xref: /netbsd-src/sys/miscfs/genfs/genfs_vnops.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: genfs_vnops.c,v 1.91 2004/10/04 00:28:30 enami Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.91 2004/10/04 00:28:30 enami Exp $");
35 
36 #include "opt_nfsserver.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/kernel.h>
42 #include <sys/mount.h>
43 #include <sys/namei.h>
44 #include <sys/vnode.h>
45 #include <sys/fcntl.h>
46 #include <sys/malloc.h>
47 #include <sys/poll.h>
48 #include <sys/mman.h>
49 #include <sys/file.h>
50 
51 #include <miscfs/genfs/genfs.h>
52 #include <miscfs/genfs/genfs_node.h>
53 #include <miscfs/specfs/specdev.h>
54 
55 #include <uvm/uvm.h>
56 #include <uvm/uvm_pager.h>
57 
58 #ifdef NFSSERVER
59 #include <nfs/rpcv2.h>
60 #include <nfs/nfsproto.h>
61 #include <nfs/nfs.h>
62 #include <nfs/nqnfs.h>
63 #include <nfs/nfs_var.h>
64 #endif
65 
66 static __inline void genfs_rel_pages(struct vm_page **, int);
67 static void filt_genfsdetach(struct knote *);
68 static int filt_genfsread(struct knote *, long);
69 static int filt_genfsvnode(struct knote *, long);
70 
71 
72 #define MAX_READ_AHEAD	16 	/* XXXUBC 16 */
73 int genfs_rapages = MAX_READ_AHEAD; /* # of pages in each chunk of readahead */
74 int genfs_racount = 2;		/* # of page chunks to readahead */
75 int genfs_raskip = 2;		/* # of busy page chunks allowed to skip */
76 
77 int
78 genfs_poll(void *v)
79 {
80 	struct vop_poll_args /* {
81 		struct vnode *a_vp;
82 		int a_events;
83 		struct proc *a_p;
84 	} */ *ap = v;
85 
86 	return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
87 }
88 
89 int
90 genfs_fsync(void *v)
91 {
92 	struct vop_fsync_args /* {
93 		struct vnode *a_vp;
94 		struct ucred *a_cred;
95 		int a_flags;
96 		off_t offlo;
97 		off_t offhi;
98 		struct proc *a_p;
99 	} */ *ap = v;
100 	struct vnode *vp = ap->a_vp;
101 	int wait;
102 
103 	wait = (ap->a_flags & FSYNC_WAIT) != 0;
104 	vflushbuf(vp, wait);
105 	if ((ap->a_flags & FSYNC_DATAONLY) != 0)
106 		return (0);
107 	else
108 		return (VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0));
109 }
110 
111 int
112 genfs_seek(void *v)
113 {
114 	struct vop_seek_args /* {
115 		struct vnode *a_vp;
116 		off_t a_oldoff;
117 		off_t a_newoff;
118 		struct ucred *a_ucred;
119 	} */ *ap = v;
120 
121 	if (ap->a_newoff < 0)
122 		return (EINVAL);
123 
124 	return (0);
125 }
126 
127 int
128 genfs_abortop(void *v)
129 {
130 	struct vop_abortop_args /* {
131 		struct vnode *a_dvp;
132 		struct componentname *a_cnp;
133 	} */ *ap = v;
134 
135 	if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
136 		PNBUF_PUT(ap->a_cnp->cn_pnbuf);
137 	return (0);
138 }
139 
140 int
141 genfs_fcntl(void *v)
142 {
143 	struct vop_fcntl_args /* {
144 		struct vnode *a_vp;
145 		u_int a_command;
146 		caddr_t a_data;
147 		int a_fflag;
148 		struct ucred *a_cred;
149 		struct proc *a_p;
150 	} */ *ap = v;
151 
152 	if (ap->a_command == F_SETFL)
153 		return (0);
154 	else
155 		return (EOPNOTSUPP);
156 }
157 
158 /*ARGSUSED*/
159 int
160 genfs_badop(void *v)
161 {
162 
163 	panic("genfs: bad op");
164 }
165 
166 /*ARGSUSED*/
167 int
168 genfs_nullop(void *v)
169 {
170 
171 	return (0);
172 }
173 
174 /*ARGSUSED*/
175 int
176 genfs_einval(void *v)
177 {
178 
179 	return (EINVAL);
180 }
181 
182 /*
183  * Called when an fs doesn't support a particular vop.
184  * This takes care to vrele, vput, or vunlock passed in vnodes.
185  */
186 int
187 genfs_eopnotsupp(void *v)
188 {
189 	struct vop_generic_args /*
190 		struct vnodeop_desc *a_desc;
191 		/ * other random data follows, presumably * /
192 	} */ *ap = v;
193 	struct vnodeop_desc *desc = ap->a_desc;
194 	struct vnode *vp, *vp_last = NULL;
195 	int flags, i, j, offset;
196 
197 	flags = desc->vdesc_flags;
198 	for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
199 		if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
200 			break;	/* stop at end of list */
201 		if ((j = flags & VDESC_VP0_WILLPUT)) {
202 			vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
203 
204 			/* Skip if NULL */
205 			if (!vp)
206 				continue;
207 
208 			switch (j) {
209 			case VDESC_VP0_WILLPUT:
210 				/* Check for dvp == vp cases */
211 				if (vp == vp_last)
212 					vrele(vp);
213 				else {
214 					vput(vp);
215 					vp_last = vp;
216 				}
217 				break;
218 			case VDESC_VP0_WILLUNLOCK:
219 				VOP_UNLOCK(vp, 0);
220 				break;
221 			case VDESC_VP0_WILLRELE:
222 				vrele(vp);
223 				break;
224 			}
225 		}
226 	}
227 
228 	return (EOPNOTSUPP);
229 }
230 
231 /*ARGSUSED*/
232 int
233 genfs_ebadf(void *v)
234 {
235 
236 	return (EBADF);
237 }
238 
239 /* ARGSUSED */
240 int
241 genfs_enoioctl(void *v)
242 {
243 
244 	return (EPASSTHROUGH);
245 }
246 
247 
248 /*
249  * Eliminate all activity associated with the requested vnode
250  * and with all vnodes aliased to the requested vnode.
251  */
252 int
253 genfs_revoke(void *v)
254 {
255 	struct vop_revoke_args /* {
256 		struct vnode *a_vp;
257 		int a_flags;
258 	} */ *ap = v;
259 	struct vnode *vp, *vq;
260 	struct proc *p = curproc;	/* XXX */
261 
262 #ifdef DIAGNOSTIC
263 	if ((ap->a_flags & REVOKEALL) == 0)
264 		panic("genfs_revoke: not revokeall");
265 #endif
266 
267 	vp = ap->a_vp;
268 	simple_lock(&vp->v_interlock);
269 
270 	if (vp->v_flag & VALIASED) {
271 		/*
272 		 * If a vgone (or vclean) is already in progress,
273 		 * wait until it is done and return.
274 		 */
275 		if (vp->v_flag & VXLOCK) {
276 			vp->v_flag |= VXWANT;
277 			ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
278 				&vp->v_interlock);
279 			return (0);
280 		}
281 		/*
282 		 * Ensure that vp will not be vgone'd while we
283 		 * are eliminating its aliases.
284 		 */
285 		vp->v_flag |= VXLOCK;
286 		simple_unlock(&vp->v_interlock);
287 		while (vp->v_flag & VALIASED) {
288 			simple_lock(&spechash_slock);
289 			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
290 				if (vq->v_rdev != vp->v_rdev ||
291 				    vq->v_type != vp->v_type || vp == vq)
292 					continue;
293 				simple_unlock(&spechash_slock);
294 				vgone(vq);
295 				break;
296 			}
297 			if (vq == NULLVP)
298 				simple_unlock(&spechash_slock);
299 		}
300 		/*
301 		 * Remove the lock so that vgone below will
302 		 * really eliminate the vnode after which time
303 		 * vgone will awaken any sleepers.
304 		 */
305 		simple_lock(&vp->v_interlock);
306 		vp->v_flag &= ~VXLOCK;
307 	}
308 	vgonel(vp, p);
309 	return (0);
310 }
311 
312 /*
313  * Lock the node.
314  */
315 int
316 genfs_lock(void *v)
317 {
318 	struct vop_lock_args /* {
319 		struct vnode *a_vp;
320 		int a_flags;
321 	} */ *ap = v;
322 	struct vnode *vp = ap->a_vp;
323 
324 	return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
325 }
326 
327 /*
328  * Unlock the node.
329  */
330 int
331 genfs_unlock(void *v)
332 {
333 	struct vop_unlock_args /* {
334 		struct vnode *a_vp;
335 		int a_flags;
336 	} */ *ap = v;
337 	struct vnode *vp = ap->a_vp;
338 
339 	return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
340 	    &vp->v_interlock));
341 }
342 
343 /*
344  * Return whether or not the node is locked.
345  */
346 int
347 genfs_islocked(void *v)
348 {
349 	struct vop_islocked_args /* {
350 		struct vnode *a_vp;
351 	} */ *ap = v;
352 	struct vnode *vp = ap->a_vp;
353 
354 	return (lockstatus(vp->v_vnlock));
355 }
356 
357 /*
358  * Stubs to use when there is no locking to be done on the underlying object.
359  */
360 int
361 genfs_nolock(void *v)
362 {
363 	struct vop_lock_args /* {
364 		struct vnode *a_vp;
365 		int a_flags;
366 		struct proc *a_p;
367 	} */ *ap = v;
368 
369 	/*
370 	 * Since we are not using the lock manager, we must clear
371 	 * the interlock here.
372 	 */
373 	if (ap->a_flags & LK_INTERLOCK)
374 		simple_unlock(&ap->a_vp->v_interlock);
375 	return (0);
376 }
377 
378 int
379 genfs_nounlock(void *v)
380 {
381 
382 	return (0);
383 }
384 
385 int
386 genfs_noislocked(void *v)
387 {
388 
389 	return (0);
390 }
391 
392 /*
393  * Local lease check for NFS servers.  Just set up args and let
394  * nqsrv_getlease() do the rest.  If NFSSERVER is not in the kernel,
395  * this is a null operation.
396  */
397 int
398 genfs_lease_check(void *v)
399 {
400 #ifdef NFSSERVER
401 	struct vop_lease_args /* {
402 		struct vnode *a_vp;
403 		struct proc *a_p;
404 		struct ucred *a_cred;
405 		int a_flag;
406 	} */ *ap = v;
407 	u_int32_t duration = 0;
408 	int cache;
409 	u_quad_t frev;
410 
411 	(void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
412 	    NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
413 	return (0);
414 #else
415 	return (0);
416 #endif /* NFSSERVER */
417 }
418 
419 int
420 genfs_mmap(void *v)
421 {
422 
423 	return (0);
424 }
425 
426 static __inline void
427 genfs_rel_pages(struct vm_page **pgs, int npages)
428 {
429 	int i;
430 
431 	for (i = 0; i < npages; i++) {
432 		struct vm_page *pg = pgs[i];
433 
434 		if (pg == NULL)
435 			continue;
436 		if (pg->flags & PG_FAKE) {
437 			pg->flags |= PG_RELEASED;
438 		}
439 	}
440 	uvm_lock_pageq();
441 	uvm_page_unbusy(pgs, npages);
442 	uvm_unlock_pageq();
443 }
444 
445 /*
446  * generic VM getpages routine.
447  * Return PG_BUSY pages for the given range,
448  * reading from backing store if necessary.
449  */
450 
451 int
452 genfs_getpages(void *v)
453 {
454 	struct vop_getpages_args /* {
455 		struct vnode *a_vp;
456 		voff_t a_offset;
457 		struct vm_page **a_m;
458 		int *a_count;
459 		int a_centeridx;
460 		vm_prot_t a_access_type;
461 		int a_advice;
462 		int a_flags;
463 	} */ *ap = v;
464 
465 	off_t newsize, diskeof, memeof;
466 	off_t offset, origoffset, startoffset, endoffset, raoffset;
467 	daddr_t lbn, blkno;
468 	int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
469 	int fs_bshift, fs_bsize, dev_bshift;
470 	int flags = ap->a_flags;
471 	size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
472 	vaddr_t kva;
473 	struct buf *bp, *mbp;
474 	struct vnode *vp = ap->a_vp;
475 	struct vnode *devvp;
476 	struct genfs_node *gp = VTOG(vp);
477 	struct uvm_object *uobj = &vp->v_uobj;
478 	struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_AHEAD];
479 	int pgs_size;
480 	struct ucred *cred = curproc->p_ucred;		/* XXXUBC curlwp */
481 	boolean_t async = (flags & PGO_SYNCIO) == 0;
482 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
483 	boolean_t sawhole = FALSE;
484 	boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
485 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
486 
487 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
488 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
489 
490 	/* XXXUBC temp limit */
491 	if (*ap->a_count > MAX_READ_AHEAD) {
492 		panic("genfs_getpages: too many pages");
493 	}
494 
495 	error = 0;
496 	origoffset = ap->a_offset;
497 	orignpages = *ap->a_count;
498 	GOP_SIZE(vp, vp->v_size, &diskeof, GOP_SIZE_READ);
499 	if (flags & PGO_PASTEOF) {
500 		newsize = MAX(vp->v_size,
501 		    origoffset + (orignpages << PAGE_SHIFT));
502 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
503 	} else {
504 		GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
505 	}
506 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
507 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
508 	KASSERT(orignpages > 0);
509 
510 	/*
511 	 * Bounds-check the request.
512 	 */
513 
514 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
515 		if ((flags & PGO_LOCKED) == 0) {
516 			simple_unlock(&uobj->vmobjlock);
517 		}
518 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
519 		    origoffset, *ap->a_count, memeof,0);
520 		return (EINVAL);
521 	}
522 
523 	/*
524 	 * For PGO_LOCKED requests, just return whatever's in memory.
525 	 */
526 
527 	if (flags & PGO_LOCKED) {
528 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
529 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
530 
531 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
532 	}
533 
534 	/* uobj is locked */
535 
536 	if (write && (vp->v_flag & VONWORKLST) == 0) {
537 		vn_syncer_add_to_worklist(vp, filedelay);
538 	}
539 
540 	/*
541 	 * find the requested pages and make some simple checks.
542 	 * leave space in the page array for a whole block.
543 	 */
544 
545 	if (vp->v_type == VREG) {
546 		fs_bshift = vp->v_mount->mnt_fs_bshift;
547 		dev_bshift = vp->v_mount->mnt_dev_bshift;
548 	} else {
549 		fs_bshift = DEV_BSHIFT;
550 		dev_bshift = DEV_BSHIFT;
551 	}
552 	fs_bsize = 1 << fs_bshift;
553 
554 	orignpages = MIN(orignpages,
555 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
556 	npages = orignpages;
557 	startoffset = origoffset & ~(fs_bsize - 1);
558 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
559 	    fs_bsize - 1) & ~(fs_bsize - 1));
560 	endoffset = MIN(endoffset, round_page(memeof));
561 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
562 
563 	pgs_size = sizeof(struct vm_page *) *
564 	    ((endoffset - startoffset) >> PAGE_SHIFT);
565 	if (pgs_size > sizeof(pgs_onstack)) {
566 		pgs = malloc(pgs_size, M_DEVBUF, M_NOWAIT | M_ZERO);
567 		if (pgs == NULL) {
568 			simple_unlock(&uobj->vmobjlock);
569 			return (ENOMEM);
570 		}
571 	} else {
572 		pgs = pgs_onstack;
573 		memset(pgs, 0, pgs_size);
574 	}
575 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
576 	    ridx, npages, startoffset, endoffset);
577 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
578 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
579 		KASSERT(async != 0);
580 		genfs_rel_pages(&pgs[ridx], orignpages);
581 		simple_unlock(&uobj->vmobjlock);
582 		if (pgs != pgs_onstack)
583 			free(pgs, M_DEVBUF);
584 		return (EBUSY);
585 	}
586 
587 	/*
588 	 * if the pages are already resident, just return them.
589 	 */
590 
591 	for (i = 0; i < npages; i++) {
592 		struct vm_page *pg = pgs[ridx + i];
593 
594 		if ((pg->flags & PG_FAKE) ||
595 		    (write && (pg->flags & PG_RDONLY))) {
596 			break;
597 		}
598 	}
599 	if (i == npages) {
600 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
601 		raoffset = origoffset + (orignpages << PAGE_SHIFT);
602 		npages += ridx;
603 		goto raout;
604 	}
605 
606 	/*
607 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
608 	 */
609 
610 	if (flags & PGO_OVERWRITE) {
611 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
612 
613 		for (i = 0; i < npages; i++) {
614 			struct vm_page *pg = pgs[ridx + i];
615 
616 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
617 		}
618 		npages += ridx;
619 		goto out;
620 	}
621 
622 	/*
623 	 * the page wasn't resident and we're not overwriting,
624 	 * so we're going to have to do some i/o.
625 	 * find any additional pages needed to cover the expanded range.
626 	 */
627 
628 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
629 	if (startoffset != origoffset || npages != orignpages) {
630 
631 		/*
632 		 * we need to avoid deadlocks caused by locking
633 		 * additional pages at lower offsets than pages we
634 		 * already have locked.  unlock them all and start over.
635 		 */
636 
637 		genfs_rel_pages(&pgs[ridx], orignpages);
638 		memset(pgs, 0, pgs_size);
639 
640 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
641 		    startoffset, endoffset, 0,0);
642 		npgs = npages;
643 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
644 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
645 			KASSERT(async != 0);
646 			genfs_rel_pages(pgs, npages);
647 			simple_unlock(&uobj->vmobjlock);
648 			if (pgs != pgs_onstack)
649 				free(pgs, M_DEVBUF);
650 			return (EBUSY);
651 		}
652 	}
653 	simple_unlock(&uobj->vmobjlock);
654 
655 	/*
656 	 * read the desired page(s).
657 	 */
658 
659 	totalbytes = npages << PAGE_SHIFT;
660 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
661 	tailbytes = totalbytes - bytes;
662 	skipbytes = 0;
663 
664 	kva = uvm_pagermapin(pgs, npages,
665 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
666 
667 	s = splbio();
668 	mbp = pool_get(&bufpool, PR_WAITOK);
669 	splx(s);
670 	BUF_INIT(mbp);
671 	mbp->b_bufsize = totalbytes;
672 	mbp->b_data = (void *)kva;
673 	mbp->b_resid = mbp->b_bcount = bytes;
674 	mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
675 	mbp->b_iodone = (async ? uvm_aio_biodone : 0);
676 	mbp->b_vp = vp;
677 
678 	/*
679 	 * if EOF is in the middle of the range, zero the part past EOF.
680 	 * if the page including EOF is not PG_FAKE, skip over it since
681 	 * in that case it has valid data that we need to preserve.
682 	 */
683 
684 	if (tailbytes > 0) {
685 		size_t tailstart = bytes;
686 
687 		if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
688 			tailstart = round_page(tailstart);
689 			tailbytes -= tailstart - bytes;
690 		}
691 		UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
692 		    kva, tailstart, tailbytes,0);
693 		memset((void *)(kva + tailstart), 0, tailbytes);
694 	}
695 
696 	/*
697 	 * now loop over the pages, reading as needed.
698 	 */
699 
700 	if (write) {
701 		lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
702 	} else {
703 		lockmgr(&gp->g_glock, LK_SHARED, NULL);
704 	}
705 
706 	bp = NULL;
707 	for (offset = startoffset;
708 	    bytes > 0;
709 	    offset += iobytes, bytes -= iobytes) {
710 
711 		/*
712 		 * skip pages which don't need to be read.
713 		 */
714 
715 		pidx = (offset - startoffset) >> PAGE_SHIFT;
716 		while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) {
717 			size_t b;
718 
719 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
720 			b = MIN(PAGE_SIZE, bytes);
721 			offset += b;
722 			bytes -= b;
723 			skipbytes += b;
724 			pidx++;
725 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
726 			    offset, 0,0,0);
727 			if (bytes == 0) {
728 				goto loopdone;
729 			}
730 		}
731 
732 		/*
733 		 * bmap the file to find out the blkno to read from and
734 		 * how much we can read in one i/o.  if bmap returns an error,
735 		 * skip the rest of the top-level i/o.
736 		 */
737 
738 		lbn = offset >> fs_bshift;
739 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
740 		if (error) {
741 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
742 			    lbn, error,0,0);
743 			skipbytes += bytes;
744 			goto loopdone;
745 		}
746 
747 		/*
748 		 * see how many pages can be read with this i/o.
749 		 * reduce the i/o size if necessary to avoid
750 		 * overwriting pages with valid data.
751 		 */
752 
753 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
754 		    bytes);
755 		if (offset + iobytes > round_page(offset)) {
756 			pcount = 1;
757 			while (pidx + pcount < npages &&
758 			    pgs[pidx + pcount]->flags & PG_FAKE) {
759 				pcount++;
760 			}
761 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
762 			    (offset - trunc_page(offset)));
763 		}
764 
765 		/*
766 		 * if this block isn't allocated, zero it instead of
767 		 * reading it.  if this is a read access, mark the
768 		 * pages we zeroed PG_RDONLY.
769 		 */
770 
771 		if (blkno < 0) {
772 			int holepages = (round_page(offset + iobytes) -
773 			    trunc_page(offset)) >> PAGE_SHIFT;
774 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
775 
776 			sawhole = TRUE;
777 			memset((char *)kva + (offset - startoffset), 0,
778 			    iobytes);
779 			skipbytes += iobytes;
780 
781 			for (i = 0; i < holepages; i++) {
782 				if (write) {
783 					pgs[pidx + i]->flags &= ~PG_CLEAN;
784 				} else {
785 					pgs[pidx + i]->flags |= PG_RDONLY;
786 				}
787 			}
788 			continue;
789 		}
790 
791 		/*
792 		 * allocate a sub-buf for this piece of the i/o
793 		 * (or just use mbp if there's only 1 piece),
794 		 * and start it going.
795 		 */
796 
797 		if (offset == startoffset && iobytes == bytes) {
798 			bp = mbp;
799 		} else {
800 			s = splbio();
801 			bp = pool_get(&bufpool, PR_WAITOK);
802 			splx(s);
803 			BUF_INIT(bp);
804 			bp->b_data = (char *)kva + offset - startoffset;
805 			bp->b_resid = bp->b_bcount = iobytes;
806 			bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC;
807 			bp->b_iodone = uvm_aio_biodone1;
808 			bp->b_vp = vp;
809 			bp->b_proc = NULL;
810 		}
811 		bp->b_lblkno = 0;
812 		bp->b_private = mbp;
813 		if (devvp->v_type == VBLK) {
814 			bp->b_dev = devvp->v_rdev;
815 		}
816 
817 		/* adjust physical blkno for partial blocks */
818 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
819 		    dev_bshift);
820 
821 		UVMHIST_LOG(ubchist,
822 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
823 		    bp, offset, iobytes, bp->b_blkno);
824 
825 		if (async)
826 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
827 		else
828 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
829 		VOP_STRATEGY(bp->b_vp, bp);
830 	}
831 
832 loopdone:
833 	if (skipbytes) {
834 		s = splbio();
835 		if (error) {
836 			mbp->b_flags |= B_ERROR;
837 			mbp->b_error = error;
838 		}
839 		mbp->b_resid -= skipbytes;
840 		if (mbp->b_resid == 0) {
841 			biodone(mbp);
842 		}
843 		splx(s);
844 	}
845 
846 	if (async) {
847 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
848 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
849 		if (pgs != pgs_onstack)
850 			free(pgs, M_DEVBUF);
851 		return (0);
852 	}
853 	if (bp != NULL) {
854 		error = biowait(mbp);
855 	}
856 	s = splbio();
857 	pool_put(&bufpool, mbp);
858 	splx(s);
859 	uvm_pagermapout(kva, npages);
860 	raoffset = startoffset + totalbytes;
861 
862 	/*
863 	 * if this we encountered a hole then we have to do a little more work.
864 	 * for read faults, we marked the page PG_RDONLY so that future
865 	 * write accesses to the page will fault again.
866 	 * for write faults, we must make sure that the backing store for
867 	 * the page is completely allocated while the pages are locked.
868 	 */
869 
870 	if (!error && sawhole && write) {
871 		for (i = 0; i < npages; i++) {
872 			if (pgs[i] == NULL) {
873 				continue;
874 			}
875 			pgs[i]->flags &= ~PG_CLEAN;
876 			UVMHIST_LOG(ubchist, "mark dirty pg %p", pgs[i],0,0,0);
877 		}
878 		error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
879 		    cred);
880 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
881 		    startoffset, npages << PAGE_SHIFT, error,0);
882 	}
883 	lockmgr(&gp->g_glock, LK_RELEASE, NULL);
884 	simple_lock(&uobj->vmobjlock);
885 
886 	/*
887 	 * see if we want to start any readahead.
888 	 * XXXUBC for now, just read the next 128k on 64k boundaries.
889 	 * this is pretty nonsensical, but it is 50% faster than reading
890 	 * just the next 64k.
891 	 */
892 
893 raout:
894 	if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
895 	    PAGE_SHIFT <= 16) {
896 		off_t rasize;
897 		int rapages, err, i, skipped;
898 
899 		/* XXXUBC temp limit, from above */
900 		rapages = MIN(MIN(1 << (16 - PAGE_SHIFT), MAX_READ_AHEAD),
901 		    genfs_rapages);
902 		rasize = rapages << PAGE_SHIFT;
903 		for (i = skipped = 0; i < genfs_racount; i++) {
904 			err = VOP_GETPAGES(vp, raoffset, NULL, &rapages, 0,
905 			    VM_PROT_READ, 0, 0);
906 			simple_lock(&uobj->vmobjlock);
907 			if (err) {
908 				if (err != EBUSY ||
909 				    skipped++ == genfs_raskip)
910 					break;
911 			}
912 			raoffset += rasize;
913 			rapages = rasize >> PAGE_SHIFT;
914 		}
915 	}
916 
917 	/*
918 	 * we're almost done!  release the pages...
919 	 * for errors, we free the pages.
920 	 * otherwise we activate them and mark them as valid and clean.
921 	 * also, unbusy pages that were not actually requested.
922 	 */
923 
924 	if (error) {
925 		for (i = 0; i < npages; i++) {
926 			if (pgs[i] == NULL) {
927 				continue;
928 			}
929 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
930 			    pgs[i], pgs[i]->flags, 0,0);
931 			if (pgs[i]->flags & PG_FAKE) {
932 				pgs[i]->flags |= PG_RELEASED;
933 			}
934 		}
935 		uvm_lock_pageq();
936 		uvm_page_unbusy(pgs, npages);
937 		uvm_unlock_pageq();
938 		simple_unlock(&uobj->vmobjlock);
939 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
940 		if (pgs != pgs_onstack)
941 			free(pgs, M_DEVBUF);
942 		return (error);
943 	}
944 
945 out:
946 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
947 	uvm_lock_pageq();
948 	for (i = 0; i < npages; i++) {
949 		pg = pgs[i];
950 		if (pg == NULL) {
951 			continue;
952 		}
953 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
954 		    pg, pg->flags, 0,0);
955 		if (pg->flags & PG_FAKE && !overwrite) {
956 			pg->flags &= ~(PG_FAKE);
957 			pmap_clear_modify(pgs[i]);
958 		}
959 		if (write) {
960 			pg->flags &= ~(PG_RDONLY);
961 		}
962 		if (i < ridx || i >= ridx + orignpages || async) {
963 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
964 			    pg, pg->offset,0,0);
965 			if (pg->flags & PG_WANTED) {
966 				wakeup(pg);
967 			}
968 			if (pg->flags & PG_FAKE) {
969 				KASSERT(overwrite);
970 				uvm_pagezero(pg);
971 			}
972 			if (pg->flags & PG_RELEASED) {
973 				uvm_pagefree(pg);
974 				continue;
975 			}
976 			uvm_pageactivate(pg);
977 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
978 			UVM_PAGE_OWN(pg, NULL);
979 		}
980 	}
981 	uvm_unlock_pageq();
982 	simple_unlock(&uobj->vmobjlock);
983 	if (ap->a_m != NULL) {
984 		memcpy(ap->a_m, &pgs[ridx],
985 		    orignpages * sizeof(struct vm_page *));
986 	}
987 	if (pgs != pgs_onstack)
988 		free(pgs, M_DEVBUF);
989 	return (0);
990 }
991 
992 /*
993  * generic VM putpages routine.
994  * Write the given range of pages to backing store.
995  *
996  * => "offhi == 0" means flush all pages at or after "offlo".
997  * => object should be locked by caller.   we may _unlock_ the object
998  *	if (and only if) we need to clean a page (PGO_CLEANIT), or
999  *	if PGO_SYNCIO is set and there are pages busy.
1000  *	we return with the object locked.
1001  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
1002  *	thus, a caller might want to unlock higher level resources
1003  *	(e.g. vm_map) before calling flush.
1004  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
1005  *	unlock the object nor block.
1006  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
1007  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
1008  *	that new pages are inserted on the tail end of the list.   thus,
1009  *	we can make a complete pass through the object in one go by starting
1010  *	at the head and working towards the tail (new pages are put in
1011  *	front of us).
1012  * => NOTE: we are allowed to lock the page queues, so the caller
1013  *	must not be holding the page queue lock.
1014  *
1015  * note on "cleaning" object and PG_BUSY pages:
1016  *	this routine is holding the lock on the object.   the only time
1017  *	that it can run into a PG_BUSY page that it does not own is if
1018  *	some other process has started I/O on the page (e.g. either
1019  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
1020  *	in, then it can not be dirty (!PG_CLEAN) because no one has
1021  *	had a chance to modify it yet.    if the PG_BUSY page is being
1022  *	paged out then it means that someone else has already started
1023  *	cleaning the page for us (how nice!).    in this case, if we
1024  *	have syncio specified, then after we make our pass through the
1025  *	object we need to wait for the other PG_BUSY pages to clear
1026  *	off (i.e. we need to do an iosync).   also note that once a
1027  *	page is PG_BUSY it must stay in its object until it is un-busyed.
1028  *
1029  * note on page traversal:
1030  *	we can traverse the pages in an object either by going down the
1031  *	linked list in "uobj->memq", or we can go over the address range
1032  *	by page doing hash table lookups for each address.    depending
1033  *	on how many pages are in the object it may be cheaper to do one
1034  *	or the other.   we set "by_list" to true if we are using memq.
1035  *	if the cost of a hash lookup was equal to the cost of the list
1036  *	traversal we could compare the number of pages in the start->stop
1037  *	range to the total number of pages in the object.   however, it
1038  *	seems that a hash table lookup is more expensive than the linked
1039  *	list traversal, so we multiply the number of pages in the
1040  *	range by an estimate of the relatively higher cost of the hash lookup.
1041  */
1042 
1043 int
1044 genfs_putpages(void *v)
1045 {
1046 	struct vop_putpages_args /* {
1047 		struct vnode *a_vp;
1048 		voff_t a_offlo;
1049 		voff_t a_offhi;
1050 		int a_flags;
1051 	} */ *ap = v;
1052 	struct vnode *vp = ap->a_vp;
1053 	struct uvm_object *uobj = &vp->v_uobj;
1054 	struct simplelock *slock = &uobj->vmobjlock;
1055 	off_t startoff = ap->a_offlo;
1056 	off_t endoff = ap->a_offhi;
1057 	off_t off;
1058 	int flags = ap->a_flags;
1059 	/* Even for strange MAXPHYS, the shift rounds down to a page */
1060 	const int maxpages = MAXPHYS >> PAGE_SHIFT;
1061 	int i, s, error, npages, nback;
1062 	int freeflag;
1063 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1064 	boolean_t wasclean, by_list, needs_clean, yield;
1065 	boolean_t async = (flags & PGO_SYNCIO) == 0;
1066 	boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1067 	struct lwp *l = curlwp ? curlwp : &lwp0;
1068 
1069 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1070 
1071 	KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1072 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1073 	KASSERT(startoff < endoff || endoff == 0);
1074 
1075 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1076 	    vp, uobj->uo_npages, startoff, endoff - startoff);
1077 	if (uobj->uo_npages == 0) {
1078 		s = splbio();
1079 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1080 		    (vp->v_flag & VONWORKLST)) {
1081 			vp->v_flag &= ~VONWORKLST;
1082 			LIST_REMOVE(vp, v_synclist);
1083 		}
1084 		splx(s);
1085 		simple_unlock(slock);
1086 		return (0);
1087 	}
1088 
1089 	/*
1090 	 * the vnode has pages, set up to process the request.
1091 	 */
1092 
1093 	error = 0;
1094 	s = splbio();
1095 	simple_lock(&global_v_numoutput_slock);
1096 	wasclean = (vp->v_numoutput == 0);
1097 	simple_unlock(&global_v_numoutput_slock);
1098 	splx(s);
1099 	off = startoff;
1100 	if (endoff == 0 || flags & PGO_ALLPAGES) {
1101 		endoff = trunc_page(LLONG_MAX);
1102 	}
1103 	by_list = (uobj->uo_npages <=
1104 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1105 
1106 	/*
1107 	 * start the loop.  when scanning by list, hold the last page
1108 	 * in the list before we start.  pages allocated after we start
1109 	 * will be added to the end of the list, so we can stop at the
1110 	 * current last page.
1111 	 */
1112 
1113 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1114 	curmp.uobject = uobj;
1115 	curmp.offset = (voff_t)-1;
1116 	curmp.flags = PG_BUSY;
1117 	endmp.uobject = uobj;
1118 	endmp.offset = (voff_t)-1;
1119 	endmp.flags = PG_BUSY;
1120 	if (by_list) {
1121 		pg = TAILQ_FIRST(&uobj->memq);
1122 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1123 		PHOLD(l);
1124 	} else {
1125 		pg = uvm_pagelookup(uobj, off);
1126 	}
1127 	nextpg = NULL;
1128 	while (by_list || off < endoff) {
1129 
1130 		/*
1131 		 * if the current page is not interesting, move on to the next.
1132 		 */
1133 
1134 		KASSERT(pg == NULL || pg->uobject == uobj);
1135 		KASSERT(pg == NULL ||
1136 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1137 		    (pg->flags & PG_BUSY) != 0);
1138 		if (by_list) {
1139 			if (pg == &endmp) {
1140 				break;
1141 			}
1142 			if (pg->offset < startoff || pg->offset >= endoff ||
1143 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1144 				pg = TAILQ_NEXT(pg, listq);
1145 				continue;
1146 			}
1147 			off = pg->offset;
1148 		} else if (pg == NULL ||
1149 		    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1150 			off += PAGE_SIZE;
1151 			if (off < endoff) {
1152 				pg = uvm_pagelookup(uobj, off);
1153 			}
1154 			continue;
1155 		}
1156 
1157 		/*
1158 		 * if the current page needs to be cleaned and it's busy,
1159 		 * wait for it to become unbusy.
1160 		 */
1161 
1162 		yield = (l->l_cpu->ci_schedstate.spc_flags &
1163 		    SPCF_SHOULDYIELD) && !pagedaemon;
1164 		if (pg->flags & PG_BUSY || yield) {
1165 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1166 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1167 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1168 				error = EDEADLK;
1169 				break;
1170 			}
1171 			KASSERT(!pagedaemon);
1172 			if (by_list) {
1173 				TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1174 				UVMHIST_LOG(ubchist, "curmp next %p",
1175 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
1176 			}
1177 			if (yield) {
1178 				simple_unlock(slock);
1179 				preempt(1);
1180 				simple_lock(slock);
1181 			} else {
1182 				pg->flags |= PG_WANTED;
1183 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1184 				simple_lock(slock);
1185 			}
1186 			if (by_list) {
1187 				UVMHIST_LOG(ubchist, "after next %p",
1188 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
1189 				pg = TAILQ_NEXT(&curmp, listq);
1190 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1191 			} else {
1192 				pg = uvm_pagelookup(uobj, off);
1193 			}
1194 			continue;
1195 		}
1196 
1197 		/*
1198 		 * if we're freeing, remove all mappings of the page now.
1199 		 * if we're cleaning, check if the page is needs to be cleaned.
1200 		 */
1201 
1202 		if (flags & PGO_FREE) {
1203 			pmap_page_protect(pg, VM_PROT_NONE);
1204 		}
1205 		if (flags & PGO_CLEANIT) {
1206 			needs_clean = pmap_clear_modify(pg) ||
1207 			    (pg->flags & PG_CLEAN) == 0;
1208 			pg->flags |= PG_CLEAN;
1209 		} else {
1210 			needs_clean = FALSE;
1211 		}
1212 
1213 		/*
1214 		 * if we're cleaning, build a cluster.
1215 		 * the cluster will consist of pages which are currently dirty,
1216 		 * but they will be returned to us marked clean.
1217 		 * if not cleaning, just operate on the one page.
1218 		 */
1219 
1220 		if (needs_clean) {
1221 			wasclean = FALSE;
1222 			memset(pgs, 0, sizeof(pgs));
1223 			pg->flags |= PG_BUSY;
1224 			UVM_PAGE_OWN(pg, "genfs_putpages");
1225 
1226 			/*
1227 			 * first look backward.
1228 			 */
1229 
1230 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1231 			nback = npages;
1232 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1233 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1234 			if (nback) {
1235 				memmove(&pgs[0], &pgs[npages - nback],
1236 				    nback * sizeof(pgs[0]));
1237 				if (npages - nback < nback)
1238 					memset(&pgs[nback], 0,
1239 					    (npages - nback) * sizeof(pgs[0]));
1240 				else
1241 					memset(&pgs[npages - nback], 0,
1242 					    nback * sizeof(pgs[0]));
1243 			}
1244 
1245 			/*
1246 			 * then plug in our page of interest.
1247 			 */
1248 
1249 			pgs[nback] = pg;
1250 
1251 			/*
1252 			 * then look forward to fill in the remaining space in
1253 			 * the array of pages.
1254 			 */
1255 
1256 			npages = maxpages - nback - 1;
1257 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1258 			    &pgs[nback + 1],
1259 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1260 			npages += nback + 1;
1261 		} else {
1262 			pgs[0] = pg;
1263 			npages = 1;
1264 			nback = 0;
1265 		}
1266 
1267 		/*
1268 		 * apply FREE or DEACTIVATE options if requested.
1269 		 */
1270 
1271 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1272 			uvm_lock_pageq();
1273 		}
1274 		for (i = 0; i < npages; i++) {
1275 			tpg = pgs[i];
1276 			KASSERT(tpg->uobject == uobj);
1277 			if (by_list && tpg == TAILQ_NEXT(pg, listq))
1278 				pg = tpg;
1279 			if (tpg->offset < startoff || tpg->offset >= endoff)
1280 				continue;
1281 			if (flags & PGO_DEACTIVATE &&
1282 			    (tpg->pqflags & PQ_INACTIVE) == 0 &&
1283 			    tpg->wire_count == 0) {
1284 				(void) pmap_clear_reference(tpg);
1285 				uvm_pagedeactivate(tpg);
1286 			} else if (flags & PGO_FREE) {
1287 				pmap_page_protect(tpg, VM_PROT_NONE);
1288 				if (tpg->flags & PG_BUSY) {
1289 					tpg->flags |= freeflag;
1290 					if (pagedaemon) {
1291 						uvmexp.paging++;
1292 						uvm_pagedequeue(tpg);
1293 					}
1294 				} else {
1295 
1296 					/*
1297 					 * ``page is not busy''
1298 					 * implies that npages is 1
1299 					 * and needs_clean is false.
1300 					 */
1301 
1302 					nextpg = TAILQ_NEXT(tpg, listq);
1303 					uvm_pagefree(tpg);
1304 					if (pagedaemon)
1305 						uvmexp.pdfreed++;
1306 				}
1307 			}
1308 		}
1309 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1310 			uvm_unlock_pageq();
1311 		}
1312 		if (needs_clean) {
1313 
1314 			/*
1315 			 * start the i/o.  if we're traversing by list,
1316 			 * keep our place in the list with a marker page.
1317 			 */
1318 
1319 			if (by_list) {
1320 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1321 				    listq);
1322 			}
1323 			simple_unlock(slock);
1324 			error = GOP_WRITE(vp, pgs, npages, flags);
1325 			simple_lock(slock);
1326 			if (by_list) {
1327 				pg = TAILQ_NEXT(&curmp, listq);
1328 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1329 			}
1330 			if (error) {
1331 				break;
1332 			}
1333 			if (by_list) {
1334 				continue;
1335 			}
1336 		}
1337 
1338 		/*
1339 		 * find the next page and continue if there was no error.
1340 		 */
1341 
1342 		if (by_list) {
1343 			if (nextpg) {
1344 				pg = nextpg;
1345 				nextpg = NULL;
1346 			} else {
1347 				pg = TAILQ_NEXT(pg, listq);
1348 			}
1349 		} else {
1350 			off += (npages - nback) << PAGE_SHIFT;
1351 			if (off < endoff) {
1352 				pg = uvm_pagelookup(uobj, off);
1353 			}
1354 		}
1355 	}
1356 	if (by_list) {
1357 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1358 		PRELE(l);
1359 	}
1360 
1361 	/*
1362 	 * if we're cleaning and there was nothing to clean,
1363 	 * take us off the syncer list.  if we started any i/o
1364 	 * and we're doing sync i/o, wait for all writes to finish.
1365 	 */
1366 
1367 	s = splbio();
1368 	if ((flags & PGO_CLEANIT) && wasclean &&
1369 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1370 	    LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1371 	    (vp->v_flag & VONWORKLST)) {
1372 		vp->v_flag &= ~VONWORKLST;
1373 		LIST_REMOVE(vp, v_synclist);
1374 	}
1375 	splx(s);
1376 	if (!wasclean && !async) {
1377 		s = splbio();
1378 		/*
1379 		 * XXX - we want simple_unlock(&global_v_numoutput_slock);
1380 		 *	 but the slot in ltsleep() is taken!
1381 		 * XXX - try to recover from missed wakeups with a timeout..
1382 		 *	 must think of something better.
1383 		 */
1384 		while (vp->v_numoutput != 0) {
1385 			vp->v_flag |= VBWAIT;
1386 			UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1387 			    "genput2", hz);
1388 			simple_lock(slock);
1389 		}
1390 		splx(s);
1391 	}
1392 	simple_unlock(&uobj->vmobjlock);
1393 	return (error);
1394 }
1395 
1396 int
1397 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1398 {
1399 	int s, error, run;
1400 	int fs_bshift, dev_bshift;
1401 	vaddr_t kva;
1402 	off_t eof, offset, startoffset;
1403 	size_t bytes, iobytes, skipbytes;
1404 	daddr_t lbn, blkno;
1405 	struct vm_page *pg;
1406 	struct buf *mbp, *bp;
1407 	struct vnode *devvp;
1408 	boolean_t async = (flags & PGO_SYNCIO) == 0;
1409 	UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
1410 
1411 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1412 	    vp, pgs, npages, flags);
1413 
1414 	GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_WRITE);
1415 	if (vp->v_type == VREG) {
1416 		fs_bshift = vp->v_mount->mnt_fs_bshift;
1417 		dev_bshift = vp->v_mount->mnt_dev_bshift;
1418 	} else {
1419 		fs_bshift = DEV_BSHIFT;
1420 		dev_bshift = DEV_BSHIFT;
1421 	}
1422 	error = 0;
1423 	pg = pgs[0];
1424 	startoffset = pg->offset;
1425 	bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1426 	skipbytes = 0;
1427 	KASSERT(bytes != 0);
1428 
1429 	kva = uvm_pagermapin(pgs, npages,
1430 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1431 
1432 	s = splbio();
1433 	simple_lock(&global_v_numoutput_slock);
1434 	vp->v_numoutput += 2;
1435 	simple_unlock(&global_v_numoutput_slock);
1436 	mbp = pool_get(&bufpool, PR_WAITOK);
1437 	BUF_INIT(mbp);
1438 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1439 	    vp, mbp, vp->v_numoutput, bytes);
1440 	splx(s);
1441 	mbp->b_bufsize = npages << PAGE_SHIFT;
1442 	mbp->b_data = (void *)kva;
1443 	mbp->b_resid = mbp->b_bcount = bytes;
1444 	mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
1445 	mbp->b_iodone = uvm_aio_biodone;
1446 	mbp->b_vp = vp;
1447 
1448 	bp = NULL;
1449 	for (offset = startoffset;
1450 	    bytes > 0;
1451 	    offset += iobytes, bytes -= iobytes) {
1452 		lbn = offset >> fs_bshift;
1453 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1454 		if (error) {
1455 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1456 			skipbytes += bytes;
1457 			bytes = 0;
1458 			break;
1459 		}
1460 
1461 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1462 		    bytes);
1463 		if (blkno == (daddr_t)-1) {
1464 			skipbytes += iobytes;
1465 			continue;
1466 		}
1467 
1468 		/* if it's really one i/o, don't make a second buf */
1469 		if (offset == startoffset && iobytes == bytes) {
1470 			bp = mbp;
1471 		} else {
1472 			s = splbio();
1473 			V_INCR_NUMOUTPUT(vp);
1474 			bp = pool_get(&bufpool, PR_WAITOK);
1475 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1476 			    vp, bp, vp->v_numoutput, 0);
1477 			splx(s);
1478 			BUF_INIT(bp);
1479 			bp->b_data = (char *)kva +
1480 			    (vaddr_t)(offset - pg->offset);
1481 			bp->b_resid = bp->b_bcount = iobytes;
1482 			bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
1483 			bp->b_iodone = uvm_aio_biodone1;
1484 			bp->b_vp = vp;
1485 		}
1486 		bp->b_lblkno = 0;
1487 		bp->b_private = mbp;
1488 		if (devvp->v_type == VBLK) {
1489 			bp->b_dev = devvp->v_rdev;
1490 		}
1491 
1492 		/* adjust physical blkno for partial blocks */
1493 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1494 		    dev_bshift);
1495 		UVMHIST_LOG(ubchist,
1496 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1497 		    vp, offset, bp->b_bcount, bp->b_blkno);
1498 		if (curproc == uvm.pagedaemon_proc)
1499 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1500 		else if (async)
1501 			BIO_SETPRIO(bp, BPRIO_TIMENONCRITICAL);
1502 		else
1503 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1504 		VOP_STRATEGY(bp->b_vp, bp);
1505 	}
1506 	if (skipbytes) {
1507 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1508 		s = splbio();
1509 		if (error) {
1510 			mbp->b_flags |= B_ERROR;
1511 			mbp->b_error = error;
1512 		}
1513 		mbp->b_resid -= skipbytes;
1514 		if (mbp->b_resid == 0) {
1515 			biodone(mbp);
1516 		}
1517 		splx(s);
1518 	}
1519 	if (async) {
1520 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1521 		return (0);
1522 	}
1523 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1524 	error = biowait(mbp);
1525 	uvm_aio_aiodone(mbp);
1526 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1527 	return (error);
1528 }
1529 
1530 /*
1531  * VOP_PUTPAGES() for vnodes which never have pages.
1532  */
1533 
1534 int
1535 genfs_null_putpages(void *v)
1536 {
1537 	struct vop_putpages_args /* {
1538 		struct vnode *a_vp;
1539 		voff_t a_offlo;
1540 		voff_t a_offhi;
1541 		int a_flags;
1542 	} */ *ap = v;
1543 	struct vnode *vp = ap->a_vp;
1544 
1545 	KASSERT(vp->v_uobj.uo_npages == 0);
1546 	simple_unlock(&vp->v_interlock);
1547 	return (0);
1548 }
1549 
1550 void
1551 genfs_node_init(struct vnode *vp, struct genfs_ops *ops)
1552 {
1553 	struct genfs_node *gp = VTOG(vp);
1554 
1555 	lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1556 	gp->g_op = ops;
1557 }
1558 
1559 void
1560 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1561 {
1562 	int bsize;
1563 
1564 	bsize = 1 << vp->v_mount->mnt_fs_bshift;
1565 	*eobp = (size + bsize - 1) & ~(bsize - 1);
1566 }
1567 
1568 int
1569 genfs_compat_getpages(void *v)
1570 {
1571 	struct vop_getpages_args /* {
1572 		struct vnode *a_vp;
1573 		voff_t a_offset;
1574 		struct vm_page **a_m;
1575 		int *a_count;
1576 		int a_centeridx;
1577 		vm_prot_t a_access_type;
1578 		int a_advice;
1579 		int a_flags;
1580 	} */ *ap = v;
1581 
1582 	off_t origoffset;
1583 	struct vnode *vp = ap->a_vp;
1584 	struct uvm_object *uobj = &vp->v_uobj;
1585 	struct vm_page *pg, **pgs;
1586 	vaddr_t kva;
1587 	int i, error, orignpages, npages;
1588 	struct iovec iov;
1589 	struct uio uio;
1590 	struct ucred *cred = curproc->p_ucred;
1591 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1592 
1593 	error = 0;
1594 	origoffset = ap->a_offset;
1595 	orignpages = *ap->a_count;
1596 	pgs = ap->a_m;
1597 
1598 	if (write && (vp->v_flag & VONWORKLST) == 0) {
1599 		vn_syncer_add_to_worklist(vp, filedelay);
1600 	}
1601 	if (ap->a_flags & PGO_LOCKED) {
1602 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1603 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1604 
1605 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1606 	}
1607 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1608 		simple_unlock(&uobj->vmobjlock);
1609 		return (EINVAL);
1610 	}
1611 	npages = orignpages;
1612 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1613 	simple_unlock(&uobj->vmobjlock);
1614 	kva = uvm_pagermapin(pgs, npages,
1615 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1616 	for (i = 0; i < npages; i++) {
1617 		pg = pgs[i];
1618 		if ((pg->flags & PG_FAKE) == 0) {
1619 			continue;
1620 		}
1621 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1622 		iov.iov_len = PAGE_SIZE;
1623 		uio.uio_iov = &iov;
1624 		uio.uio_iovcnt = 1;
1625 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1626 		uio.uio_segflg = UIO_SYSSPACE;
1627 		uio.uio_rw = UIO_READ;
1628 		uio.uio_resid = PAGE_SIZE;
1629 		uio.uio_procp = NULL;
1630 		/* XXX vn_lock */
1631 		error = VOP_READ(vp, &uio, 0, cred);
1632 		if (error) {
1633 			break;
1634 		}
1635 		if (uio.uio_resid) {
1636 			memset(iov.iov_base, 0, uio.uio_resid);
1637 		}
1638 	}
1639 	uvm_pagermapout(kva, npages);
1640 	simple_lock(&uobj->vmobjlock);
1641 	uvm_lock_pageq();
1642 	for (i = 0; i < npages; i++) {
1643 		pg = pgs[i];
1644 		if (error && (pg->flags & PG_FAKE) != 0) {
1645 			pg->flags |= PG_RELEASED;
1646 		} else {
1647 			pmap_clear_modify(pg);
1648 			uvm_pageactivate(pg);
1649 		}
1650 	}
1651 	if (error) {
1652 		uvm_page_unbusy(pgs, npages);
1653 	}
1654 	uvm_unlock_pageq();
1655 	simple_unlock(&uobj->vmobjlock);
1656 	return (error);
1657 }
1658 
1659 int
1660 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1661     int flags)
1662 {
1663 	off_t offset;
1664 	struct iovec iov;
1665 	struct uio uio;
1666 	struct ucred *cred = curproc->p_ucred;
1667 	struct buf *bp;
1668 	vaddr_t kva;
1669 	int s, error;
1670 
1671 	offset = pgs[0]->offset;
1672 	kva = uvm_pagermapin(pgs, npages,
1673 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1674 
1675 	iov.iov_base = (void *)kva;
1676 	iov.iov_len = npages << PAGE_SHIFT;
1677 	uio.uio_iov = &iov;
1678 	uio.uio_iovcnt = 1;
1679 	uio.uio_offset = offset;
1680 	uio.uio_segflg = UIO_SYSSPACE;
1681 	uio.uio_rw = UIO_WRITE;
1682 	uio.uio_resid = npages << PAGE_SHIFT;
1683 	uio.uio_procp = NULL;
1684 	/* XXX vn_lock */
1685 	error = VOP_WRITE(vp, &uio, 0, cred);
1686 
1687 	s = splbio();
1688 	V_INCR_NUMOUTPUT(vp);
1689 	bp = pool_get(&bufpool, PR_WAITOK);
1690 	splx(s);
1691 
1692 	BUF_INIT(bp);
1693 	bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1694 	bp->b_vp = vp;
1695 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1696 	bp->b_data = (char *)kva;
1697 	bp->b_bcount = npages << PAGE_SHIFT;
1698 	bp->b_bufsize = npages << PAGE_SHIFT;
1699 	bp->b_resid = 0;
1700 	if (error) {
1701 		bp->b_flags |= B_ERROR;
1702 		bp->b_error = error;
1703 	}
1704 	uvm_aio_aiodone(bp);
1705 	return (error);
1706 }
1707 
1708 static void
1709 filt_genfsdetach(struct knote *kn)
1710 {
1711 	struct vnode *vp = (struct vnode *)kn->kn_hook;
1712 
1713 	/* XXXLUKEM lock the struct? */
1714 	SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
1715 }
1716 
1717 static int
1718 filt_genfsread(struct knote *kn, long hint)
1719 {
1720 	struct vnode *vp = (struct vnode *)kn->kn_hook;
1721 
1722 	/*
1723 	 * filesystem is gone, so set the EOF flag and schedule
1724 	 * the knote for deletion.
1725 	 */
1726 	if (hint == NOTE_REVOKE) {
1727 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1728 		return (1);
1729 	}
1730 
1731 	/* XXXLUKEM lock the struct? */
1732 	kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
1733         return (kn->kn_data != 0);
1734 }
1735 
1736 static int
1737 filt_genfsvnode(struct knote *kn, long hint)
1738 {
1739 
1740 	if (kn->kn_sfflags & hint)
1741 		kn->kn_fflags |= hint;
1742 	if (hint == NOTE_REVOKE) {
1743 		kn->kn_flags |= EV_EOF;
1744 		return (1);
1745 	}
1746 	return (kn->kn_fflags != 0);
1747 }
1748 
1749 static const struct filterops genfsread_filtops =
1750 	{ 1, NULL, filt_genfsdetach, filt_genfsread };
1751 static const struct filterops genfsvnode_filtops =
1752 	{ 1, NULL, filt_genfsdetach, filt_genfsvnode };
1753 
1754 int
1755 genfs_kqfilter(void *v)
1756 {
1757 	struct vop_kqfilter_args /* {
1758 		struct vnode	*a_vp;
1759 		struct knote	*a_kn;
1760 	} */ *ap = v;
1761 	struct vnode *vp;
1762 	struct knote *kn;
1763 
1764 	vp = ap->a_vp;
1765 	kn = ap->a_kn;
1766 	switch (kn->kn_filter) {
1767 	case EVFILT_READ:
1768 		kn->kn_fop = &genfsread_filtops;
1769 		break;
1770 	case EVFILT_VNODE:
1771 		kn->kn_fop = &genfsvnode_filtops;
1772 		break;
1773 	default:
1774 		return (1);
1775 	}
1776 
1777 	kn->kn_hook = vp;
1778 
1779 	/* XXXLUKEM lock the struct? */
1780 	SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
1781 
1782 	return (0);
1783 }
1784