xref: /netbsd-src/sys/miscfs/genfs/genfs_vnops.c (revision a30f264f2a5f410ffefcc55600a9238b3a0c935c)
1 /*	$NetBSD: genfs_vnops.c,v 1.118 2005/12/24 20:45:09 perry Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.118 2005/12/24 20:45:09 perry Exp $");
35 
36 #if defined(_KERNEL_OPT)
37 #include "opt_nfsserver.h"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/mount.h>
45 #include <sys/namei.h>
46 #include <sys/vnode.h>
47 #include <sys/fcntl.h>
48 #include <sys/malloc.h>
49 #include <sys/poll.h>
50 #include <sys/mman.h>
51 #include <sys/file.h>
52 
53 #include <miscfs/genfs/genfs.h>
54 #include <miscfs/genfs/genfs_node.h>
55 #include <miscfs/specfs/specdev.h>
56 
57 #include <uvm/uvm.h>
58 #include <uvm/uvm_pager.h>
59 
60 #ifdef NFSSERVER
61 #include <nfs/rpcv2.h>
62 #include <nfs/nfsproto.h>
63 #include <nfs/nfs.h>
64 #include <nfs/nqnfs.h>
65 #include <nfs/nfs_var.h>
66 #endif
67 
68 static inline void genfs_rel_pages(struct vm_page **, int);
69 static void filt_genfsdetach(struct knote *);
70 static int filt_genfsread(struct knote *, long);
71 static int filt_genfsvnode(struct knote *, long);
72 
73 #define MAX_READ_PAGES	16 	/* XXXUBC 16 */
74 
75 int
76 genfs_poll(void *v)
77 {
78 	struct vop_poll_args /* {
79 		struct vnode *a_vp;
80 		int a_events;
81 		struct lwp *a_l;
82 	} */ *ap = v;
83 
84 	return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
85 }
86 
87 int
88 genfs_seek(void *v)
89 {
90 	struct vop_seek_args /* {
91 		struct vnode *a_vp;
92 		off_t a_oldoff;
93 		off_t a_newoff;
94 		struct ucred *a_ucred;
95 	} */ *ap = v;
96 
97 	if (ap->a_newoff < 0)
98 		return (EINVAL);
99 
100 	return (0);
101 }
102 
103 int
104 genfs_abortop(void *v)
105 {
106 	struct vop_abortop_args /* {
107 		struct vnode *a_dvp;
108 		struct componentname *a_cnp;
109 	} */ *ap = v;
110 
111 	if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
112 		PNBUF_PUT(ap->a_cnp->cn_pnbuf);
113 	return (0);
114 }
115 
116 int
117 genfs_fcntl(void *v)
118 {
119 	struct vop_fcntl_args /* {
120 		struct vnode *a_vp;
121 		u_int a_command;
122 		caddr_t a_data;
123 		int a_fflag;
124 		struct ucred *a_cred;
125 		struct lwp *a_l;
126 	} */ *ap = v;
127 
128 	if (ap->a_command == F_SETFL)
129 		return (0);
130 	else
131 		return (EOPNOTSUPP);
132 }
133 
134 /*ARGSUSED*/
135 int
136 genfs_badop(void *v)
137 {
138 
139 	panic("genfs: bad op");
140 }
141 
142 /*ARGSUSED*/
143 int
144 genfs_nullop(void *v)
145 {
146 
147 	return (0);
148 }
149 
150 /*ARGSUSED*/
151 int
152 genfs_einval(void *v)
153 {
154 
155 	return (EINVAL);
156 }
157 
158 /*
159  * Called when an fs doesn't support a particular vop.
160  * This takes care to vrele, vput, or vunlock passed in vnodes.
161  */
162 int
163 genfs_eopnotsupp(void *v)
164 {
165 	struct vop_generic_args /*
166 		struct vnodeop_desc *a_desc;
167 		/ * other random data follows, presumably * /
168 	} */ *ap = v;
169 	struct vnodeop_desc *desc = ap->a_desc;
170 	struct vnode *vp, *vp_last = NULL;
171 	int flags, i, j, offset;
172 
173 	flags = desc->vdesc_flags;
174 	for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
175 		if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
176 			break;	/* stop at end of list */
177 		if ((j = flags & VDESC_VP0_WILLPUT)) {
178 			vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
179 
180 			/* Skip if NULL */
181 			if (!vp)
182 				continue;
183 
184 			switch (j) {
185 			case VDESC_VP0_WILLPUT:
186 				/* Check for dvp == vp cases */
187 				if (vp == vp_last)
188 					vrele(vp);
189 				else {
190 					vput(vp);
191 					vp_last = vp;
192 				}
193 				break;
194 			case VDESC_VP0_WILLUNLOCK:
195 				VOP_UNLOCK(vp, 0);
196 				break;
197 			case VDESC_VP0_WILLRELE:
198 				vrele(vp);
199 				break;
200 			}
201 		}
202 	}
203 
204 	return (EOPNOTSUPP);
205 }
206 
207 /*ARGSUSED*/
208 int
209 genfs_ebadf(void *v)
210 {
211 
212 	return (EBADF);
213 }
214 
215 /* ARGSUSED */
216 int
217 genfs_enoioctl(void *v)
218 {
219 
220 	return (EPASSTHROUGH);
221 }
222 
223 
224 /*
225  * Eliminate all activity associated with the requested vnode
226  * and with all vnodes aliased to the requested vnode.
227  */
228 int
229 genfs_revoke(void *v)
230 {
231 	struct vop_revoke_args /* {
232 		struct vnode *a_vp;
233 		int a_flags;
234 	} */ *ap = v;
235 	struct vnode *vp, *vq;
236 	struct lwp *l = curlwp;		/* XXX */
237 
238 #ifdef DIAGNOSTIC
239 	if ((ap->a_flags & REVOKEALL) == 0)
240 		panic("genfs_revoke: not revokeall");
241 #endif
242 
243 	vp = ap->a_vp;
244 	simple_lock(&vp->v_interlock);
245 
246 	if (vp->v_flag & VALIASED) {
247 		/*
248 		 * If a vgone (or vclean) is already in progress,
249 		 * wait until it is done and return.
250 		 */
251 		if (vp->v_flag & VXLOCK) {
252 			vp->v_flag |= VXWANT;
253 			ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
254 				&vp->v_interlock);
255 			return (0);
256 		}
257 		/*
258 		 * Ensure that vp will not be vgone'd while we
259 		 * are eliminating its aliases.
260 		 */
261 		vp->v_flag |= VXLOCK;
262 		simple_unlock(&vp->v_interlock);
263 		while (vp->v_flag & VALIASED) {
264 			simple_lock(&spechash_slock);
265 			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
266 				if (vq->v_rdev != vp->v_rdev ||
267 				    vq->v_type != vp->v_type || vp == vq)
268 					continue;
269 				simple_unlock(&spechash_slock);
270 				vgone(vq);
271 				break;
272 			}
273 			if (vq == NULLVP)
274 				simple_unlock(&spechash_slock);
275 		}
276 		/*
277 		 * Remove the lock so that vgone below will
278 		 * really eliminate the vnode after which time
279 		 * vgone will awaken any sleepers.
280 		 */
281 		simple_lock(&vp->v_interlock);
282 		vp->v_flag &= ~VXLOCK;
283 	}
284 	vgonel(vp, l);
285 	return (0);
286 }
287 
288 /*
289  * Lock the node.
290  */
291 int
292 genfs_lock(void *v)
293 {
294 	struct vop_lock_args /* {
295 		struct vnode *a_vp;
296 		int a_flags;
297 	} */ *ap = v;
298 	struct vnode *vp = ap->a_vp;
299 
300 	return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
301 }
302 
303 /*
304  * Unlock the node.
305  */
306 int
307 genfs_unlock(void *v)
308 {
309 	struct vop_unlock_args /* {
310 		struct vnode *a_vp;
311 		int a_flags;
312 	} */ *ap = v;
313 	struct vnode *vp = ap->a_vp;
314 
315 	return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
316 	    &vp->v_interlock));
317 }
318 
319 /*
320  * Return whether or not the node is locked.
321  */
322 int
323 genfs_islocked(void *v)
324 {
325 	struct vop_islocked_args /* {
326 		struct vnode *a_vp;
327 	} */ *ap = v;
328 	struct vnode *vp = ap->a_vp;
329 
330 	return (lockstatus(vp->v_vnlock));
331 }
332 
333 /*
334  * Stubs to use when there is no locking to be done on the underlying object.
335  */
336 int
337 genfs_nolock(void *v)
338 {
339 	struct vop_lock_args /* {
340 		struct vnode *a_vp;
341 		int a_flags;
342 		struct lwp *a_l;
343 	} */ *ap = v;
344 
345 	/*
346 	 * Since we are not using the lock manager, we must clear
347 	 * the interlock here.
348 	 */
349 	if (ap->a_flags & LK_INTERLOCK)
350 		simple_unlock(&ap->a_vp->v_interlock);
351 	return (0);
352 }
353 
354 int
355 genfs_nounlock(void *v)
356 {
357 
358 	return (0);
359 }
360 
361 int
362 genfs_noislocked(void *v)
363 {
364 
365 	return (0);
366 }
367 
368 /*
369  * Local lease check for NFS servers.  Just set up args and let
370  * nqsrv_getlease() do the rest.  If NFSSERVER is not in the kernel,
371  * this is a null operation.
372  */
373 int
374 genfs_lease_check(void *v)
375 {
376 #ifdef NFSSERVER
377 	struct vop_lease_args /* {
378 		struct vnode *a_vp;
379 		struct lwp *a_l;
380 		struct ucred *a_cred;
381 		int a_flag;
382 	} */ *ap = v;
383 	u_int32_t duration = 0;
384 	int cache;
385 	u_quad_t frev;
386 
387 	(void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
388 	    NQLOCALSLP, ap->a_l, (struct mbuf *)0, &cache, &frev, ap->a_cred);
389 	return (0);
390 #else
391 	return (0);
392 #endif /* NFSSERVER */
393 }
394 
395 int
396 genfs_mmap(void *v)
397 {
398 
399 	return (0);
400 }
401 
402 static inline void
403 genfs_rel_pages(struct vm_page **pgs, int npages)
404 {
405 	int i;
406 
407 	for (i = 0; i < npages; i++) {
408 		struct vm_page *pg = pgs[i];
409 
410 		if (pg == NULL)
411 			continue;
412 		if (pg->flags & PG_FAKE) {
413 			pg->flags |= PG_RELEASED;
414 		}
415 	}
416 	uvm_lock_pageq();
417 	uvm_page_unbusy(pgs, npages);
418 	uvm_unlock_pageq();
419 }
420 
421 /*
422  * generic VM getpages routine.
423  * Return PG_BUSY pages for the given range,
424  * reading from backing store if necessary.
425  */
426 
427 int
428 genfs_getpages(void *v)
429 {
430 	struct vop_getpages_args /* {
431 		struct vnode *a_vp;
432 		voff_t a_offset;
433 		struct vm_page **a_m;
434 		int *a_count;
435 		int a_centeridx;
436 		vm_prot_t a_access_type;
437 		int a_advice;
438 		int a_flags;
439 	} */ *ap = v;
440 
441 	off_t newsize, diskeof, memeof;
442 	off_t offset, origoffset, startoffset, endoffset, raoffset;
443 	daddr_t lbn, blkno;
444 	int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
445 	int fs_bshift, fs_bsize, dev_bshift;
446 	int flags = ap->a_flags;
447 	size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
448 	vaddr_t kva;
449 	struct buf *bp, *mbp;
450 	struct vnode *vp = ap->a_vp;
451 	struct vnode *devvp;
452 	struct genfs_node *gp = VTOG(vp);
453 	struct uvm_object *uobj = &vp->v_uobj;
454 	struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES];
455 	int pgs_size;
456 	struct ucred *cred = curproc->p_ucred;		/* XXXUBC curlwp */
457 	boolean_t async = (flags & PGO_SYNCIO) == 0;
458 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
459 	boolean_t sawhole = FALSE;
460 	boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
461 	boolean_t blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
462 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
463 
464 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
465 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
466 
467 	KASSERT(vp->v_type == VREG || vp->v_type == VBLK);
468 
469 	/* XXXUBC temp limit */
470 	if (*ap->a_count > MAX_READ_PAGES) {
471 		panic("genfs_getpages: too many pages");
472 	}
473 
474 	error = 0;
475 	origoffset = ap->a_offset;
476 	orignpages = *ap->a_count;
477 	GOP_SIZE(vp, vp->v_size, &diskeof, GOP_SIZE_READ);
478 	if (flags & PGO_PASTEOF) {
479 		newsize = MAX(vp->v_size,
480 		    origoffset + (orignpages << PAGE_SHIFT));
481 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
482 	} else {
483 		GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
484 	}
485 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
486 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
487 	KASSERT(orignpages > 0);
488 
489 	/*
490 	 * Bounds-check the request.
491 	 */
492 
493 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
494 		if ((flags & PGO_LOCKED) == 0) {
495 			simple_unlock(&uobj->vmobjlock);
496 		}
497 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
498 		    origoffset, *ap->a_count, memeof,0);
499 		return (EINVAL);
500 	}
501 
502 	/* uobj is locked */
503 
504 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
505 	    (vp->v_type == VREG ||
506 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
507 		int updflags = 0;
508 
509 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
510 			updflags = GOP_UPDATE_ACCESSED;
511 		}
512 		if (write) {
513 			updflags |= GOP_UPDATE_MODIFIED;
514 		}
515 		if (updflags != 0) {
516 			GOP_MARKUPDATE(vp, updflags);
517 		}
518 	}
519 
520 	if (write) {
521 		gp->g_dirtygen++;
522 		if ((vp->v_flag & VONWORKLST) == 0) {
523 			vn_syncer_add_to_worklist(vp, filedelay);
524 		}
525 		if ((vp->v_flag & (VWRITEMAP|VWRITEMAPDIRTY)) == VWRITEMAP) {
526 			vp->v_flag |= VWRITEMAPDIRTY;
527 		}
528 	}
529 
530 	/*
531 	 * For PGO_LOCKED requests, just return whatever's in memory.
532 	 */
533 
534 	if (flags & PGO_LOCKED) {
535 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
536 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
537 
538 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
539 	}
540 
541 	/*
542 	 * find the requested pages and make some simple checks.
543 	 * leave space in the page array for a whole block.
544 	 */
545 
546 	if (vp->v_type == VREG) {
547 		fs_bshift = vp->v_mount->mnt_fs_bshift;
548 		dev_bshift = vp->v_mount->mnt_dev_bshift;
549 	} else {
550 		fs_bshift = DEV_BSHIFT;
551 		dev_bshift = DEV_BSHIFT;
552 	}
553 	fs_bsize = 1 << fs_bshift;
554 
555 	orignpages = MIN(orignpages,
556 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
557 	npages = orignpages;
558 	startoffset = origoffset & ~(fs_bsize - 1);
559 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
560 	    fs_bsize - 1) & ~(fs_bsize - 1));
561 	endoffset = MIN(endoffset, round_page(memeof));
562 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
563 
564 	pgs_size = sizeof(struct vm_page *) *
565 	    ((endoffset - startoffset) >> PAGE_SHIFT);
566 	if (pgs_size > sizeof(pgs_onstack)) {
567 		pgs = malloc(pgs_size, M_DEVBUF, M_NOWAIT | M_ZERO);
568 		if (pgs == NULL) {
569 			simple_unlock(&uobj->vmobjlock);
570 			return (ENOMEM);
571 		}
572 	} else {
573 		pgs = pgs_onstack;
574 		memset(pgs, 0, pgs_size);
575 	}
576 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
577 	    ridx, npages, startoffset, endoffset);
578 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
579 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
580 		KASSERT(async != 0);
581 		genfs_rel_pages(&pgs[ridx], orignpages);
582 		simple_unlock(&uobj->vmobjlock);
583 		if (pgs != pgs_onstack)
584 			free(pgs, M_DEVBUF);
585 		return (EBUSY);
586 	}
587 
588 	/*
589 	 * if the pages are already resident, just return them.
590 	 */
591 
592 	for (i = 0; i < npages; i++) {
593 		struct vm_page *pg1 = pgs[ridx + i];
594 
595 		if ((pg1->flags & PG_FAKE) ||
596 		    (blockalloc && (pg1->flags & PG_RDONLY))) {
597 			break;
598 		}
599 	}
600 	if (i == npages) {
601 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
602 		raoffset = origoffset + (orignpages << PAGE_SHIFT);
603 		npages += ridx;
604 		goto out;
605 	}
606 
607 	/*
608 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
609 	 */
610 
611 	if (flags & PGO_OVERWRITE) {
612 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
613 
614 		for (i = 0; i < npages; i++) {
615 			struct vm_page *pg1 = pgs[ridx + i];
616 
617 			pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
618 		}
619 		npages += ridx;
620 		goto out;
621 	}
622 
623 	/*
624 	 * the page wasn't resident and we're not overwriting,
625 	 * so we're going to have to do some i/o.
626 	 * find any additional pages needed to cover the expanded range.
627 	 */
628 
629 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
630 	if (startoffset != origoffset || npages != orignpages) {
631 
632 		/*
633 		 * we need to avoid deadlocks caused by locking
634 		 * additional pages at lower offsets than pages we
635 		 * already have locked.  unlock them all and start over.
636 		 */
637 
638 		genfs_rel_pages(&pgs[ridx], orignpages);
639 		memset(pgs, 0, pgs_size);
640 
641 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
642 		    startoffset, endoffset, 0,0);
643 		npgs = npages;
644 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
645 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
646 			KASSERT(async != 0);
647 			genfs_rel_pages(pgs, npages);
648 			simple_unlock(&uobj->vmobjlock);
649 			if (pgs != pgs_onstack)
650 				free(pgs, M_DEVBUF);
651 			return (EBUSY);
652 		}
653 	}
654 	simple_unlock(&uobj->vmobjlock);
655 
656 	/*
657 	 * read the desired page(s).
658 	 */
659 
660 	totalbytes = npages << PAGE_SHIFT;
661 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
662 	tailbytes = totalbytes - bytes;
663 	skipbytes = 0;
664 
665 	kva = uvm_pagermapin(pgs, npages,
666 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
667 
668 	s = splbio();
669 	mbp = pool_get(&bufpool, PR_WAITOK);
670 	splx(s);
671 	BUF_INIT(mbp);
672 	mbp->b_bufsize = totalbytes;
673 	mbp->b_data = (void *)kva;
674 	mbp->b_resid = mbp->b_bcount = bytes;
675 	mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
676 	mbp->b_iodone = (async ? uvm_aio_biodone : 0);
677 	mbp->b_vp = vp;
678 
679 	/*
680 	 * if EOF is in the middle of the range, zero the part past EOF.
681 	 * if the page including EOF is not PG_FAKE, skip over it since
682 	 * in that case it has valid data that we need to preserve.
683 	 */
684 
685 	if (tailbytes > 0) {
686 		size_t tailstart = bytes;
687 
688 		if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
689 			tailstart = round_page(tailstart);
690 			tailbytes -= tailstart - bytes;
691 		}
692 		UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
693 		    kva, tailstart, tailbytes,0);
694 		memset((void *)(kva + tailstart), 0, tailbytes);
695 	}
696 
697 	/*
698 	 * now loop over the pages, reading as needed.
699 	 */
700 
701 	if (blockalloc) {
702 		lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
703 	} else {
704 		lockmgr(&gp->g_glock, LK_SHARED, NULL);
705 	}
706 
707 	bp = NULL;
708 	for (offset = startoffset;
709 	    bytes > 0;
710 	    offset += iobytes, bytes -= iobytes) {
711 
712 		/*
713 		 * skip pages which don't need to be read.
714 		 */
715 
716 		pidx = (offset - startoffset) >> PAGE_SHIFT;
717 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
718 			size_t b;
719 
720 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
721 			if ((pgs[pidx]->flags & PG_RDONLY)) {
722 				sawhole = TRUE;
723 			}
724 			b = MIN(PAGE_SIZE, bytes);
725 			offset += b;
726 			bytes -= b;
727 			skipbytes += b;
728 			pidx++;
729 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
730 			    offset, 0,0,0);
731 			if (bytes == 0) {
732 				goto loopdone;
733 			}
734 		}
735 
736 		/*
737 		 * bmap the file to find out the blkno to read from and
738 		 * how much we can read in one i/o.  if bmap returns an error,
739 		 * skip the rest of the top-level i/o.
740 		 */
741 
742 		lbn = offset >> fs_bshift;
743 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
744 		if (error) {
745 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
746 			    lbn, error,0,0);
747 			skipbytes += bytes;
748 			goto loopdone;
749 		}
750 
751 		/*
752 		 * see how many pages can be read with this i/o.
753 		 * reduce the i/o size if necessary to avoid
754 		 * overwriting pages with valid data.
755 		 */
756 
757 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
758 		    bytes);
759 		if (offset + iobytes > round_page(offset)) {
760 			pcount = 1;
761 			while (pidx + pcount < npages &&
762 			    pgs[pidx + pcount]->flags & PG_FAKE) {
763 				pcount++;
764 			}
765 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
766 			    (offset - trunc_page(offset)));
767 		}
768 
769 		/*
770 		 * if this block isn't allocated, zero it instead of
771 		 * reading it.  unless we are going to allocate blocks,
772 		 * mark the pages we zeroed PG_RDONLY.
773 		 */
774 
775 		if (blkno < 0) {
776 			int holepages = (round_page(offset + iobytes) -
777 			    trunc_page(offset)) >> PAGE_SHIFT;
778 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
779 
780 			sawhole = TRUE;
781 			memset((char *)kva + (offset - startoffset), 0,
782 			    iobytes);
783 			skipbytes += iobytes;
784 
785 			for (i = 0; i < holepages; i++) {
786 				if (write) {
787 					pgs[pidx + i]->flags &= ~PG_CLEAN;
788 				}
789 				if (!blockalloc) {
790 					pgs[pidx + i]->flags |= PG_RDONLY;
791 				}
792 			}
793 			continue;
794 		}
795 
796 		/*
797 		 * allocate a sub-buf for this piece of the i/o
798 		 * (or just use mbp if there's only 1 piece),
799 		 * and start it going.
800 		 */
801 
802 		if (offset == startoffset && iobytes == bytes) {
803 			bp = mbp;
804 		} else {
805 			s = splbio();
806 			bp = pool_get(&bufpool, PR_WAITOK);
807 			splx(s);
808 			BUF_INIT(bp);
809 			bp->b_data = (char *)kva + offset - startoffset;
810 			bp->b_resid = bp->b_bcount = iobytes;
811 			bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC;
812 			bp->b_iodone = uvm_aio_biodone1;
813 			bp->b_vp = vp;
814 			bp->b_proc = NULL;
815 		}
816 		bp->b_lblkno = 0;
817 		bp->b_private = mbp;
818 
819 		/* adjust physical blkno for partial blocks */
820 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
821 		    dev_bshift);
822 
823 		UVMHIST_LOG(ubchist,
824 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
825 		    bp, offset, iobytes, bp->b_blkno);
826 
827 		if (async)
828 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
829 		else
830 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
831 
832 		VOP_STRATEGY(devvp, bp);
833 	}
834 
835 loopdone:
836 	if (skipbytes) {
837 		s = splbio();
838 		if (error) {
839 			mbp->b_flags |= B_ERROR;
840 			mbp->b_error = error;
841 		}
842 		mbp->b_resid -= skipbytes;
843 		if (mbp->b_resid == 0) {
844 			biodone(mbp);
845 		}
846 		splx(s);
847 	}
848 
849 	if (async) {
850 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
851 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
852 		if (pgs != pgs_onstack)
853 			free(pgs, M_DEVBUF);
854 		return (0);
855 	}
856 	if (bp != NULL) {
857 		error = biowait(mbp);
858 	}
859 	s = splbio();
860 	pool_put(&bufpool, mbp);
861 	splx(s);
862 	uvm_pagermapout(kva, npages);
863 	raoffset = startoffset + totalbytes;
864 
865 	/*
866 	 * if this we encountered a hole then we have to do a little more work.
867 	 * for read faults, we marked the page PG_RDONLY so that future
868 	 * write accesses to the page will fault again.
869 	 * for write faults, we must make sure that the backing store for
870 	 * the page is completely allocated while the pages are locked.
871 	 */
872 
873 	if (!error && sawhole && blockalloc) {
874 		error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
875 		    cred);
876 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
877 		    startoffset, npages << PAGE_SHIFT, error,0);
878 		if (!error) {
879 			for (i = 0; i < npages; i++) {
880 				if (pgs[i] == NULL) {
881 					continue;
882 				}
883 				pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
884 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
885 				    pgs[i],0,0,0);
886 			}
887 		}
888 	}
889 	lockmgr(&gp->g_glock, LK_RELEASE, NULL);
890 	simple_lock(&uobj->vmobjlock);
891 
892 	/*
893 	 * we're almost done!  release the pages...
894 	 * for errors, we free the pages.
895 	 * otherwise we activate them and mark them as valid and clean.
896 	 * also, unbusy pages that were not actually requested.
897 	 */
898 
899 	if (error) {
900 		for (i = 0; i < npages; i++) {
901 			if (pgs[i] == NULL) {
902 				continue;
903 			}
904 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
905 			    pgs[i], pgs[i]->flags, 0,0);
906 			if (pgs[i]->flags & PG_FAKE) {
907 				pgs[i]->flags |= PG_RELEASED;
908 			}
909 		}
910 		uvm_lock_pageq();
911 		uvm_page_unbusy(pgs, npages);
912 		uvm_unlock_pageq();
913 		simple_unlock(&uobj->vmobjlock);
914 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
915 		if (pgs != pgs_onstack)
916 			free(pgs, M_DEVBUF);
917 		return (error);
918 	}
919 
920 out:
921 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
922 	uvm_lock_pageq();
923 	for (i = 0; i < npages; i++) {
924 		pg = pgs[i];
925 		if (pg == NULL) {
926 			continue;
927 		}
928 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
929 		    pg, pg->flags, 0,0);
930 		if (pg->flags & PG_FAKE && !overwrite) {
931 			pg->flags &= ~(PG_FAKE);
932 			pmap_clear_modify(pgs[i]);
933 		}
934 		KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
935 		if (i < ridx || i >= ridx + orignpages || async) {
936 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
937 			    pg, pg->offset,0,0);
938 			if (pg->flags & PG_WANTED) {
939 				wakeup(pg);
940 			}
941 			if (pg->flags & PG_FAKE) {
942 				KASSERT(overwrite);
943 				uvm_pagezero(pg);
944 			}
945 			if (pg->flags & PG_RELEASED) {
946 				uvm_pagefree(pg);
947 				continue;
948 			}
949 			uvm_pageactivate(pg);
950 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
951 			UVM_PAGE_OWN(pg, NULL);
952 		}
953 	}
954 	uvm_unlock_pageq();
955 	simple_unlock(&uobj->vmobjlock);
956 	if (ap->a_m != NULL) {
957 		memcpy(ap->a_m, &pgs[ridx],
958 		    orignpages * sizeof(struct vm_page *));
959 	}
960 	if (pgs != pgs_onstack)
961 		free(pgs, M_DEVBUF);
962 	return (0);
963 }
964 
965 /*
966  * generic VM putpages routine.
967  * Write the given range of pages to backing store.
968  *
969  * => "offhi == 0" means flush all pages at or after "offlo".
970  * => object should be locked by caller.   we may _unlock_ the object
971  *	if (and only if) we need to clean a page (PGO_CLEANIT), or
972  *	if PGO_SYNCIO is set and there are pages busy.
973  *	we return with the object locked.
974  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
975  *	thus, a caller might want to unlock higher level resources
976  *	(e.g. vm_map) before calling flush.
977  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
978  *	unlock the object nor block.
979  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
980  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
981  *	that new pages are inserted on the tail end of the list.   thus,
982  *	we can make a complete pass through the object in one go by starting
983  *	at the head and working towards the tail (new pages are put in
984  *	front of us).
985  * => NOTE: we are allowed to lock the page queues, so the caller
986  *	must not be holding the page queue lock.
987  *
988  * note on "cleaning" object and PG_BUSY pages:
989  *	this routine is holding the lock on the object.   the only time
990  *	that it can run into a PG_BUSY page that it does not own is if
991  *	some other process has started I/O on the page (e.g. either
992  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
993  *	in, then it can not be dirty (!PG_CLEAN) because no one has
994  *	had a chance to modify it yet.    if the PG_BUSY page is being
995  *	paged out then it means that someone else has already started
996  *	cleaning the page for us (how nice!).    in this case, if we
997  *	have syncio specified, then after we make our pass through the
998  *	object we need to wait for the other PG_BUSY pages to clear
999  *	off (i.e. we need to do an iosync).   also note that once a
1000  *	page is PG_BUSY it must stay in its object until it is un-busyed.
1001  *
1002  * note on page traversal:
1003  *	we can traverse the pages in an object either by going down the
1004  *	linked list in "uobj->memq", or we can go over the address range
1005  *	by page doing hash table lookups for each address.    depending
1006  *	on how many pages are in the object it may be cheaper to do one
1007  *	or the other.   we set "by_list" to true if we are using memq.
1008  *	if the cost of a hash lookup was equal to the cost of the list
1009  *	traversal we could compare the number of pages in the start->stop
1010  *	range to the total number of pages in the object.   however, it
1011  *	seems that a hash table lookup is more expensive than the linked
1012  *	list traversal, so we multiply the number of pages in the
1013  *	range by an estimate of the relatively higher cost of the hash lookup.
1014  */
1015 
1016 int
1017 genfs_putpages(void *v)
1018 {
1019 	struct vop_putpages_args /* {
1020 		struct vnode *a_vp;
1021 		voff_t a_offlo;
1022 		voff_t a_offhi;
1023 		int a_flags;
1024 	} */ *ap = v;
1025 	struct vnode *vp = ap->a_vp;
1026 	struct uvm_object *uobj = &vp->v_uobj;
1027 	struct simplelock *slock = &uobj->vmobjlock;
1028 	off_t startoff = ap->a_offlo;
1029 	off_t endoff = ap->a_offhi;
1030 	off_t off;
1031 	int flags = ap->a_flags;
1032 	/* Even for strange MAXPHYS, the shift rounds down to a page */
1033 	const int maxpages = MAXPHYS >> PAGE_SHIFT;
1034 	int i, s, error, npages, nback;
1035 	int freeflag;
1036 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1037 	boolean_t wasclean, by_list, needs_clean, yld;
1038 	boolean_t async = (flags & PGO_SYNCIO) == 0;
1039 	boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1040 	struct lwp *l = curlwp ? curlwp : &lwp0;
1041 	struct genfs_node *gp = VTOG(vp);
1042 	int dirtygen;
1043 	boolean_t modified = FALSE;
1044 	boolean_t cleanall;
1045 
1046 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1047 
1048 	KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1049 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1050 	KASSERT(startoff < endoff || endoff == 0);
1051 
1052 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1053 	    vp, uobj->uo_npages, startoff, endoff - startoff);
1054 
1055 	KASSERT((vp->v_flag & VONWORKLST) != 0 ||
1056 	    (vp->v_flag & VWRITEMAPDIRTY) == 0);
1057 	if (uobj->uo_npages == 0) {
1058 		s = splbio();
1059 		if (vp->v_flag & VONWORKLST) {
1060 			vp->v_flag &= ~VWRITEMAPDIRTY;
1061 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1062 				vp->v_flag &= ~VONWORKLST;
1063 				LIST_REMOVE(vp, v_synclist);
1064 			}
1065 		}
1066 		splx(s);
1067 		simple_unlock(slock);
1068 		return (0);
1069 	}
1070 
1071 	/*
1072 	 * the vnode has pages, set up to process the request.
1073 	 */
1074 
1075 	error = 0;
1076 	s = splbio();
1077 	simple_lock(&global_v_numoutput_slock);
1078 	wasclean = (vp->v_numoutput == 0);
1079 	simple_unlock(&global_v_numoutput_slock);
1080 	splx(s);
1081 	off = startoff;
1082 	if (endoff == 0 || flags & PGO_ALLPAGES) {
1083 		endoff = trunc_page(LLONG_MAX);
1084 	}
1085 	by_list = (uobj->uo_npages <=
1086 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1087 
1088 #if !defined(DEBUG)
1089 	/*
1090 	 * if this vnode is known not to have dirty pages,
1091 	 * don't bother to clean it out.
1092 	 */
1093 
1094 	if ((vp->v_flag & VONWORKLST) == 0) {
1095 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1096 			goto skip_scan;
1097 		}
1098 		flags &= ~PGO_CLEANIT;
1099 	}
1100 #endif /* !defined(DEBUG) */
1101 
1102 	/*
1103 	 * start the loop.  when scanning by list, hold the last page
1104 	 * in the list before we start.  pages allocated after we start
1105 	 * will be added to the end of the list, so we can stop at the
1106 	 * current last page.
1107 	 */
1108 
1109 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1110 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1111 	    (vp->v_flag & VONWORKLST) != 0;
1112 	dirtygen = gp->g_dirtygen;
1113 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1114 	if (by_list) {
1115 		curmp.uobject = uobj;
1116 		curmp.offset = (voff_t)-1;
1117 		curmp.flags = PG_BUSY;
1118 		endmp.uobject = uobj;
1119 		endmp.offset = (voff_t)-1;
1120 		endmp.flags = PG_BUSY;
1121 		pg = TAILQ_FIRST(&uobj->memq);
1122 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1123 		PHOLD(l);
1124 	} else {
1125 		pg = uvm_pagelookup(uobj, off);
1126 	}
1127 	nextpg = NULL;
1128 	while (by_list || off < endoff) {
1129 
1130 		/*
1131 		 * if the current page is not interesting, move on to the next.
1132 		 */
1133 
1134 		KASSERT(pg == NULL || pg->uobject == uobj);
1135 		KASSERT(pg == NULL ||
1136 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1137 		    (pg->flags & PG_BUSY) != 0);
1138 		if (by_list) {
1139 			if (pg == &endmp) {
1140 				break;
1141 			}
1142 			if (pg->offset < startoff || pg->offset >= endoff ||
1143 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1144 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1145 					wasclean = FALSE;
1146 				}
1147 				pg = TAILQ_NEXT(pg, listq);
1148 				continue;
1149 			}
1150 			off = pg->offset;
1151 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1152 			if (pg != NULL) {
1153 				wasclean = FALSE;
1154 			}
1155 			off += PAGE_SIZE;
1156 			if (off < endoff) {
1157 				pg = uvm_pagelookup(uobj, off);
1158 			}
1159 			continue;
1160 		}
1161 
1162 		/*
1163 		 * if the current page needs to be cleaned and it's busy,
1164 		 * wait for it to become unbusy.
1165 		 */
1166 
1167 		yld = (l->l_cpu->ci_schedstate.spc_flags &
1168 		    SPCF_SHOULDYIELD) && !pagedaemon;
1169 		if (pg->flags & PG_BUSY || yld) {
1170 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1171 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1172 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1173 				error = EDEADLK;
1174 				break;
1175 			}
1176 			KASSERT(!pagedaemon);
1177 			if (by_list) {
1178 				TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1179 				UVMHIST_LOG(ubchist, "curmp next %p",
1180 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
1181 			}
1182 			if (yld) {
1183 				simple_unlock(slock);
1184 				preempt(1);
1185 				simple_lock(slock);
1186 			} else {
1187 				pg->flags |= PG_WANTED;
1188 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1189 				simple_lock(slock);
1190 			}
1191 			if (by_list) {
1192 				UVMHIST_LOG(ubchist, "after next %p",
1193 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
1194 				pg = TAILQ_NEXT(&curmp, listq);
1195 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1196 			} else {
1197 				pg = uvm_pagelookup(uobj, off);
1198 			}
1199 			continue;
1200 		}
1201 
1202 		/*
1203 		 * if we're freeing, remove all mappings of the page now.
1204 		 * if we're cleaning, check if the page is needs to be cleaned.
1205 		 */
1206 
1207 		if (flags & PGO_FREE) {
1208 			pmap_page_protect(pg, VM_PROT_NONE);
1209 		} else if (flags & PGO_CLEANIT) {
1210 
1211 			/*
1212 			 * if we still have some hope to pull this vnode off
1213 			 * from the syncer queue, write-protect the page.
1214 			 */
1215 
1216 			if (cleanall && wasclean &&
1217 			    gp->g_dirtygen == dirtygen) {
1218 
1219 				/*
1220 				 * uobj pages get wired only by uvm_fault
1221 				 * where uobj is locked.
1222 				 */
1223 
1224 				if (pg->wire_count == 0) {
1225 					pmap_page_protect(pg,
1226 					    VM_PROT_READ|VM_PROT_EXECUTE);
1227 				} else {
1228 					cleanall = FALSE;
1229 				}
1230 			}
1231 		}
1232 
1233 		if (flags & PGO_CLEANIT) {
1234 			needs_clean = pmap_clear_modify(pg) ||
1235 			    (pg->flags & PG_CLEAN) == 0;
1236 			pg->flags |= PG_CLEAN;
1237 		} else {
1238 			needs_clean = FALSE;
1239 		}
1240 
1241 		/*
1242 		 * if we're cleaning, build a cluster.
1243 		 * the cluster will consist of pages which are currently dirty,
1244 		 * but they will be returned to us marked clean.
1245 		 * if not cleaning, just operate on the one page.
1246 		 */
1247 
1248 		if (needs_clean) {
1249 			KDASSERT((vp->v_flag & VONWORKLST));
1250 			wasclean = FALSE;
1251 			memset(pgs, 0, sizeof(pgs));
1252 			pg->flags |= PG_BUSY;
1253 			UVM_PAGE_OWN(pg, "genfs_putpages");
1254 
1255 			/*
1256 			 * first look backward.
1257 			 */
1258 
1259 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1260 			nback = npages;
1261 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1262 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1263 			if (nback) {
1264 				memmove(&pgs[0], &pgs[npages - nback],
1265 				    nback * sizeof(pgs[0]));
1266 				if (npages - nback < nback)
1267 					memset(&pgs[nback], 0,
1268 					    (npages - nback) * sizeof(pgs[0]));
1269 				else
1270 					memset(&pgs[npages - nback], 0,
1271 					    nback * sizeof(pgs[0]));
1272 			}
1273 
1274 			/*
1275 			 * then plug in our page of interest.
1276 			 */
1277 
1278 			pgs[nback] = pg;
1279 
1280 			/*
1281 			 * then look forward to fill in the remaining space in
1282 			 * the array of pages.
1283 			 */
1284 
1285 			npages = maxpages - nback - 1;
1286 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1287 			    &pgs[nback + 1],
1288 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1289 			npages += nback + 1;
1290 		} else {
1291 			pgs[0] = pg;
1292 			npages = 1;
1293 			nback = 0;
1294 		}
1295 
1296 		/*
1297 		 * apply FREE or DEACTIVATE options if requested.
1298 		 */
1299 
1300 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1301 			uvm_lock_pageq();
1302 		}
1303 		for (i = 0; i < npages; i++) {
1304 			tpg = pgs[i];
1305 			KASSERT(tpg->uobject == uobj);
1306 			if (by_list && tpg == TAILQ_NEXT(pg, listq))
1307 				pg = tpg;
1308 			if (tpg->offset < startoff || tpg->offset >= endoff)
1309 				continue;
1310 			if (flags & PGO_DEACTIVATE &&
1311 			    (tpg->pqflags & PQ_INACTIVE) == 0 &&
1312 			    tpg->wire_count == 0) {
1313 				(void) pmap_clear_reference(tpg);
1314 				uvm_pagedeactivate(tpg);
1315 			} else if (flags & PGO_FREE) {
1316 				pmap_page_protect(tpg, VM_PROT_NONE);
1317 				if (tpg->flags & PG_BUSY) {
1318 					tpg->flags |= freeflag;
1319 					if (pagedaemon) {
1320 						uvmexp.paging++;
1321 						uvm_pagedequeue(tpg);
1322 					}
1323 				} else {
1324 
1325 					/*
1326 					 * ``page is not busy''
1327 					 * implies that npages is 1
1328 					 * and needs_clean is false.
1329 					 */
1330 
1331 					nextpg = TAILQ_NEXT(tpg, listq);
1332 					uvm_pagefree(tpg);
1333 					if (pagedaemon)
1334 						uvmexp.pdfreed++;
1335 				}
1336 			}
1337 		}
1338 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1339 			uvm_unlock_pageq();
1340 		}
1341 		if (needs_clean) {
1342 			modified = TRUE;
1343 
1344 			/*
1345 			 * start the i/o.  if we're traversing by list,
1346 			 * keep our place in the list with a marker page.
1347 			 */
1348 
1349 			if (by_list) {
1350 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1351 				    listq);
1352 			}
1353 			simple_unlock(slock);
1354 			error = GOP_WRITE(vp, pgs, npages, flags);
1355 			simple_lock(slock);
1356 			if (by_list) {
1357 				pg = TAILQ_NEXT(&curmp, listq);
1358 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1359 			}
1360 			if (error) {
1361 				break;
1362 			}
1363 			if (by_list) {
1364 				continue;
1365 			}
1366 		}
1367 
1368 		/*
1369 		 * find the next page and continue if there was no error.
1370 		 */
1371 
1372 		if (by_list) {
1373 			if (nextpg) {
1374 				pg = nextpg;
1375 				nextpg = NULL;
1376 			} else {
1377 				pg = TAILQ_NEXT(pg, listq);
1378 			}
1379 		} else {
1380 			off += (npages - nback) << PAGE_SHIFT;
1381 			if (off < endoff) {
1382 				pg = uvm_pagelookup(uobj, off);
1383 			}
1384 		}
1385 	}
1386 	if (by_list) {
1387 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1388 		PRELE(l);
1389 	}
1390 
1391 	if (modified && (vp->v_flag & VWRITEMAPDIRTY) != 0 &&
1392 	    (vp->v_type == VREG ||
1393 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1394 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1395 	}
1396 
1397 	/*
1398 	 * if we're cleaning and there was nothing to clean,
1399 	 * take us off the syncer list.  if we started any i/o
1400 	 * and we're doing sync i/o, wait for all writes to finish.
1401 	 */
1402 
1403 	s = splbio();
1404 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1405 	    (vp->v_flag & VONWORKLST) != 0) {
1406 		vp->v_flag &= ~VWRITEMAPDIRTY;
1407 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1408 			vp->v_flag &= ~VONWORKLST;
1409 			LIST_REMOVE(vp, v_synclist);
1410 		}
1411 	}
1412 	splx(s);
1413 
1414 #if !defined(DEBUG)
1415 skip_scan:
1416 #endif /* !defined(DEBUG) */
1417 	if (!wasclean && !async) {
1418 		s = splbio();
1419 		/*
1420 		 * XXX - we want simple_unlock(&global_v_numoutput_slock);
1421 		 *	 but the slot in ltsleep() is taken!
1422 		 * XXX - try to recover from missed wakeups with a timeout..
1423 		 *	 must think of something better.
1424 		 */
1425 		while (vp->v_numoutput != 0) {
1426 			vp->v_flag |= VBWAIT;
1427 			UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1428 			    "genput2", hz);
1429 			simple_lock(slock);
1430 		}
1431 		splx(s);
1432 	}
1433 	simple_unlock(&uobj->vmobjlock);
1434 	return (error);
1435 }
1436 
1437 int
1438 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1439 {
1440 	int s, error, run;
1441 	int fs_bshift, dev_bshift;
1442 	vaddr_t kva;
1443 	off_t eof, offset, startoffset;
1444 	size_t bytes, iobytes, skipbytes;
1445 	daddr_t lbn, blkno;
1446 	struct vm_page *pg;
1447 	struct buf *mbp, *bp;
1448 	struct vnode *devvp;
1449 	boolean_t async = (flags & PGO_SYNCIO) == 0;
1450 	UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
1451 
1452 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1453 	    vp, pgs, npages, flags);
1454 
1455 	GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_WRITE);
1456 	if (vp->v_type == VREG) {
1457 		fs_bshift = vp->v_mount->mnt_fs_bshift;
1458 		dev_bshift = vp->v_mount->mnt_dev_bshift;
1459 	} else {
1460 		fs_bshift = DEV_BSHIFT;
1461 		dev_bshift = DEV_BSHIFT;
1462 	}
1463 	error = 0;
1464 	pg = pgs[0];
1465 	startoffset = pg->offset;
1466 	bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1467 	skipbytes = 0;
1468 	KASSERT(bytes != 0);
1469 
1470 	kva = uvm_pagermapin(pgs, npages,
1471 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1472 
1473 	s = splbio();
1474 	simple_lock(&global_v_numoutput_slock);
1475 	vp->v_numoutput += 2;
1476 	simple_unlock(&global_v_numoutput_slock);
1477 	mbp = pool_get(&bufpool, PR_WAITOK);
1478 	BUF_INIT(mbp);
1479 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1480 	    vp, mbp, vp->v_numoutput, bytes);
1481 	splx(s);
1482 	mbp->b_bufsize = npages << PAGE_SHIFT;
1483 	mbp->b_data = (void *)kva;
1484 	mbp->b_resid = mbp->b_bcount = bytes;
1485 	mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
1486 	mbp->b_iodone = uvm_aio_biodone;
1487 	mbp->b_vp = vp;
1488 
1489 	bp = NULL;
1490 	for (offset = startoffset;
1491 	    bytes > 0;
1492 	    offset += iobytes, bytes -= iobytes) {
1493 		lbn = offset >> fs_bshift;
1494 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1495 		if (error) {
1496 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1497 			skipbytes += bytes;
1498 			bytes = 0;
1499 			break;
1500 		}
1501 
1502 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1503 		    bytes);
1504 		if (blkno == (daddr_t)-1) {
1505 			skipbytes += iobytes;
1506 			continue;
1507 		}
1508 
1509 		/* if it's really one i/o, don't make a second buf */
1510 		if (offset == startoffset && iobytes == bytes) {
1511 			bp = mbp;
1512 		} else {
1513 			s = splbio();
1514 			V_INCR_NUMOUTPUT(vp);
1515 			bp = pool_get(&bufpool, PR_WAITOK);
1516 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1517 			    vp, bp, vp->v_numoutput, 0);
1518 			splx(s);
1519 			BUF_INIT(bp);
1520 			bp->b_data = (char *)kva +
1521 			    (vaddr_t)(offset - pg->offset);
1522 			bp->b_resid = bp->b_bcount = iobytes;
1523 			bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
1524 			bp->b_iodone = uvm_aio_biodone1;
1525 			bp->b_vp = vp;
1526 		}
1527 		bp->b_lblkno = 0;
1528 		bp->b_private = mbp;
1529 
1530 		/* adjust physical blkno for partial blocks */
1531 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1532 		    dev_bshift);
1533 		UVMHIST_LOG(ubchist,
1534 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1535 		    vp, offset, bp->b_bcount, bp->b_blkno);
1536 		if (curproc == uvm.pagedaemon_proc)
1537 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1538 		else if (async)
1539 			BIO_SETPRIO(bp, BPRIO_TIMENONCRITICAL);
1540 		else
1541 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1542 
1543 		VOP_STRATEGY(devvp, bp);
1544 	}
1545 	if (skipbytes) {
1546 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1547 		s = splbio();
1548 		if (error) {
1549 			mbp->b_flags |= B_ERROR;
1550 			mbp->b_error = error;
1551 		}
1552 		mbp->b_resid -= skipbytes;
1553 		if (mbp->b_resid == 0) {
1554 			biodone(mbp);
1555 		}
1556 		splx(s);
1557 	}
1558 	if (async) {
1559 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1560 		return (0);
1561 	}
1562 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1563 	error = biowait(mbp);
1564 	uvm_aio_aiodone(mbp);
1565 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1566 	return (error);
1567 }
1568 
1569 /*
1570  * VOP_PUTPAGES() for vnodes which never have pages.
1571  */
1572 
1573 int
1574 genfs_null_putpages(void *v)
1575 {
1576 	struct vop_putpages_args /* {
1577 		struct vnode *a_vp;
1578 		voff_t a_offlo;
1579 		voff_t a_offhi;
1580 		int a_flags;
1581 	} */ *ap = v;
1582 	struct vnode *vp = ap->a_vp;
1583 
1584 	KASSERT(vp->v_uobj.uo_npages == 0);
1585 	simple_unlock(&vp->v_interlock);
1586 	return (0);
1587 }
1588 
1589 void
1590 genfs_node_init(struct vnode *vp, const struct genfs_ops *ops)
1591 {
1592 	struct genfs_node *gp = VTOG(vp);
1593 
1594 	lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1595 	gp->g_op = ops;
1596 }
1597 
1598 void
1599 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1600 {
1601 	int bsize;
1602 
1603 	bsize = 1 << vp->v_mount->mnt_fs_bshift;
1604 	*eobp = (size + bsize - 1) & ~(bsize - 1);
1605 }
1606 
1607 int
1608 genfs_compat_getpages(void *v)
1609 {
1610 	struct vop_getpages_args /* {
1611 		struct vnode *a_vp;
1612 		voff_t a_offset;
1613 		struct vm_page **a_m;
1614 		int *a_count;
1615 		int a_centeridx;
1616 		vm_prot_t a_access_type;
1617 		int a_advice;
1618 		int a_flags;
1619 	} */ *ap = v;
1620 
1621 	off_t origoffset;
1622 	struct vnode *vp = ap->a_vp;
1623 	struct uvm_object *uobj = &vp->v_uobj;
1624 	struct vm_page *pg, **pgs;
1625 	vaddr_t kva;
1626 	int i, error, orignpages, npages;
1627 	struct iovec iov;
1628 	struct uio uio;
1629 	struct ucred *cred = curproc->p_ucred;
1630 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1631 
1632 	error = 0;
1633 	origoffset = ap->a_offset;
1634 	orignpages = *ap->a_count;
1635 	pgs = ap->a_m;
1636 
1637 	if (write && (vp->v_flag & VONWORKLST) == 0) {
1638 		vn_syncer_add_to_worklist(vp, filedelay);
1639 	}
1640 	if (ap->a_flags & PGO_LOCKED) {
1641 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1642 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1643 
1644 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1645 	}
1646 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1647 		simple_unlock(&uobj->vmobjlock);
1648 		return (EINVAL);
1649 	}
1650 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
1651 		simple_unlock(&uobj->vmobjlock);
1652 		return 0;
1653 	}
1654 	npages = orignpages;
1655 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1656 	simple_unlock(&uobj->vmobjlock);
1657 	kva = uvm_pagermapin(pgs, npages,
1658 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1659 	for (i = 0; i < npages; i++) {
1660 		pg = pgs[i];
1661 		if ((pg->flags & PG_FAKE) == 0) {
1662 			continue;
1663 		}
1664 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1665 		iov.iov_len = PAGE_SIZE;
1666 		uio.uio_iov = &iov;
1667 		uio.uio_iovcnt = 1;
1668 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1669 		uio.uio_segflg = UIO_SYSSPACE;
1670 		uio.uio_rw = UIO_READ;
1671 		uio.uio_resid = PAGE_SIZE;
1672 		uio.uio_lwp = NULL;
1673 		/* XXX vn_lock */
1674 		error = VOP_READ(vp, &uio, 0, cred);
1675 		if (error) {
1676 			break;
1677 		}
1678 		if (uio.uio_resid) {
1679 			memset(iov.iov_base, 0, uio.uio_resid);
1680 		}
1681 	}
1682 	uvm_pagermapout(kva, npages);
1683 	simple_lock(&uobj->vmobjlock);
1684 	uvm_lock_pageq();
1685 	for (i = 0; i < npages; i++) {
1686 		pg = pgs[i];
1687 		if (error && (pg->flags & PG_FAKE) != 0) {
1688 			pg->flags |= PG_RELEASED;
1689 		} else {
1690 			pmap_clear_modify(pg);
1691 			uvm_pageactivate(pg);
1692 		}
1693 	}
1694 	if (error) {
1695 		uvm_page_unbusy(pgs, npages);
1696 	}
1697 	uvm_unlock_pageq();
1698 	simple_unlock(&uobj->vmobjlock);
1699 	return (error);
1700 }
1701 
1702 int
1703 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1704     int flags)
1705 {
1706 	off_t offset;
1707 	struct iovec iov;
1708 	struct uio uio;
1709 	struct ucred *cred = curproc->p_ucred;
1710 	struct buf *bp;
1711 	vaddr_t kva;
1712 	int s, error;
1713 
1714 	offset = pgs[0]->offset;
1715 	kva = uvm_pagermapin(pgs, npages,
1716 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1717 
1718 	iov.iov_base = (void *)kva;
1719 	iov.iov_len = npages << PAGE_SHIFT;
1720 	uio.uio_iov = &iov;
1721 	uio.uio_iovcnt = 1;
1722 	uio.uio_offset = offset;
1723 	uio.uio_segflg = UIO_SYSSPACE;
1724 	uio.uio_rw = UIO_WRITE;
1725 	uio.uio_resid = npages << PAGE_SHIFT;
1726 	uio.uio_lwp = NULL;
1727 	/* XXX vn_lock */
1728 	error = VOP_WRITE(vp, &uio, 0, cred);
1729 
1730 	s = splbio();
1731 	V_INCR_NUMOUTPUT(vp);
1732 	bp = pool_get(&bufpool, PR_WAITOK);
1733 	splx(s);
1734 
1735 	BUF_INIT(bp);
1736 	bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1737 	bp->b_vp = vp;
1738 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1739 	bp->b_data = (char *)kva;
1740 	bp->b_bcount = npages << PAGE_SHIFT;
1741 	bp->b_bufsize = npages << PAGE_SHIFT;
1742 	bp->b_resid = 0;
1743 	if (error) {
1744 		bp->b_flags |= B_ERROR;
1745 		bp->b_error = error;
1746 	}
1747 	uvm_aio_aiodone(bp);
1748 	return (error);
1749 }
1750 
1751 static void
1752 filt_genfsdetach(struct knote *kn)
1753 {
1754 	struct vnode *vp = (struct vnode *)kn->kn_hook;
1755 
1756 	/* XXXLUKEM lock the struct? */
1757 	SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
1758 }
1759 
1760 static int
1761 filt_genfsread(struct knote *kn, long hint)
1762 {
1763 	struct vnode *vp = (struct vnode *)kn->kn_hook;
1764 
1765 	/*
1766 	 * filesystem is gone, so set the EOF flag and schedule
1767 	 * the knote for deletion.
1768 	 */
1769 	if (hint == NOTE_REVOKE) {
1770 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1771 		return (1);
1772 	}
1773 
1774 	/* XXXLUKEM lock the struct? */
1775 	kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
1776         return (kn->kn_data != 0);
1777 }
1778 
1779 static int
1780 filt_genfsvnode(struct knote *kn, long hint)
1781 {
1782 
1783 	if (kn->kn_sfflags & hint)
1784 		kn->kn_fflags |= hint;
1785 	if (hint == NOTE_REVOKE) {
1786 		kn->kn_flags |= EV_EOF;
1787 		return (1);
1788 	}
1789 	return (kn->kn_fflags != 0);
1790 }
1791 
1792 static const struct filterops genfsread_filtops =
1793 	{ 1, NULL, filt_genfsdetach, filt_genfsread };
1794 static const struct filterops genfsvnode_filtops =
1795 	{ 1, NULL, filt_genfsdetach, filt_genfsvnode };
1796 
1797 int
1798 genfs_kqfilter(void *v)
1799 {
1800 	struct vop_kqfilter_args /* {
1801 		struct vnode	*a_vp;
1802 		struct knote	*a_kn;
1803 	} */ *ap = v;
1804 	struct vnode *vp;
1805 	struct knote *kn;
1806 
1807 	vp = ap->a_vp;
1808 	kn = ap->a_kn;
1809 	switch (kn->kn_filter) {
1810 	case EVFILT_READ:
1811 		kn->kn_fop = &genfsread_filtops;
1812 		break;
1813 	case EVFILT_VNODE:
1814 		kn->kn_fop = &genfsvnode_filtops;
1815 		break;
1816 	default:
1817 		return (1);
1818 	}
1819 
1820 	kn->kn_hook = vp;
1821 
1822 	/* XXXLUKEM lock the struct? */
1823 	SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
1824 
1825 	return (0);
1826 }
1827