1 /* $NetBSD: genfs_vnops.c,v 1.91 2004/10/04 00:28:30 enami Exp $ */ 2 3 /* 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 */ 32 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.91 2004/10/04 00:28:30 enami Exp $"); 35 36 #include "opt_nfsserver.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/proc.h> 41 #include <sys/kernel.h> 42 #include <sys/mount.h> 43 #include <sys/namei.h> 44 #include <sys/vnode.h> 45 #include <sys/fcntl.h> 46 #include <sys/malloc.h> 47 #include <sys/poll.h> 48 #include <sys/mman.h> 49 #include <sys/file.h> 50 51 #include <miscfs/genfs/genfs.h> 52 #include <miscfs/genfs/genfs_node.h> 53 #include <miscfs/specfs/specdev.h> 54 55 #include <uvm/uvm.h> 56 #include <uvm/uvm_pager.h> 57 58 #ifdef NFSSERVER 59 #include <nfs/rpcv2.h> 60 #include <nfs/nfsproto.h> 61 #include <nfs/nfs.h> 62 #include <nfs/nqnfs.h> 63 #include <nfs/nfs_var.h> 64 #endif 65 66 static __inline void genfs_rel_pages(struct vm_page **, int); 67 static void filt_genfsdetach(struct knote *); 68 static int filt_genfsread(struct knote *, long); 69 static int filt_genfsvnode(struct knote *, long); 70 71 72 #define MAX_READ_AHEAD 16 /* XXXUBC 16 */ 73 int genfs_rapages = MAX_READ_AHEAD; /* # of pages in each chunk of readahead */ 74 int genfs_racount = 2; /* # of page chunks to readahead */ 75 int genfs_raskip = 2; /* # of busy page chunks allowed to skip */ 76 77 int 78 genfs_poll(void *v) 79 { 80 struct vop_poll_args /* { 81 struct vnode *a_vp; 82 int a_events; 83 struct proc *a_p; 84 } */ *ap = v; 85 86 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM)); 87 } 88 89 int 90 genfs_fsync(void *v) 91 { 92 struct vop_fsync_args /* { 93 struct vnode *a_vp; 94 struct ucred *a_cred; 95 int a_flags; 96 off_t offlo; 97 off_t offhi; 98 struct proc *a_p; 99 } */ *ap = v; 100 struct vnode *vp = ap->a_vp; 101 int wait; 102 103 wait = (ap->a_flags & FSYNC_WAIT) != 0; 104 vflushbuf(vp, wait); 105 if ((ap->a_flags & FSYNC_DATAONLY) != 0) 106 return (0); 107 else 108 return (VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0)); 109 } 110 111 int 112 genfs_seek(void *v) 113 { 114 struct vop_seek_args /* { 115 struct vnode *a_vp; 116 off_t a_oldoff; 117 off_t a_newoff; 118 struct ucred *a_ucred; 119 } */ *ap = v; 120 121 if (ap->a_newoff < 0) 122 return (EINVAL); 123 124 return (0); 125 } 126 127 int 128 genfs_abortop(void *v) 129 { 130 struct vop_abortop_args /* { 131 struct vnode *a_dvp; 132 struct componentname *a_cnp; 133 } */ *ap = v; 134 135 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF) 136 PNBUF_PUT(ap->a_cnp->cn_pnbuf); 137 return (0); 138 } 139 140 int 141 genfs_fcntl(void *v) 142 { 143 struct vop_fcntl_args /* { 144 struct vnode *a_vp; 145 u_int a_command; 146 caddr_t a_data; 147 int a_fflag; 148 struct ucred *a_cred; 149 struct proc *a_p; 150 } */ *ap = v; 151 152 if (ap->a_command == F_SETFL) 153 return (0); 154 else 155 return (EOPNOTSUPP); 156 } 157 158 /*ARGSUSED*/ 159 int 160 genfs_badop(void *v) 161 { 162 163 panic("genfs: bad op"); 164 } 165 166 /*ARGSUSED*/ 167 int 168 genfs_nullop(void *v) 169 { 170 171 return (0); 172 } 173 174 /*ARGSUSED*/ 175 int 176 genfs_einval(void *v) 177 { 178 179 return (EINVAL); 180 } 181 182 /* 183 * Called when an fs doesn't support a particular vop. 184 * This takes care to vrele, vput, or vunlock passed in vnodes. 185 */ 186 int 187 genfs_eopnotsupp(void *v) 188 { 189 struct vop_generic_args /* 190 struct vnodeop_desc *a_desc; 191 / * other random data follows, presumably * / 192 } */ *ap = v; 193 struct vnodeop_desc *desc = ap->a_desc; 194 struct vnode *vp, *vp_last = NULL; 195 int flags, i, j, offset; 196 197 flags = desc->vdesc_flags; 198 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) { 199 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET) 200 break; /* stop at end of list */ 201 if ((j = flags & VDESC_VP0_WILLPUT)) { 202 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap); 203 204 /* Skip if NULL */ 205 if (!vp) 206 continue; 207 208 switch (j) { 209 case VDESC_VP0_WILLPUT: 210 /* Check for dvp == vp cases */ 211 if (vp == vp_last) 212 vrele(vp); 213 else { 214 vput(vp); 215 vp_last = vp; 216 } 217 break; 218 case VDESC_VP0_WILLUNLOCK: 219 VOP_UNLOCK(vp, 0); 220 break; 221 case VDESC_VP0_WILLRELE: 222 vrele(vp); 223 break; 224 } 225 } 226 } 227 228 return (EOPNOTSUPP); 229 } 230 231 /*ARGSUSED*/ 232 int 233 genfs_ebadf(void *v) 234 { 235 236 return (EBADF); 237 } 238 239 /* ARGSUSED */ 240 int 241 genfs_enoioctl(void *v) 242 { 243 244 return (EPASSTHROUGH); 245 } 246 247 248 /* 249 * Eliminate all activity associated with the requested vnode 250 * and with all vnodes aliased to the requested vnode. 251 */ 252 int 253 genfs_revoke(void *v) 254 { 255 struct vop_revoke_args /* { 256 struct vnode *a_vp; 257 int a_flags; 258 } */ *ap = v; 259 struct vnode *vp, *vq; 260 struct proc *p = curproc; /* XXX */ 261 262 #ifdef DIAGNOSTIC 263 if ((ap->a_flags & REVOKEALL) == 0) 264 panic("genfs_revoke: not revokeall"); 265 #endif 266 267 vp = ap->a_vp; 268 simple_lock(&vp->v_interlock); 269 270 if (vp->v_flag & VALIASED) { 271 /* 272 * If a vgone (or vclean) is already in progress, 273 * wait until it is done and return. 274 */ 275 if (vp->v_flag & VXLOCK) { 276 vp->v_flag |= VXWANT; 277 ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0, 278 &vp->v_interlock); 279 return (0); 280 } 281 /* 282 * Ensure that vp will not be vgone'd while we 283 * are eliminating its aliases. 284 */ 285 vp->v_flag |= VXLOCK; 286 simple_unlock(&vp->v_interlock); 287 while (vp->v_flag & VALIASED) { 288 simple_lock(&spechash_slock); 289 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) { 290 if (vq->v_rdev != vp->v_rdev || 291 vq->v_type != vp->v_type || vp == vq) 292 continue; 293 simple_unlock(&spechash_slock); 294 vgone(vq); 295 break; 296 } 297 if (vq == NULLVP) 298 simple_unlock(&spechash_slock); 299 } 300 /* 301 * Remove the lock so that vgone below will 302 * really eliminate the vnode after which time 303 * vgone will awaken any sleepers. 304 */ 305 simple_lock(&vp->v_interlock); 306 vp->v_flag &= ~VXLOCK; 307 } 308 vgonel(vp, p); 309 return (0); 310 } 311 312 /* 313 * Lock the node. 314 */ 315 int 316 genfs_lock(void *v) 317 { 318 struct vop_lock_args /* { 319 struct vnode *a_vp; 320 int a_flags; 321 } */ *ap = v; 322 struct vnode *vp = ap->a_vp; 323 324 return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock)); 325 } 326 327 /* 328 * Unlock the node. 329 */ 330 int 331 genfs_unlock(void *v) 332 { 333 struct vop_unlock_args /* { 334 struct vnode *a_vp; 335 int a_flags; 336 } */ *ap = v; 337 struct vnode *vp = ap->a_vp; 338 339 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE, 340 &vp->v_interlock)); 341 } 342 343 /* 344 * Return whether or not the node is locked. 345 */ 346 int 347 genfs_islocked(void *v) 348 { 349 struct vop_islocked_args /* { 350 struct vnode *a_vp; 351 } */ *ap = v; 352 struct vnode *vp = ap->a_vp; 353 354 return (lockstatus(vp->v_vnlock)); 355 } 356 357 /* 358 * Stubs to use when there is no locking to be done on the underlying object. 359 */ 360 int 361 genfs_nolock(void *v) 362 { 363 struct vop_lock_args /* { 364 struct vnode *a_vp; 365 int a_flags; 366 struct proc *a_p; 367 } */ *ap = v; 368 369 /* 370 * Since we are not using the lock manager, we must clear 371 * the interlock here. 372 */ 373 if (ap->a_flags & LK_INTERLOCK) 374 simple_unlock(&ap->a_vp->v_interlock); 375 return (0); 376 } 377 378 int 379 genfs_nounlock(void *v) 380 { 381 382 return (0); 383 } 384 385 int 386 genfs_noislocked(void *v) 387 { 388 389 return (0); 390 } 391 392 /* 393 * Local lease check for NFS servers. Just set up args and let 394 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel, 395 * this is a null operation. 396 */ 397 int 398 genfs_lease_check(void *v) 399 { 400 #ifdef NFSSERVER 401 struct vop_lease_args /* { 402 struct vnode *a_vp; 403 struct proc *a_p; 404 struct ucred *a_cred; 405 int a_flag; 406 } */ *ap = v; 407 u_int32_t duration = 0; 408 int cache; 409 u_quad_t frev; 410 411 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag, 412 NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred); 413 return (0); 414 #else 415 return (0); 416 #endif /* NFSSERVER */ 417 } 418 419 int 420 genfs_mmap(void *v) 421 { 422 423 return (0); 424 } 425 426 static __inline void 427 genfs_rel_pages(struct vm_page **pgs, int npages) 428 { 429 int i; 430 431 for (i = 0; i < npages; i++) { 432 struct vm_page *pg = pgs[i]; 433 434 if (pg == NULL) 435 continue; 436 if (pg->flags & PG_FAKE) { 437 pg->flags |= PG_RELEASED; 438 } 439 } 440 uvm_lock_pageq(); 441 uvm_page_unbusy(pgs, npages); 442 uvm_unlock_pageq(); 443 } 444 445 /* 446 * generic VM getpages routine. 447 * Return PG_BUSY pages for the given range, 448 * reading from backing store if necessary. 449 */ 450 451 int 452 genfs_getpages(void *v) 453 { 454 struct vop_getpages_args /* { 455 struct vnode *a_vp; 456 voff_t a_offset; 457 struct vm_page **a_m; 458 int *a_count; 459 int a_centeridx; 460 vm_prot_t a_access_type; 461 int a_advice; 462 int a_flags; 463 } */ *ap = v; 464 465 off_t newsize, diskeof, memeof; 466 off_t offset, origoffset, startoffset, endoffset, raoffset; 467 daddr_t lbn, blkno; 468 int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount; 469 int fs_bshift, fs_bsize, dev_bshift; 470 int flags = ap->a_flags; 471 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes; 472 vaddr_t kva; 473 struct buf *bp, *mbp; 474 struct vnode *vp = ap->a_vp; 475 struct vnode *devvp; 476 struct genfs_node *gp = VTOG(vp); 477 struct uvm_object *uobj = &vp->v_uobj; 478 struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_AHEAD]; 479 int pgs_size; 480 struct ucred *cred = curproc->p_ucred; /* XXXUBC curlwp */ 481 boolean_t async = (flags & PGO_SYNCIO) == 0; 482 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0; 483 boolean_t sawhole = FALSE; 484 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0; 485 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist); 486 487 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d", 488 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count); 489 490 /* XXXUBC temp limit */ 491 if (*ap->a_count > MAX_READ_AHEAD) { 492 panic("genfs_getpages: too many pages"); 493 } 494 495 error = 0; 496 origoffset = ap->a_offset; 497 orignpages = *ap->a_count; 498 GOP_SIZE(vp, vp->v_size, &diskeof, GOP_SIZE_READ); 499 if (flags & PGO_PASTEOF) { 500 newsize = MAX(vp->v_size, 501 origoffset + (orignpages << PAGE_SHIFT)); 502 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM); 503 } else { 504 GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM); 505 } 506 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages); 507 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0); 508 KASSERT(orignpages > 0); 509 510 /* 511 * Bounds-check the request. 512 */ 513 514 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) { 515 if ((flags & PGO_LOCKED) == 0) { 516 simple_unlock(&uobj->vmobjlock); 517 } 518 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x", 519 origoffset, *ap->a_count, memeof,0); 520 return (EINVAL); 521 } 522 523 /* 524 * For PGO_LOCKED requests, just return whatever's in memory. 525 */ 526 527 if (flags & PGO_LOCKED) { 528 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, 529 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0)); 530 531 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0); 532 } 533 534 /* uobj is locked */ 535 536 if (write && (vp->v_flag & VONWORKLST) == 0) { 537 vn_syncer_add_to_worklist(vp, filedelay); 538 } 539 540 /* 541 * find the requested pages and make some simple checks. 542 * leave space in the page array for a whole block. 543 */ 544 545 if (vp->v_type == VREG) { 546 fs_bshift = vp->v_mount->mnt_fs_bshift; 547 dev_bshift = vp->v_mount->mnt_dev_bshift; 548 } else { 549 fs_bshift = DEV_BSHIFT; 550 dev_bshift = DEV_BSHIFT; 551 } 552 fs_bsize = 1 << fs_bshift; 553 554 orignpages = MIN(orignpages, 555 round_page(memeof - origoffset) >> PAGE_SHIFT); 556 npages = orignpages; 557 startoffset = origoffset & ~(fs_bsize - 1); 558 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) + 559 fs_bsize - 1) & ~(fs_bsize - 1)); 560 endoffset = MIN(endoffset, round_page(memeof)); 561 ridx = (origoffset - startoffset) >> PAGE_SHIFT; 562 563 pgs_size = sizeof(struct vm_page *) * 564 ((endoffset - startoffset) >> PAGE_SHIFT); 565 if (pgs_size > sizeof(pgs_onstack)) { 566 pgs = malloc(pgs_size, M_DEVBUF, M_NOWAIT | M_ZERO); 567 if (pgs == NULL) { 568 simple_unlock(&uobj->vmobjlock); 569 return (ENOMEM); 570 } 571 } else { 572 pgs = pgs_onstack; 573 memset(pgs, 0, pgs_size); 574 } 575 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld", 576 ridx, npages, startoffset, endoffset); 577 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], 578 async ? UFP_NOWAIT : UFP_ALL) != orignpages) { 579 KASSERT(async != 0); 580 genfs_rel_pages(&pgs[ridx], orignpages); 581 simple_unlock(&uobj->vmobjlock); 582 if (pgs != pgs_onstack) 583 free(pgs, M_DEVBUF); 584 return (EBUSY); 585 } 586 587 /* 588 * if the pages are already resident, just return them. 589 */ 590 591 for (i = 0; i < npages; i++) { 592 struct vm_page *pg = pgs[ridx + i]; 593 594 if ((pg->flags & PG_FAKE) || 595 (write && (pg->flags & PG_RDONLY))) { 596 break; 597 } 598 } 599 if (i == npages) { 600 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0); 601 raoffset = origoffset + (orignpages << PAGE_SHIFT); 602 npages += ridx; 603 goto raout; 604 } 605 606 /* 607 * if PGO_OVERWRITE is set, don't bother reading the pages. 608 */ 609 610 if (flags & PGO_OVERWRITE) { 611 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0); 612 613 for (i = 0; i < npages; i++) { 614 struct vm_page *pg = pgs[ridx + i]; 615 616 pg->flags &= ~(PG_RDONLY|PG_CLEAN); 617 } 618 npages += ridx; 619 goto out; 620 } 621 622 /* 623 * the page wasn't resident and we're not overwriting, 624 * so we're going to have to do some i/o. 625 * find any additional pages needed to cover the expanded range. 626 */ 627 628 npages = (endoffset - startoffset) >> PAGE_SHIFT; 629 if (startoffset != origoffset || npages != orignpages) { 630 631 /* 632 * we need to avoid deadlocks caused by locking 633 * additional pages at lower offsets than pages we 634 * already have locked. unlock them all and start over. 635 */ 636 637 genfs_rel_pages(&pgs[ridx], orignpages); 638 memset(pgs, 0, pgs_size); 639 640 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x", 641 startoffset, endoffset, 0,0); 642 npgs = npages; 643 if (uvn_findpages(uobj, startoffset, &npgs, pgs, 644 async ? UFP_NOWAIT : UFP_ALL) != npages) { 645 KASSERT(async != 0); 646 genfs_rel_pages(pgs, npages); 647 simple_unlock(&uobj->vmobjlock); 648 if (pgs != pgs_onstack) 649 free(pgs, M_DEVBUF); 650 return (EBUSY); 651 } 652 } 653 simple_unlock(&uobj->vmobjlock); 654 655 /* 656 * read the desired page(s). 657 */ 658 659 totalbytes = npages << PAGE_SHIFT; 660 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0)); 661 tailbytes = totalbytes - bytes; 662 skipbytes = 0; 663 664 kva = uvm_pagermapin(pgs, npages, 665 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK); 666 667 s = splbio(); 668 mbp = pool_get(&bufpool, PR_WAITOK); 669 splx(s); 670 BUF_INIT(mbp); 671 mbp->b_bufsize = totalbytes; 672 mbp->b_data = (void *)kva; 673 mbp->b_resid = mbp->b_bcount = bytes; 674 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0); 675 mbp->b_iodone = (async ? uvm_aio_biodone : 0); 676 mbp->b_vp = vp; 677 678 /* 679 * if EOF is in the middle of the range, zero the part past EOF. 680 * if the page including EOF is not PG_FAKE, skip over it since 681 * in that case it has valid data that we need to preserve. 682 */ 683 684 if (tailbytes > 0) { 685 size_t tailstart = bytes; 686 687 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) { 688 tailstart = round_page(tailstart); 689 tailbytes -= tailstart - bytes; 690 } 691 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x", 692 kva, tailstart, tailbytes,0); 693 memset((void *)(kva + tailstart), 0, tailbytes); 694 } 695 696 /* 697 * now loop over the pages, reading as needed. 698 */ 699 700 if (write) { 701 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL); 702 } else { 703 lockmgr(&gp->g_glock, LK_SHARED, NULL); 704 } 705 706 bp = NULL; 707 for (offset = startoffset; 708 bytes > 0; 709 offset += iobytes, bytes -= iobytes) { 710 711 /* 712 * skip pages which don't need to be read. 713 */ 714 715 pidx = (offset - startoffset) >> PAGE_SHIFT; 716 while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) { 717 size_t b; 718 719 KASSERT((offset & (PAGE_SIZE - 1)) == 0); 720 b = MIN(PAGE_SIZE, bytes); 721 offset += b; 722 bytes -= b; 723 skipbytes += b; 724 pidx++; 725 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x", 726 offset, 0,0,0); 727 if (bytes == 0) { 728 goto loopdone; 729 } 730 } 731 732 /* 733 * bmap the file to find out the blkno to read from and 734 * how much we can read in one i/o. if bmap returns an error, 735 * skip the rest of the top-level i/o. 736 */ 737 738 lbn = offset >> fs_bshift; 739 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run); 740 if (error) { 741 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n", 742 lbn, error,0,0); 743 skipbytes += bytes; 744 goto loopdone; 745 } 746 747 /* 748 * see how many pages can be read with this i/o. 749 * reduce the i/o size if necessary to avoid 750 * overwriting pages with valid data. 751 */ 752 753 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset, 754 bytes); 755 if (offset + iobytes > round_page(offset)) { 756 pcount = 1; 757 while (pidx + pcount < npages && 758 pgs[pidx + pcount]->flags & PG_FAKE) { 759 pcount++; 760 } 761 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) - 762 (offset - trunc_page(offset))); 763 } 764 765 /* 766 * if this block isn't allocated, zero it instead of 767 * reading it. if this is a read access, mark the 768 * pages we zeroed PG_RDONLY. 769 */ 770 771 if (blkno < 0) { 772 int holepages = (round_page(offset + iobytes) - 773 trunc_page(offset)) >> PAGE_SHIFT; 774 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0); 775 776 sawhole = TRUE; 777 memset((char *)kva + (offset - startoffset), 0, 778 iobytes); 779 skipbytes += iobytes; 780 781 for (i = 0; i < holepages; i++) { 782 if (write) { 783 pgs[pidx + i]->flags &= ~PG_CLEAN; 784 } else { 785 pgs[pidx + i]->flags |= PG_RDONLY; 786 } 787 } 788 continue; 789 } 790 791 /* 792 * allocate a sub-buf for this piece of the i/o 793 * (or just use mbp if there's only 1 piece), 794 * and start it going. 795 */ 796 797 if (offset == startoffset && iobytes == bytes) { 798 bp = mbp; 799 } else { 800 s = splbio(); 801 bp = pool_get(&bufpool, PR_WAITOK); 802 splx(s); 803 BUF_INIT(bp); 804 bp->b_data = (char *)kva + offset - startoffset; 805 bp->b_resid = bp->b_bcount = iobytes; 806 bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC; 807 bp->b_iodone = uvm_aio_biodone1; 808 bp->b_vp = vp; 809 bp->b_proc = NULL; 810 } 811 bp->b_lblkno = 0; 812 bp->b_private = mbp; 813 if (devvp->v_type == VBLK) { 814 bp->b_dev = devvp->v_rdev; 815 } 816 817 /* adjust physical blkno for partial blocks */ 818 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >> 819 dev_bshift); 820 821 UVMHIST_LOG(ubchist, 822 "bp %p offset 0x%x bcount 0x%x blkno 0x%x", 823 bp, offset, iobytes, bp->b_blkno); 824 825 if (async) 826 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 827 else 828 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 829 VOP_STRATEGY(bp->b_vp, bp); 830 } 831 832 loopdone: 833 if (skipbytes) { 834 s = splbio(); 835 if (error) { 836 mbp->b_flags |= B_ERROR; 837 mbp->b_error = error; 838 } 839 mbp->b_resid -= skipbytes; 840 if (mbp->b_resid == 0) { 841 biodone(mbp); 842 } 843 splx(s); 844 } 845 846 if (async) { 847 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0); 848 lockmgr(&gp->g_glock, LK_RELEASE, NULL); 849 if (pgs != pgs_onstack) 850 free(pgs, M_DEVBUF); 851 return (0); 852 } 853 if (bp != NULL) { 854 error = biowait(mbp); 855 } 856 s = splbio(); 857 pool_put(&bufpool, mbp); 858 splx(s); 859 uvm_pagermapout(kva, npages); 860 raoffset = startoffset + totalbytes; 861 862 /* 863 * if this we encountered a hole then we have to do a little more work. 864 * for read faults, we marked the page PG_RDONLY so that future 865 * write accesses to the page will fault again. 866 * for write faults, we must make sure that the backing store for 867 * the page is completely allocated while the pages are locked. 868 */ 869 870 if (!error && sawhole && write) { 871 for (i = 0; i < npages; i++) { 872 if (pgs[i] == NULL) { 873 continue; 874 } 875 pgs[i]->flags &= ~PG_CLEAN; 876 UVMHIST_LOG(ubchist, "mark dirty pg %p", pgs[i],0,0,0); 877 } 878 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0, 879 cred); 880 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d", 881 startoffset, npages << PAGE_SHIFT, error,0); 882 } 883 lockmgr(&gp->g_glock, LK_RELEASE, NULL); 884 simple_lock(&uobj->vmobjlock); 885 886 /* 887 * see if we want to start any readahead. 888 * XXXUBC for now, just read the next 128k on 64k boundaries. 889 * this is pretty nonsensical, but it is 50% faster than reading 890 * just the next 64k. 891 */ 892 893 raout: 894 if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 && 895 PAGE_SHIFT <= 16) { 896 off_t rasize; 897 int rapages, err, i, skipped; 898 899 /* XXXUBC temp limit, from above */ 900 rapages = MIN(MIN(1 << (16 - PAGE_SHIFT), MAX_READ_AHEAD), 901 genfs_rapages); 902 rasize = rapages << PAGE_SHIFT; 903 for (i = skipped = 0; i < genfs_racount; i++) { 904 err = VOP_GETPAGES(vp, raoffset, NULL, &rapages, 0, 905 VM_PROT_READ, 0, 0); 906 simple_lock(&uobj->vmobjlock); 907 if (err) { 908 if (err != EBUSY || 909 skipped++ == genfs_raskip) 910 break; 911 } 912 raoffset += rasize; 913 rapages = rasize >> PAGE_SHIFT; 914 } 915 } 916 917 /* 918 * we're almost done! release the pages... 919 * for errors, we free the pages. 920 * otherwise we activate them and mark them as valid and clean. 921 * also, unbusy pages that were not actually requested. 922 */ 923 924 if (error) { 925 for (i = 0; i < npages; i++) { 926 if (pgs[i] == NULL) { 927 continue; 928 } 929 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x", 930 pgs[i], pgs[i]->flags, 0,0); 931 if (pgs[i]->flags & PG_FAKE) { 932 pgs[i]->flags |= PG_RELEASED; 933 } 934 } 935 uvm_lock_pageq(); 936 uvm_page_unbusy(pgs, npages); 937 uvm_unlock_pageq(); 938 simple_unlock(&uobj->vmobjlock); 939 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0); 940 if (pgs != pgs_onstack) 941 free(pgs, M_DEVBUF); 942 return (error); 943 } 944 945 out: 946 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0); 947 uvm_lock_pageq(); 948 for (i = 0; i < npages; i++) { 949 pg = pgs[i]; 950 if (pg == NULL) { 951 continue; 952 } 953 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x", 954 pg, pg->flags, 0,0); 955 if (pg->flags & PG_FAKE && !overwrite) { 956 pg->flags &= ~(PG_FAKE); 957 pmap_clear_modify(pgs[i]); 958 } 959 if (write) { 960 pg->flags &= ~(PG_RDONLY); 961 } 962 if (i < ridx || i >= ridx + orignpages || async) { 963 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x", 964 pg, pg->offset,0,0); 965 if (pg->flags & PG_WANTED) { 966 wakeup(pg); 967 } 968 if (pg->flags & PG_FAKE) { 969 KASSERT(overwrite); 970 uvm_pagezero(pg); 971 } 972 if (pg->flags & PG_RELEASED) { 973 uvm_pagefree(pg); 974 continue; 975 } 976 uvm_pageactivate(pg); 977 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE); 978 UVM_PAGE_OWN(pg, NULL); 979 } 980 } 981 uvm_unlock_pageq(); 982 simple_unlock(&uobj->vmobjlock); 983 if (ap->a_m != NULL) { 984 memcpy(ap->a_m, &pgs[ridx], 985 orignpages * sizeof(struct vm_page *)); 986 } 987 if (pgs != pgs_onstack) 988 free(pgs, M_DEVBUF); 989 return (0); 990 } 991 992 /* 993 * generic VM putpages routine. 994 * Write the given range of pages to backing store. 995 * 996 * => "offhi == 0" means flush all pages at or after "offlo". 997 * => object should be locked by caller. we may _unlock_ the object 998 * if (and only if) we need to clean a page (PGO_CLEANIT), or 999 * if PGO_SYNCIO is set and there are pages busy. 1000 * we return with the object locked. 1001 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O). 1002 * thus, a caller might want to unlock higher level resources 1003 * (e.g. vm_map) before calling flush. 1004 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither 1005 * unlock the object nor block. 1006 * => if PGO_ALLPAGES is set, then all pages in the object will be processed. 1007 * => NOTE: we rely on the fact that the object's memq is a TAILQ and 1008 * that new pages are inserted on the tail end of the list. thus, 1009 * we can make a complete pass through the object in one go by starting 1010 * at the head and working towards the tail (new pages are put in 1011 * front of us). 1012 * => NOTE: we are allowed to lock the page queues, so the caller 1013 * must not be holding the page queue lock. 1014 * 1015 * note on "cleaning" object and PG_BUSY pages: 1016 * this routine is holding the lock on the object. the only time 1017 * that it can run into a PG_BUSY page that it does not own is if 1018 * some other process has started I/O on the page (e.g. either 1019 * a pagein, or a pageout). if the PG_BUSY page is being paged 1020 * in, then it can not be dirty (!PG_CLEAN) because no one has 1021 * had a chance to modify it yet. if the PG_BUSY page is being 1022 * paged out then it means that someone else has already started 1023 * cleaning the page for us (how nice!). in this case, if we 1024 * have syncio specified, then after we make our pass through the 1025 * object we need to wait for the other PG_BUSY pages to clear 1026 * off (i.e. we need to do an iosync). also note that once a 1027 * page is PG_BUSY it must stay in its object until it is un-busyed. 1028 * 1029 * note on page traversal: 1030 * we can traverse the pages in an object either by going down the 1031 * linked list in "uobj->memq", or we can go over the address range 1032 * by page doing hash table lookups for each address. depending 1033 * on how many pages are in the object it may be cheaper to do one 1034 * or the other. we set "by_list" to true if we are using memq. 1035 * if the cost of a hash lookup was equal to the cost of the list 1036 * traversal we could compare the number of pages in the start->stop 1037 * range to the total number of pages in the object. however, it 1038 * seems that a hash table lookup is more expensive than the linked 1039 * list traversal, so we multiply the number of pages in the 1040 * range by an estimate of the relatively higher cost of the hash lookup. 1041 */ 1042 1043 int 1044 genfs_putpages(void *v) 1045 { 1046 struct vop_putpages_args /* { 1047 struct vnode *a_vp; 1048 voff_t a_offlo; 1049 voff_t a_offhi; 1050 int a_flags; 1051 } */ *ap = v; 1052 struct vnode *vp = ap->a_vp; 1053 struct uvm_object *uobj = &vp->v_uobj; 1054 struct simplelock *slock = &uobj->vmobjlock; 1055 off_t startoff = ap->a_offlo; 1056 off_t endoff = ap->a_offhi; 1057 off_t off; 1058 int flags = ap->a_flags; 1059 /* Even for strange MAXPHYS, the shift rounds down to a page */ 1060 const int maxpages = MAXPHYS >> PAGE_SHIFT; 1061 int i, s, error, npages, nback; 1062 int freeflag; 1063 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp; 1064 boolean_t wasclean, by_list, needs_clean, yield; 1065 boolean_t async = (flags & PGO_SYNCIO) == 0; 1066 boolean_t pagedaemon = curproc == uvm.pagedaemon_proc; 1067 struct lwp *l = curlwp ? curlwp : &lwp0; 1068 1069 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist); 1070 1071 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)); 1072 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0); 1073 KASSERT(startoff < endoff || endoff == 0); 1074 1075 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x", 1076 vp, uobj->uo_npages, startoff, endoff - startoff); 1077 if (uobj->uo_npages == 0) { 1078 s = splbio(); 1079 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL && 1080 (vp->v_flag & VONWORKLST)) { 1081 vp->v_flag &= ~VONWORKLST; 1082 LIST_REMOVE(vp, v_synclist); 1083 } 1084 splx(s); 1085 simple_unlock(slock); 1086 return (0); 1087 } 1088 1089 /* 1090 * the vnode has pages, set up to process the request. 1091 */ 1092 1093 error = 0; 1094 s = splbio(); 1095 simple_lock(&global_v_numoutput_slock); 1096 wasclean = (vp->v_numoutput == 0); 1097 simple_unlock(&global_v_numoutput_slock); 1098 splx(s); 1099 off = startoff; 1100 if (endoff == 0 || flags & PGO_ALLPAGES) { 1101 endoff = trunc_page(LLONG_MAX); 1102 } 1103 by_list = (uobj->uo_npages <= 1104 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY); 1105 1106 /* 1107 * start the loop. when scanning by list, hold the last page 1108 * in the list before we start. pages allocated after we start 1109 * will be added to the end of the list, so we can stop at the 1110 * current last page. 1111 */ 1112 1113 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED; 1114 curmp.uobject = uobj; 1115 curmp.offset = (voff_t)-1; 1116 curmp.flags = PG_BUSY; 1117 endmp.uobject = uobj; 1118 endmp.offset = (voff_t)-1; 1119 endmp.flags = PG_BUSY; 1120 if (by_list) { 1121 pg = TAILQ_FIRST(&uobj->memq); 1122 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq); 1123 PHOLD(l); 1124 } else { 1125 pg = uvm_pagelookup(uobj, off); 1126 } 1127 nextpg = NULL; 1128 while (by_list || off < endoff) { 1129 1130 /* 1131 * if the current page is not interesting, move on to the next. 1132 */ 1133 1134 KASSERT(pg == NULL || pg->uobject == uobj); 1135 KASSERT(pg == NULL || 1136 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 || 1137 (pg->flags & PG_BUSY) != 0); 1138 if (by_list) { 1139 if (pg == &endmp) { 1140 break; 1141 } 1142 if (pg->offset < startoff || pg->offset >= endoff || 1143 pg->flags & (PG_RELEASED|PG_PAGEOUT)) { 1144 pg = TAILQ_NEXT(pg, listq); 1145 continue; 1146 } 1147 off = pg->offset; 1148 } else if (pg == NULL || 1149 pg->flags & (PG_RELEASED|PG_PAGEOUT)) { 1150 off += PAGE_SIZE; 1151 if (off < endoff) { 1152 pg = uvm_pagelookup(uobj, off); 1153 } 1154 continue; 1155 } 1156 1157 /* 1158 * if the current page needs to be cleaned and it's busy, 1159 * wait for it to become unbusy. 1160 */ 1161 1162 yield = (l->l_cpu->ci_schedstate.spc_flags & 1163 SPCF_SHOULDYIELD) && !pagedaemon; 1164 if (pg->flags & PG_BUSY || yield) { 1165 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0); 1166 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) { 1167 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0); 1168 error = EDEADLK; 1169 break; 1170 } 1171 KASSERT(!pagedaemon); 1172 if (by_list) { 1173 TAILQ_INSERT_BEFORE(pg, &curmp, listq); 1174 UVMHIST_LOG(ubchist, "curmp next %p", 1175 TAILQ_NEXT(&curmp, listq), 0,0,0); 1176 } 1177 if (yield) { 1178 simple_unlock(slock); 1179 preempt(1); 1180 simple_lock(slock); 1181 } else { 1182 pg->flags |= PG_WANTED; 1183 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0); 1184 simple_lock(slock); 1185 } 1186 if (by_list) { 1187 UVMHIST_LOG(ubchist, "after next %p", 1188 TAILQ_NEXT(&curmp, listq), 0,0,0); 1189 pg = TAILQ_NEXT(&curmp, listq); 1190 TAILQ_REMOVE(&uobj->memq, &curmp, listq); 1191 } else { 1192 pg = uvm_pagelookup(uobj, off); 1193 } 1194 continue; 1195 } 1196 1197 /* 1198 * if we're freeing, remove all mappings of the page now. 1199 * if we're cleaning, check if the page is needs to be cleaned. 1200 */ 1201 1202 if (flags & PGO_FREE) { 1203 pmap_page_protect(pg, VM_PROT_NONE); 1204 } 1205 if (flags & PGO_CLEANIT) { 1206 needs_clean = pmap_clear_modify(pg) || 1207 (pg->flags & PG_CLEAN) == 0; 1208 pg->flags |= PG_CLEAN; 1209 } else { 1210 needs_clean = FALSE; 1211 } 1212 1213 /* 1214 * if we're cleaning, build a cluster. 1215 * the cluster will consist of pages which are currently dirty, 1216 * but they will be returned to us marked clean. 1217 * if not cleaning, just operate on the one page. 1218 */ 1219 1220 if (needs_clean) { 1221 wasclean = FALSE; 1222 memset(pgs, 0, sizeof(pgs)); 1223 pg->flags |= PG_BUSY; 1224 UVM_PAGE_OWN(pg, "genfs_putpages"); 1225 1226 /* 1227 * first look backward. 1228 */ 1229 1230 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT); 1231 nback = npages; 1232 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0], 1233 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD); 1234 if (nback) { 1235 memmove(&pgs[0], &pgs[npages - nback], 1236 nback * sizeof(pgs[0])); 1237 if (npages - nback < nback) 1238 memset(&pgs[nback], 0, 1239 (npages - nback) * sizeof(pgs[0])); 1240 else 1241 memset(&pgs[npages - nback], 0, 1242 nback * sizeof(pgs[0])); 1243 } 1244 1245 /* 1246 * then plug in our page of interest. 1247 */ 1248 1249 pgs[nback] = pg; 1250 1251 /* 1252 * then look forward to fill in the remaining space in 1253 * the array of pages. 1254 */ 1255 1256 npages = maxpages - nback - 1; 1257 uvn_findpages(uobj, off + PAGE_SIZE, &npages, 1258 &pgs[nback + 1], 1259 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY); 1260 npages += nback + 1; 1261 } else { 1262 pgs[0] = pg; 1263 npages = 1; 1264 nback = 0; 1265 } 1266 1267 /* 1268 * apply FREE or DEACTIVATE options if requested. 1269 */ 1270 1271 if (flags & (PGO_DEACTIVATE|PGO_FREE)) { 1272 uvm_lock_pageq(); 1273 } 1274 for (i = 0; i < npages; i++) { 1275 tpg = pgs[i]; 1276 KASSERT(tpg->uobject == uobj); 1277 if (by_list && tpg == TAILQ_NEXT(pg, listq)) 1278 pg = tpg; 1279 if (tpg->offset < startoff || tpg->offset >= endoff) 1280 continue; 1281 if (flags & PGO_DEACTIVATE && 1282 (tpg->pqflags & PQ_INACTIVE) == 0 && 1283 tpg->wire_count == 0) { 1284 (void) pmap_clear_reference(tpg); 1285 uvm_pagedeactivate(tpg); 1286 } else if (flags & PGO_FREE) { 1287 pmap_page_protect(tpg, VM_PROT_NONE); 1288 if (tpg->flags & PG_BUSY) { 1289 tpg->flags |= freeflag; 1290 if (pagedaemon) { 1291 uvmexp.paging++; 1292 uvm_pagedequeue(tpg); 1293 } 1294 } else { 1295 1296 /* 1297 * ``page is not busy'' 1298 * implies that npages is 1 1299 * and needs_clean is false. 1300 */ 1301 1302 nextpg = TAILQ_NEXT(tpg, listq); 1303 uvm_pagefree(tpg); 1304 if (pagedaemon) 1305 uvmexp.pdfreed++; 1306 } 1307 } 1308 } 1309 if (flags & (PGO_DEACTIVATE|PGO_FREE)) { 1310 uvm_unlock_pageq(); 1311 } 1312 if (needs_clean) { 1313 1314 /* 1315 * start the i/o. if we're traversing by list, 1316 * keep our place in the list with a marker page. 1317 */ 1318 1319 if (by_list) { 1320 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp, 1321 listq); 1322 } 1323 simple_unlock(slock); 1324 error = GOP_WRITE(vp, pgs, npages, flags); 1325 simple_lock(slock); 1326 if (by_list) { 1327 pg = TAILQ_NEXT(&curmp, listq); 1328 TAILQ_REMOVE(&uobj->memq, &curmp, listq); 1329 } 1330 if (error) { 1331 break; 1332 } 1333 if (by_list) { 1334 continue; 1335 } 1336 } 1337 1338 /* 1339 * find the next page and continue if there was no error. 1340 */ 1341 1342 if (by_list) { 1343 if (nextpg) { 1344 pg = nextpg; 1345 nextpg = NULL; 1346 } else { 1347 pg = TAILQ_NEXT(pg, listq); 1348 } 1349 } else { 1350 off += (npages - nback) << PAGE_SHIFT; 1351 if (off < endoff) { 1352 pg = uvm_pagelookup(uobj, off); 1353 } 1354 } 1355 } 1356 if (by_list) { 1357 TAILQ_REMOVE(&uobj->memq, &endmp, listq); 1358 PRELE(l); 1359 } 1360 1361 /* 1362 * if we're cleaning and there was nothing to clean, 1363 * take us off the syncer list. if we started any i/o 1364 * and we're doing sync i/o, wait for all writes to finish. 1365 */ 1366 1367 s = splbio(); 1368 if ((flags & PGO_CLEANIT) && wasclean && 1369 startoff == 0 && endoff == trunc_page(LLONG_MAX) && 1370 LIST_FIRST(&vp->v_dirtyblkhd) == NULL && 1371 (vp->v_flag & VONWORKLST)) { 1372 vp->v_flag &= ~VONWORKLST; 1373 LIST_REMOVE(vp, v_synclist); 1374 } 1375 splx(s); 1376 if (!wasclean && !async) { 1377 s = splbio(); 1378 /* 1379 * XXX - we want simple_unlock(&global_v_numoutput_slock); 1380 * but the slot in ltsleep() is taken! 1381 * XXX - try to recover from missed wakeups with a timeout.. 1382 * must think of something better. 1383 */ 1384 while (vp->v_numoutput != 0) { 1385 vp->v_flag |= VBWAIT; 1386 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE, 1387 "genput2", hz); 1388 simple_lock(slock); 1389 } 1390 splx(s); 1391 } 1392 simple_unlock(&uobj->vmobjlock); 1393 return (error); 1394 } 1395 1396 int 1397 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags) 1398 { 1399 int s, error, run; 1400 int fs_bshift, dev_bshift; 1401 vaddr_t kva; 1402 off_t eof, offset, startoffset; 1403 size_t bytes, iobytes, skipbytes; 1404 daddr_t lbn, blkno; 1405 struct vm_page *pg; 1406 struct buf *mbp, *bp; 1407 struct vnode *devvp; 1408 boolean_t async = (flags & PGO_SYNCIO) == 0; 1409 UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist); 1410 1411 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x", 1412 vp, pgs, npages, flags); 1413 1414 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_WRITE); 1415 if (vp->v_type == VREG) { 1416 fs_bshift = vp->v_mount->mnt_fs_bshift; 1417 dev_bshift = vp->v_mount->mnt_dev_bshift; 1418 } else { 1419 fs_bshift = DEV_BSHIFT; 1420 dev_bshift = DEV_BSHIFT; 1421 } 1422 error = 0; 1423 pg = pgs[0]; 1424 startoffset = pg->offset; 1425 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset); 1426 skipbytes = 0; 1427 KASSERT(bytes != 0); 1428 1429 kva = uvm_pagermapin(pgs, npages, 1430 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK); 1431 1432 s = splbio(); 1433 simple_lock(&global_v_numoutput_slock); 1434 vp->v_numoutput += 2; 1435 simple_unlock(&global_v_numoutput_slock); 1436 mbp = pool_get(&bufpool, PR_WAITOK); 1437 BUF_INIT(mbp); 1438 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x", 1439 vp, mbp, vp->v_numoutput, bytes); 1440 splx(s); 1441 mbp->b_bufsize = npages << PAGE_SHIFT; 1442 mbp->b_data = (void *)kva; 1443 mbp->b_resid = mbp->b_bcount = bytes; 1444 mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0); 1445 mbp->b_iodone = uvm_aio_biodone; 1446 mbp->b_vp = vp; 1447 1448 bp = NULL; 1449 for (offset = startoffset; 1450 bytes > 0; 1451 offset += iobytes, bytes -= iobytes) { 1452 lbn = offset >> fs_bshift; 1453 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run); 1454 if (error) { 1455 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0); 1456 skipbytes += bytes; 1457 bytes = 0; 1458 break; 1459 } 1460 1461 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset, 1462 bytes); 1463 if (blkno == (daddr_t)-1) { 1464 skipbytes += iobytes; 1465 continue; 1466 } 1467 1468 /* if it's really one i/o, don't make a second buf */ 1469 if (offset == startoffset && iobytes == bytes) { 1470 bp = mbp; 1471 } else { 1472 s = splbio(); 1473 V_INCR_NUMOUTPUT(vp); 1474 bp = pool_get(&bufpool, PR_WAITOK); 1475 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d", 1476 vp, bp, vp->v_numoutput, 0); 1477 splx(s); 1478 BUF_INIT(bp); 1479 bp->b_data = (char *)kva + 1480 (vaddr_t)(offset - pg->offset); 1481 bp->b_resid = bp->b_bcount = iobytes; 1482 bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC; 1483 bp->b_iodone = uvm_aio_biodone1; 1484 bp->b_vp = vp; 1485 } 1486 bp->b_lblkno = 0; 1487 bp->b_private = mbp; 1488 if (devvp->v_type == VBLK) { 1489 bp->b_dev = devvp->v_rdev; 1490 } 1491 1492 /* adjust physical blkno for partial blocks */ 1493 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >> 1494 dev_bshift); 1495 UVMHIST_LOG(ubchist, 1496 "vp %p offset 0x%x bcount 0x%x blkno 0x%x", 1497 vp, offset, bp->b_bcount, bp->b_blkno); 1498 if (curproc == uvm.pagedaemon_proc) 1499 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 1500 else if (async) 1501 BIO_SETPRIO(bp, BPRIO_TIMENONCRITICAL); 1502 else 1503 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 1504 VOP_STRATEGY(bp->b_vp, bp); 1505 } 1506 if (skipbytes) { 1507 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0); 1508 s = splbio(); 1509 if (error) { 1510 mbp->b_flags |= B_ERROR; 1511 mbp->b_error = error; 1512 } 1513 mbp->b_resid -= skipbytes; 1514 if (mbp->b_resid == 0) { 1515 biodone(mbp); 1516 } 1517 splx(s); 1518 } 1519 if (async) { 1520 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0); 1521 return (0); 1522 } 1523 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0); 1524 error = biowait(mbp); 1525 uvm_aio_aiodone(mbp); 1526 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0); 1527 return (error); 1528 } 1529 1530 /* 1531 * VOP_PUTPAGES() for vnodes which never have pages. 1532 */ 1533 1534 int 1535 genfs_null_putpages(void *v) 1536 { 1537 struct vop_putpages_args /* { 1538 struct vnode *a_vp; 1539 voff_t a_offlo; 1540 voff_t a_offhi; 1541 int a_flags; 1542 } */ *ap = v; 1543 struct vnode *vp = ap->a_vp; 1544 1545 KASSERT(vp->v_uobj.uo_npages == 0); 1546 simple_unlock(&vp->v_interlock); 1547 return (0); 1548 } 1549 1550 void 1551 genfs_node_init(struct vnode *vp, struct genfs_ops *ops) 1552 { 1553 struct genfs_node *gp = VTOG(vp); 1554 1555 lockinit(&gp->g_glock, PINOD, "glock", 0, 0); 1556 gp->g_op = ops; 1557 } 1558 1559 void 1560 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags) 1561 { 1562 int bsize; 1563 1564 bsize = 1 << vp->v_mount->mnt_fs_bshift; 1565 *eobp = (size + bsize - 1) & ~(bsize - 1); 1566 } 1567 1568 int 1569 genfs_compat_getpages(void *v) 1570 { 1571 struct vop_getpages_args /* { 1572 struct vnode *a_vp; 1573 voff_t a_offset; 1574 struct vm_page **a_m; 1575 int *a_count; 1576 int a_centeridx; 1577 vm_prot_t a_access_type; 1578 int a_advice; 1579 int a_flags; 1580 } */ *ap = v; 1581 1582 off_t origoffset; 1583 struct vnode *vp = ap->a_vp; 1584 struct uvm_object *uobj = &vp->v_uobj; 1585 struct vm_page *pg, **pgs; 1586 vaddr_t kva; 1587 int i, error, orignpages, npages; 1588 struct iovec iov; 1589 struct uio uio; 1590 struct ucred *cred = curproc->p_ucred; 1591 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0; 1592 1593 error = 0; 1594 origoffset = ap->a_offset; 1595 orignpages = *ap->a_count; 1596 pgs = ap->a_m; 1597 1598 if (write && (vp->v_flag & VONWORKLST) == 0) { 1599 vn_syncer_add_to_worklist(vp, filedelay); 1600 } 1601 if (ap->a_flags & PGO_LOCKED) { 1602 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, 1603 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0)); 1604 1605 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0); 1606 } 1607 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) { 1608 simple_unlock(&uobj->vmobjlock); 1609 return (EINVAL); 1610 } 1611 npages = orignpages; 1612 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL); 1613 simple_unlock(&uobj->vmobjlock); 1614 kva = uvm_pagermapin(pgs, npages, 1615 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK); 1616 for (i = 0; i < npages; i++) { 1617 pg = pgs[i]; 1618 if ((pg->flags & PG_FAKE) == 0) { 1619 continue; 1620 } 1621 iov.iov_base = (char *)kva + (i << PAGE_SHIFT); 1622 iov.iov_len = PAGE_SIZE; 1623 uio.uio_iov = &iov; 1624 uio.uio_iovcnt = 1; 1625 uio.uio_offset = origoffset + (i << PAGE_SHIFT); 1626 uio.uio_segflg = UIO_SYSSPACE; 1627 uio.uio_rw = UIO_READ; 1628 uio.uio_resid = PAGE_SIZE; 1629 uio.uio_procp = NULL; 1630 /* XXX vn_lock */ 1631 error = VOP_READ(vp, &uio, 0, cred); 1632 if (error) { 1633 break; 1634 } 1635 if (uio.uio_resid) { 1636 memset(iov.iov_base, 0, uio.uio_resid); 1637 } 1638 } 1639 uvm_pagermapout(kva, npages); 1640 simple_lock(&uobj->vmobjlock); 1641 uvm_lock_pageq(); 1642 for (i = 0; i < npages; i++) { 1643 pg = pgs[i]; 1644 if (error && (pg->flags & PG_FAKE) != 0) { 1645 pg->flags |= PG_RELEASED; 1646 } else { 1647 pmap_clear_modify(pg); 1648 uvm_pageactivate(pg); 1649 } 1650 } 1651 if (error) { 1652 uvm_page_unbusy(pgs, npages); 1653 } 1654 uvm_unlock_pageq(); 1655 simple_unlock(&uobj->vmobjlock); 1656 return (error); 1657 } 1658 1659 int 1660 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, 1661 int flags) 1662 { 1663 off_t offset; 1664 struct iovec iov; 1665 struct uio uio; 1666 struct ucred *cred = curproc->p_ucred; 1667 struct buf *bp; 1668 vaddr_t kva; 1669 int s, error; 1670 1671 offset = pgs[0]->offset; 1672 kva = uvm_pagermapin(pgs, npages, 1673 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK); 1674 1675 iov.iov_base = (void *)kva; 1676 iov.iov_len = npages << PAGE_SHIFT; 1677 uio.uio_iov = &iov; 1678 uio.uio_iovcnt = 1; 1679 uio.uio_offset = offset; 1680 uio.uio_segflg = UIO_SYSSPACE; 1681 uio.uio_rw = UIO_WRITE; 1682 uio.uio_resid = npages << PAGE_SHIFT; 1683 uio.uio_procp = NULL; 1684 /* XXX vn_lock */ 1685 error = VOP_WRITE(vp, &uio, 0, cred); 1686 1687 s = splbio(); 1688 V_INCR_NUMOUTPUT(vp); 1689 bp = pool_get(&bufpool, PR_WAITOK); 1690 splx(s); 1691 1692 BUF_INIT(bp); 1693 bp->b_flags = B_BUSY | B_WRITE | B_AGE; 1694 bp->b_vp = vp; 1695 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift; 1696 bp->b_data = (char *)kva; 1697 bp->b_bcount = npages << PAGE_SHIFT; 1698 bp->b_bufsize = npages << PAGE_SHIFT; 1699 bp->b_resid = 0; 1700 if (error) { 1701 bp->b_flags |= B_ERROR; 1702 bp->b_error = error; 1703 } 1704 uvm_aio_aiodone(bp); 1705 return (error); 1706 } 1707 1708 static void 1709 filt_genfsdetach(struct knote *kn) 1710 { 1711 struct vnode *vp = (struct vnode *)kn->kn_hook; 1712 1713 /* XXXLUKEM lock the struct? */ 1714 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext); 1715 } 1716 1717 static int 1718 filt_genfsread(struct knote *kn, long hint) 1719 { 1720 struct vnode *vp = (struct vnode *)kn->kn_hook; 1721 1722 /* 1723 * filesystem is gone, so set the EOF flag and schedule 1724 * the knote for deletion. 1725 */ 1726 if (hint == NOTE_REVOKE) { 1727 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 1728 return (1); 1729 } 1730 1731 /* XXXLUKEM lock the struct? */ 1732 kn->kn_data = vp->v_size - kn->kn_fp->f_offset; 1733 return (kn->kn_data != 0); 1734 } 1735 1736 static int 1737 filt_genfsvnode(struct knote *kn, long hint) 1738 { 1739 1740 if (kn->kn_sfflags & hint) 1741 kn->kn_fflags |= hint; 1742 if (hint == NOTE_REVOKE) { 1743 kn->kn_flags |= EV_EOF; 1744 return (1); 1745 } 1746 return (kn->kn_fflags != 0); 1747 } 1748 1749 static const struct filterops genfsread_filtops = 1750 { 1, NULL, filt_genfsdetach, filt_genfsread }; 1751 static const struct filterops genfsvnode_filtops = 1752 { 1, NULL, filt_genfsdetach, filt_genfsvnode }; 1753 1754 int 1755 genfs_kqfilter(void *v) 1756 { 1757 struct vop_kqfilter_args /* { 1758 struct vnode *a_vp; 1759 struct knote *a_kn; 1760 } */ *ap = v; 1761 struct vnode *vp; 1762 struct knote *kn; 1763 1764 vp = ap->a_vp; 1765 kn = ap->a_kn; 1766 switch (kn->kn_filter) { 1767 case EVFILT_READ: 1768 kn->kn_fop = &genfsread_filtops; 1769 break; 1770 case EVFILT_VNODE: 1771 kn->kn_fop = &genfsvnode_filtops; 1772 break; 1773 default: 1774 return (1); 1775 } 1776 1777 kn->kn_hook = vp; 1778 1779 /* XXXLUKEM lock the struct? */ 1780 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext); 1781 1782 return (0); 1783 } 1784