1 /* $NetBSD: genfs_vnops.c,v 1.64 2002/05/29 11:04:40 enami Exp $ */ 2 3 /* 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by the University of 18 * California, Berkeley and its contributors. 19 * 4. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 */ 36 37 #include <sys/cdefs.h> 38 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.64 2002/05/29 11:04:40 enami Exp $"); 39 40 #include "opt_nfsserver.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/proc.h> 45 #include <sys/kernel.h> 46 #include <sys/mount.h> 47 #include <sys/namei.h> 48 #include <sys/vnode.h> 49 #include <sys/fcntl.h> 50 #include <sys/malloc.h> 51 #include <sys/poll.h> 52 #include <sys/mman.h> 53 54 #include <miscfs/genfs/genfs.h> 55 #include <miscfs/genfs/genfs_node.h> 56 #include <miscfs/specfs/specdev.h> 57 58 #include <uvm/uvm.h> 59 #include <uvm/uvm_pager.h> 60 61 #ifdef NFSSERVER 62 #include <nfs/rpcv2.h> 63 #include <nfs/nfsproto.h> 64 #include <nfs/nfs.h> 65 #include <nfs/nqnfs.h> 66 #include <nfs/nfs_var.h> 67 #endif 68 69 static __inline void genfs_rel_pages(struct vm_page **, int); 70 71 #define MAX_READ_AHEAD 16 /* XXXUBC 16 */ 72 int genfs_rapages = MAX_READ_AHEAD; /* # of pages in each chunk of readahead */ 73 int genfs_racount = 2; /* # of page chunks to readahead */ 74 int genfs_raskip = 2; /* # of busy page chunks allowed to skip */ 75 76 int 77 genfs_poll(void *v) 78 { 79 struct vop_poll_args /* { 80 struct vnode *a_vp; 81 int a_events; 82 struct proc *a_p; 83 } */ *ap = v; 84 85 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM)); 86 } 87 88 int 89 genfs_fsync(void *v) 90 { 91 struct vop_fsync_args /* { 92 struct vnode *a_vp; 93 struct ucred *a_cred; 94 int a_flags; 95 off_t offlo; 96 off_t offhi; 97 struct proc *a_p; 98 } */ *ap = v; 99 struct vnode *vp = ap->a_vp; 100 int wait; 101 102 wait = (ap->a_flags & FSYNC_WAIT) != 0; 103 vflushbuf(vp, wait); 104 if ((ap->a_flags & FSYNC_DATAONLY) != 0) 105 return (0); 106 else 107 return (VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0)); 108 } 109 110 int 111 genfs_seek(void *v) 112 { 113 struct vop_seek_args /* { 114 struct vnode *a_vp; 115 off_t a_oldoff; 116 off_t a_newoff; 117 struct ucred *a_ucred; 118 } */ *ap = v; 119 120 if (ap->a_newoff < 0) 121 return (EINVAL); 122 123 return (0); 124 } 125 126 int 127 genfs_abortop(void *v) 128 { 129 struct vop_abortop_args /* { 130 struct vnode *a_dvp; 131 struct componentname *a_cnp; 132 } */ *ap = v; 133 134 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF) 135 PNBUF_PUT(ap->a_cnp->cn_pnbuf); 136 return (0); 137 } 138 139 int 140 genfs_fcntl(void *v) 141 { 142 struct vop_fcntl_args /* { 143 struct vnode *a_vp; 144 u_int a_command; 145 caddr_t a_data; 146 int a_fflag; 147 struct ucred *a_cred; 148 struct proc *a_p; 149 } */ *ap = v; 150 151 if (ap->a_command == F_SETFL) 152 return (0); 153 else 154 return (EOPNOTSUPP); 155 } 156 157 /*ARGSUSED*/ 158 int 159 genfs_badop(void *v) 160 { 161 162 panic("genfs: bad op"); 163 } 164 165 /*ARGSUSED*/ 166 int 167 genfs_nullop(void *v) 168 { 169 170 return (0); 171 } 172 173 /*ARGSUSED*/ 174 int 175 genfs_einval(void *v) 176 { 177 178 return (EINVAL); 179 } 180 181 /*ARGSUSED*/ 182 int 183 genfs_eopnotsupp(void *v) 184 { 185 186 return (EOPNOTSUPP); 187 } 188 189 /* 190 * Called when an fs doesn't support a particular vop but the vop needs to 191 * vrele, vput, or vunlock passed in vnodes. 192 */ 193 int 194 genfs_eopnotsupp_rele(void *v) 195 { 196 struct vop_generic_args /* 197 struct vnodeop_desc *a_desc; 198 / * other random data follows, presumably * / 199 } */ *ap = v; 200 struct vnodeop_desc *desc = ap->a_desc; 201 struct vnode *vp; 202 int flags, i, j, offset; 203 204 flags = desc->vdesc_flags; 205 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) { 206 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET) 207 break; /* stop at end of list */ 208 if ((j = flags & VDESC_VP0_WILLPUT)) { 209 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap); 210 switch (j) { 211 case VDESC_VP0_WILLPUT: 212 vput(vp); 213 break; 214 case VDESC_VP0_WILLUNLOCK: 215 VOP_UNLOCK(vp, 0); 216 break; 217 case VDESC_VP0_WILLRELE: 218 vrele(vp); 219 break; 220 } 221 } 222 } 223 224 return (EOPNOTSUPP); 225 } 226 227 /*ARGSUSED*/ 228 int 229 genfs_ebadf(void *v) 230 { 231 232 return (EBADF); 233 } 234 235 /* ARGSUSED */ 236 int 237 genfs_enoioctl(void *v) 238 { 239 240 return (EPASSTHROUGH); 241 } 242 243 244 /* 245 * Eliminate all activity associated with the requested vnode 246 * and with all vnodes aliased to the requested vnode. 247 */ 248 int 249 genfs_revoke(void *v) 250 { 251 struct vop_revoke_args /* { 252 struct vnode *a_vp; 253 int a_flags; 254 } */ *ap = v; 255 struct vnode *vp, *vq; 256 struct proc *p = curproc; /* XXX */ 257 258 #ifdef DIAGNOSTIC 259 if ((ap->a_flags & REVOKEALL) == 0) 260 panic("genfs_revoke: not revokeall"); 261 #endif 262 263 vp = ap->a_vp; 264 simple_lock(&vp->v_interlock); 265 266 if (vp->v_flag & VALIASED) { 267 /* 268 * If a vgone (or vclean) is already in progress, 269 * wait until it is done and return. 270 */ 271 if (vp->v_flag & VXLOCK) { 272 vp->v_flag |= VXWANT; 273 simple_unlock(&vp->v_interlock); 274 tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0); 275 return (0); 276 } 277 /* 278 * Ensure that vp will not be vgone'd while we 279 * are eliminating its aliases. 280 */ 281 vp->v_flag |= VXLOCK; 282 simple_unlock(&vp->v_interlock); 283 while (vp->v_flag & VALIASED) { 284 simple_lock(&spechash_slock); 285 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) { 286 if (vq->v_rdev != vp->v_rdev || 287 vq->v_type != vp->v_type || vp == vq) 288 continue; 289 simple_unlock(&spechash_slock); 290 vgone(vq); 291 break; 292 } 293 if (vq == NULLVP) 294 simple_unlock(&spechash_slock); 295 } 296 /* 297 * Remove the lock so that vgone below will 298 * really eliminate the vnode after which time 299 * vgone will awaken any sleepers. 300 */ 301 simple_lock(&vp->v_interlock); 302 vp->v_flag &= ~VXLOCK; 303 } 304 vgonel(vp, p); 305 return (0); 306 } 307 308 /* 309 * Lock the node. 310 */ 311 int 312 genfs_lock(void *v) 313 { 314 struct vop_lock_args /* { 315 struct vnode *a_vp; 316 int a_flags; 317 } */ *ap = v; 318 struct vnode *vp = ap->a_vp; 319 320 return (lockmgr(&vp->v_lock, ap->a_flags, &vp->v_interlock)); 321 } 322 323 /* 324 * Unlock the node. 325 */ 326 int 327 genfs_unlock(void *v) 328 { 329 struct vop_unlock_args /* { 330 struct vnode *a_vp; 331 int a_flags; 332 } */ *ap = v; 333 struct vnode *vp = ap->a_vp; 334 335 return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE, 336 &vp->v_interlock)); 337 } 338 339 /* 340 * Return whether or not the node is locked. 341 */ 342 int 343 genfs_islocked(void *v) 344 { 345 struct vop_islocked_args /* { 346 struct vnode *a_vp; 347 } */ *ap = v; 348 struct vnode *vp = ap->a_vp; 349 350 return (lockstatus(&vp->v_lock)); 351 } 352 353 /* 354 * Stubs to use when there is no locking to be done on the underlying object. 355 */ 356 int 357 genfs_nolock(void *v) 358 { 359 struct vop_lock_args /* { 360 struct vnode *a_vp; 361 int a_flags; 362 struct proc *a_p; 363 } */ *ap = v; 364 365 /* 366 * Since we are not using the lock manager, we must clear 367 * the interlock here. 368 */ 369 if (ap->a_flags & LK_INTERLOCK) 370 simple_unlock(&ap->a_vp->v_interlock); 371 return (0); 372 } 373 374 int 375 genfs_nounlock(void *v) 376 { 377 378 return (0); 379 } 380 381 int 382 genfs_noislocked(void *v) 383 { 384 385 return (0); 386 } 387 388 /* 389 * Local lease check for NFS servers. Just set up args and let 390 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel, 391 * this is a null operation. 392 */ 393 int 394 genfs_lease_check(void *v) 395 { 396 #ifdef NFSSERVER 397 struct vop_lease_args /* { 398 struct vnode *a_vp; 399 struct proc *a_p; 400 struct ucred *a_cred; 401 int a_flag; 402 } */ *ap = v; 403 u_int32_t duration = 0; 404 int cache; 405 u_quad_t frev; 406 407 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag, 408 NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred); 409 return (0); 410 #else 411 return (0); 412 #endif /* NFSSERVER */ 413 } 414 415 int 416 genfs_mmap(void *v) 417 { 418 419 return (0); 420 } 421 422 static __inline void 423 genfs_rel_pages(struct vm_page **pgs, int npages) 424 { 425 int i; 426 427 for (i = 0; i < npages; i++) { 428 struct vm_page *pg = pgs[i]; 429 430 if (pg == NULL) 431 continue; 432 if (pg->flags & PG_FAKE) { 433 pg->flags |= PG_RELEASED; 434 } 435 } 436 uvm_lock_pageq(); 437 uvm_page_unbusy(pgs, npages); 438 uvm_unlock_pageq(); 439 } 440 441 /* 442 * generic VM getpages routine. 443 * Return PG_BUSY pages for the given range, 444 * reading from backing store if necessary. 445 */ 446 447 int 448 genfs_getpages(void *v) 449 { 450 struct vop_getpages_args /* { 451 struct vnode *a_vp; 452 voff_t a_offset; 453 struct vm_page **a_m; 454 int *a_count; 455 int a_centeridx; 456 vm_prot_t a_access_type; 457 int a_advice; 458 int a_flags; 459 } */ *ap = v; 460 461 off_t newsize, diskeof, memeof; 462 off_t offset, origoffset, startoffset, endoffset, raoffset; 463 daddr_t lbn, blkno; 464 int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount; 465 int fs_bshift, fs_bsize, dev_bshift; 466 int flags = ap->a_flags; 467 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes; 468 vaddr_t kva; 469 struct buf *bp, *mbp; 470 struct vnode *vp = ap->a_vp; 471 struct vnode *devvp; 472 struct genfs_node *gp = VTOG(vp); 473 struct uvm_object *uobj = &vp->v_uobj; 474 struct vm_page *pg, *pgs[MAX_READ_AHEAD]; 475 struct ucred *cred = curproc->p_ucred; /* XXXUBC curproc */ 476 boolean_t async = (flags & PGO_SYNCIO) == 0; 477 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0; 478 boolean_t sawhole = FALSE; 479 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0; 480 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist); 481 482 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d", 483 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count); 484 485 /* XXXUBC temp limit */ 486 if (*ap->a_count > MAX_READ_AHEAD) { 487 panic("genfs_getpages: too many pages"); 488 } 489 490 error = 0; 491 origoffset = ap->a_offset; 492 orignpages = *ap->a_count; 493 GOP_SIZE(vp, vp->v_size, &diskeof); 494 if (flags & PGO_PASTEOF) { 495 newsize = MAX(vp->v_size, 496 origoffset + (orignpages << PAGE_SHIFT)); 497 GOP_SIZE(vp, newsize, &memeof); 498 } else { 499 memeof = diskeof; 500 } 501 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages); 502 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0); 503 KASSERT(orignpages > 0); 504 505 /* 506 * Bounds-check the request. 507 */ 508 509 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) { 510 if ((flags & PGO_LOCKED) == 0) { 511 simple_unlock(&uobj->vmobjlock); 512 } 513 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x", 514 origoffset, *ap->a_count, memeof,0); 515 return (EINVAL); 516 } 517 518 /* 519 * For PGO_LOCKED requests, just return whatever's in memory. 520 */ 521 522 if (flags & PGO_LOCKED) { 523 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, 524 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0)); 525 526 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0); 527 } 528 529 /* vnode is VOP_LOCKed, uobj is locked */ 530 531 if (write && (vp->v_flag & VONWORKLST) == 0) { 532 vn_syncer_add_to_worklist(vp, filedelay); 533 } 534 535 /* 536 * find the requested pages and make some simple checks. 537 * leave space in the page array for a whole block. 538 */ 539 540 if (vp->v_type == VREG) { 541 fs_bshift = vp->v_mount->mnt_fs_bshift; 542 dev_bshift = vp->v_mount->mnt_dev_bshift; 543 } else { 544 fs_bshift = DEV_BSHIFT; 545 dev_bshift = DEV_BSHIFT; 546 } 547 fs_bsize = 1 << fs_bshift; 548 549 orignpages = MIN(orignpages, 550 round_page(memeof - origoffset) >> PAGE_SHIFT); 551 npages = orignpages; 552 startoffset = origoffset & ~(fs_bsize - 1); 553 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) + 554 fs_bsize - 1) & ~(fs_bsize - 1)); 555 endoffset = MIN(endoffset, round_page(memeof)); 556 ridx = (origoffset - startoffset) >> PAGE_SHIFT; 557 558 memset(pgs, 0, sizeof(pgs)); 559 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld", 560 ridx, npages, startoffset, endoffset); 561 KASSERT(&pgs[ridx + npages] <= &pgs[MAX_READ_AHEAD]); 562 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], 563 async ? UFP_NOWAIT : UFP_ALL) != orignpages) { 564 KASSERT(async != 0); 565 genfs_rel_pages(&pgs[ridx], orignpages); 566 simple_unlock(&uobj->vmobjlock); 567 return (EBUSY); 568 } 569 570 /* 571 * if the pages are already resident, just return them. 572 */ 573 574 for (i = 0; i < npages; i++) { 575 struct vm_page *pg = pgs[ridx + i]; 576 577 if ((pg->flags & PG_FAKE) || 578 (write && (pg->flags & PG_RDONLY))) { 579 break; 580 } 581 } 582 if (i == npages) { 583 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0); 584 raoffset = origoffset + (orignpages << PAGE_SHIFT); 585 npages += ridx; 586 goto raout; 587 } 588 589 /* 590 * if PGO_OVERWRITE is set, don't bother reading the pages. 591 */ 592 593 if (flags & PGO_OVERWRITE) { 594 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0); 595 596 for (i = 0; i < npages; i++) { 597 struct vm_page *pg = pgs[ridx + i]; 598 599 pg->flags &= ~(PG_RDONLY|PG_CLEAN); 600 } 601 npages += ridx; 602 goto out; 603 } 604 605 /* 606 * the page wasn't resident and we're not overwriting, 607 * so we're going to have to do some i/o. 608 * find any additional pages needed to cover the expanded range. 609 */ 610 611 npages = (endoffset - startoffset) >> PAGE_SHIFT; 612 if (startoffset != origoffset || npages != orignpages) { 613 614 /* 615 * we need to avoid deadlocks caused by locking 616 * additional pages at lower offsets than pages we 617 * already have locked. unlock them all and start over. 618 */ 619 620 genfs_rel_pages(&pgs[ridx], orignpages); 621 memset(pgs, 0, sizeof(pgs)); 622 623 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x", 624 startoffset, endoffset, 0,0); 625 npgs = npages; 626 if (uvn_findpages(uobj, startoffset, &npgs, pgs, 627 async ? UFP_NOWAIT : UFP_ALL) != npages) { 628 KASSERT(async != 0); 629 genfs_rel_pages(pgs, npages); 630 simple_unlock(&uobj->vmobjlock); 631 return (EBUSY); 632 } 633 } 634 simple_unlock(&uobj->vmobjlock); 635 636 /* 637 * read the desired page(s). 638 */ 639 640 totalbytes = npages << PAGE_SHIFT; 641 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0)); 642 tailbytes = totalbytes - bytes; 643 skipbytes = 0; 644 645 kva = uvm_pagermapin(pgs, npages, 646 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK); 647 648 s = splbio(); 649 mbp = pool_get(&bufpool, PR_WAITOK); 650 splx(s); 651 mbp->b_bufsize = totalbytes; 652 mbp->b_data = (void *)kva; 653 mbp->b_resid = mbp->b_bcount = bytes; 654 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL : 0); 655 mbp->b_iodone = (async ? uvm_aio_biodone : 0); 656 mbp->b_vp = vp; 657 LIST_INIT(&mbp->b_dep); 658 659 /* 660 * if EOF is in the middle of the range, zero the part past EOF. 661 * if the page including EOF is not PG_FAKE, skip over it since 662 * in that case it has valid data that we need to preserve. 663 */ 664 665 if (tailbytes > 0) { 666 size_t tailstart = bytes; 667 668 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) { 669 tailstart = round_page(tailstart); 670 tailbytes -= tailstart - bytes; 671 } 672 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x", 673 kva, tailstart, tailbytes,0); 674 memset((void *)(kva + tailstart), 0, tailbytes); 675 } 676 677 /* 678 * now loop over the pages, reading as needed. 679 */ 680 681 if (write) { 682 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL); 683 } else { 684 lockmgr(&gp->g_glock, LK_SHARED, NULL); 685 } 686 687 bp = NULL; 688 for (offset = startoffset; 689 bytes > 0; 690 offset += iobytes, bytes -= iobytes) { 691 692 /* 693 * skip pages which don't need to be read. 694 */ 695 696 pidx = (offset - startoffset) >> PAGE_SHIFT; 697 while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) { 698 size_t b; 699 700 KASSERT((offset & (PAGE_SIZE - 1)) == 0); 701 b = MIN(PAGE_SIZE, bytes); 702 offset += b; 703 bytes -= b; 704 skipbytes += b; 705 pidx++; 706 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x", 707 offset, 0,0,0); 708 if (bytes == 0) { 709 goto loopdone; 710 } 711 } 712 713 /* 714 * bmap the file to find out the blkno to read from and 715 * how much we can read in one i/o. if bmap returns an error, 716 * skip the rest of the top-level i/o. 717 */ 718 719 lbn = offset >> fs_bshift; 720 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run); 721 if (error) { 722 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n", 723 lbn, error,0,0); 724 skipbytes += bytes; 725 goto loopdone; 726 } 727 728 /* 729 * see how many pages can be read with this i/o. 730 * reduce the i/o size if necessary to avoid 731 * overwriting pages with valid data. 732 */ 733 734 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset, 735 bytes); 736 if (offset + iobytes > round_page(offset)) { 737 pcount = 1; 738 while (pidx + pcount < npages && 739 pgs[pidx + pcount]->flags & PG_FAKE) { 740 pcount++; 741 } 742 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) - 743 (offset - trunc_page(offset))); 744 } 745 746 /* 747 * if this block isn't allocated, zero it instead of 748 * reading it. if this is a read access, mark the 749 * pages we zeroed PG_RDONLY. 750 */ 751 752 if (blkno < 0) { 753 int holepages = (round_page(offset + iobytes) - 754 trunc_page(offset)) >> PAGE_SHIFT; 755 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0); 756 757 sawhole = TRUE; 758 memset((char *)kva + (offset - startoffset), 0, 759 iobytes); 760 skipbytes += iobytes; 761 762 for (i = 0; i < holepages; i++) { 763 if (write) { 764 pgs[pidx + i]->flags &= ~PG_CLEAN; 765 } else { 766 pgs[pidx + i]->flags |= PG_RDONLY; 767 } 768 } 769 continue; 770 } 771 772 /* 773 * allocate a sub-buf for this piece of the i/o 774 * (or just use mbp if there's only 1 piece), 775 * and start it going. 776 */ 777 778 if (offset == startoffset && iobytes == bytes) { 779 bp = mbp; 780 } else { 781 s = splbio(); 782 bp = pool_get(&bufpool, PR_WAITOK); 783 splx(s); 784 bp->b_data = (char *)kva + offset - startoffset; 785 bp->b_resid = bp->b_bcount = iobytes; 786 bp->b_flags = B_BUSY|B_READ|B_CALL; 787 bp->b_iodone = uvm_aio_biodone1; 788 bp->b_vp = vp; 789 bp->b_proc = NULL; 790 LIST_INIT(&bp->b_dep); 791 } 792 bp->b_lblkno = 0; 793 bp->b_private = mbp; 794 if (devvp->v_type == VBLK) { 795 bp->b_dev = devvp->v_rdev; 796 } 797 798 /* adjust physical blkno for partial blocks */ 799 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >> 800 dev_bshift); 801 802 UVMHIST_LOG(ubchist, 803 "bp %p offset 0x%x bcount 0x%x blkno 0x%x", 804 bp, offset, iobytes, bp->b_blkno); 805 806 VOP_STRATEGY(bp); 807 } 808 809 loopdone: 810 if (skipbytes) { 811 s = splbio(); 812 if (error) { 813 mbp->b_flags |= B_ERROR; 814 mbp->b_error = error; 815 } 816 mbp->b_resid -= skipbytes; 817 if (mbp->b_resid == 0) { 818 biodone(mbp); 819 } 820 splx(s); 821 } 822 823 if (async) { 824 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0); 825 lockmgr(&gp->g_glock, LK_RELEASE, NULL); 826 return (0); 827 } 828 if (bp != NULL) { 829 error = biowait(mbp); 830 } 831 s = splbio(); 832 pool_put(&bufpool, mbp); 833 splx(s); 834 uvm_pagermapout(kva, npages); 835 raoffset = startoffset + totalbytes; 836 837 /* 838 * if this we encountered a hole then we have to do a little more work. 839 * for read faults, we marked the page PG_RDONLY so that future 840 * write accesses to the page will fault again. 841 * for write faults, we must make sure that the backing store for 842 * the page is completely allocated while the pages are locked. 843 */ 844 845 if (!error && sawhole && write) { 846 for (i = 0; i < npages; i++) { 847 if (pgs[i] == NULL) { 848 continue; 849 } 850 pgs[i]->flags &= ~PG_CLEAN; 851 UVMHIST_LOG(ubchist, "mark dirty pg %p", pgs[i],0,0,0); 852 } 853 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0, 854 cred); 855 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d", 856 startoffset, npages << PAGE_SHIFT, error,0); 857 } 858 lockmgr(&gp->g_glock, LK_RELEASE, NULL); 859 simple_lock(&uobj->vmobjlock); 860 861 /* 862 * see if we want to start any readahead. 863 * XXXUBC for now, just read the next 128k on 64k boundaries. 864 * this is pretty nonsensical, but it is 50% faster than reading 865 * just the next 64k. 866 */ 867 868 raout: 869 if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 && 870 PAGE_SHIFT <= 16) { 871 off_t rasize; 872 int rapages, err, i, skipped; 873 874 /* XXXUBC temp limit, from above */ 875 rapages = MIN(MIN(1 << (16 - PAGE_SHIFT), MAX_READ_AHEAD), 876 genfs_rapages); 877 rasize = rapages << PAGE_SHIFT; 878 for (i = skipped = 0; i < genfs_racount; i++) { 879 err = VOP_GETPAGES(vp, raoffset, NULL, &rapages, 0, 880 VM_PROT_READ, 0, 0); 881 simple_lock(&uobj->vmobjlock); 882 if (err) { 883 if (err != EBUSY || 884 skipped++ == genfs_raskip) 885 break; 886 } 887 raoffset += rasize; 888 rapages = rasize >> PAGE_SHIFT; 889 } 890 } 891 892 /* 893 * we're almost done! release the pages... 894 * for errors, we free the pages. 895 * otherwise we activate them and mark them as valid and clean. 896 * also, unbusy pages that were not actually requested. 897 */ 898 899 if (error) { 900 for (i = 0; i < npages; i++) { 901 if (pgs[i] == NULL) { 902 continue; 903 } 904 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x", 905 pgs[i], pgs[i]->flags, 0,0); 906 if (pgs[i]->flags & PG_FAKE) { 907 pgs[i]->flags |= PG_RELEASED; 908 } 909 } 910 uvm_lock_pageq(); 911 uvm_page_unbusy(pgs, npages); 912 uvm_unlock_pageq(); 913 simple_unlock(&uobj->vmobjlock); 914 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0); 915 return (error); 916 } 917 918 out: 919 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0); 920 uvm_lock_pageq(); 921 for (i = 0; i < npages; i++) { 922 pg = pgs[i]; 923 if (pg == NULL) { 924 continue; 925 } 926 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x", 927 pg, pg->flags, 0,0); 928 if (pg->flags & PG_FAKE && !overwrite) { 929 pg->flags &= ~(PG_FAKE); 930 pmap_clear_modify(pgs[i]); 931 } 932 if (write) { 933 pg->flags &= ~(PG_RDONLY); 934 } 935 if (i < ridx || i >= ridx + orignpages || async) { 936 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x", 937 pg, pg->offset,0,0); 938 if (pg->flags & PG_WANTED) { 939 wakeup(pg); 940 } 941 if (pg->flags & PG_FAKE) { 942 KASSERT(overwrite); 943 uvm_pagezero(pg); 944 } 945 if (pg->flags & PG_RELEASED) { 946 uvm_pagefree(pg); 947 continue; 948 } 949 uvm_pageactivate(pg); 950 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE); 951 UVM_PAGE_OWN(pg, NULL); 952 } 953 } 954 uvm_unlock_pageq(); 955 simple_unlock(&uobj->vmobjlock); 956 if (ap->a_m != NULL) { 957 memcpy(ap->a_m, &pgs[ridx], 958 orignpages * sizeof(struct vm_page *)); 959 } 960 return (0); 961 } 962 963 /* 964 * generic VM putpages routine. 965 * Write the given range of pages to backing store. 966 * 967 * => "offhi == 0" means flush all pages at or after "offlo". 968 * => object should be locked by caller. we may _unlock_ the object 969 * if (and only if) we need to clean a page (PGO_CLEANIT), or 970 * if PGO_SYNCIO is set and there are pages busy. 971 * we return with the object locked. 972 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O). 973 * thus, a caller might want to unlock higher level resources 974 * (e.g. vm_map) before calling flush. 975 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither 976 * unlock the object nor block. 977 * => if PGO_ALLPAGES is set, then all pages in the object will be processed. 978 * => NOTE: we rely on the fact that the object's memq is a TAILQ and 979 * that new pages are inserted on the tail end of the list. thus, 980 * we can make a complete pass through the object in one go by starting 981 * at the head and working towards the tail (new pages are put in 982 * front of us). 983 * => NOTE: we are allowed to lock the page queues, so the caller 984 * must not be holding the page queue lock. 985 * 986 * note on "cleaning" object and PG_BUSY pages: 987 * this routine is holding the lock on the object. the only time 988 * that it can run into a PG_BUSY page that it does not own is if 989 * some other process has started I/O on the page (e.g. either 990 * a pagein, or a pageout). if the PG_BUSY page is being paged 991 * in, then it can not be dirty (!PG_CLEAN) because no one has 992 * had a chance to modify it yet. if the PG_BUSY page is being 993 * paged out then it means that someone else has already started 994 * cleaning the page for us (how nice!). in this case, if we 995 * have syncio specified, then after we make our pass through the 996 * object we need to wait for the other PG_BUSY pages to clear 997 * off (i.e. we need to do an iosync). also note that once a 998 * page is PG_BUSY it must stay in its object until it is un-busyed. 999 * 1000 * note on page traversal: 1001 * we can traverse the pages in an object either by going down the 1002 * linked list in "uobj->memq", or we can go over the address range 1003 * by page doing hash table lookups for each address. depending 1004 * on how many pages are in the object it may be cheaper to do one 1005 * or the other. we set "by_list" to true if we are using memq. 1006 * if the cost of a hash lookup was equal to the cost of the list 1007 * traversal we could compare the number of pages in the start->stop 1008 * range to the total number of pages in the object. however, it 1009 * seems that a hash table lookup is more expensive than the linked 1010 * list traversal, so we multiply the number of pages in the 1011 * range by an estimate of the relatively higher cost of the hash lookup. 1012 */ 1013 1014 int 1015 genfs_putpages(void *v) 1016 { 1017 struct vop_putpages_args /* { 1018 struct vnode *a_vp; 1019 voff_t a_offlo; 1020 voff_t a_offhi; 1021 int a_flags; 1022 } */ *ap = v; 1023 struct vnode *vp = ap->a_vp; 1024 struct uvm_object *uobj = &vp->v_uobj; 1025 struct simplelock *slock = &uobj->vmobjlock; 1026 off_t startoff = ap->a_offlo; 1027 off_t endoff = ap->a_offhi; 1028 off_t off; 1029 int flags = ap->a_flags; 1030 const int maxpages = MAXBSIZE >> PAGE_SHIFT; 1031 int i, s, error, npages, nback; 1032 int freeflag; 1033 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp; 1034 boolean_t wasclean, by_list, needs_clean, yield; 1035 boolean_t async = (flags & PGO_SYNCIO) == 0; 1036 boolean_t pagedaemon = curproc == uvm.pagedaemon_proc; 1037 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist); 1038 1039 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)); 1040 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0); 1041 KASSERT(startoff < endoff || endoff == 0); 1042 1043 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x", 1044 vp, uobj->uo_npages, startoff, endoff - startoff); 1045 if (uobj->uo_npages == 0) { 1046 s = splbio(); 1047 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL && 1048 (vp->v_flag & VONWORKLST)) { 1049 vp->v_flag &= ~VONWORKLST; 1050 LIST_REMOVE(vp, v_synclist); 1051 } 1052 splx(s); 1053 simple_unlock(slock); 1054 return (0); 1055 } 1056 1057 /* 1058 * the vnode has pages, set up to process the request. 1059 */ 1060 1061 error = 0; 1062 s = splbio(); 1063 wasclean = (vp->v_numoutput == 0); 1064 splx(s); 1065 off = startoff; 1066 if (endoff == 0 || flags & PGO_ALLPAGES) { 1067 endoff = trunc_page(LLONG_MAX); 1068 } 1069 by_list = (uobj->uo_npages <= 1070 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY); 1071 1072 /* 1073 * start the loop. when scanning by list, hold the last page 1074 * in the list before we start. pages allocated after we start 1075 * will be added to the end of the list, so we can stop at the 1076 * current last page. 1077 */ 1078 1079 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED; 1080 curmp.uobject = uobj; 1081 curmp.offset = (voff_t)-1; 1082 curmp.flags = PG_BUSY; 1083 endmp.uobject = uobj; 1084 endmp.offset = (voff_t)-1; 1085 endmp.flags = PG_BUSY; 1086 if (by_list) { 1087 pg = TAILQ_FIRST(&uobj->memq); 1088 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq); 1089 PHOLD(curproc); 1090 } else { 1091 pg = uvm_pagelookup(uobj, off); 1092 } 1093 nextpg = NULL; 1094 while (by_list || off < endoff) { 1095 1096 /* 1097 * if the current page is not interesting, move on to the next. 1098 */ 1099 1100 KASSERT(pg == NULL || pg->uobject == uobj); 1101 KASSERT(pg == NULL || 1102 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 || 1103 (pg->flags & PG_BUSY) != 0); 1104 if (by_list) { 1105 if (pg == &endmp) { 1106 break; 1107 } 1108 if (pg->offset < startoff || pg->offset >= endoff || 1109 pg->flags & (PG_RELEASED|PG_PAGEOUT)) { 1110 pg = TAILQ_NEXT(pg, listq); 1111 continue; 1112 } 1113 off = pg->offset; 1114 } else if (pg == NULL || 1115 pg->flags & (PG_RELEASED|PG_PAGEOUT)) { 1116 off += PAGE_SIZE; 1117 if (off < endoff) { 1118 pg = uvm_pagelookup(uobj, off); 1119 } 1120 continue; 1121 } 1122 1123 /* 1124 * if the current page needs to be cleaned and it's busy, 1125 * wait for it to become unbusy. 1126 */ 1127 1128 yield = (curproc->p_cpu->ci_schedstate.spc_flags & 1129 SPCF_SHOULDYIELD) && !pagedaemon; 1130 if (pg->flags & PG_BUSY || yield) { 1131 KASSERT(!pagedaemon); 1132 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0); 1133 if (by_list) { 1134 TAILQ_INSERT_BEFORE(pg, &curmp, listq); 1135 UVMHIST_LOG(ubchist, "curmp next %p", 1136 TAILQ_NEXT(&curmp, listq), 0,0,0); 1137 } 1138 if (yield) { 1139 simple_unlock(slock); 1140 preempt(NULL); 1141 simple_lock(slock); 1142 } else { 1143 pg->flags |= PG_WANTED; 1144 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0); 1145 simple_lock(slock); 1146 } 1147 if (by_list) { 1148 UVMHIST_LOG(ubchist, "after next %p", 1149 TAILQ_NEXT(&curmp, listq), 0,0,0); 1150 pg = TAILQ_NEXT(&curmp, listq); 1151 TAILQ_REMOVE(&uobj->memq, &curmp, listq); 1152 } else { 1153 pg = uvm_pagelookup(uobj, off); 1154 } 1155 continue; 1156 } 1157 1158 /* 1159 * if we're freeing, remove all mappings of the page now. 1160 * if we're cleaning, check if the page is needs to be cleaned. 1161 */ 1162 1163 if (flags & PGO_FREE) { 1164 pmap_page_protect(pg, VM_PROT_NONE); 1165 } 1166 if (flags & PGO_CLEANIT) { 1167 needs_clean = pmap_clear_modify(pg) || 1168 (pg->flags & PG_CLEAN) == 0; 1169 pg->flags |= PG_CLEAN; 1170 } else { 1171 needs_clean = FALSE; 1172 } 1173 1174 /* 1175 * if we're cleaning, build a cluster. 1176 * the cluster will consist of pages which are currently dirty, 1177 * but they will be returned to us marked clean. 1178 * if not cleaning, just operate on the one page. 1179 */ 1180 1181 if (needs_clean) { 1182 wasclean = FALSE; 1183 memset(pgs, 0, sizeof(pgs)); 1184 pg->flags |= PG_BUSY; 1185 UVM_PAGE_OWN(pg, "genfs_putpages"); 1186 1187 /* 1188 * first look backward. 1189 */ 1190 1191 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT); 1192 nback = npages; 1193 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0], 1194 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD); 1195 if (nback) { 1196 memmove(&pgs[0], &pgs[npages - nback], 1197 nback * sizeof(pgs[0])); 1198 if (npages - nback < nback) 1199 memset(&pgs[nback], 0, 1200 (npages - nback) * sizeof(pgs[0])); 1201 else 1202 memset(&pgs[npages - nback], 0, 1203 nback * sizeof(pgs[0])); 1204 } 1205 1206 /* 1207 * then plug in our page of interest. 1208 */ 1209 1210 pgs[nback] = pg; 1211 1212 /* 1213 * then look forward to fill in the remaining space in 1214 * the array of pages. 1215 */ 1216 1217 npages = maxpages - nback - 1; 1218 uvn_findpages(uobj, off + PAGE_SIZE, &npages, 1219 &pgs[nback + 1], 1220 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY); 1221 npages += nback + 1; 1222 } else { 1223 pgs[0] = pg; 1224 npages = 1; 1225 nback = 0; 1226 } 1227 1228 /* 1229 * apply FREE or DEACTIVATE options if requested. 1230 */ 1231 1232 if (flags & (PGO_DEACTIVATE|PGO_FREE)) { 1233 uvm_lock_pageq(); 1234 } 1235 for (i = 0; i < npages; i++) { 1236 tpg = pgs[i]; 1237 KASSERT(tpg->uobject == uobj); 1238 if (by_list && tpg == TAILQ_NEXT(pg, listq)) 1239 pg = tpg; 1240 if (tpg->offset < startoff || tpg->offset >= endoff) 1241 continue; 1242 if (flags & PGO_DEACTIVATE && 1243 (tpg->pqflags & PQ_INACTIVE) == 0 && 1244 tpg->wire_count == 0) { 1245 (void) pmap_clear_reference(tpg); 1246 uvm_pagedeactivate(tpg); 1247 } else if (flags & PGO_FREE) { 1248 pmap_page_protect(tpg, VM_PROT_NONE); 1249 if (tpg->flags & PG_BUSY) { 1250 tpg->flags |= freeflag; 1251 if (pagedaemon) { 1252 uvmexp.paging++; 1253 uvm_pagedequeue(tpg); 1254 } 1255 } else { 1256 1257 /* 1258 * ``page is not busy'' 1259 * implies that npages is 1 1260 * and needs_clean is false. 1261 */ 1262 1263 nextpg = TAILQ_NEXT(tpg, listq); 1264 uvm_pagefree(tpg); 1265 } 1266 } 1267 } 1268 if (flags & (PGO_DEACTIVATE|PGO_FREE)) { 1269 uvm_unlock_pageq(); 1270 } 1271 if (needs_clean) { 1272 1273 /* 1274 * start the i/o. if we're traversing by list, 1275 * keep our place in the list with a marker page. 1276 */ 1277 1278 if (by_list) { 1279 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp, 1280 listq); 1281 } 1282 simple_unlock(slock); 1283 error = GOP_WRITE(vp, pgs, npages, flags); 1284 simple_lock(slock); 1285 if (by_list) { 1286 pg = TAILQ_NEXT(&curmp, listq); 1287 TAILQ_REMOVE(&uobj->memq, &curmp, listq); 1288 } 1289 if (error) { 1290 break; 1291 } 1292 if (by_list) { 1293 continue; 1294 } 1295 } 1296 1297 /* 1298 * find the next page and continue if there was no error. 1299 */ 1300 1301 if (by_list) { 1302 if (nextpg) { 1303 pg = nextpg; 1304 nextpg = NULL; 1305 } else { 1306 pg = TAILQ_NEXT(pg, listq); 1307 } 1308 } else { 1309 off += (npages - nback) << PAGE_SHIFT; 1310 if (off < endoff) { 1311 pg = uvm_pagelookup(uobj, off); 1312 } 1313 } 1314 } 1315 if (by_list) { 1316 TAILQ_REMOVE(&uobj->memq, &endmp, listq); 1317 PRELE(curproc); 1318 } 1319 1320 /* 1321 * if we're cleaning and there was nothing to clean, 1322 * take us off the syncer list. if we started any i/o 1323 * and we're doing sync i/o, wait for all writes to finish. 1324 */ 1325 1326 s = splbio(); 1327 if ((flags & PGO_CLEANIT) && wasclean && 1328 startoff == 0 && endoff == trunc_page(LLONG_MAX) && 1329 LIST_FIRST(&vp->v_dirtyblkhd) == NULL && 1330 (vp->v_flag & VONWORKLST)) { 1331 vp->v_flag &= ~VONWORKLST; 1332 LIST_REMOVE(vp, v_synclist); 1333 } 1334 splx(s); 1335 if (!wasclean && !async) { 1336 s = splbio(); 1337 while (vp->v_numoutput != 0) { 1338 vp->v_flag |= VBWAIT; 1339 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE, 1340 "genput2", 0); 1341 simple_lock(slock); 1342 } 1343 splx(s); 1344 } 1345 simple_unlock(&uobj->vmobjlock); 1346 return (error); 1347 } 1348 1349 int 1350 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags) 1351 { 1352 int s, error, run; 1353 int fs_bshift, dev_bshift; 1354 vaddr_t kva; 1355 off_t eof, offset, startoffset; 1356 size_t bytes, iobytes, skipbytes; 1357 daddr_t lbn, blkno; 1358 struct vm_page *pg; 1359 struct buf *mbp, *bp; 1360 struct vnode *devvp; 1361 boolean_t async = (flags & PGO_SYNCIO) == 0; 1362 UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist); 1363 1364 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x", 1365 vp, pgs, npages, flags); 1366 1367 GOP_SIZE(vp, vp->v_size, &eof); 1368 if (vp->v_type == VREG) { 1369 fs_bshift = vp->v_mount->mnt_fs_bshift; 1370 dev_bshift = vp->v_mount->mnt_dev_bshift; 1371 } else { 1372 fs_bshift = DEV_BSHIFT; 1373 dev_bshift = DEV_BSHIFT; 1374 } 1375 error = 0; 1376 pg = pgs[0]; 1377 startoffset = pg->offset; 1378 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset); 1379 skipbytes = 0; 1380 KASSERT(bytes != 0); 1381 1382 kva = uvm_pagermapin(pgs, npages, 1383 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK); 1384 1385 s = splbio(); 1386 vp->v_numoutput += 2; 1387 mbp = pool_get(&bufpool, PR_WAITOK); 1388 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x", 1389 vp, mbp, vp->v_numoutput, bytes); 1390 splx(s); 1391 mbp->b_bufsize = npages << PAGE_SHIFT; 1392 mbp->b_data = (void *)kva; 1393 mbp->b_resid = mbp->b_bcount = bytes; 1394 mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0); 1395 mbp->b_iodone = uvm_aio_biodone; 1396 mbp->b_vp = vp; 1397 LIST_INIT(&mbp->b_dep); 1398 1399 bp = NULL; 1400 for (offset = startoffset; 1401 bytes > 0; 1402 offset += iobytes, bytes -= iobytes) { 1403 lbn = offset >> fs_bshift; 1404 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run); 1405 if (error) { 1406 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0); 1407 skipbytes += bytes; 1408 bytes = 0; 1409 break; 1410 } 1411 1412 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset, 1413 bytes); 1414 if (blkno == (daddr_t)-1) { 1415 skipbytes += iobytes; 1416 continue; 1417 } 1418 1419 /* if it's really one i/o, don't make a second buf */ 1420 if (offset == startoffset && iobytes == bytes) { 1421 bp = mbp; 1422 } else { 1423 s = splbio(); 1424 vp->v_numoutput++; 1425 bp = pool_get(&bufpool, PR_WAITOK); 1426 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d", 1427 vp, bp, vp->v_numoutput, 0); 1428 splx(s); 1429 bp->b_data = (char *)kva + 1430 (vaddr_t)(offset - pg->offset); 1431 bp->b_resid = bp->b_bcount = iobytes; 1432 bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC; 1433 bp->b_iodone = uvm_aio_biodone1; 1434 bp->b_vp = vp; 1435 LIST_INIT(&bp->b_dep); 1436 } 1437 bp->b_lblkno = 0; 1438 bp->b_private = mbp; 1439 if (devvp->v_type == VBLK) { 1440 bp->b_dev = devvp->v_rdev; 1441 } 1442 1443 /* adjust physical blkno for partial blocks */ 1444 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >> 1445 dev_bshift); 1446 UVMHIST_LOG(ubchist, 1447 "vp %p offset 0x%x bcount 0x%x blkno 0x%x", 1448 vp, offset, bp->b_bcount, bp->b_blkno); 1449 VOP_STRATEGY(bp); 1450 } 1451 if (skipbytes) { 1452 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0); 1453 s = splbio(); 1454 if (error) { 1455 mbp->b_flags |= B_ERROR; 1456 mbp->b_error = error; 1457 } 1458 mbp->b_resid -= skipbytes; 1459 if (mbp->b_resid == 0) { 1460 biodone(mbp); 1461 } 1462 splx(s); 1463 } 1464 if (async) { 1465 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0); 1466 return (0); 1467 } 1468 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0); 1469 error = biowait(mbp); 1470 uvm_aio_aiodone(mbp); 1471 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0); 1472 return (error); 1473 } 1474 1475 /* 1476 * VOP_PUTPAGES() for vnodes which never have pages. 1477 */ 1478 1479 int 1480 genfs_null_putpages(void *v) 1481 { 1482 struct vop_putpages_args /* { 1483 struct vnode *a_vp; 1484 voff_t a_offlo; 1485 voff_t a_offhi; 1486 int a_flags; 1487 } */ *ap = v; 1488 struct vnode *vp = ap->a_vp; 1489 1490 KASSERT(vp->v_uobj.uo_npages == 0); 1491 simple_unlock(&vp->v_interlock); 1492 return (0); 1493 } 1494 1495 void 1496 genfs_node_init(struct vnode *vp, struct genfs_ops *ops) 1497 { 1498 struct genfs_node *gp = VTOG(vp); 1499 1500 lockinit(&gp->g_glock, PINOD, "glock", 0, 0); 1501 gp->g_op = ops; 1502 } 1503 1504 void 1505 genfs_size(struct vnode *vp, off_t size, off_t *eobp) 1506 { 1507 int bsize; 1508 1509 bsize = 1 << vp->v_mount->mnt_fs_bshift; 1510 *eobp = (size + bsize - 1) & ~(bsize - 1); 1511 } 1512 1513 int 1514 genfs_compat_getpages(void *v) 1515 { 1516 struct vop_getpages_args /* { 1517 struct vnode *a_vp; 1518 voff_t a_offset; 1519 struct vm_page **a_m; 1520 int *a_count; 1521 int a_centeridx; 1522 vm_prot_t a_access_type; 1523 int a_advice; 1524 int a_flags; 1525 } */ *ap = v; 1526 1527 off_t origoffset; 1528 struct vnode *vp = ap->a_vp; 1529 struct uvm_object *uobj = &vp->v_uobj; 1530 struct vm_page *pg, **pgs; 1531 vaddr_t kva; 1532 int i, error, orignpages, npages; 1533 struct iovec iov; 1534 struct uio uio; 1535 struct ucred *cred = curproc->p_ucred; 1536 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0; 1537 1538 error = 0; 1539 origoffset = ap->a_offset; 1540 orignpages = *ap->a_count; 1541 pgs = ap->a_m; 1542 1543 if (write && (vp->v_flag & VONWORKLST) == 0) { 1544 vn_syncer_add_to_worklist(vp, filedelay); 1545 } 1546 if (ap->a_flags & PGO_LOCKED) { 1547 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, 1548 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0)); 1549 1550 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0); 1551 } 1552 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) { 1553 simple_unlock(&uobj->vmobjlock); 1554 return (EINVAL); 1555 } 1556 npages = orignpages; 1557 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL); 1558 simple_unlock(&uobj->vmobjlock); 1559 kva = uvm_pagermapin(pgs, npages, 1560 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK); 1561 for (i = 0; i < npages; i++) { 1562 pg = pgs[i]; 1563 if ((pg->flags & PG_FAKE) == 0) { 1564 continue; 1565 } 1566 iov.iov_base = (char *)kva + (i << PAGE_SHIFT); 1567 iov.iov_len = PAGE_SIZE; 1568 uio.uio_iov = &iov; 1569 uio.uio_iovcnt = 1; 1570 uio.uio_offset = origoffset + (i << PAGE_SHIFT); 1571 uio.uio_segflg = UIO_SYSSPACE; 1572 uio.uio_rw = UIO_READ; 1573 uio.uio_resid = PAGE_SIZE; 1574 uio.uio_procp = curproc; 1575 error = VOP_READ(vp, &uio, 0, cred); 1576 if (error) { 1577 break; 1578 } 1579 if (uio.uio_resid) { 1580 memset(iov.iov_base, 0, uio.uio_resid); 1581 } 1582 } 1583 uvm_pagermapout(kva, npages); 1584 simple_lock(&uobj->vmobjlock); 1585 uvm_lock_pageq(); 1586 for (i = 0; i < npages; i++) { 1587 pg = pgs[i]; 1588 if (error && (pg->flags & PG_FAKE) != 0) { 1589 pg->flags |= PG_RELEASED; 1590 } else { 1591 pmap_clear_modify(pg); 1592 uvm_pageactivate(pg); 1593 } 1594 } 1595 if (error) { 1596 uvm_page_unbusy(pgs, npages); 1597 } 1598 uvm_unlock_pageq(); 1599 simple_unlock(&uobj->vmobjlock); 1600 return (error); 1601 } 1602 1603 int 1604 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, 1605 int flags) 1606 { 1607 off_t offset; 1608 struct iovec iov; 1609 struct uio uio; 1610 struct ucred *cred = curproc->p_ucred; 1611 struct buf *bp; 1612 vaddr_t kva; 1613 int s, error; 1614 1615 offset = pgs[0]->offset; 1616 kva = uvm_pagermapin(pgs, npages, 1617 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK); 1618 1619 iov.iov_base = (void *)kva; 1620 iov.iov_len = npages << PAGE_SHIFT; 1621 uio.uio_iov = &iov; 1622 uio.uio_iovcnt = npages; 1623 uio.uio_offset = offset; 1624 uio.uio_segflg = UIO_SYSSPACE; 1625 uio.uio_rw = UIO_WRITE; 1626 uio.uio_resid = npages << PAGE_SHIFT; 1627 uio.uio_procp = curproc; 1628 error = VOP_WRITE(vp, &uio, 0, cred); 1629 1630 s = splbio(); 1631 vp->v_numoutput++; 1632 bp = pool_get(&bufpool, PR_WAITOK); 1633 splx(s); 1634 1635 bp->b_flags = B_BUSY | B_WRITE | B_AGE; 1636 bp->b_vp = vp; 1637 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift; 1638 bp->b_data = (char *)kva; 1639 bp->b_bcount = npages << PAGE_SHIFT; 1640 bp->b_bufsize = npages << PAGE_SHIFT; 1641 bp->b_resid = 0; 1642 LIST_INIT(&bp->b_dep); 1643 if (error) { 1644 bp->b_flags |= B_ERROR; 1645 bp->b_error = error; 1646 } 1647 uvm_aio_aiodone(bp); 1648 return (error); 1649 } 1650