xref: /netbsd-src/sys/miscfs/genfs/genfs_vnops.c (revision 1ffa7b76c40339c17a0fb2a09fac93f287cfc046)
1 /*	$NetBSD: genfs_vnops.c,v 1.76 2003/04/23 00:55:19 tls Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.76 2003/04/23 00:55:19 tls Exp $");
39 
40 #include "opt_nfsserver.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/mount.h>
47 #include <sys/namei.h>
48 #include <sys/vnode.h>
49 #include <sys/fcntl.h>
50 #include <sys/malloc.h>
51 #include <sys/poll.h>
52 #include <sys/mman.h>
53 #include <sys/file.h>
54 
55 #include <miscfs/genfs/genfs.h>
56 #include <miscfs/genfs/genfs_node.h>
57 #include <miscfs/specfs/specdev.h>
58 
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_pager.h>
61 
62 #ifdef NFSSERVER
63 #include <nfs/rpcv2.h>
64 #include <nfs/nfsproto.h>
65 #include <nfs/nfs.h>
66 #include <nfs/nqnfs.h>
67 #include <nfs/nfs_var.h>
68 #endif
69 
70 static __inline void genfs_rel_pages(struct vm_page **, int);
71 static void filt_genfsdetach(struct knote *);
72 static int filt_genfsread(struct knote *, long);
73 static int filt_genfsvnode(struct knote *, long);
74 
75 
76 #define MAX_READ_AHEAD	16 	/* XXXUBC 16 */
77 int genfs_rapages = MAX_READ_AHEAD; /* # of pages in each chunk of readahead */
78 int genfs_racount = 2;		/* # of page chunks to readahead */
79 int genfs_raskip = 2;		/* # of busy page chunks allowed to skip */
80 
81 int
82 genfs_poll(void *v)
83 {
84 	struct vop_poll_args /* {
85 		struct vnode *a_vp;
86 		int a_events;
87 		struct proc *a_p;
88 	} */ *ap = v;
89 
90 	return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
91 }
92 
93 int
94 genfs_fsync(void *v)
95 {
96 	struct vop_fsync_args /* {
97 		struct vnode *a_vp;
98 		struct ucred *a_cred;
99 		int a_flags;
100 		off_t offlo;
101 		off_t offhi;
102 		struct proc *a_p;
103 	} */ *ap = v;
104 	struct vnode *vp = ap->a_vp;
105 	int wait;
106 
107 	wait = (ap->a_flags & FSYNC_WAIT) != 0;
108 	vflushbuf(vp, wait);
109 	if ((ap->a_flags & FSYNC_DATAONLY) != 0)
110 		return (0);
111 	else
112 		return (VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0));
113 }
114 
115 int
116 genfs_seek(void *v)
117 {
118 	struct vop_seek_args /* {
119 		struct vnode *a_vp;
120 		off_t a_oldoff;
121 		off_t a_newoff;
122 		struct ucred *a_ucred;
123 	} */ *ap = v;
124 
125 	if (ap->a_newoff < 0)
126 		return (EINVAL);
127 
128 	return (0);
129 }
130 
131 int
132 genfs_abortop(void *v)
133 {
134 	struct vop_abortop_args /* {
135 		struct vnode *a_dvp;
136 		struct componentname *a_cnp;
137 	} */ *ap = v;
138 
139 	if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
140 		PNBUF_PUT(ap->a_cnp->cn_pnbuf);
141 	return (0);
142 }
143 
144 int
145 genfs_fcntl(void *v)
146 {
147 	struct vop_fcntl_args /* {
148 		struct vnode *a_vp;
149 		u_int a_command;
150 		caddr_t a_data;
151 		int a_fflag;
152 		struct ucred *a_cred;
153 		struct proc *a_p;
154 	} */ *ap = v;
155 
156 	if (ap->a_command == F_SETFL)
157 		return (0);
158 	else
159 		return (EOPNOTSUPP);
160 }
161 
162 /*ARGSUSED*/
163 int
164 genfs_badop(void *v)
165 {
166 
167 	panic("genfs: bad op");
168 }
169 
170 /*ARGSUSED*/
171 int
172 genfs_nullop(void *v)
173 {
174 
175 	return (0);
176 }
177 
178 /*ARGSUSED*/
179 int
180 genfs_einval(void *v)
181 {
182 
183 	return (EINVAL);
184 }
185 
186 /*
187  * Called when an fs doesn't support a particular vop.
188  * This takes care to vrele, vput, or vunlock passed in vnodes.
189  */
190 int
191 genfs_eopnotsupp(void *v)
192 {
193 	struct vop_generic_args /*
194 		struct vnodeop_desc *a_desc;
195 		/ * other random data follows, presumably * /
196 	} */ *ap = v;
197 	struct vnodeop_desc *desc = ap->a_desc;
198 	struct vnode *vp, *vp_last = NULL;
199 	int flags, i, j, offset;
200 
201 	flags = desc->vdesc_flags;
202 	for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
203 		if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
204 			break;	/* stop at end of list */
205 		if ((j = flags & VDESC_VP0_WILLPUT)) {
206 			vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
207 
208 			/* Skip if NULL */
209 			if (!vp)
210 				continue;
211 
212 			switch (j) {
213 			case VDESC_VP0_WILLPUT:
214 				/* Check for dvp == vp cases */
215 				if (vp == vp_last)
216 					vrele(vp);
217 				else {
218 					vput(vp);
219 					vp_last = vp;
220 				}
221 				break;
222 			case VDESC_VP0_WILLUNLOCK:
223 				VOP_UNLOCK(vp, 0);
224 				break;
225 			case VDESC_VP0_WILLRELE:
226 				vrele(vp);
227 				break;
228 			}
229 		}
230 	}
231 
232 	return (EOPNOTSUPP);
233 }
234 
235 /*ARGSUSED*/
236 int
237 genfs_ebadf(void *v)
238 {
239 
240 	return (EBADF);
241 }
242 
243 /* ARGSUSED */
244 int
245 genfs_enoioctl(void *v)
246 {
247 
248 	return (EPASSTHROUGH);
249 }
250 
251 
252 /*
253  * Eliminate all activity associated with the requested vnode
254  * and with all vnodes aliased to the requested vnode.
255  */
256 int
257 genfs_revoke(void *v)
258 {
259 	struct vop_revoke_args /* {
260 		struct vnode *a_vp;
261 		int a_flags;
262 	} */ *ap = v;
263 	struct vnode *vp, *vq;
264 	struct proc *p = curproc;	/* XXX */
265 
266 #ifdef DIAGNOSTIC
267 	if ((ap->a_flags & REVOKEALL) == 0)
268 		panic("genfs_revoke: not revokeall");
269 #endif
270 
271 	vp = ap->a_vp;
272 	simple_lock(&vp->v_interlock);
273 
274 	if (vp->v_flag & VALIASED) {
275 		/*
276 		 * If a vgone (or vclean) is already in progress,
277 		 * wait until it is done and return.
278 		 */
279 		if (vp->v_flag & VXLOCK) {
280 			vp->v_flag |= VXWANT;
281 			simple_unlock(&vp->v_interlock);
282 			tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
283 			return (0);
284 		}
285 		/*
286 		 * Ensure that vp will not be vgone'd while we
287 		 * are eliminating its aliases.
288 		 */
289 		vp->v_flag |= VXLOCK;
290 		simple_unlock(&vp->v_interlock);
291 		while (vp->v_flag & VALIASED) {
292 			simple_lock(&spechash_slock);
293 			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
294 				if (vq->v_rdev != vp->v_rdev ||
295 				    vq->v_type != vp->v_type || vp == vq)
296 					continue;
297 				simple_unlock(&spechash_slock);
298 				vgone(vq);
299 				break;
300 			}
301 			if (vq == NULLVP)
302 				simple_unlock(&spechash_slock);
303 		}
304 		/*
305 		 * Remove the lock so that vgone below will
306 		 * really eliminate the vnode after which time
307 		 * vgone will awaken any sleepers.
308 		 */
309 		simple_lock(&vp->v_interlock);
310 		vp->v_flag &= ~VXLOCK;
311 	}
312 	vgonel(vp, p);
313 	return (0);
314 }
315 
316 /*
317  * Lock the node.
318  */
319 int
320 genfs_lock(void *v)
321 {
322 	struct vop_lock_args /* {
323 		struct vnode *a_vp;
324 		int a_flags;
325 	} */ *ap = v;
326 	struct vnode *vp = ap->a_vp;
327 
328 	return (lockmgr(&vp->v_lock, ap->a_flags, &vp->v_interlock));
329 }
330 
331 /*
332  * Unlock the node.
333  */
334 int
335 genfs_unlock(void *v)
336 {
337 	struct vop_unlock_args /* {
338 		struct vnode *a_vp;
339 		int a_flags;
340 	} */ *ap = v;
341 	struct vnode *vp = ap->a_vp;
342 
343 	return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
344 	    &vp->v_interlock));
345 }
346 
347 /*
348  * Return whether or not the node is locked.
349  */
350 int
351 genfs_islocked(void *v)
352 {
353 	struct vop_islocked_args /* {
354 		struct vnode *a_vp;
355 	} */ *ap = v;
356 	struct vnode *vp = ap->a_vp;
357 
358 	return (lockstatus(&vp->v_lock));
359 }
360 
361 /*
362  * Stubs to use when there is no locking to be done on the underlying object.
363  */
364 int
365 genfs_nolock(void *v)
366 {
367 	struct vop_lock_args /* {
368 		struct vnode *a_vp;
369 		int a_flags;
370 		struct proc *a_p;
371 	} */ *ap = v;
372 
373 	/*
374 	 * Since we are not using the lock manager, we must clear
375 	 * the interlock here.
376 	 */
377 	if (ap->a_flags & LK_INTERLOCK)
378 		simple_unlock(&ap->a_vp->v_interlock);
379 	return (0);
380 }
381 
382 int
383 genfs_nounlock(void *v)
384 {
385 
386 	return (0);
387 }
388 
389 int
390 genfs_noislocked(void *v)
391 {
392 
393 	return (0);
394 }
395 
396 /*
397  * Local lease check for NFS servers.  Just set up args and let
398  * nqsrv_getlease() do the rest.  If NFSSERVER is not in the kernel,
399  * this is a null operation.
400  */
401 int
402 genfs_lease_check(void *v)
403 {
404 #ifdef NFSSERVER
405 	struct vop_lease_args /* {
406 		struct vnode *a_vp;
407 		struct proc *a_p;
408 		struct ucred *a_cred;
409 		int a_flag;
410 	} */ *ap = v;
411 	u_int32_t duration = 0;
412 	int cache;
413 	u_quad_t frev;
414 
415 	(void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
416 	    NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
417 	return (0);
418 #else
419 	return (0);
420 #endif /* NFSSERVER */
421 }
422 
423 int
424 genfs_mmap(void *v)
425 {
426 
427 	return (0);
428 }
429 
430 static __inline void
431 genfs_rel_pages(struct vm_page **pgs, int npages)
432 {
433 	int i;
434 
435 	for (i = 0; i < npages; i++) {
436 		struct vm_page *pg = pgs[i];
437 
438 		if (pg == NULL)
439 			continue;
440 		if (pg->flags & PG_FAKE) {
441 			pg->flags |= PG_RELEASED;
442 		}
443 	}
444 	uvm_lock_pageq();
445 	uvm_page_unbusy(pgs, npages);
446 	uvm_unlock_pageq();
447 }
448 
449 /*
450  * generic VM getpages routine.
451  * Return PG_BUSY pages for the given range,
452  * reading from backing store if necessary.
453  */
454 
455 int
456 genfs_getpages(void *v)
457 {
458 	struct vop_getpages_args /* {
459 		struct vnode *a_vp;
460 		voff_t a_offset;
461 		struct vm_page **a_m;
462 		int *a_count;
463 		int a_centeridx;
464 		vm_prot_t a_access_type;
465 		int a_advice;
466 		int a_flags;
467 	} */ *ap = v;
468 
469 	off_t newsize, diskeof, memeof;
470 	off_t offset, origoffset, startoffset, endoffset, raoffset;
471 	daddr_t lbn, blkno;
472 	int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
473 	int fs_bshift, fs_bsize, dev_bshift;
474 	int flags = ap->a_flags;
475 	size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
476 	vaddr_t kva;
477 	struct buf *bp, *mbp;
478 	struct vnode *vp = ap->a_vp;
479 	struct vnode *devvp;
480 	struct genfs_node *gp = VTOG(vp);
481 	struct uvm_object *uobj = &vp->v_uobj;
482 	struct vm_page *pg, *pgs[MAX_READ_AHEAD];
483 	struct ucred *cred = curproc->p_ucred;		/* XXXUBC curlwp */
484 	boolean_t async = (flags & PGO_SYNCIO) == 0;
485 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
486 	boolean_t sawhole = FALSE;
487 	boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
488 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
489 
490 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
491 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
492 
493 	/* XXXUBC temp limit */
494 	if (*ap->a_count > MAX_READ_AHEAD) {
495 		panic("genfs_getpages: too many pages");
496 	}
497 
498 	error = 0;
499 	origoffset = ap->a_offset;
500 	orignpages = *ap->a_count;
501 	GOP_SIZE(vp, vp->v_size, &diskeof, GOP_SIZE_READ);
502 	if (flags & PGO_PASTEOF) {
503 		newsize = MAX(vp->v_size,
504 		    origoffset + (orignpages << PAGE_SHIFT));
505 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_READ);
506 	} else {
507 		memeof = diskeof;
508 	}
509 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
510 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
511 	KASSERT(orignpages > 0);
512 
513 	/*
514 	 * Bounds-check the request.
515 	 */
516 
517 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
518 		if ((flags & PGO_LOCKED) == 0) {
519 			simple_unlock(&uobj->vmobjlock);
520 		}
521 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
522 		    origoffset, *ap->a_count, memeof,0);
523 		return (EINVAL);
524 	}
525 
526 	/*
527 	 * For PGO_LOCKED requests, just return whatever's in memory.
528 	 */
529 
530 	if (flags & PGO_LOCKED) {
531 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
532 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
533 
534 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
535 	}
536 
537 	/* vnode is VOP_LOCKed, uobj is locked */
538 
539 	if (write && (vp->v_flag & VONWORKLST) == 0) {
540 		vn_syncer_add_to_worklist(vp, filedelay);
541 	}
542 
543 	/*
544 	 * find the requested pages and make some simple checks.
545 	 * leave space in the page array for a whole block.
546 	 */
547 
548 	if (vp->v_type == VREG) {
549 		fs_bshift = vp->v_mount->mnt_fs_bshift;
550 		dev_bshift = vp->v_mount->mnt_dev_bshift;
551 	} else {
552 		fs_bshift = DEV_BSHIFT;
553 		dev_bshift = DEV_BSHIFT;
554 	}
555 	fs_bsize = 1 << fs_bshift;
556 
557 	orignpages = MIN(orignpages,
558 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
559 	npages = orignpages;
560 	startoffset = origoffset & ~(fs_bsize - 1);
561 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
562 	    fs_bsize - 1) & ~(fs_bsize - 1));
563 	endoffset = MIN(endoffset, round_page(memeof));
564 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
565 
566 	memset(pgs, 0, sizeof(pgs));
567 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
568 	    ridx, npages, startoffset, endoffset);
569 	KASSERT(&pgs[ridx + npages] <= &pgs[MAX_READ_AHEAD]);
570 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
571 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
572 		KASSERT(async != 0);
573 		genfs_rel_pages(&pgs[ridx], orignpages);
574 		simple_unlock(&uobj->vmobjlock);
575 		return (EBUSY);
576 	}
577 
578 	/*
579 	 * if the pages are already resident, just return them.
580 	 */
581 
582 	for (i = 0; i < npages; i++) {
583 		struct vm_page *pg = pgs[ridx + i];
584 
585 		if ((pg->flags & PG_FAKE) ||
586 		    (write && (pg->flags & PG_RDONLY))) {
587 			break;
588 		}
589 	}
590 	if (i == npages) {
591 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
592 		raoffset = origoffset + (orignpages << PAGE_SHIFT);
593 		npages += ridx;
594 		goto raout;
595 	}
596 
597 	/*
598 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
599 	 */
600 
601 	if (flags & PGO_OVERWRITE) {
602 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
603 
604 		for (i = 0; i < npages; i++) {
605 			struct vm_page *pg = pgs[ridx + i];
606 
607 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
608 		}
609 		npages += ridx;
610 		goto out;
611 	}
612 
613 	/*
614 	 * the page wasn't resident and we're not overwriting,
615 	 * so we're going to have to do some i/o.
616 	 * find any additional pages needed to cover the expanded range.
617 	 */
618 
619 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
620 	if (startoffset != origoffset || npages != orignpages) {
621 
622 		/*
623 		 * we need to avoid deadlocks caused by locking
624 		 * additional pages at lower offsets than pages we
625 		 * already have locked.  unlock them all and start over.
626 		 */
627 
628 		genfs_rel_pages(&pgs[ridx], orignpages);
629 		memset(pgs, 0, sizeof(pgs));
630 
631 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
632 		    startoffset, endoffset, 0,0);
633 		npgs = npages;
634 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
635 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
636 			KASSERT(async != 0);
637 			genfs_rel_pages(pgs, npages);
638 			simple_unlock(&uobj->vmobjlock);
639 			return (EBUSY);
640 		}
641 	}
642 	simple_unlock(&uobj->vmobjlock);
643 
644 	/*
645 	 * read the desired page(s).
646 	 */
647 
648 	totalbytes = npages << PAGE_SHIFT;
649 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
650 	tailbytes = totalbytes - bytes;
651 	skipbytes = 0;
652 
653 	kva = uvm_pagermapin(pgs, npages,
654 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
655 
656 	s = splbio();
657 	mbp = pool_get(&bufpool, PR_WAITOK);
658 	splx(s);
659 	BUF_INIT(mbp);
660 	mbp->b_bufsize = totalbytes;
661 	mbp->b_data = (void *)kva;
662 	mbp->b_resid = mbp->b_bcount = bytes;
663 	mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
664 	mbp->b_iodone = (async ? uvm_aio_biodone : 0);
665 	mbp->b_vp = vp;
666 
667 	/*
668 	 * if EOF is in the middle of the range, zero the part past EOF.
669 	 * if the page including EOF is not PG_FAKE, skip over it since
670 	 * in that case it has valid data that we need to preserve.
671 	 */
672 
673 	if (tailbytes > 0) {
674 		size_t tailstart = bytes;
675 
676 		if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
677 			tailstart = round_page(tailstart);
678 			tailbytes -= tailstart - bytes;
679 		}
680 		UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
681 		    kva, tailstart, tailbytes,0);
682 		memset((void *)(kva + tailstart), 0, tailbytes);
683 	}
684 
685 	/*
686 	 * now loop over the pages, reading as needed.
687 	 */
688 
689 	if (write) {
690 		lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
691 	} else {
692 		lockmgr(&gp->g_glock, LK_SHARED, NULL);
693 	}
694 
695 	bp = NULL;
696 	for (offset = startoffset;
697 	    bytes > 0;
698 	    offset += iobytes, bytes -= iobytes) {
699 
700 		/*
701 		 * skip pages which don't need to be read.
702 		 */
703 
704 		pidx = (offset - startoffset) >> PAGE_SHIFT;
705 		while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) {
706 			size_t b;
707 
708 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
709 			b = MIN(PAGE_SIZE, bytes);
710 			offset += b;
711 			bytes -= b;
712 			skipbytes += b;
713 			pidx++;
714 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
715 			    offset, 0,0,0);
716 			if (bytes == 0) {
717 				goto loopdone;
718 			}
719 		}
720 
721 		/*
722 		 * bmap the file to find out the blkno to read from and
723 		 * how much we can read in one i/o.  if bmap returns an error,
724 		 * skip the rest of the top-level i/o.
725 		 */
726 
727 		lbn = offset >> fs_bshift;
728 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
729 		if (error) {
730 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
731 			    lbn, error,0,0);
732 			skipbytes += bytes;
733 			goto loopdone;
734 		}
735 
736 		/*
737 		 * see how many pages can be read with this i/o.
738 		 * reduce the i/o size if necessary to avoid
739 		 * overwriting pages with valid data.
740 		 */
741 
742 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
743 		    bytes);
744 		if (offset + iobytes > round_page(offset)) {
745 			pcount = 1;
746 			while (pidx + pcount < npages &&
747 			    pgs[pidx + pcount]->flags & PG_FAKE) {
748 				pcount++;
749 			}
750 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
751 			    (offset - trunc_page(offset)));
752 		}
753 
754 		/*
755 		 * if this block isn't allocated, zero it instead of
756 		 * reading it.  if this is a read access, mark the
757 		 * pages we zeroed PG_RDONLY.
758 		 */
759 
760 		if (blkno < 0) {
761 			int holepages = (round_page(offset + iobytes) -
762 			    trunc_page(offset)) >> PAGE_SHIFT;
763 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
764 
765 			sawhole = TRUE;
766 			memset((char *)kva + (offset - startoffset), 0,
767 			    iobytes);
768 			skipbytes += iobytes;
769 
770 			for (i = 0; i < holepages; i++) {
771 				if (write) {
772 					pgs[pidx + i]->flags &= ~PG_CLEAN;
773 				} else {
774 					pgs[pidx + i]->flags |= PG_RDONLY;
775 				}
776 			}
777 			continue;
778 		}
779 
780 		/*
781 		 * allocate a sub-buf for this piece of the i/o
782 		 * (or just use mbp if there's only 1 piece),
783 		 * and start it going.
784 		 */
785 
786 		if (offset == startoffset && iobytes == bytes) {
787 			bp = mbp;
788 		} else {
789 			s = splbio();
790 			bp = pool_get(&bufpool, PR_WAITOK);
791 			splx(s);
792 			BUF_INIT(bp);
793 			bp->b_data = (char *)kva + offset - startoffset;
794 			bp->b_resid = bp->b_bcount = iobytes;
795 			bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC;
796 			bp->b_iodone = uvm_aio_biodone1;
797 			bp->b_vp = vp;
798 			bp->b_proc = NULL;
799 		}
800 		bp->b_lblkno = 0;
801 		bp->b_private = mbp;
802 		if (devvp->v_type == VBLK) {
803 			bp->b_dev = devvp->v_rdev;
804 		}
805 
806 		/* adjust physical blkno for partial blocks */
807 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
808 		    dev_bshift);
809 
810 		UVMHIST_LOG(ubchist,
811 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
812 		    bp, offset, iobytes, bp->b_blkno);
813 
814 		VOP_STRATEGY(bp);
815 	}
816 
817 loopdone:
818 	if (skipbytes) {
819 		s = splbio();
820 		if (error) {
821 			mbp->b_flags |= B_ERROR;
822 			mbp->b_error = error;
823 		}
824 		mbp->b_resid -= skipbytes;
825 		if (mbp->b_resid == 0) {
826 			biodone(mbp);
827 		}
828 		splx(s);
829 	}
830 
831 	if (async) {
832 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
833 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
834 		return (0);
835 	}
836 	if (bp != NULL) {
837 		error = biowait(mbp);
838 	}
839 	s = splbio();
840 	pool_put(&bufpool, mbp);
841 	splx(s);
842 	uvm_pagermapout(kva, npages);
843 	raoffset = startoffset + totalbytes;
844 
845 	/*
846 	 * if this we encountered a hole then we have to do a little more work.
847 	 * for read faults, we marked the page PG_RDONLY so that future
848 	 * write accesses to the page will fault again.
849 	 * for write faults, we must make sure that the backing store for
850 	 * the page is completely allocated while the pages are locked.
851 	 */
852 
853 	if (!error && sawhole && write) {
854 		for (i = 0; i < npages; i++) {
855 			if (pgs[i] == NULL) {
856 				continue;
857 			}
858 			pgs[i]->flags &= ~PG_CLEAN;
859 			UVMHIST_LOG(ubchist, "mark dirty pg %p", pgs[i],0,0,0);
860 		}
861 		error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
862 		    cred);
863 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
864 		    startoffset, npages << PAGE_SHIFT, error,0);
865 	}
866 	lockmgr(&gp->g_glock, LK_RELEASE, NULL);
867 	simple_lock(&uobj->vmobjlock);
868 
869 	/*
870 	 * see if we want to start any readahead.
871 	 * XXXUBC for now, just read the next 128k on 64k boundaries.
872 	 * this is pretty nonsensical, but it is 50% faster than reading
873 	 * just the next 64k.
874 	 */
875 
876 raout:
877 	if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
878 	    PAGE_SHIFT <= 16) {
879 		off_t rasize;
880 		int rapages, err, i, skipped;
881 
882 		/* XXXUBC temp limit, from above */
883 		rapages = MIN(MIN(1 << (16 - PAGE_SHIFT), MAX_READ_AHEAD),
884 		    genfs_rapages);
885 		rasize = rapages << PAGE_SHIFT;
886 		for (i = skipped = 0; i < genfs_racount; i++) {
887 			err = VOP_GETPAGES(vp, raoffset, NULL, &rapages, 0,
888 			    VM_PROT_READ, 0, 0);
889 			simple_lock(&uobj->vmobjlock);
890 			if (err) {
891 				if (err != EBUSY ||
892 				    skipped++ == genfs_raskip)
893 					break;
894 			}
895 			raoffset += rasize;
896 			rapages = rasize >> PAGE_SHIFT;
897 		}
898 	}
899 
900 	/*
901 	 * we're almost done!  release the pages...
902 	 * for errors, we free the pages.
903 	 * otherwise we activate them and mark them as valid and clean.
904 	 * also, unbusy pages that were not actually requested.
905 	 */
906 
907 	if (error) {
908 		for (i = 0; i < npages; i++) {
909 			if (pgs[i] == NULL) {
910 				continue;
911 			}
912 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
913 			    pgs[i], pgs[i]->flags, 0,0);
914 			if (pgs[i]->flags & PG_FAKE) {
915 				pgs[i]->flags |= PG_RELEASED;
916 			}
917 		}
918 		uvm_lock_pageq();
919 		uvm_page_unbusy(pgs, npages);
920 		uvm_unlock_pageq();
921 		simple_unlock(&uobj->vmobjlock);
922 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
923 		return (error);
924 	}
925 
926 out:
927 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
928 	uvm_lock_pageq();
929 	for (i = 0; i < npages; i++) {
930 		pg = pgs[i];
931 		if (pg == NULL) {
932 			continue;
933 		}
934 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
935 		    pg, pg->flags, 0,0);
936 		if (pg->flags & PG_FAKE && !overwrite) {
937 			pg->flags &= ~(PG_FAKE);
938 			pmap_clear_modify(pgs[i]);
939 		}
940 		if (write) {
941 			pg->flags &= ~(PG_RDONLY);
942 		}
943 		if (i < ridx || i >= ridx + orignpages || async) {
944 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
945 			    pg, pg->offset,0,0);
946 			if (pg->flags & PG_WANTED) {
947 				wakeup(pg);
948 			}
949 			if (pg->flags & PG_FAKE) {
950 				KASSERT(overwrite);
951 				uvm_pagezero(pg);
952 			}
953 			if (pg->flags & PG_RELEASED) {
954 				uvm_pagefree(pg);
955 				continue;
956 			}
957 			uvm_pageactivate(pg);
958 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
959 			UVM_PAGE_OWN(pg, NULL);
960 		}
961 	}
962 	uvm_unlock_pageq();
963 	simple_unlock(&uobj->vmobjlock);
964 	if (ap->a_m != NULL) {
965 		memcpy(ap->a_m, &pgs[ridx],
966 		    orignpages * sizeof(struct vm_page *));
967 	}
968 	return (0);
969 }
970 
971 /*
972  * generic VM putpages routine.
973  * Write the given range of pages to backing store.
974  *
975  * => "offhi == 0" means flush all pages at or after "offlo".
976  * => object should be locked by caller.   we may _unlock_ the object
977  *	if (and only if) we need to clean a page (PGO_CLEANIT), or
978  *	if PGO_SYNCIO is set and there are pages busy.
979  *	we return with the object locked.
980  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
981  *	thus, a caller might want to unlock higher level resources
982  *	(e.g. vm_map) before calling flush.
983  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
984  *	unlock the object nor block.
985  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
986  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
987  *	that new pages are inserted on the tail end of the list.   thus,
988  *	we can make a complete pass through the object in one go by starting
989  *	at the head and working towards the tail (new pages are put in
990  *	front of us).
991  * => NOTE: we are allowed to lock the page queues, so the caller
992  *	must not be holding the page queue lock.
993  *
994  * note on "cleaning" object and PG_BUSY pages:
995  *	this routine is holding the lock on the object.   the only time
996  *	that it can run into a PG_BUSY page that it does not own is if
997  *	some other process has started I/O on the page (e.g. either
998  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
999  *	in, then it can not be dirty (!PG_CLEAN) because no one has
1000  *	had a chance to modify it yet.    if the PG_BUSY page is being
1001  *	paged out then it means that someone else has already started
1002  *	cleaning the page for us (how nice!).    in this case, if we
1003  *	have syncio specified, then after we make our pass through the
1004  *	object we need to wait for the other PG_BUSY pages to clear
1005  *	off (i.e. we need to do an iosync).   also note that once a
1006  *	page is PG_BUSY it must stay in its object until it is un-busyed.
1007  *
1008  * note on page traversal:
1009  *	we can traverse the pages in an object either by going down the
1010  *	linked list in "uobj->memq", or we can go over the address range
1011  *	by page doing hash table lookups for each address.    depending
1012  *	on how many pages are in the object it may be cheaper to do one
1013  *	or the other.   we set "by_list" to true if we are using memq.
1014  *	if the cost of a hash lookup was equal to the cost of the list
1015  *	traversal we could compare the number of pages in the start->stop
1016  *	range to the total number of pages in the object.   however, it
1017  *	seems that a hash table lookup is more expensive than the linked
1018  *	list traversal, so we multiply the number of pages in the
1019  *	range by an estimate of the relatively higher cost of the hash lookup.
1020  */
1021 
1022 int
1023 genfs_putpages(void *v)
1024 {
1025 	struct vop_putpages_args /* {
1026 		struct vnode *a_vp;
1027 		voff_t a_offlo;
1028 		voff_t a_offhi;
1029 		int a_flags;
1030 	} */ *ap = v;
1031 	struct vnode *vp = ap->a_vp;
1032 	struct uvm_object *uobj = &vp->v_uobj;
1033 	struct simplelock *slock = &uobj->vmobjlock;
1034 	off_t startoff = ap->a_offlo;
1035 	off_t endoff = ap->a_offhi;
1036 	off_t off;
1037 	int flags = ap->a_flags;
1038 	/* Even for strange MAXPHYS, the shift rounds down to a page */
1039 	const int maxpages = MAXPHYS >> PAGE_SHIFT;
1040 	int i, s, error, npages, nback;
1041 	int freeflag;
1042 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1043 	boolean_t wasclean, by_list, needs_clean, yield;
1044 	boolean_t async = (flags & PGO_SYNCIO) == 0;
1045 	boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1046 	struct lwp *l = curlwp ? curlwp : &lwp0;
1047 
1048 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1049 
1050 	KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1051 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1052 	KASSERT(startoff < endoff || endoff == 0);
1053 
1054 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1055 	    vp, uobj->uo_npages, startoff, endoff - startoff);
1056 	if (uobj->uo_npages == 0) {
1057 		s = splbio();
1058 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1059 		    (vp->v_flag & VONWORKLST)) {
1060 			vp->v_flag &= ~VONWORKLST;
1061 			LIST_REMOVE(vp, v_synclist);
1062 		}
1063 		splx(s);
1064 		simple_unlock(slock);
1065 		return (0);
1066 	}
1067 
1068 	/*
1069 	 * the vnode has pages, set up to process the request.
1070 	 */
1071 
1072 	error = 0;
1073 	s = splbio();
1074 	simple_lock(&global_v_numoutput_slock);
1075 	wasclean = (vp->v_numoutput == 0);
1076 	simple_unlock(&global_v_numoutput_slock);
1077 	splx(s);
1078 	off = startoff;
1079 	if (endoff == 0 || flags & PGO_ALLPAGES) {
1080 		endoff = trunc_page(LLONG_MAX);
1081 	}
1082 	by_list = (uobj->uo_npages <=
1083 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1084 
1085 	/*
1086 	 * start the loop.  when scanning by list, hold the last page
1087 	 * in the list before we start.  pages allocated after we start
1088 	 * will be added to the end of the list, so we can stop at the
1089 	 * current last page.
1090 	 */
1091 
1092 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1093 	curmp.uobject = uobj;
1094 	curmp.offset = (voff_t)-1;
1095 	curmp.flags = PG_BUSY;
1096 	endmp.uobject = uobj;
1097 	endmp.offset = (voff_t)-1;
1098 	endmp.flags = PG_BUSY;
1099 	if (by_list) {
1100 		pg = TAILQ_FIRST(&uobj->memq);
1101 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1102 		PHOLD(l);
1103 	} else {
1104 		pg = uvm_pagelookup(uobj, off);
1105 	}
1106 	nextpg = NULL;
1107 	while (by_list || off < endoff) {
1108 
1109 		/*
1110 		 * if the current page is not interesting, move on to the next.
1111 		 */
1112 
1113 		KASSERT(pg == NULL || pg->uobject == uobj);
1114 		KASSERT(pg == NULL ||
1115 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1116 		    (pg->flags & PG_BUSY) != 0);
1117 		if (by_list) {
1118 			if (pg == &endmp) {
1119 				break;
1120 			}
1121 			if (pg->offset < startoff || pg->offset >= endoff ||
1122 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1123 				pg = TAILQ_NEXT(pg, listq);
1124 				continue;
1125 			}
1126 			off = pg->offset;
1127 		} else if (pg == NULL ||
1128 		    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1129 			off += PAGE_SIZE;
1130 			if (off < endoff) {
1131 				pg = uvm_pagelookup(uobj, off);
1132 			}
1133 			continue;
1134 		}
1135 
1136 		/*
1137 		 * if the current page needs to be cleaned and it's busy,
1138 		 * wait for it to become unbusy.
1139 		 */
1140 
1141 		yield = (l->l_cpu->ci_schedstate.spc_flags &
1142 		    SPCF_SHOULDYIELD) && !pagedaemon;
1143 		if (pg->flags & PG_BUSY || yield) {
1144 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1145 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1146 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1147 				error = EDEADLK;
1148 				break;
1149 			}
1150 			KASSERT(!pagedaemon);
1151 			if (by_list) {
1152 				TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1153 				UVMHIST_LOG(ubchist, "curmp next %p",
1154 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
1155 			}
1156 			if (yield) {
1157 				simple_unlock(slock);
1158 				preempt(1);
1159 				simple_lock(slock);
1160 			} else {
1161 				pg->flags |= PG_WANTED;
1162 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1163 				simple_lock(slock);
1164 			}
1165 			if (by_list) {
1166 				UVMHIST_LOG(ubchist, "after next %p",
1167 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
1168 				pg = TAILQ_NEXT(&curmp, listq);
1169 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1170 			} else {
1171 				pg = uvm_pagelookup(uobj, off);
1172 			}
1173 			continue;
1174 		}
1175 
1176 		/*
1177 		 * if we're freeing, remove all mappings of the page now.
1178 		 * if we're cleaning, check if the page is needs to be cleaned.
1179 		 */
1180 
1181 		if (flags & PGO_FREE) {
1182 			pmap_page_protect(pg, VM_PROT_NONE);
1183 		}
1184 		if (flags & PGO_CLEANIT) {
1185 			needs_clean = pmap_clear_modify(pg) ||
1186 			    (pg->flags & PG_CLEAN) == 0;
1187 			pg->flags |= PG_CLEAN;
1188 		} else {
1189 			needs_clean = FALSE;
1190 		}
1191 
1192 		/*
1193 		 * if we're cleaning, build a cluster.
1194 		 * the cluster will consist of pages which are currently dirty,
1195 		 * but they will be returned to us marked clean.
1196 		 * if not cleaning, just operate on the one page.
1197 		 */
1198 
1199 		if (needs_clean) {
1200 			wasclean = FALSE;
1201 			memset(pgs, 0, sizeof(pgs));
1202 			pg->flags |= PG_BUSY;
1203 			UVM_PAGE_OWN(pg, "genfs_putpages");
1204 
1205 			/*
1206 			 * first look backward.
1207 			 */
1208 
1209 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1210 			nback = npages;
1211 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1212 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1213 			if (nback) {
1214 				memmove(&pgs[0], &pgs[npages - nback],
1215 				    nback * sizeof(pgs[0]));
1216 				if (npages - nback < nback)
1217 					memset(&pgs[nback], 0,
1218 					    (npages - nback) * sizeof(pgs[0]));
1219 				else
1220 					memset(&pgs[npages - nback], 0,
1221 					    nback * sizeof(pgs[0]));
1222 			}
1223 
1224 			/*
1225 			 * then plug in our page of interest.
1226 			 */
1227 
1228 			pgs[nback] = pg;
1229 
1230 			/*
1231 			 * then look forward to fill in the remaining space in
1232 			 * the array of pages.
1233 			 */
1234 
1235 			npages = maxpages - nback - 1;
1236 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1237 			    &pgs[nback + 1],
1238 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1239 			npages += nback + 1;
1240 		} else {
1241 			pgs[0] = pg;
1242 			npages = 1;
1243 			nback = 0;
1244 		}
1245 
1246 		/*
1247 		 * apply FREE or DEACTIVATE options if requested.
1248 		 */
1249 
1250 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1251 			uvm_lock_pageq();
1252 		}
1253 		for (i = 0; i < npages; i++) {
1254 			tpg = pgs[i];
1255 			KASSERT(tpg->uobject == uobj);
1256 			if (by_list && tpg == TAILQ_NEXT(pg, listq))
1257 				pg = tpg;
1258 			if (tpg->offset < startoff || tpg->offset >= endoff)
1259 				continue;
1260 			if (flags & PGO_DEACTIVATE &&
1261 			    (tpg->pqflags & PQ_INACTIVE) == 0 &&
1262 			    tpg->wire_count == 0) {
1263 				(void) pmap_clear_reference(tpg);
1264 				uvm_pagedeactivate(tpg);
1265 			} else if (flags & PGO_FREE) {
1266 				pmap_page_protect(tpg, VM_PROT_NONE);
1267 				if (tpg->flags & PG_BUSY) {
1268 					tpg->flags |= freeflag;
1269 					if (pagedaemon) {
1270 						uvmexp.paging++;
1271 						uvm_pagedequeue(tpg);
1272 					}
1273 				} else {
1274 
1275 					/*
1276 					 * ``page is not busy''
1277 					 * implies that npages is 1
1278 					 * and needs_clean is false.
1279 					 */
1280 
1281 					nextpg = TAILQ_NEXT(tpg, listq);
1282 					uvm_pagefree(tpg);
1283 				}
1284 			}
1285 		}
1286 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1287 			uvm_unlock_pageq();
1288 		}
1289 		if (needs_clean) {
1290 
1291 			/*
1292 			 * start the i/o.  if we're traversing by list,
1293 			 * keep our place in the list with a marker page.
1294 			 */
1295 
1296 			if (by_list) {
1297 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1298 				    listq);
1299 			}
1300 			simple_unlock(slock);
1301 			error = GOP_WRITE(vp, pgs, npages, flags);
1302 			simple_lock(slock);
1303 			if (by_list) {
1304 				pg = TAILQ_NEXT(&curmp, listq);
1305 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1306 			}
1307 			if (error) {
1308 				break;
1309 			}
1310 			if (by_list) {
1311 				continue;
1312 			}
1313 		}
1314 
1315 		/*
1316 		 * find the next page and continue if there was no error.
1317 		 */
1318 
1319 		if (by_list) {
1320 			if (nextpg) {
1321 				pg = nextpg;
1322 				nextpg = NULL;
1323 			} else {
1324 				pg = TAILQ_NEXT(pg, listq);
1325 			}
1326 		} else {
1327 			off += (npages - nback) << PAGE_SHIFT;
1328 			if (off < endoff) {
1329 				pg = uvm_pagelookup(uobj, off);
1330 			}
1331 		}
1332 	}
1333 	if (by_list) {
1334 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1335 		PRELE(l);
1336 	}
1337 
1338 	/*
1339 	 * if we're cleaning and there was nothing to clean,
1340 	 * take us off the syncer list.  if we started any i/o
1341 	 * and we're doing sync i/o, wait for all writes to finish.
1342 	 */
1343 
1344 	s = splbio();
1345 	if ((flags & PGO_CLEANIT) && wasclean &&
1346 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1347 	    LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1348 	    (vp->v_flag & VONWORKLST)) {
1349 		vp->v_flag &= ~VONWORKLST;
1350 		LIST_REMOVE(vp, v_synclist);
1351 	}
1352 	splx(s);
1353 	if (!wasclean && !async) {
1354 		s = splbio();
1355 		/*
1356 		 * XXX - we want simple_unlock(&global_v_numoutput_slock);
1357 		 *	 but the slot in ltsleep() is taken!
1358 		 * XXX - try to recover from missed wakeups with a timeout..
1359 		 *	 must think of something better.
1360 		 */
1361 		while (vp->v_numoutput != 0) {
1362 			vp->v_flag |= VBWAIT;
1363 			UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1364 			    "genput2", hz);
1365 			simple_lock(slock);
1366 		}
1367 		splx(s);
1368 	}
1369 	simple_unlock(&uobj->vmobjlock);
1370 	return (error);
1371 }
1372 
1373 int
1374 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1375 {
1376 	int s, error, run;
1377 	int fs_bshift, dev_bshift;
1378 	vaddr_t kva;
1379 	off_t eof, offset, startoffset;
1380 	size_t bytes, iobytes, skipbytes;
1381 	daddr_t lbn, blkno;
1382 	struct vm_page *pg;
1383 	struct buf *mbp, *bp;
1384 	struct vnode *devvp;
1385 	boolean_t async = (flags & PGO_SYNCIO) == 0;
1386 	UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
1387 
1388 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1389 	    vp, pgs, npages, flags);
1390 
1391 	GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_WRITE);
1392 	if (vp->v_type == VREG) {
1393 		fs_bshift = vp->v_mount->mnt_fs_bshift;
1394 		dev_bshift = vp->v_mount->mnt_dev_bshift;
1395 	} else {
1396 		fs_bshift = DEV_BSHIFT;
1397 		dev_bshift = DEV_BSHIFT;
1398 	}
1399 	error = 0;
1400 	pg = pgs[0];
1401 	startoffset = pg->offset;
1402 	bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1403 	skipbytes = 0;
1404 	KASSERT(bytes != 0);
1405 
1406 	kva = uvm_pagermapin(pgs, npages,
1407 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1408 
1409 	s = splbio();
1410 	simple_lock(&global_v_numoutput_slock);
1411 	vp->v_numoutput += 2;
1412 	simple_unlock(&global_v_numoutput_slock);
1413 	mbp = pool_get(&bufpool, PR_WAITOK);
1414 	BUF_INIT(mbp);
1415 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1416 	    vp, mbp, vp->v_numoutput, bytes);
1417 	splx(s);
1418 	mbp->b_bufsize = npages << PAGE_SHIFT;
1419 	mbp->b_data = (void *)kva;
1420 	mbp->b_resid = mbp->b_bcount = bytes;
1421 	mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
1422 	mbp->b_iodone = uvm_aio_biodone;
1423 	mbp->b_vp = vp;
1424 
1425 	bp = NULL;
1426 	for (offset = startoffset;
1427 	    bytes > 0;
1428 	    offset += iobytes, bytes -= iobytes) {
1429 		lbn = offset >> fs_bshift;
1430 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1431 		if (error) {
1432 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1433 			skipbytes += bytes;
1434 			bytes = 0;
1435 			break;
1436 		}
1437 
1438 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1439 		    bytes);
1440 		if (blkno == (daddr_t)-1) {
1441 			skipbytes += iobytes;
1442 			continue;
1443 		}
1444 
1445 		/* if it's really one i/o, don't make a second buf */
1446 		if (offset == startoffset && iobytes == bytes) {
1447 			bp = mbp;
1448 		} else {
1449 			s = splbio();
1450 			V_INCR_NUMOUTPUT(vp);
1451 			bp = pool_get(&bufpool, PR_WAITOK);
1452 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1453 			    vp, bp, vp->v_numoutput, 0);
1454 			splx(s);
1455 			BUF_INIT(bp);
1456 			bp->b_data = (char *)kva +
1457 			    (vaddr_t)(offset - pg->offset);
1458 			bp->b_resid = bp->b_bcount = iobytes;
1459 			bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
1460 			bp->b_iodone = uvm_aio_biodone1;
1461 			bp->b_vp = vp;
1462 		}
1463 		bp->b_lblkno = 0;
1464 		bp->b_private = mbp;
1465 		if (devvp->v_type == VBLK) {
1466 			bp->b_dev = devvp->v_rdev;
1467 		}
1468 
1469 		/* adjust physical blkno for partial blocks */
1470 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1471 		    dev_bshift);
1472 		UVMHIST_LOG(ubchist,
1473 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1474 		    vp, offset, bp->b_bcount, bp->b_blkno);
1475 		VOP_STRATEGY(bp);
1476 	}
1477 	if (skipbytes) {
1478 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1479 		s = splbio();
1480 		if (error) {
1481 			mbp->b_flags |= B_ERROR;
1482 			mbp->b_error = error;
1483 		}
1484 		mbp->b_resid -= skipbytes;
1485 		if (mbp->b_resid == 0) {
1486 			biodone(mbp);
1487 		}
1488 		splx(s);
1489 	}
1490 	if (async) {
1491 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1492 		return (0);
1493 	}
1494 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1495 	error = biowait(mbp);
1496 	uvm_aio_aiodone(mbp);
1497 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1498 	return (error);
1499 }
1500 
1501 /*
1502  * VOP_PUTPAGES() for vnodes which never have pages.
1503  */
1504 
1505 int
1506 genfs_null_putpages(void *v)
1507 {
1508 	struct vop_putpages_args /* {
1509 		struct vnode *a_vp;
1510 		voff_t a_offlo;
1511 		voff_t a_offhi;
1512 		int a_flags;
1513 	} */ *ap = v;
1514 	struct vnode *vp = ap->a_vp;
1515 
1516 	KASSERT(vp->v_uobj.uo_npages == 0);
1517 	simple_unlock(&vp->v_interlock);
1518 	return (0);
1519 }
1520 
1521 void
1522 genfs_node_init(struct vnode *vp, struct genfs_ops *ops)
1523 {
1524 	struct genfs_node *gp = VTOG(vp);
1525 
1526 	lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1527 	gp->g_op = ops;
1528 }
1529 
1530 void
1531 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1532 {
1533 	int bsize;
1534 
1535 	bsize = 1 << vp->v_mount->mnt_fs_bshift;
1536 	*eobp = (size + bsize - 1) & ~(bsize - 1);
1537 }
1538 
1539 int
1540 genfs_compat_getpages(void *v)
1541 {
1542 	struct vop_getpages_args /* {
1543 		struct vnode *a_vp;
1544 		voff_t a_offset;
1545 		struct vm_page **a_m;
1546 		int *a_count;
1547 		int a_centeridx;
1548 		vm_prot_t a_access_type;
1549 		int a_advice;
1550 		int a_flags;
1551 	} */ *ap = v;
1552 
1553 	off_t origoffset;
1554 	struct vnode *vp = ap->a_vp;
1555 	struct uvm_object *uobj = &vp->v_uobj;
1556 	struct vm_page *pg, **pgs;
1557 	vaddr_t kva;
1558 	int i, error, orignpages, npages;
1559 	struct iovec iov;
1560 	struct uio uio;
1561 	struct ucred *cred = curproc->p_ucred;
1562 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1563 
1564 	error = 0;
1565 	origoffset = ap->a_offset;
1566 	orignpages = *ap->a_count;
1567 	pgs = ap->a_m;
1568 
1569 	if (write && (vp->v_flag & VONWORKLST) == 0) {
1570 		vn_syncer_add_to_worklist(vp, filedelay);
1571 	}
1572 	if (ap->a_flags & PGO_LOCKED) {
1573 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1574 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1575 
1576 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1577 	}
1578 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1579 		simple_unlock(&uobj->vmobjlock);
1580 		return (EINVAL);
1581 	}
1582 	npages = orignpages;
1583 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1584 	simple_unlock(&uobj->vmobjlock);
1585 	kva = uvm_pagermapin(pgs, npages,
1586 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1587 	for (i = 0; i < npages; i++) {
1588 		pg = pgs[i];
1589 		if ((pg->flags & PG_FAKE) == 0) {
1590 			continue;
1591 		}
1592 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1593 		iov.iov_len = PAGE_SIZE;
1594 		uio.uio_iov = &iov;
1595 		uio.uio_iovcnt = 1;
1596 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1597 		uio.uio_segflg = UIO_SYSSPACE;
1598 		uio.uio_rw = UIO_READ;
1599 		uio.uio_resid = PAGE_SIZE;
1600 		uio.uio_procp = curproc;
1601 		error = VOP_READ(vp, &uio, 0, cred);
1602 		if (error) {
1603 			break;
1604 		}
1605 		if (uio.uio_resid) {
1606 			memset(iov.iov_base, 0, uio.uio_resid);
1607 		}
1608 	}
1609 	uvm_pagermapout(kva, npages);
1610 	simple_lock(&uobj->vmobjlock);
1611 	uvm_lock_pageq();
1612 	for (i = 0; i < npages; i++) {
1613 		pg = pgs[i];
1614 		if (error && (pg->flags & PG_FAKE) != 0) {
1615 			pg->flags |= PG_RELEASED;
1616 		} else {
1617 			pmap_clear_modify(pg);
1618 			uvm_pageactivate(pg);
1619 		}
1620 	}
1621 	if (error) {
1622 		uvm_page_unbusy(pgs, npages);
1623 	}
1624 	uvm_unlock_pageq();
1625 	simple_unlock(&uobj->vmobjlock);
1626 	return (error);
1627 }
1628 
1629 int
1630 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1631     int flags)
1632 {
1633 	off_t offset;
1634 	struct iovec iov;
1635 	struct uio uio;
1636 	struct ucred *cred = curproc->p_ucred;
1637 	struct buf *bp;
1638 	vaddr_t kva;
1639 	int s, error;
1640 
1641 	offset = pgs[0]->offset;
1642 	kva = uvm_pagermapin(pgs, npages,
1643 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1644 
1645 	iov.iov_base = (void *)kva;
1646 	iov.iov_len = npages << PAGE_SHIFT;
1647 	uio.uio_iov = &iov;
1648 	uio.uio_iovcnt = 1;
1649 	uio.uio_offset = offset;
1650 	uio.uio_segflg = UIO_SYSSPACE;
1651 	uio.uio_rw = UIO_WRITE;
1652 	uio.uio_resid = npages << PAGE_SHIFT;
1653 	uio.uio_procp = curproc;
1654 	error = VOP_WRITE(vp, &uio, 0, cred);
1655 
1656 	s = splbio();
1657 	V_INCR_NUMOUTPUT(vp);
1658 	bp = pool_get(&bufpool, PR_WAITOK);
1659 	splx(s);
1660 
1661 	BUF_INIT(bp);
1662 	bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1663 	bp->b_vp = vp;
1664 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1665 	bp->b_data = (char *)kva;
1666 	bp->b_bcount = npages << PAGE_SHIFT;
1667 	bp->b_bufsize = npages << PAGE_SHIFT;
1668 	bp->b_resid = 0;
1669 	if (error) {
1670 		bp->b_flags |= B_ERROR;
1671 		bp->b_error = error;
1672 	}
1673 	uvm_aio_aiodone(bp);
1674 	return (error);
1675 }
1676 
1677 static void
1678 filt_genfsdetach(struct knote *kn)
1679 {
1680 	struct vnode *vp = (struct vnode *)kn->kn_hook;
1681 
1682 	/* XXXLUKEM lock the struct? */
1683 	SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
1684 }
1685 
1686 static int
1687 filt_genfsread(struct knote *kn, long hint)
1688 {
1689 	struct vnode *vp = (struct vnode *)kn->kn_hook;
1690 
1691 	/*
1692 	 * filesystem is gone, so set the EOF flag and schedule
1693 	 * the knote for deletion.
1694 	 */
1695 	if (hint == NOTE_REVOKE) {
1696 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1697 		return (1);
1698 	}
1699 
1700 	/* XXXLUKEM lock the struct? */
1701 	kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
1702         return (kn->kn_data != 0);
1703 }
1704 
1705 static int
1706 filt_genfsvnode(struct knote *kn, long hint)
1707 {
1708 
1709 	if (kn->kn_sfflags & hint)
1710 		kn->kn_fflags |= hint;
1711 	if (hint == NOTE_REVOKE) {
1712 		kn->kn_flags |= EV_EOF;
1713 		return (1);
1714 	}
1715 	return (kn->kn_fflags != 0);
1716 }
1717 
1718 static const struct filterops genfsread_filtops =
1719 	{ 1, NULL, filt_genfsdetach, filt_genfsread };
1720 static const struct filterops genfsvnode_filtops =
1721 	{ 1, NULL, filt_genfsdetach, filt_genfsvnode };
1722 
1723 int
1724 genfs_kqfilter(void *v)
1725 {
1726 	struct vop_kqfilter_args /* {
1727 		struct vnode	*a_vp;
1728 		struct knote	*a_kn;
1729 	} */ *ap = v;
1730 	struct vnode *vp;
1731 	struct knote *kn;
1732 
1733 	vp = ap->a_vp;
1734 	kn = ap->a_kn;
1735 	switch (kn->kn_filter) {
1736 	case EVFILT_READ:
1737 		kn->kn_fop = &genfsread_filtops;
1738 		break;
1739 	case EVFILT_VNODE:
1740 		kn->kn_fop = &genfsvnode_filtops;
1741 		break;
1742 	default:
1743 		return (1);
1744 	}
1745 
1746 	kn->kn_hook = vp;
1747 
1748 	/* XXXLUKEM lock the struct? */
1749 	SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
1750 
1751 	return (0);
1752 }
1753