1422 	daddr_t lbn, blkno;
1423 	struct vm_page *pg;
1424 	struct buf *mbp, *bp;
1425 	struct vnode *devvp;
1426 	boolean_t async = (flags & PGO_SYNCIO) == 0;
1427 	UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
1428 
1429 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1430 	    vp, pgs, npages, flags);
1431 
1432 	GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_WRITE);
1433 	if (vp->v_type == VREG) {
1434 		fs_bshift = vp->v_mount->mnt_fs_bshift;
1435 		dev_bshift = vp->v_mount->mnt_dev_bshift;
1436 	} else {
1437 		fs_bshift = DEV_BSHIFT;
1438 		dev_bshift = DEV_BSHIFT;
1439 	}
1440 	error = 0;
1441 	pg = pgs[0];
1442 	startoffset = pg->offset;
1443 	bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1444 	skipbytes = 0;
1445 	KASSERT(bytes != 0);
1446 
1447 	kva = uvm_pagermapin(pgs, npages,
1448 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1449 
1450 	s = splbio();
1451 	simple_lock(&global_v_numoutput_slock);
1452 	vp->v_numoutput += 2;
1453 	simple_unlock(&global_v_numoutput_slock);
1454 	mbp = pool_get(&bufpool, PR_WAITOK);
1455 	BUF_INIT(mbp);
1456 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1457 	    vp, mbp, vp->v_numoutput, bytes);
1458 	splx(s);
1459 	mbp->b_bufsize = npages << PAGE_SHIFT;
1460 	mbp->b_data = (void *)kva;
1461 	mbp->b_resid = mbp->b_bcount = bytes;
1462 	mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
1463 	mbp->b_iodone = uvm_aio_biodone;
1464 	mbp->b_vp = vp;
1465 
1466 	bp = NULL;
1467 	for (offset = startoffset;
1468 	    bytes > 0;
1469 	    offset += iobytes, bytes -= iobytes) {
1470 		lbn = offset >> fs_bshift;
1471 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1472 		if (error) {
1473 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1474 			skipbytes += bytes;
1475 			bytes = 0;
1476 			break;
1477 		}
1478 
1479 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1480 		    bytes);
1481 		if (blkno == (daddr_t)-1) {
1482 			skipbytes += iobytes;
1483 			continue;
1484 		}
1485 
1486 		/* if it's really one i/o, don't make a second buf */
1487 		if (offset == startoffset && iobytes == bytes) {
1488 			bp = mbp;
1489 		} else {
1490 			s = splbio();
1491 			V_INCR_NUMOUTPUT(vp);
1492 			bp = pool_get(&bufpool, PR_WAITOK);
1493 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1494 			    vp, bp, vp->v_numoutput, 0);
1495 			splx(s);
1496 			BUF_INIT(bp);
1497 			bp->b_data = (char *)kva +
1498 			    (vaddr_t)(offset - pg->offset);
1499 			bp->b_resid = bp->b_bcount = iobytes;
1500 			bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
1501 			bp->b_iodone = uvm_aio_biodone1;
1502 			bp->b_vp = vp;
1503 		}
1504 		bp->b_lblkno = 0;
1505 		bp->b_private = mbp;
1506 		if (devvp->v_type == VBLK) {
1507 			bp->b_dev = devvp->v_rdev;
1508 		}
1509 
1510 		/* adjust physical blkno for partial blocks */
1511 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1512 		    dev_bshift);
1513 		UVMHIST_LOG(ubchist,
1514 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1515 		    vp, offset, bp->b_bcount, bp->b_blkno);
1516 		if (curproc == uvm.pagedaemon_proc)
1517 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1518 		else if (async)
1519 			BIO_SETPRIO(bp, BPRIO_TIMENONCRITICAL);
1520 		else
1521 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1522 		VOP_STRATEGY(bp->b_vp, bp);
1523 	}
1524 	if (skipbytes) {
1525 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1526 		s = splbio();
1527 		if (error) {
1528 			mbp->b_flags |= B_ERROR;
1529 			mbp->b_error = error;
1530 		}
1531 		mbp->b_resid -= skipbytes;
1532 		if (mbp->b_resid == 0) {
1533 			biodone(mbp);
1534 		}
1535 		splx(s);
1536 	}
1537 	if (async) {
1538 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1539 		return (0);
1540 	}
1541 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1542 	error = biowait(mbp);
1543 	uvm_aio_aiodone(mbp);
1544 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1545 	return (error);
1546 }
1547 
1548 /*
1549  * VOP_PUTPAGES() for vnodes which never have pages.
1550  */
1551 
1552 int
1553 genfs_null_putpages(void *v)
1554 {
1555 	struct vop_putpages_args /* {
1556 		struct vnode *a_vp;
1557 		voff_t a_offlo;
1558 		voff_t a_offhi;
1559 		int a_flags;
1560 	} */ *ap = v;
1561 	struct vnode *vp = ap->a_vp;
1562 
1563 	KASSERT(vp->v_uobj.uo_npages == 0);
1564 	simple_unlock(&vp->v_interlock);
1565 	return (0);
1566 }
1567 
1568 void
1569 genfs_node_init(struct vnode *vp, struct genfs_ops *ops)
1570 {
1571 	struct genfs_node *gp = VTOG(vp);
1572 
1573 	lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1574 	gp->g_op = ops;
1575 }
1576 
1577 void
1578 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1579 {
1580 	int bsize;
1581 
1582 	bsize = 1 << vp->v_mount->mnt_fs_bshift;
1583 	*eobp = (size + bsize - 1) & ~(bsize - 1);
1584 }
1585 
1586 int
1587 genfs_compat_getpages(void *v)
1588 {
1589 	struct vop_getpages_args /* {
1590 		struct vnode *a_vp;
1591 		voff_t a_offset;
1592 		struct vm_page **a_m;
1593 		int *a_count;
1594 		int a_centeridx;
1595 		vm_prot_t a_access_type;
1596 		int a_advice;
1597 		int a_flags;
1598 	} */ *ap = v;
1599 
1600 	off_t origoffset;
1601 	struct vnode *vp = ap->a_vp;
1602 	struct uvm_object *uobj = &vp->v_uobj;
1603 	struct vm_page *pg, **pgs;
1604 	vaddr_t kva;
1605 	int i, error, orignpages, npages;
1606 	struct iovec iov;
1607 	struct uio uio;
1608 	struct ucred *cred = curproc->p_ucred;
1609 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1610 
1611 	error = 0;
1612 	origoffset = ap->a_offset;
1613 	orignpages = *ap->a_count;
1614 	pgs = ap->a_m;
1615 
1616 	if (write && (vp->v_flag & VONWORKLST) == 0) {
1617 		vn_syncer_add_to_worklist(vp, filedelay);
1618 	}
1619 	if (ap->a_flags & PGO_LOCKED) {
1620 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1621 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1622 
1623 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1624 	}
1625 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1626 		simple_unlock(&uobj->vmobjlock);
1627 		return (EINVAL);
1628 	}
1629 	npages = orignpages;
1630 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1631 	simple_unlock(&uobj->vmobjlock);
1632 	kva = uvm_pagermapin(pgs, npages,
1633 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1634 	for (i = 0; i < npages; i++) {
1635 		pg = pgs[i];
1636 		if ((pg->flags & PG_FAKE) == 0) {
1637 			continue;
1638 		}
1639 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1640 		iov.iov_len = PAGE_SIZE;
1641 		uio.uio_iov = &iov;
1642 		uio.uio_iovcnt = 1;
1643 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1644 		uio.uio_segflg = UIO_SYSSPACE;
1645 		uio.uio_rw = UIO_READ;
1646 		uio.uio_resid = PAGE_SIZE;
1647 		uio.uio_procp = NULL;
1648 		/* XXX vn_lock */
1649 		error = VOP_READ(vp, &uio, 0, cred);
1650 		if (error) {
1651 			break;
1652 		}
1653 		if (uio.uio_resid) {
1654 			memset(iov.iov_base, 0, uio.uio_resid);
1655 		}
1656 	}
1657 	uvm_pagermapout(kva, npages);
1658 	simple_lock(&uobj->vmobjlock);
1659 	uvm_lock_pageq();
1660 	for (i = 0; i < npages; i++) {
1661 		pg = pgs[i];
1662 		if (error && (pg->flags & PG_FAKE) != 0) {
1663 			pg->flags |= PG_RELEASED;
1664 		} else {
1665 			pmap_clear_modify(pg);
1666 			uvm_pageactivate(pg);
1667 		}
1668 	}
1669 	if (error) {
1670 		uvm_page_unbusy(pgs, npages);
1671 	}
1672 	uvm_unlock_pageq();
1673 	simple_unlock(&uobj->vmobjlock);
1674 	return (error);
1675 }
1676 
1677 int
1678 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1679     int flags)
1680 {
1681 	off_t offset;
1682 	struct iovec iov;
1683 	struct uio uio;
1684 	struct ucred *cred = curproc->p_ucred;
1685 	struct buf *bp;
1686 	vaddr_t kva;
1687 	int s, error;
1688 
1689 	offset = pgs[0]->offset;
1690 	kva = uvm_pagermapin(pgs, npages,
1691 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1692 
1693 	iov.iov_base = (void *)kva;
1694 	iov.iov_len = npages << PAGE_SHIFT;
1695 	uio.uio_iov = &iov;
1696 	uio.uio_iovcnt = 1;
1697 	uio.uio_offset = offset;
1698 	uio.uio_segflg = UIO_SYSSPACE;
1699 	uio.uio_rw = UIO_WRITE;
1700 	uio.uio_resid = npages << PAGE_SHIFT;
1701 	uio.uio_procp = NULL;
1702 	/* XXX vn_lock */
1703 	error = VOP_WRITE(vp, &uio, 0, cred);
1704 
1705 	s = splbio();
1706 	V_INCR_NUMOUTPUT(vp);
1707 	bp = pool_get(&bufpool, PR_WAITOK);
1708 	splx(s);
1709 
1710 	BUF_INIT(bp);
1711 	bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1712 	bp->b_vp = vp;
1713 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1714 	bp->b_data = (char *)kva;
1715 	bp->b_bcount = npages << PAGE_SHIFT;
1716 	bp->b_bufsize = npages << PAGE_SHIFT;
1717 	bp->b_resid = 0;
1718 	if (error) {
1719 		bp->b_flags |= B_ERROR;
1720 		bp->b_error = error;
1721 	}
1722 	uvm_aio_aiodone(bp);
1723 	return (error);
1724 }
1725 
1726 static void
1727 filt_genfsdetach(struct knote *kn)
1728 {
1729 	struct vnode *vp = (struct vnode *)kn->kn_hook;
1730 
1731 	/* XXXLUKEM lock the struct? */
1732 	SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
1733 }
1734 
1735 static int
1736 filt_genfsread(struct knote *kn, long hint)
1737 {
1738 	struct vnode *vp = (struct vnode *)kn->kn_hook;
1739 
1740 	/*
1741 	 * filesystem is gone, so set the EOF flag and schedule
1742 	 * the knote for deletion.
1743 	 */
1744 	if (hint == NOTE_REVOKE) {
1745 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1746 		return (1);
1747 	}
1748 
1749 	/* XXXLUKEM lock the struct? */
1750 	kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
1751         return (kn->kn_data != 0);
1752 }
1753 
1754 static int
1755 filt_genfsvnode(struct knote *kn, long hint)
1756 {
1757 
1758 	if (kn->kn_sfflags & hint)
1759 		kn->kn_fflags |= hint;
1760 	if (hint == NOTE_REVOKE) {
1761 		kn->kn_flags |= EV_EOF;
1762 		return (1);
1763 	}
1764 	return (kn->kn_fflags != 0);
1765 }
1766 
1767 static const struct filterops genfsread_filtops =
1768 	{ 1, NULL, filt_genfsdetach, filt_genfsread };
1769 static const struct filterops genfsvnode_filtops =
1770 	{ 1, NULL, filt_genfsdetach, filt_genfsvnode };
1771 
1772 int
1773 genfs_kqfilter(void *v)
1774 {
1775 	struct vop_kqfilter_args /* {
1776 		struct vnode	*a_vp;
1777 		struct knote	*a_kn;
1778 	} */ *ap = v;
1779 	struct vnode *vp;
1780 	struct knote *kn;
1781 
1782 	vp = ap->a_vp;
1783 	kn = ap->a_kn;
1784 	switch (kn->kn_filter) {
1785 	case EVFILT_READ:
1786 		kn->kn_fop = &genfsread_filtops;
1787 		break;
1788 	case EVFILT_VNODE:
1789 		kn->kn_fop = &genfsvnode_filtops;
1790 		break;
1791 	default:
1792 		return (1);
1793 	}
1794 
1795 	kn->kn_hook = vp;
1796 
1797 	/* XXXLUKEM lock the struct? */
1798 	SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
1799 
1800 	return (0);
1801 }
1802