1 /* $NetBSD: genfs_vnops.c,v 1.129 2006/09/15 15:51:12 yamt Exp $ */ 2 3 /* 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 */ 32 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.129 2006/09/15 15:51:12 yamt Exp $"); 35 36 #if defined(_KERNEL_OPT) 37 #include "opt_nfsserver.h" 38 #endif 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/proc.h> 43 #include <sys/kernel.h> 44 #include <sys/mount.h> 45 #include <sys/namei.h> 46 #include <sys/vnode.h> 47 #include <sys/fcntl.h> 48 #include <sys/malloc.h> 49 #include <sys/poll.h> 50 #include <sys/mman.h> 51 #include <sys/file.h> 52 #include <sys/kauth.h> 53 54 #include <miscfs/genfs/genfs.h> 55 #include <miscfs/genfs/genfs_node.h> 56 #include <miscfs/specfs/specdev.h> 57 58 #include <uvm/uvm.h> 59 #include <uvm/uvm_pager.h> 60 61 #ifdef NFSSERVER 62 #include <nfs/rpcv2.h> 63 #include <nfs/nfsproto.h> 64 #include <nfs/nfs.h> 65 #include <nfs/nqnfs.h> 66 #include <nfs/nfs_var.h> 67 #endif 68 69 static inline void genfs_rel_pages(struct vm_page **, int); 70 static void filt_genfsdetach(struct knote *); 71 static int filt_genfsread(struct knote *, long); 72 static int filt_genfsvnode(struct knote *, long); 73 74 #define MAX_READ_PAGES 16 /* XXXUBC 16 */ 75 76 int 77 genfs_poll(void *v) 78 { 79 struct vop_poll_args /* { 80 struct vnode *a_vp; 81 int a_events; 82 struct lwp *a_l; 83 } */ *ap = v; 84 85 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM)); 86 } 87 88 int 89 genfs_seek(void *v) 90 { 91 struct vop_seek_args /* { 92 struct vnode *a_vp; 93 off_t a_oldoff; 94 off_t a_newoff; 95 kauth_cred_t cred; 96 } */ *ap = v; 97 98 if (ap->a_newoff < 0) 99 return (EINVAL); 100 101 return (0); 102 } 103 104 int 105 genfs_abortop(void *v) 106 { 107 struct vop_abortop_args /* { 108 struct vnode *a_dvp; 109 struct componentname *a_cnp; 110 } */ *ap = v; 111 112 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF) 113 PNBUF_PUT(ap->a_cnp->cn_pnbuf); 114 return (0); 115 } 116 117 int 118 genfs_fcntl(void *v) 119 { 120 struct vop_fcntl_args /* { 121 struct vnode *a_vp; 122 u_int a_command; 123 caddr_t a_data; 124 int a_fflag; 125 kauth_cred_t a_cred; 126 struct lwp *a_l; 127 } */ *ap = v; 128 129 if (ap->a_command == F_SETFL) 130 return (0); 131 else 132 return (EOPNOTSUPP); 133 } 134 135 /*ARGSUSED*/ 136 int 137 genfs_badop(void *v) 138 { 139 140 panic("genfs: bad op"); 141 } 142 143 /*ARGSUSED*/ 144 int 145 genfs_nullop(void *v) 146 { 147 148 return (0); 149 } 150 151 /*ARGSUSED*/ 152 int 153 genfs_einval(void *v) 154 { 155 156 return (EINVAL); 157 } 158 159 /* 160 * Called when an fs doesn't support a particular vop. 161 * This takes care to vrele, vput, or vunlock passed in vnodes. 162 */ 163 int 164 genfs_eopnotsupp(void *v) 165 { 166 struct vop_generic_args /* 167 struct vnodeop_desc *a_desc; 168 / * other random data follows, presumably * / 169 } */ *ap = v; 170 struct vnodeop_desc *desc = ap->a_desc; 171 struct vnode *vp, *vp_last = NULL; 172 int flags, i, j, offset; 173 174 flags = desc->vdesc_flags; 175 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) { 176 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET) 177 break; /* stop at end of list */ 178 if ((j = flags & VDESC_VP0_WILLPUT)) { 179 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap); 180 181 /* Skip if NULL */ 182 if (!vp) 183 continue; 184 185 switch (j) { 186 case VDESC_VP0_WILLPUT: 187 /* Check for dvp == vp cases */ 188 if (vp == vp_last) 189 vrele(vp); 190 else { 191 vput(vp); 192 vp_last = vp; 193 } 194 break; 195 case VDESC_VP0_WILLUNLOCK: 196 VOP_UNLOCK(vp, 0); 197 break; 198 case VDESC_VP0_WILLRELE: 199 vrele(vp); 200 break; 201 } 202 } 203 } 204 205 return (EOPNOTSUPP); 206 } 207 208 /*ARGSUSED*/ 209 int 210 genfs_ebadf(void *v) 211 { 212 213 return (EBADF); 214 } 215 216 /* ARGSUSED */ 217 int 218 genfs_enoioctl(void *v) 219 { 220 221 return (EPASSTHROUGH); 222 } 223 224 225 /* 226 * Eliminate all activity associated with the requested vnode 227 * and with all vnodes aliased to the requested vnode. 228 */ 229 int 230 genfs_revoke(void *v) 231 { 232 struct vop_revoke_args /* { 233 struct vnode *a_vp; 234 int a_flags; 235 } */ *ap = v; 236 struct vnode *vp, *vq; 237 struct lwp *l = curlwp; /* XXX */ 238 239 #ifdef DIAGNOSTIC 240 if ((ap->a_flags & REVOKEALL) == 0) 241 panic("genfs_revoke: not revokeall"); 242 #endif 243 244 vp = ap->a_vp; 245 simple_lock(&vp->v_interlock); 246 247 if (vp->v_flag & VALIASED) { 248 /* 249 * If a vgone (or vclean) is already in progress, 250 * wait until it is done and return. 251 */ 252 if (vp->v_flag & VXLOCK) { 253 vp->v_flag |= VXWANT; 254 ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0, 255 &vp->v_interlock); 256 return (0); 257 } 258 /* 259 * Ensure that vp will not be vgone'd while we 260 * are eliminating its aliases. 261 */ 262 vp->v_flag |= VXLOCK; 263 simple_unlock(&vp->v_interlock); 264 while (vp->v_flag & VALIASED) { 265 simple_lock(&spechash_slock); 266 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) { 267 if (vq->v_rdev != vp->v_rdev || 268 vq->v_type != vp->v_type || vp == vq) 269 continue; 270 simple_unlock(&spechash_slock); 271 vgone(vq); 272 break; 273 } 274 if (vq == NULLVP) 275 simple_unlock(&spechash_slock); 276 } 277 /* 278 * Remove the lock so that vgone below will 279 * really eliminate the vnode after which time 280 * vgone will awaken any sleepers. 281 */ 282 simple_lock(&vp->v_interlock); 283 vp->v_flag &= ~VXLOCK; 284 } 285 vgonel(vp, l); 286 return (0); 287 } 288 289 /* 290 * Lock the node. 291 */ 292 int 293 genfs_lock(void *v) 294 { 295 struct vop_lock_args /* { 296 struct vnode *a_vp; 297 int a_flags; 298 } */ *ap = v; 299 struct vnode *vp = ap->a_vp; 300 301 return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock)); 302 } 303 304 /* 305 * Unlock the node. 306 */ 307 int 308 genfs_unlock(void *v) 309 { 310 struct vop_unlock_args /* { 311 struct vnode *a_vp; 312 int a_flags; 313 } */ *ap = v; 314 struct vnode *vp = ap->a_vp; 315 316 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE, 317 &vp->v_interlock)); 318 } 319 320 /* 321 * Return whether or not the node is locked. 322 */ 323 int 324 genfs_islocked(void *v) 325 { 326 struct vop_islocked_args /* { 327 struct vnode *a_vp; 328 } */ *ap = v; 329 struct vnode *vp = ap->a_vp; 330 331 return (lockstatus(vp->v_vnlock)); 332 } 333 334 /* 335 * Stubs to use when there is no locking to be done on the underlying object. 336 */ 337 int 338 genfs_nolock(void *v) 339 { 340 struct vop_lock_args /* { 341 struct vnode *a_vp; 342 int a_flags; 343 struct lwp *a_l; 344 } */ *ap = v; 345 346 /* 347 * Since we are not using the lock manager, we must clear 348 * the interlock here. 349 */ 350 if (ap->a_flags & LK_INTERLOCK) 351 simple_unlock(&ap->a_vp->v_interlock); 352 return (0); 353 } 354 355 int 356 genfs_nounlock(void *v) 357 { 358 359 return (0); 360 } 361 362 int 363 genfs_noislocked(void *v) 364 { 365 366 return (0); 367 } 368 369 /* 370 * Local lease check for NFS servers. Just set up args and let 371 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel, 372 * this is a null operation. 373 */ 374 int 375 genfs_lease_check(void *v) 376 { 377 #ifdef NFSSERVER 378 struct vop_lease_args /* { 379 struct vnode *a_vp; 380 struct lwp *a_l; 381 kauth_cred_t a_cred; 382 int a_flag; 383 } */ *ap = v; 384 u_int32_t duration = 0; 385 int cache; 386 u_quad_t frev; 387 388 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag, 389 NQLOCALSLP, ap->a_l, (struct mbuf *)0, &cache, &frev, ap->a_cred); 390 return (0); 391 #else 392 return (0); 393 #endif /* NFSSERVER */ 394 } 395 396 int 397 genfs_mmap(void *v) 398 { 399 400 return (0); 401 } 402 403 static inline void 404 genfs_rel_pages(struct vm_page **pgs, int npages) 405 { 406 int i; 407 408 for (i = 0; i < npages; i++) { 409 struct vm_page *pg = pgs[i]; 410 411 if (pg == NULL || pg == PGO_DONTCARE) 412 continue; 413 if (pg->flags & PG_FAKE) { 414 pg->flags |= PG_RELEASED; 415 } 416 } 417 uvm_lock_pageq(); 418 uvm_page_unbusy(pgs, npages); 419 uvm_unlock_pageq(); 420 } 421 422 /* 423 * generic VM getpages routine. 424 * Return PG_BUSY pages for the given range, 425 * reading from backing store if necessary. 426 */ 427 428 int 429 genfs_getpages(void *v) 430 { 431 struct vop_getpages_args /* { 432 struct vnode *a_vp; 433 voff_t a_offset; 434 struct vm_page **a_m; 435 int *a_count; 436 int a_centeridx; 437 vm_prot_t a_access_type; 438 int a_advice; 439 int a_flags; 440 } */ *ap = v; 441 442 off_t newsize, diskeof, memeof; 443 off_t offset, origoffset, startoffset, endoffset; 444 daddr_t lbn, blkno; 445 int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount; 446 int fs_bshift, fs_bsize, dev_bshift; 447 int flags = ap->a_flags; 448 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes; 449 vaddr_t kva; 450 struct buf *bp, *mbp; 451 struct vnode *vp = ap->a_vp; 452 struct vnode *devvp; 453 struct genfs_node *gp = VTOG(vp); 454 struct uvm_object *uobj = &vp->v_uobj; 455 struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES]; 456 int pgs_size; 457 kauth_cred_t cred = curlwp->l_cred; /* XXXUBC curlwp */ 458 boolean_t async = (flags & PGO_SYNCIO) == 0; 459 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0; 460 boolean_t sawhole = FALSE; 461 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0; 462 boolean_t blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0; 463 voff_t origvsize; 464 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist); 465 466 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d", 467 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count); 468 469 KASSERT(vp->v_type == VREG || vp->v_type == VDIR || 470 vp->v_type == VLNK || vp->v_type == VBLK); 471 472 /* XXXUBC temp limit */ 473 if (*ap->a_count > MAX_READ_PAGES) { 474 panic("genfs_getpages: too many pages"); 475 } 476 477 startover: 478 error = 0; 479 origvsize = vp->v_size; 480 origoffset = ap->a_offset; 481 orignpages = *ap->a_count; 482 GOP_SIZE(vp, vp->v_size, &diskeof, 0); 483 if (flags & PGO_PASTEOF) { 484 newsize = MAX(vp->v_size, 485 origoffset + (orignpages << PAGE_SHIFT)); 486 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM); 487 } else { 488 GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_MEM); 489 } 490 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages); 491 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0); 492 KASSERT(orignpages > 0); 493 494 /* 495 * Bounds-check the request. 496 */ 497 498 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) { 499 if ((flags & PGO_LOCKED) == 0) { 500 simple_unlock(&uobj->vmobjlock); 501 } 502 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x", 503 origoffset, *ap->a_count, memeof,0); 504 return (EINVAL); 505 } 506 507 /* uobj is locked */ 508 509 if ((flags & PGO_NOTIMESTAMP) == 0 && 510 (vp->v_type != VBLK || 511 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) { 512 int updflags = 0; 513 514 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) { 515 updflags = GOP_UPDATE_ACCESSED; 516 } 517 if (write) { 518 updflags |= GOP_UPDATE_MODIFIED; 519 } 520 if (updflags != 0) { 521 GOP_MARKUPDATE(vp, updflags); 522 } 523 } 524 525 if (write) { 526 gp->g_dirtygen++; 527 if ((vp->v_flag & VONWORKLST) == 0) { 528 vn_syncer_add_to_worklist(vp, filedelay); 529 } 530 if ((vp->v_flag & (VWRITEMAP|VWRITEMAPDIRTY)) == VWRITEMAP) { 531 vp->v_flag |= VWRITEMAPDIRTY; 532 } 533 } 534 535 /* 536 * For PGO_LOCKED requests, just return whatever's in memory. 537 */ 538 539 if (flags & PGO_LOCKED) { 540 int nfound; 541 542 npages = *ap->a_count; 543 #if defined(DEBUG) 544 for (i = 0; i < npages; i++) { 545 pg = ap->a_m[i]; 546 KASSERT(pg == NULL || pg == PGO_DONTCARE); 547 } 548 #endif /* defined(DEBUG) */ 549 nfound = uvn_findpages(uobj, origoffset, &npages, 550 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0)); 551 KASSERT(npages == *ap->a_count); 552 if (nfound == 0) { 553 return EBUSY; 554 } 555 if (lockmgr(&gp->g_glock, LK_SHARED | LK_NOWAIT, NULL)) { 556 genfs_rel_pages(ap->a_m, npages); 557 558 /* 559 * restore the array. 560 */ 561 562 for (i = 0; i < npages; i++) { 563 pg = ap->a_m[i]; 564 565 if (pg != NULL || pg != PGO_DONTCARE) { 566 ap->a_m[i] = NULL; 567 } 568 } 569 } else { 570 lockmgr(&gp->g_glock, LK_RELEASE, NULL); 571 } 572 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0); 573 } 574 simple_unlock(&uobj->vmobjlock); 575 576 /* 577 * find the requested pages and make some simple checks. 578 * leave space in the page array for a whole block. 579 */ 580 581 if (vp->v_type != VBLK) { 582 fs_bshift = vp->v_mount->mnt_fs_bshift; 583 dev_bshift = vp->v_mount->mnt_dev_bshift; 584 } else { 585 fs_bshift = DEV_BSHIFT; 586 dev_bshift = DEV_BSHIFT; 587 } 588 fs_bsize = 1 << fs_bshift; 589 590 orignpages = MIN(orignpages, 591 round_page(memeof - origoffset) >> PAGE_SHIFT); 592 npages = orignpages; 593 startoffset = origoffset & ~(fs_bsize - 1); 594 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) + 595 fs_bsize - 1) & ~(fs_bsize - 1)); 596 endoffset = MIN(endoffset, round_page(memeof)); 597 ridx = (origoffset - startoffset) >> PAGE_SHIFT; 598 599 pgs_size = sizeof(struct vm_page *) * 600 ((endoffset - startoffset) >> PAGE_SHIFT); 601 if (pgs_size > sizeof(pgs_onstack)) { 602 pgs = malloc(pgs_size, M_DEVBUF, 603 (async ? M_NOWAIT : M_WAITOK) | M_ZERO); 604 if (pgs == NULL) { 605 return (ENOMEM); 606 } 607 } else { 608 pgs = pgs_onstack; 609 memset(pgs, 0, pgs_size); 610 } 611 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld", 612 ridx, npages, startoffset, endoffset); 613 614 /* 615 * hold g_glock to prevent a race with truncate. 616 * 617 * check if our idea of v_size is still valid. 618 */ 619 620 if (blockalloc) { 621 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL); 622 } else { 623 lockmgr(&gp->g_glock, LK_SHARED, NULL); 624 } 625 simple_lock(&uobj->vmobjlock); 626 if (vp->v_size < origvsize) { 627 lockmgr(&gp->g_glock, LK_RELEASE, NULL); 628 if (pgs != pgs_onstack) 629 free(pgs, M_DEVBUF); 630 goto startover; 631 } 632 633 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], 634 async ? UFP_NOWAIT : UFP_ALL) != orignpages) { 635 lockmgr(&gp->g_glock, LK_RELEASE, NULL); 636 KASSERT(async != 0); 637 genfs_rel_pages(&pgs[ridx], orignpages); 638 simple_unlock(&uobj->vmobjlock); 639 if (pgs != pgs_onstack) 640 free(pgs, M_DEVBUF); 641 return (EBUSY); 642 } 643 644 /* 645 * if the pages are already resident, just return them. 646 */ 647 648 for (i = 0; i < npages; i++) { 649 struct vm_page *pg1 = pgs[ridx + i]; 650 651 if ((pg1->flags & PG_FAKE) || 652 (blockalloc && (pg1->flags & PG_RDONLY))) { 653 break; 654 } 655 } 656 if (i == npages) { 657 lockmgr(&gp->g_glock, LK_RELEASE, NULL); 658 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0); 659 npages += ridx; 660 goto out; 661 } 662 663 /* 664 * if PGO_OVERWRITE is set, don't bother reading the pages. 665 */ 666 667 if (overwrite) { 668 lockmgr(&gp->g_glock, LK_RELEASE, NULL); 669 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0); 670 671 for (i = 0; i < npages; i++) { 672 struct vm_page *pg1 = pgs[ridx + i]; 673 674 pg1->flags &= ~(PG_RDONLY|PG_CLEAN); 675 } 676 npages += ridx; 677 goto out; 678 } 679 680 /* 681 * the page wasn't resident and we're not overwriting, 682 * so we're going to have to do some i/o. 683 * find any additional pages needed to cover the expanded range. 684 */ 685 686 npages = (endoffset - startoffset) >> PAGE_SHIFT; 687 if (startoffset != origoffset || npages != orignpages) { 688 689 /* 690 * we need to avoid deadlocks caused by locking 691 * additional pages at lower offsets than pages we 692 * already have locked. unlock them all and start over. 693 */ 694 695 genfs_rel_pages(&pgs[ridx], orignpages); 696 memset(pgs, 0, pgs_size); 697 698 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x", 699 startoffset, endoffset, 0,0); 700 npgs = npages; 701 if (uvn_findpages(uobj, startoffset, &npgs, pgs, 702 async ? UFP_NOWAIT : UFP_ALL) != npages) { 703 lockmgr(&gp->g_glock, LK_RELEASE, NULL); 704 KASSERT(async != 0); 705 genfs_rel_pages(pgs, npages); 706 simple_unlock(&uobj->vmobjlock); 707 if (pgs != pgs_onstack) 708 free(pgs, M_DEVBUF); 709 return (EBUSY); 710 } 711 } 712 simple_unlock(&uobj->vmobjlock); 713 714 /* 715 * read the desired page(s). 716 */ 717 718 totalbytes = npages << PAGE_SHIFT; 719 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0)); 720 tailbytes = totalbytes - bytes; 721 skipbytes = 0; 722 723 kva = uvm_pagermapin(pgs, npages, 724 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK); 725 726 mbp = getiobuf(); 727 mbp->b_bufsize = totalbytes; 728 mbp->b_data = (void *)kva; 729 mbp->b_resid = mbp->b_bcount = bytes; 730 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0); 731 mbp->b_iodone = (async ? uvm_aio_biodone : 0); 732 mbp->b_vp = vp; 733 if (async) 734 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED); 735 else 736 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL); 737 738 /* 739 * if EOF is in the middle of the range, zero the part past EOF. 740 * if the page including EOF is not PG_FAKE, skip over it since 741 * in that case it has valid data that we need to preserve. 742 */ 743 744 if (tailbytes > 0) { 745 size_t tailstart = bytes; 746 747 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) { 748 tailstart = round_page(tailstart); 749 tailbytes -= tailstart - bytes; 750 } 751 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x", 752 kva, tailstart, tailbytes,0); 753 memset((void *)(kva + tailstart), 0, tailbytes); 754 } 755 756 /* 757 * now loop over the pages, reading as needed. 758 */ 759 760 bp = NULL; 761 for (offset = startoffset; 762 bytes > 0; 763 offset += iobytes, bytes -= iobytes) { 764 765 /* 766 * skip pages which don't need to be read. 767 */ 768 769 pidx = (offset - startoffset) >> PAGE_SHIFT; 770 while ((pgs[pidx]->flags & PG_FAKE) == 0) { 771 size_t b; 772 773 KASSERT((offset & (PAGE_SIZE - 1)) == 0); 774 if ((pgs[pidx]->flags & PG_RDONLY)) { 775 sawhole = TRUE; 776 } 777 b = MIN(PAGE_SIZE, bytes); 778 offset += b; 779 bytes -= b; 780 skipbytes += b; 781 pidx++; 782 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x", 783 offset, 0,0,0); 784 if (bytes == 0) { 785 goto loopdone; 786 } 787 } 788 789 /* 790 * bmap the file to find out the blkno to read from and 791 * how much we can read in one i/o. if bmap returns an error, 792 * skip the rest of the top-level i/o. 793 */ 794 795 lbn = offset >> fs_bshift; 796 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run); 797 if (error) { 798 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n", 799 lbn, error,0,0); 800 skipbytes += bytes; 801 goto loopdone; 802 } 803 804 /* 805 * see how many pages can be read with this i/o. 806 * reduce the i/o size if necessary to avoid 807 * overwriting pages with valid data. 808 */ 809 810 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset, 811 bytes); 812 if (offset + iobytes > round_page(offset)) { 813 pcount = 1; 814 while (pidx + pcount < npages && 815 pgs[pidx + pcount]->flags & PG_FAKE) { 816 pcount++; 817 } 818 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) - 819 (offset - trunc_page(offset))); 820 } 821 822 /* 823 * if this block isn't allocated, zero it instead of 824 * reading it. unless we are going to allocate blocks, 825 * mark the pages we zeroed PG_RDONLY. 826 */ 827 828 if (blkno < 0) { 829 int holepages = (round_page(offset + iobytes) - 830 trunc_page(offset)) >> PAGE_SHIFT; 831 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0); 832 833 sawhole = TRUE; 834 memset((char *)kva + (offset - startoffset), 0, 835 iobytes); 836 skipbytes += iobytes; 837 838 for (i = 0; i < holepages; i++) { 839 if (write) { 840 pgs[pidx + i]->flags &= ~PG_CLEAN; 841 } 842 if (!blockalloc) { 843 pgs[pidx + i]->flags |= PG_RDONLY; 844 } 845 } 846 continue; 847 } 848 849 /* 850 * allocate a sub-buf for this piece of the i/o 851 * (or just use mbp if there's only 1 piece), 852 * and start it going. 853 */ 854 855 if (offset == startoffset && iobytes == bytes) { 856 bp = mbp; 857 } else { 858 bp = getiobuf(); 859 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes); 860 } 861 bp->b_lblkno = 0; 862 863 /* adjust physical blkno for partial blocks */ 864 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >> 865 dev_bshift); 866 867 UVMHIST_LOG(ubchist, 868 "bp %p offset 0x%x bcount 0x%x blkno 0x%x", 869 bp, offset, iobytes, bp->b_blkno); 870 871 VOP_STRATEGY(devvp, bp); 872 } 873 874 loopdone: 875 nestiobuf_done(mbp, skipbytes, error); 876 if (async) { 877 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0); 878 lockmgr(&gp->g_glock, LK_RELEASE, NULL); 879 if (pgs != pgs_onstack) 880 free(pgs, M_DEVBUF); 881 return (0); 882 } 883 if (bp != NULL) { 884 error = biowait(mbp); 885 } 886 putiobuf(mbp); 887 uvm_pagermapout(kva, npages); 888 889 /* 890 * if this we encountered a hole then we have to do a little more work. 891 * for read faults, we marked the page PG_RDONLY so that future 892 * write accesses to the page will fault again. 893 * for write faults, we must make sure that the backing store for 894 * the page is completely allocated while the pages are locked. 895 */ 896 897 if (!error && sawhole && blockalloc) { 898 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0, 899 cred); 900 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d", 901 startoffset, npages << PAGE_SHIFT, error,0); 902 if (!error) { 903 for (i = 0; i < npages; i++) { 904 if (pgs[i] == NULL) { 905 continue; 906 } 907 pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY); 908 UVMHIST_LOG(ubchist, "mark dirty pg %p", 909 pgs[i],0,0,0); 910 } 911 } 912 } 913 lockmgr(&gp->g_glock, LK_RELEASE, NULL); 914 simple_lock(&uobj->vmobjlock); 915 916 /* 917 * we're almost done! release the pages... 918 * for errors, we free the pages. 919 * otherwise we activate them and mark them as valid and clean. 920 * also, unbusy pages that were not actually requested. 921 */ 922 923 if (error) { 924 for (i = 0; i < npages; i++) { 925 if (pgs[i] == NULL) { 926 continue; 927 } 928 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x", 929 pgs[i], pgs[i]->flags, 0,0); 930 if (pgs[i]->flags & PG_FAKE) { 931 pgs[i]->flags |= PG_RELEASED; 932 } 933 } 934 uvm_lock_pageq(); 935 uvm_page_unbusy(pgs, npages); 936 uvm_unlock_pageq(); 937 simple_unlock(&uobj->vmobjlock); 938 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0); 939 if (pgs != pgs_onstack) 940 free(pgs, M_DEVBUF); 941 return (error); 942 } 943 944 out: 945 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0); 946 uvm_lock_pageq(); 947 for (i = 0; i < npages; i++) { 948 pg = pgs[i]; 949 if (pg == NULL) { 950 continue; 951 } 952 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x", 953 pg, pg->flags, 0,0); 954 if (pg->flags & PG_FAKE && !overwrite) { 955 pg->flags &= ~(PG_FAKE); 956 pmap_clear_modify(pgs[i]); 957 } 958 KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0); 959 if (i < ridx || i >= ridx + orignpages || async) { 960 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x", 961 pg, pg->offset,0,0); 962 if (pg->flags & PG_WANTED) { 963 wakeup(pg); 964 } 965 if (pg->flags & PG_FAKE) { 966 KASSERT(overwrite); 967 uvm_pagezero(pg); 968 } 969 if (pg->flags & PG_RELEASED) { 970 uvm_pagefree(pg); 971 continue; 972 } 973 uvm_pageenqueue(pg); 974 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE); 975 UVM_PAGE_OWN(pg, NULL); 976 } 977 } 978 uvm_unlock_pageq(); 979 simple_unlock(&uobj->vmobjlock); 980 if (ap->a_m != NULL) { 981 memcpy(ap->a_m, &pgs[ridx], 982 orignpages * sizeof(struct vm_page *)); 983 } 984 if (pgs != pgs_onstack) 985 free(pgs, M_DEVBUF); 986 return (0); 987 } 988 989 /* 990 * generic VM putpages routine. 991 * Write the given range of pages to backing store. 992 * 993 * => "offhi == 0" means flush all pages at or after "offlo". 994 * => object should be locked by caller. we may _unlock_ the object 995 * if (and only if) we need to clean a page (PGO_CLEANIT), or 996 * if PGO_SYNCIO is set and there are pages busy. 997 * we return with the object locked. 998 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O). 999 * thus, a caller might want to unlock higher level resources 1000 * (e.g. vm_map) before calling flush. 1001 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither 1002 * unlock the object nor block. 1003 * => if PGO_ALLPAGES is set, then all pages in the object will be processed. 1004 * => NOTE: we rely on the fact that the object's memq is a TAILQ and 1005 * that new pages are inserted on the tail end of the list. thus, 1006 * we can make a complete pass through the object in one go by starting 1007 * at the head and working towards the tail (new pages are put in 1008 * front of us). 1009 * => NOTE: we are allowed to lock the page queues, so the caller 1010 * must not be holding the page queue lock. 1011 * 1012 * note on "cleaning" object and PG_BUSY pages: 1013 * this routine is holding the lock on the object. the only time 1014 * that it can run into a PG_BUSY page that it does not own is if 1015 * some other process has started I/O on the page (e.g. either 1016 * a pagein, or a pageout). if the PG_BUSY page is being paged 1017 * in, then it can not be dirty (!PG_CLEAN) because no one has 1018 * had a chance to modify it yet. if the PG_BUSY page is being 1019 * paged out then it means that someone else has already started 1020 * cleaning the page for us (how nice!). in this case, if we 1021 * have syncio specified, then after we make our pass through the 1022 * object we need to wait for the other PG_BUSY pages to clear 1023 * off (i.e. we need to do an iosync). also note that once a 1024 * page is PG_BUSY it must stay in its object until it is un-busyed. 1025 * 1026 * note on page traversal: 1027 * we can traverse the pages in an object either by going down the 1028 * linked list in "uobj->memq", or we can go over the address range 1029 * by page doing hash table lookups for each address. depending 1030 * on how many pages are in the object it may be cheaper to do one 1031 * or the other. we set "by_list" to true if we are using memq. 1032 * if the cost of a hash lookup was equal to the cost of the list 1033 * traversal we could compare the number of pages in the start->stop 1034 * range to the total number of pages in the object. however, it 1035 * seems that a hash table lookup is more expensive than the linked 1036 * list traversal, so we multiply the number of pages in the 1037 * range by an estimate of the relatively higher cost of the hash lookup. 1038 */ 1039 1040 int 1041 genfs_putpages(void *v) 1042 { 1043 struct vop_putpages_args /* { 1044 struct vnode *a_vp; 1045 voff_t a_offlo; 1046 voff_t a_offhi; 1047 int a_flags; 1048 } */ *ap = v; 1049 struct vnode *vp = ap->a_vp; 1050 struct uvm_object *uobj = &vp->v_uobj; 1051 struct simplelock *slock = &uobj->vmobjlock; 1052 off_t startoff = ap->a_offlo; 1053 off_t endoff = ap->a_offhi; 1054 off_t off; 1055 int flags = ap->a_flags; 1056 /* Even for strange MAXPHYS, the shift rounds down to a page */ 1057 const int maxpages = MAXPHYS >> PAGE_SHIFT; 1058 int i, s, error, npages, nback; 1059 int freeflag; 1060 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp; 1061 boolean_t wasclean, by_list, needs_clean, yld; 1062 boolean_t async = (flags & PGO_SYNCIO) == 0; 1063 boolean_t pagedaemon = curproc == uvm.pagedaemon_proc; 1064 struct lwp *l = curlwp ? curlwp : &lwp0; 1065 struct genfs_node *gp = VTOG(vp); 1066 int dirtygen; 1067 boolean_t modified = FALSE; 1068 boolean_t cleanall; 1069 1070 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist); 1071 1072 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)); 1073 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0); 1074 KASSERT(startoff < endoff || endoff == 0); 1075 1076 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x", 1077 vp, uobj->uo_npages, startoff, endoff - startoff); 1078 1079 KASSERT((vp->v_flag & VONWORKLST) != 0 || 1080 (vp->v_flag & VWRITEMAPDIRTY) == 0); 1081 if (uobj->uo_npages == 0) { 1082 s = splbio(); 1083 if (vp->v_flag & VONWORKLST) { 1084 vp->v_flag &= ~VWRITEMAPDIRTY; 1085 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { 1086 vp->v_flag &= ~VONWORKLST; 1087 LIST_REMOVE(vp, v_synclist); 1088 } 1089 } 1090 splx(s); 1091 simple_unlock(slock); 1092 return (0); 1093 } 1094 1095 /* 1096 * the vnode has pages, set up to process the request. 1097 */ 1098 1099 error = 0; 1100 s = splbio(); 1101 simple_lock(&global_v_numoutput_slock); 1102 wasclean = (vp->v_numoutput == 0); 1103 simple_unlock(&global_v_numoutput_slock); 1104 splx(s); 1105 off = startoff; 1106 if (endoff == 0 || flags & PGO_ALLPAGES) { 1107 endoff = trunc_page(LLONG_MAX); 1108 } 1109 by_list = (uobj->uo_npages <= 1110 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY); 1111 1112 #if !defined(DEBUG) 1113 /* 1114 * if this vnode is known not to have dirty pages, 1115 * don't bother to clean it out. 1116 */ 1117 1118 if ((vp->v_flag & VONWORKLST) == 0) { 1119 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) { 1120 goto skip_scan; 1121 } 1122 flags &= ~PGO_CLEANIT; 1123 } 1124 #endif /* !defined(DEBUG) */ 1125 1126 /* 1127 * start the loop. when scanning by list, hold the last page 1128 * in the list before we start. pages allocated after we start 1129 * will be added to the end of the list, so we can stop at the 1130 * current last page. 1131 */ 1132 1133 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean && 1134 startoff == 0 && endoff == trunc_page(LLONG_MAX) && 1135 (vp->v_flag & VONWORKLST) != 0; 1136 dirtygen = gp->g_dirtygen; 1137 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED; 1138 if (by_list) { 1139 curmp.uobject = uobj; 1140 curmp.offset = (voff_t)-1; 1141 curmp.flags = PG_BUSY; 1142 endmp.uobject = uobj; 1143 endmp.offset = (voff_t)-1; 1144 endmp.flags = PG_BUSY; 1145 pg = TAILQ_FIRST(&uobj->memq); 1146 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq); 1147 PHOLD(l); 1148 } else { 1149 pg = uvm_pagelookup(uobj, off); 1150 } 1151 nextpg = NULL; 1152 while (by_list || off < endoff) { 1153 1154 /* 1155 * if the current page is not interesting, move on to the next. 1156 */ 1157 1158 KASSERT(pg == NULL || pg->uobject == uobj); 1159 KASSERT(pg == NULL || 1160 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 || 1161 (pg->flags & PG_BUSY) != 0); 1162 if (by_list) { 1163 if (pg == &endmp) { 1164 break; 1165 } 1166 if (pg->offset < startoff || pg->offset >= endoff || 1167 pg->flags & (PG_RELEASED|PG_PAGEOUT)) { 1168 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) { 1169 wasclean = FALSE; 1170 } 1171 pg = TAILQ_NEXT(pg, listq); 1172 continue; 1173 } 1174 off = pg->offset; 1175 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) { 1176 if (pg != NULL) { 1177 wasclean = FALSE; 1178 } 1179 off += PAGE_SIZE; 1180 if (off < endoff) { 1181 pg = uvm_pagelookup(uobj, off); 1182 } 1183 continue; 1184 } 1185 1186 /* 1187 * if the current page needs to be cleaned and it's busy, 1188 * wait for it to become unbusy. 1189 */ 1190 1191 yld = (l->l_cpu->ci_schedstate.spc_flags & 1192 SPCF_SHOULDYIELD) && !pagedaemon; 1193 if (pg->flags & PG_BUSY || yld) { 1194 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0); 1195 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) { 1196 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0); 1197 error = EDEADLK; 1198 break; 1199 } 1200 KASSERT(!pagedaemon); 1201 if (by_list) { 1202 TAILQ_INSERT_BEFORE(pg, &curmp, listq); 1203 UVMHIST_LOG(ubchist, "curmp next %p", 1204 TAILQ_NEXT(&curmp, listq), 0,0,0); 1205 } 1206 if (yld) { 1207 simple_unlock(slock); 1208 preempt(1); 1209 simple_lock(slock); 1210 } else { 1211 pg->flags |= PG_WANTED; 1212 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0); 1213 simple_lock(slock); 1214 } 1215 if (by_list) { 1216 UVMHIST_LOG(ubchist, "after next %p", 1217 TAILQ_NEXT(&curmp, listq), 0,0,0); 1218 pg = TAILQ_NEXT(&curmp, listq); 1219 TAILQ_REMOVE(&uobj->memq, &curmp, listq); 1220 } else { 1221 pg = uvm_pagelookup(uobj, off); 1222 } 1223 continue; 1224 } 1225 1226 /* 1227 * if we're freeing, remove all mappings of the page now. 1228 * if we're cleaning, check if the page is needs to be cleaned. 1229 */ 1230 1231 if (flags & PGO_FREE) { 1232 pmap_page_protect(pg, VM_PROT_NONE); 1233 } else if (flags & PGO_CLEANIT) { 1234 1235 /* 1236 * if we still have some hope to pull this vnode off 1237 * from the syncer queue, write-protect the page. 1238 */ 1239 1240 if (cleanall && wasclean && 1241 gp->g_dirtygen == dirtygen) { 1242 1243 /* 1244 * uobj pages get wired only by uvm_fault 1245 * where uobj is locked. 1246 */ 1247 1248 if (pg->wire_count == 0) { 1249 pmap_page_protect(pg, 1250 VM_PROT_READ|VM_PROT_EXECUTE); 1251 } else { 1252 cleanall = FALSE; 1253 } 1254 } 1255 } 1256 1257 if (flags & PGO_CLEANIT) { 1258 needs_clean = pmap_clear_modify(pg) || 1259 (pg->flags & PG_CLEAN) == 0; 1260 pg->flags |= PG_CLEAN; 1261 } else { 1262 needs_clean = FALSE; 1263 } 1264 1265 /* 1266 * if we're cleaning, build a cluster. 1267 * the cluster will consist of pages which are currently dirty, 1268 * but they will be returned to us marked clean. 1269 * if not cleaning, just operate on the one page. 1270 */ 1271 1272 if (needs_clean) { 1273 KDASSERT((vp->v_flag & VONWORKLST)); 1274 wasclean = FALSE; 1275 memset(pgs, 0, sizeof(pgs)); 1276 pg->flags |= PG_BUSY; 1277 UVM_PAGE_OWN(pg, "genfs_putpages"); 1278 1279 /* 1280 * first look backward. 1281 */ 1282 1283 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT); 1284 nback = npages; 1285 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0], 1286 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD); 1287 if (nback) { 1288 memmove(&pgs[0], &pgs[npages - nback], 1289 nback * sizeof(pgs[0])); 1290 if (npages - nback < nback) 1291 memset(&pgs[nback], 0, 1292 (npages - nback) * sizeof(pgs[0])); 1293 else 1294 memset(&pgs[npages - nback], 0, 1295 nback * sizeof(pgs[0])); 1296 } 1297 1298 /* 1299 * then plug in our page of interest. 1300 */ 1301 1302 pgs[nback] = pg; 1303 1304 /* 1305 * then look forward to fill in the remaining space in 1306 * the array of pages. 1307 */ 1308 1309 npages = maxpages - nback - 1; 1310 uvn_findpages(uobj, off + PAGE_SIZE, &npages, 1311 &pgs[nback + 1], 1312 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY); 1313 npages += nback + 1; 1314 } else { 1315 pgs[0] = pg; 1316 npages = 1; 1317 nback = 0; 1318 } 1319 1320 /* 1321 * apply FREE or DEACTIVATE options if requested. 1322 */ 1323 1324 if (flags & (PGO_DEACTIVATE|PGO_FREE)) { 1325 uvm_lock_pageq(); 1326 } 1327 for (i = 0; i < npages; i++) { 1328 tpg = pgs[i]; 1329 KASSERT(tpg->uobject == uobj); 1330 if (by_list && tpg == TAILQ_NEXT(pg, listq)) 1331 pg = tpg; 1332 if (tpg->offset < startoff || tpg->offset >= endoff) 1333 continue; 1334 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) { 1335 (void) pmap_clear_reference(tpg); 1336 uvm_pagedeactivate(tpg); 1337 } else if (flags & PGO_FREE) { 1338 pmap_page_protect(tpg, VM_PROT_NONE); 1339 if (tpg->flags & PG_BUSY) { 1340 tpg->flags |= freeflag; 1341 if (pagedaemon) { 1342 uvmexp.paging++; 1343 uvm_pagedequeue(tpg); 1344 } 1345 } else { 1346 1347 /* 1348 * ``page is not busy'' 1349 * implies that npages is 1 1350 * and needs_clean is false. 1351 */ 1352 1353 nextpg = TAILQ_NEXT(tpg, listq); 1354 uvm_pagefree(tpg); 1355 if (pagedaemon) 1356 uvmexp.pdfreed++; 1357 } 1358 } 1359 } 1360 if (flags & (PGO_DEACTIVATE|PGO_FREE)) { 1361 uvm_unlock_pageq(); 1362 } 1363 if (needs_clean) { 1364 modified = TRUE; 1365 1366 /* 1367 * start the i/o. if we're traversing by list, 1368 * keep our place in the list with a marker page. 1369 */ 1370 1371 if (by_list) { 1372 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp, 1373 listq); 1374 } 1375 simple_unlock(slock); 1376 error = GOP_WRITE(vp, pgs, npages, flags); 1377 simple_lock(slock); 1378 if (by_list) { 1379 pg = TAILQ_NEXT(&curmp, listq); 1380 TAILQ_REMOVE(&uobj->memq, &curmp, listq); 1381 } 1382 if (error) { 1383 break; 1384 } 1385 if (by_list) { 1386 continue; 1387 } 1388 } 1389 1390 /* 1391 * find the next page and continue if there was no error. 1392 */ 1393 1394 if (by_list) { 1395 if (nextpg) { 1396 pg = nextpg; 1397 nextpg = NULL; 1398 } else { 1399 pg = TAILQ_NEXT(pg, listq); 1400 } 1401 } else { 1402 off += (npages - nback) << PAGE_SHIFT; 1403 if (off < endoff) { 1404 pg = uvm_pagelookup(uobj, off); 1405 } 1406 } 1407 } 1408 if (by_list) { 1409 TAILQ_REMOVE(&uobj->memq, &endmp, listq); 1410 PRELE(l); 1411 } 1412 1413 if (modified && (vp->v_flag & VWRITEMAPDIRTY) != 0 && 1414 (vp->v_type != VBLK || 1415 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) { 1416 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED); 1417 } 1418 1419 /* 1420 * if we're cleaning and there was nothing to clean, 1421 * take us off the syncer list. if we started any i/o 1422 * and we're doing sync i/o, wait for all writes to finish. 1423 */ 1424 1425 s = splbio(); 1426 if (cleanall && wasclean && gp->g_dirtygen == dirtygen && 1427 (vp->v_flag & VONWORKLST) != 0) { 1428 vp->v_flag &= ~VWRITEMAPDIRTY; 1429 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { 1430 vp->v_flag &= ~VONWORKLST; 1431 LIST_REMOVE(vp, v_synclist); 1432 } 1433 } 1434 splx(s); 1435 1436 #if !defined(DEBUG) 1437 skip_scan: 1438 #endif /* !defined(DEBUG) */ 1439 if (!wasclean && !async) { 1440 s = splbio(); 1441 /* 1442 * XXX - we want simple_unlock(&global_v_numoutput_slock); 1443 * but the slot in ltsleep() is taken! 1444 * XXX - try to recover from missed wakeups with a timeout.. 1445 * must think of something better. 1446 */ 1447 while (vp->v_numoutput != 0) { 1448 vp->v_flag |= VBWAIT; 1449 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE, 1450 "genput2", hz); 1451 simple_lock(slock); 1452 } 1453 splx(s); 1454 } 1455 simple_unlock(&uobj->vmobjlock); 1456 return (error); 1457 } 1458 1459 int 1460 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags) 1461 { 1462 int s, error, run; 1463 int fs_bshift, dev_bshift; 1464 vaddr_t kva; 1465 off_t eof, offset, startoffset; 1466 size_t bytes, iobytes, skipbytes; 1467 daddr_t lbn, blkno; 1468 struct vm_page *pg; 1469 struct buf *mbp, *bp; 1470 struct vnode *devvp; 1471 boolean_t async = (flags & PGO_SYNCIO) == 0; 1472 UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist); 1473 1474 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x", 1475 vp, pgs, npages, flags); 1476 1477 GOP_SIZE(vp, vp->v_size, &eof, 0); 1478 if (vp->v_type != VBLK) { 1479 fs_bshift = vp->v_mount->mnt_fs_bshift; 1480 dev_bshift = vp->v_mount->mnt_dev_bshift; 1481 } else { 1482 fs_bshift = DEV_BSHIFT; 1483 dev_bshift = DEV_BSHIFT; 1484 } 1485 error = 0; 1486 pg = pgs[0]; 1487 startoffset = pg->offset; 1488 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset); 1489 skipbytes = 0; 1490 KASSERT(bytes != 0); 1491 1492 kva = uvm_pagermapin(pgs, npages, 1493 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK); 1494 1495 s = splbio(); 1496 simple_lock(&global_v_numoutput_slock); 1497 vp->v_numoutput += 2; 1498 simple_unlock(&global_v_numoutput_slock); 1499 splx(s); 1500 mbp = getiobuf(); 1501 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x", 1502 vp, mbp, vp->v_numoutput, bytes); 1503 mbp->b_bufsize = npages << PAGE_SHIFT; 1504 mbp->b_data = (void *)kva; 1505 mbp->b_resid = mbp->b_bcount = bytes; 1506 mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0); 1507 mbp->b_iodone = uvm_aio_biodone; 1508 mbp->b_vp = vp; 1509 if (curproc == uvm.pagedaemon_proc) 1510 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED); 1511 else if (async) 1512 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL); 1513 else 1514 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL); 1515 1516 bp = NULL; 1517 for (offset = startoffset; 1518 bytes > 0; 1519 offset += iobytes, bytes -= iobytes) { 1520 lbn = offset >> fs_bshift; 1521 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run); 1522 if (error) { 1523 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0); 1524 skipbytes += bytes; 1525 bytes = 0; 1526 break; 1527 } 1528 1529 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset, 1530 bytes); 1531 if (blkno == (daddr_t)-1) { 1532 skipbytes += iobytes; 1533 continue; 1534 } 1535 1536 /* if it's really one i/o, don't make a second buf */ 1537 if (offset == startoffset && iobytes == bytes) { 1538 bp = mbp; 1539 } else { 1540 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d", 1541 vp, bp, vp->v_numoutput, 0); 1542 bp = getiobuf(); 1543 nestiobuf_setup(mbp, bp, offset - pg->offset, iobytes); 1544 } 1545 bp->b_lblkno = 0; 1546 1547 /* adjust physical blkno for partial blocks */ 1548 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >> 1549 dev_bshift); 1550 UVMHIST_LOG(ubchist, 1551 "vp %p offset 0x%x bcount 0x%x blkno 0x%x", 1552 vp, offset, bp->b_bcount, bp->b_blkno); 1553 1554 VOP_STRATEGY(devvp, bp); 1555 } 1556 if (skipbytes) { 1557 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0); 1558 } 1559 nestiobuf_done(mbp, skipbytes, error); 1560 if (async) { 1561 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0); 1562 return (0); 1563 } 1564 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0); 1565 error = biowait(mbp); 1566 uvm_aio_aiodone(mbp); 1567 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0); 1568 return (error); 1569 } 1570 1571 /* 1572 * VOP_PUTPAGES() for vnodes which never have pages. 1573 */ 1574 1575 int 1576 genfs_null_putpages(void *v) 1577 { 1578 struct vop_putpages_args /* { 1579 struct vnode *a_vp; 1580 voff_t a_offlo; 1581 voff_t a_offhi; 1582 int a_flags; 1583 } */ *ap = v; 1584 struct vnode *vp = ap->a_vp; 1585 1586 KASSERT(vp->v_uobj.uo_npages == 0); 1587 simple_unlock(&vp->v_interlock); 1588 return (0); 1589 } 1590 1591 void 1592 genfs_node_init(struct vnode *vp, const struct genfs_ops *ops) 1593 { 1594 struct genfs_node *gp = VTOG(vp); 1595 1596 lockinit(&gp->g_glock, PINOD, "glock", 0, 0); 1597 gp->g_op = ops; 1598 } 1599 1600 void 1601 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags) 1602 { 1603 int bsize; 1604 1605 bsize = 1 << vp->v_mount->mnt_fs_bshift; 1606 *eobp = (size + bsize - 1) & ~(bsize - 1); 1607 } 1608 1609 int 1610 genfs_compat_getpages(void *v) 1611 { 1612 struct vop_getpages_args /* { 1613 struct vnode *a_vp; 1614 voff_t a_offset; 1615 struct vm_page **a_m; 1616 int *a_count; 1617 int a_centeridx; 1618 vm_prot_t a_access_type; 1619 int a_advice; 1620 int a_flags; 1621 } */ *ap = v; 1622 1623 off_t origoffset; 1624 struct vnode *vp = ap->a_vp; 1625 struct uvm_object *uobj = &vp->v_uobj; 1626 struct vm_page *pg, **pgs; 1627 vaddr_t kva; 1628 int i, error, orignpages, npages; 1629 struct iovec iov; 1630 struct uio uio; 1631 kauth_cred_t cred = curlwp->l_cred; 1632 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0; 1633 1634 error = 0; 1635 origoffset = ap->a_offset; 1636 orignpages = *ap->a_count; 1637 pgs = ap->a_m; 1638 1639 if (write && (vp->v_flag & VONWORKLST) == 0) { 1640 vn_syncer_add_to_worklist(vp, filedelay); 1641 } 1642 if (ap->a_flags & PGO_LOCKED) { 1643 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, 1644 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0)); 1645 1646 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0); 1647 } 1648 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) { 1649 simple_unlock(&uobj->vmobjlock); 1650 return (EINVAL); 1651 } 1652 if ((ap->a_flags & PGO_SYNCIO) == 0) { 1653 simple_unlock(&uobj->vmobjlock); 1654 return 0; 1655 } 1656 npages = orignpages; 1657 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL); 1658 simple_unlock(&uobj->vmobjlock); 1659 kva = uvm_pagermapin(pgs, npages, 1660 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK); 1661 for (i = 0; i < npages; i++) { 1662 pg = pgs[i]; 1663 if ((pg->flags & PG_FAKE) == 0) { 1664 continue; 1665 } 1666 iov.iov_base = (char *)kva + (i << PAGE_SHIFT); 1667 iov.iov_len = PAGE_SIZE; 1668 uio.uio_iov = &iov; 1669 uio.uio_iovcnt = 1; 1670 uio.uio_offset = origoffset + (i << PAGE_SHIFT); 1671 uio.uio_rw = UIO_READ; 1672 uio.uio_resid = PAGE_SIZE; 1673 UIO_SETUP_SYSSPACE(&uio); 1674 /* XXX vn_lock */ 1675 error = VOP_READ(vp, &uio, 0, cred); 1676 if (error) { 1677 break; 1678 } 1679 if (uio.uio_resid) { 1680 memset(iov.iov_base, 0, uio.uio_resid); 1681 } 1682 } 1683 uvm_pagermapout(kva, npages); 1684 simple_lock(&uobj->vmobjlock); 1685 uvm_lock_pageq(); 1686 for (i = 0; i < npages; i++) { 1687 pg = pgs[i]; 1688 if (error && (pg->flags & PG_FAKE) != 0) { 1689 pg->flags |= PG_RELEASED; 1690 } else { 1691 pmap_clear_modify(pg); 1692 uvm_pageactivate(pg); 1693 } 1694 } 1695 if (error) { 1696 uvm_page_unbusy(pgs, npages); 1697 } 1698 uvm_unlock_pageq(); 1699 simple_unlock(&uobj->vmobjlock); 1700 return (error); 1701 } 1702 1703 int 1704 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, 1705 int flags) 1706 { 1707 off_t offset; 1708 struct iovec iov; 1709 struct uio uio; 1710 kauth_cred_t cred = curlwp->l_cred; 1711 struct buf *bp; 1712 vaddr_t kva; 1713 int s, error; 1714 1715 offset = pgs[0]->offset; 1716 kva = uvm_pagermapin(pgs, npages, 1717 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK); 1718 1719 iov.iov_base = (void *)kva; 1720 iov.iov_len = npages << PAGE_SHIFT; 1721 uio.uio_iov = &iov; 1722 uio.uio_iovcnt = 1; 1723 uio.uio_offset = offset; 1724 uio.uio_rw = UIO_WRITE; 1725 uio.uio_resid = npages << PAGE_SHIFT; 1726 UIO_SETUP_SYSSPACE(&uio); 1727 /* XXX vn_lock */ 1728 error = VOP_WRITE(vp, &uio, 0, cred); 1729 1730 s = splbio(); 1731 V_INCR_NUMOUTPUT(vp); 1732 splx(s); 1733 1734 bp = getiobuf(); 1735 bp->b_flags = B_BUSY | B_WRITE | B_AGE; 1736 bp->b_vp = vp; 1737 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift; 1738 bp->b_data = (char *)kva; 1739 bp->b_bcount = npages << PAGE_SHIFT; 1740 bp->b_bufsize = npages << PAGE_SHIFT; 1741 bp->b_resid = 0; 1742 if (error) { 1743 bp->b_flags |= B_ERROR; 1744 bp->b_error = error; 1745 } 1746 uvm_aio_aiodone(bp); 1747 return (error); 1748 } 1749 1750 static void 1751 filt_genfsdetach(struct knote *kn) 1752 { 1753 struct vnode *vp = (struct vnode *)kn->kn_hook; 1754 1755 /* XXXLUKEM lock the struct? */ 1756 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext); 1757 } 1758 1759 static int 1760 filt_genfsread(struct knote *kn, long hint) 1761 { 1762 struct vnode *vp = (struct vnode *)kn->kn_hook; 1763 1764 /* 1765 * filesystem is gone, so set the EOF flag and schedule 1766 * the knote for deletion. 1767 */ 1768 if (hint == NOTE_REVOKE) { 1769 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 1770 return (1); 1771 } 1772 1773 /* XXXLUKEM lock the struct? */ 1774 kn->kn_data = vp->v_size - kn->kn_fp->f_offset; 1775 return (kn->kn_data != 0); 1776 } 1777 1778 static int 1779 filt_genfsvnode(struct knote *kn, long hint) 1780 { 1781 1782 if (kn->kn_sfflags & hint) 1783 kn->kn_fflags |= hint; 1784 if (hint == NOTE_REVOKE) { 1785 kn->kn_flags |= EV_EOF; 1786 return (1); 1787 } 1788 return (kn->kn_fflags != 0); 1789 } 1790 1791 static const struct filterops genfsread_filtops = 1792 { 1, NULL, filt_genfsdetach, filt_genfsread }; 1793 static const struct filterops genfsvnode_filtops = 1794 { 1, NULL, filt_genfsdetach, filt_genfsvnode }; 1795 1796 int 1797 genfs_kqfilter(void *v) 1798 { 1799 struct vop_kqfilter_args /* { 1800 struct vnode *a_vp; 1801 struct knote *a_kn; 1802 } */ *ap = v; 1803 struct vnode *vp; 1804 struct knote *kn; 1805 1806 vp = ap->a_vp; 1807 kn = ap->a_kn; 1808 switch (kn->kn_filter) { 1809 case EVFILT_READ: 1810 kn->kn_fop = &genfsread_filtops; 1811 break; 1812 case EVFILT_VNODE: 1813 kn->kn_fop = &genfsvnode_filtops; 1814 break; 1815 default: 1816 return (1); 1817 } 1818 1819 kn->kn_hook = vp; 1820 1821 /* XXXLUKEM lock the struct? */ 1822 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext); 1823 1824 return (0); 1825 } 1826