xref: /netbsd-src/sys/miscfs/genfs/genfs_vnops.c (revision 1ad9454efb13a65cd7535ccf867508cb14d9d30e)
1 /*	$NetBSD: genfs_vnops.c,v 1.129 2006/09/15 15:51:12 yamt Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.129 2006/09/15 15:51:12 yamt Exp $");
35 
36 #if defined(_KERNEL_OPT)
37 #include "opt_nfsserver.h"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/mount.h>
45 #include <sys/namei.h>
46 #include <sys/vnode.h>
47 #include <sys/fcntl.h>
48 #include <sys/malloc.h>
49 #include <sys/poll.h>
50 #include <sys/mman.h>
51 #include <sys/file.h>
52 #include <sys/kauth.h>
53 
54 #include <miscfs/genfs/genfs.h>
55 #include <miscfs/genfs/genfs_node.h>
56 #include <miscfs/specfs/specdev.h>
57 
58 #include <uvm/uvm.h>
59 #include <uvm/uvm_pager.h>
60 
61 #ifdef NFSSERVER
62 #include <nfs/rpcv2.h>
63 #include <nfs/nfsproto.h>
64 #include <nfs/nfs.h>
65 #include <nfs/nqnfs.h>
66 #include <nfs/nfs_var.h>
67 #endif
68 
69 static inline void genfs_rel_pages(struct vm_page **, int);
70 static void filt_genfsdetach(struct knote *);
71 static int filt_genfsread(struct knote *, long);
72 static int filt_genfsvnode(struct knote *, long);
73 
74 #define MAX_READ_PAGES	16 	/* XXXUBC 16 */
75 
76 int
77 genfs_poll(void *v)
78 {
79 	struct vop_poll_args /* {
80 		struct vnode *a_vp;
81 		int a_events;
82 		struct lwp *a_l;
83 	} */ *ap = v;
84 
85 	return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
86 }
87 
88 int
89 genfs_seek(void *v)
90 {
91 	struct vop_seek_args /* {
92 		struct vnode *a_vp;
93 		off_t a_oldoff;
94 		off_t a_newoff;
95 		kauth_cred_t cred;
96 	} */ *ap = v;
97 
98 	if (ap->a_newoff < 0)
99 		return (EINVAL);
100 
101 	return (0);
102 }
103 
104 int
105 genfs_abortop(void *v)
106 {
107 	struct vop_abortop_args /* {
108 		struct vnode *a_dvp;
109 		struct componentname *a_cnp;
110 	} */ *ap = v;
111 
112 	if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
113 		PNBUF_PUT(ap->a_cnp->cn_pnbuf);
114 	return (0);
115 }
116 
117 int
118 genfs_fcntl(void *v)
119 {
120 	struct vop_fcntl_args /* {
121 		struct vnode *a_vp;
122 		u_int a_command;
123 		caddr_t a_data;
124 		int a_fflag;
125 		kauth_cred_t a_cred;
126 		struct lwp *a_l;
127 	} */ *ap = v;
128 
129 	if (ap->a_command == F_SETFL)
130 		return (0);
131 	else
132 		return (EOPNOTSUPP);
133 }
134 
135 /*ARGSUSED*/
136 int
137 genfs_badop(void *v)
138 {
139 
140 	panic("genfs: bad op");
141 }
142 
143 /*ARGSUSED*/
144 int
145 genfs_nullop(void *v)
146 {
147 
148 	return (0);
149 }
150 
151 /*ARGSUSED*/
152 int
153 genfs_einval(void *v)
154 {
155 
156 	return (EINVAL);
157 }
158 
159 /*
160  * Called when an fs doesn't support a particular vop.
161  * This takes care to vrele, vput, or vunlock passed in vnodes.
162  */
163 int
164 genfs_eopnotsupp(void *v)
165 {
166 	struct vop_generic_args /*
167 		struct vnodeop_desc *a_desc;
168 		/ * other random data follows, presumably * /
169 	} */ *ap = v;
170 	struct vnodeop_desc *desc = ap->a_desc;
171 	struct vnode *vp, *vp_last = NULL;
172 	int flags, i, j, offset;
173 
174 	flags = desc->vdesc_flags;
175 	for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
176 		if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
177 			break;	/* stop at end of list */
178 		if ((j = flags & VDESC_VP0_WILLPUT)) {
179 			vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
180 
181 			/* Skip if NULL */
182 			if (!vp)
183 				continue;
184 
185 			switch (j) {
186 			case VDESC_VP0_WILLPUT:
187 				/* Check for dvp == vp cases */
188 				if (vp == vp_last)
189 					vrele(vp);
190 				else {
191 					vput(vp);
192 					vp_last = vp;
193 				}
194 				break;
195 			case VDESC_VP0_WILLUNLOCK:
196 				VOP_UNLOCK(vp, 0);
197 				break;
198 			case VDESC_VP0_WILLRELE:
199 				vrele(vp);
200 				break;
201 			}
202 		}
203 	}
204 
205 	return (EOPNOTSUPP);
206 }
207 
208 /*ARGSUSED*/
209 int
210 genfs_ebadf(void *v)
211 {
212 
213 	return (EBADF);
214 }
215 
216 /* ARGSUSED */
217 int
218 genfs_enoioctl(void *v)
219 {
220 
221 	return (EPASSTHROUGH);
222 }
223 
224 
225 /*
226  * Eliminate all activity associated with the requested vnode
227  * and with all vnodes aliased to the requested vnode.
228  */
229 int
230 genfs_revoke(void *v)
231 {
232 	struct vop_revoke_args /* {
233 		struct vnode *a_vp;
234 		int a_flags;
235 	} */ *ap = v;
236 	struct vnode *vp, *vq;
237 	struct lwp *l = curlwp;		/* XXX */
238 
239 #ifdef DIAGNOSTIC
240 	if ((ap->a_flags & REVOKEALL) == 0)
241 		panic("genfs_revoke: not revokeall");
242 #endif
243 
244 	vp = ap->a_vp;
245 	simple_lock(&vp->v_interlock);
246 
247 	if (vp->v_flag & VALIASED) {
248 		/*
249 		 * If a vgone (or vclean) is already in progress,
250 		 * wait until it is done and return.
251 		 */
252 		if (vp->v_flag & VXLOCK) {
253 			vp->v_flag |= VXWANT;
254 			ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
255 				&vp->v_interlock);
256 			return (0);
257 		}
258 		/*
259 		 * Ensure that vp will not be vgone'd while we
260 		 * are eliminating its aliases.
261 		 */
262 		vp->v_flag |= VXLOCK;
263 		simple_unlock(&vp->v_interlock);
264 		while (vp->v_flag & VALIASED) {
265 			simple_lock(&spechash_slock);
266 			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
267 				if (vq->v_rdev != vp->v_rdev ||
268 				    vq->v_type != vp->v_type || vp == vq)
269 					continue;
270 				simple_unlock(&spechash_slock);
271 				vgone(vq);
272 				break;
273 			}
274 			if (vq == NULLVP)
275 				simple_unlock(&spechash_slock);
276 		}
277 		/*
278 		 * Remove the lock so that vgone below will
279 		 * really eliminate the vnode after which time
280 		 * vgone will awaken any sleepers.
281 		 */
282 		simple_lock(&vp->v_interlock);
283 		vp->v_flag &= ~VXLOCK;
284 	}
285 	vgonel(vp, l);
286 	return (0);
287 }
288 
289 /*
290  * Lock the node.
291  */
292 int
293 genfs_lock(void *v)
294 {
295 	struct vop_lock_args /* {
296 		struct vnode *a_vp;
297 		int a_flags;
298 	} */ *ap = v;
299 	struct vnode *vp = ap->a_vp;
300 
301 	return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
302 }
303 
304 /*
305  * Unlock the node.
306  */
307 int
308 genfs_unlock(void *v)
309 {
310 	struct vop_unlock_args /* {
311 		struct vnode *a_vp;
312 		int a_flags;
313 	} */ *ap = v;
314 	struct vnode *vp = ap->a_vp;
315 
316 	return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
317 	    &vp->v_interlock));
318 }
319 
320 /*
321  * Return whether or not the node is locked.
322  */
323 int
324 genfs_islocked(void *v)
325 {
326 	struct vop_islocked_args /* {
327 		struct vnode *a_vp;
328 	} */ *ap = v;
329 	struct vnode *vp = ap->a_vp;
330 
331 	return (lockstatus(vp->v_vnlock));
332 }
333 
334 /*
335  * Stubs to use when there is no locking to be done on the underlying object.
336  */
337 int
338 genfs_nolock(void *v)
339 {
340 	struct vop_lock_args /* {
341 		struct vnode *a_vp;
342 		int a_flags;
343 		struct lwp *a_l;
344 	} */ *ap = v;
345 
346 	/*
347 	 * Since we are not using the lock manager, we must clear
348 	 * the interlock here.
349 	 */
350 	if (ap->a_flags & LK_INTERLOCK)
351 		simple_unlock(&ap->a_vp->v_interlock);
352 	return (0);
353 }
354 
355 int
356 genfs_nounlock(void *v)
357 {
358 
359 	return (0);
360 }
361 
362 int
363 genfs_noislocked(void *v)
364 {
365 
366 	return (0);
367 }
368 
369 /*
370  * Local lease check for NFS servers.  Just set up args and let
371  * nqsrv_getlease() do the rest.  If NFSSERVER is not in the kernel,
372  * this is a null operation.
373  */
374 int
375 genfs_lease_check(void *v)
376 {
377 #ifdef NFSSERVER
378 	struct vop_lease_args /* {
379 		struct vnode *a_vp;
380 		struct lwp *a_l;
381 		kauth_cred_t a_cred;
382 		int a_flag;
383 	} */ *ap = v;
384 	u_int32_t duration = 0;
385 	int cache;
386 	u_quad_t frev;
387 
388 	(void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
389 	    NQLOCALSLP, ap->a_l, (struct mbuf *)0, &cache, &frev, ap->a_cred);
390 	return (0);
391 #else
392 	return (0);
393 #endif /* NFSSERVER */
394 }
395 
396 int
397 genfs_mmap(void *v)
398 {
399 
400 	return (0);
401 }
402 
403 static inline void
404 genfs_rel_pages(struct vm_page **pgs, int npages)
405 {
406 	int i;
407 
408 	for (i = 0; i < npages; i++) {
409 		struct vm_page *pg = pgs[i];
410 
411 		if (pg == NULL || pg == PGO_DONTCARE)
412 			continue;
413 		if (pg->flags & PG_FAKE) {
414 			pg->flags |= PG_RELEASED;
415 		}
416 	}
417 	uvm_lock_pageq();
418 	uvm_page_unbusy(pgs, npages);
419 	uvm_unlock_pageq();
420 }
421 
422 /*
423  * generic VM getpages routine.
424  * Return PG_BUSY pages for the given range,
425  * reading from backing store if necessary.
426  */
427 
428 int
429 genfs_getpages(void *v)
430 {
431 	struct vop_getpages_args /* {
432 		struct vnode *a_vp;
433 		voff_t a_offset;
434 		struct vm_page **a_m;
435 		int *a_count;
436 		int a_centeridx;
437 		vm_prot_t a_access_type;
438 		int a_advice;
439 		int a_flags;
440 	} */ *ap = v;
441 
442 	off_t newsize, diskeof, memeof;
443 	off_t offset, origoffset, startoffset, endoffset;
444 	daddr_t lbn, blkno;
445 	int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
446 	int fs_bshift, fs_bsize, dev_bshift;
447 	int flags = ap->a_flags;
448 	size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
449 	vaddr_t kva;
450 	struct buf *bp, *mbp;
451 	struct vnode *vp = ap->a_vp;
452 	struct vnode *devvp;
453 	struct genfs_node *gp = VTOG(vp);
454 	struct uvm_object *uobj = &vp->v_uobj;
455 	struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES];
456 	int pgs_size;
457 	kauth_cred_t cred = curlwp->l_cred;		/* XXXUBC curlwp */
458 	boolean_t async = (flags & PGO_SYNCIO) == 0;
459 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
460 	boolean_t sawhole = FALSE;
461 	boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
462 	boolean_t blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
463 	voff_t origvsize;
464 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
465 
466 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
467 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
468 
469 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
470 	    vp->v_type == VLNK || vp->v_type == VBLK);
471 
472 	/* XXXUBC temp limit */
473 	if (*ap->a_count > MAX_READ_PAGES) {
474 		panic("genfs_getpages: too many pages");
475 	}
476 
477 startover:
478 	error = 0;
479 	origvsize = vp->v_size;
480 	origoffset = ap->a_offset;
481 	orignpages = *ap->a_count;
482 	GOP_SIZE(vp, vp->v_size, &diskeof, 0);
483 	if (flags & PGO_PASTEOF) {
484 		newsize = MAX(vp->v_size,
485 		    origoffset + (orignpages << PAGE_SHIFT));
486 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
487 	} else {
488 		GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_MEM);
489 	}
490 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
491 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
492 	KASSERT(orignpages > 0);
493 
494 	/*
495 	 * Bounds-check the request.
496 	 */
497 
498 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
499 		if ((flags & PGO_LOCKED) == 0) {
500 			simple_unlock(&uobj->vmobjlock);
501 		}
502 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
503 		    origoffset, *ap->a_count, memeof,0);
504 		return (EINVAL);
505 	}
506 
507 	/* uobj is locked */
508 
509 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
510 	    (vp->v_type != VBLK ||
511 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
512 		int updflags = 0;
513 
514 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
515 			updflags = GOP_UPDATE_ACCESSED;
516 		}
517 		if (write) {
518 			updflags |= GOP_UPDATE_MODIFIED;
519 		}
520 		if (updflags != 0) {
521 			GOP_MARKUPDATE(vp, updflags);
522 		}
523 	}
524 
525 	if (write) {
526 		gp->g_dirtygen++;
527 		if ((vp->v_flag & VONWORKLST) == 0) {
528 			vn_syncer_add_to_worklist(vp, filedelay);
529 		}
530 		if ((vp->v_flag & (VWRITEMAP|VWRITEMAPDIRTY)) == VWRITEMAP) {
531 			vp->v_flag |= VWRITEMAPDIRTY;
532 		}
533 	}
534 
535 	/*
536 	 * For PGO_LOCKED requests, just return whatever's in memory.
537 	 */
538 
539 	if (flags & PGO_LOCKED) {
540 		int nfound;
541 
542 		npages = *ap->a_count;
543 #if defined(DEBUG)
544 		for (i = 0; i < npages; i++) {
545 			pg = ap->a_m[i];
546 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
547 		}
548 #endif /* defined(DEBUG) */
549 		nfound = uvn_findpages(uobj, origoffset, &npages,
550 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
551 		KASSERT(npages == *ap->a_count);
552 		if (nfound == 0) {
553 			return EBUSY;
554 		}
555 		if (lockmgr(&gp->g_glock, LK_SHARED | LK_NOWAIT, NULL)) {
556 			genfs_rel_pages(ap->a_m, npages);
557 
558 			/*
559 			 * restore the array.
560 			 */
561 
562 			for (i = 0; i < npages; i++) {
563 				pg = ap->a_m[i];
564 
565 				if (pg != NULL || pg != PGO_DONTCARE) {
566 					ap->a_m[i] = NULL;
567 				}
568 			}
569 		} else {
570 			lockmgr(&gp->g_glock, LK_RELEASE, NULL);
571 		}
572 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
573 	}
574 	simple_unlock(&uobj->vmobjlock);
575 
576 	/*
577 	 * find the requested pages and make some simple checks.
578 	 * leave space in the page array for a whole block.
579 	 */
580 
581 	if (vp->v_type != VBLK) {
582 		fs_bshift = vp->v_mount->mnt_fs_bshift;
583 		dev_bshift = vp->v_mount->mnt_dev_bshift;
584 	} else {
585 		fs_bshift = DEV_BSHIFT;
586 		dev_bshift = DEV_BSHIFT;
587 	}
588 	fs_bsize = 1 << fs_bshift;
589 
590 	orignpages = MIN(orignpages,
591 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
592 	npages = orignpages;
593 	startoffset = origoffset & ~(fs_bsize - 1);
594 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
595 	    fs_bsize - 1) & ~(fs_bsize - 1));
596 	endoffset = MIN(endoffset, round_page(memeof));
597 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
598 
599 	pgs_size = sizeof(struct vm_page *) *
600 	    ((endoffset - startoffset) >> PAGE_SHIFT);
601 	if (pgs_size > sizeof(pgs_onstack)) {
602 		pgs = malloc(pgs_size, M_DEVBUF,
603 		    (async ? M_NOWAIT : M_WAITOK) | M_ZERO);
604 		if (pgs == NULL) {
605 			return (ENOMEM);
606 		}
607 	} else {
608 		pgs = pgs_onstack;
609 		memset(pgs, 0, pgs_size);
610 	}
611 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
612 	    ridx, npages, startoffset, endoffset);
613 
614 	/*
615 	 * hold g_glock to prevent a race with truncate.
616 	 *
617 	 * check if our idea of v_size is still valid.
618 	 */
619 
620 	if (blockalloc) {
621 		lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
622 	} else {
623 		lockmgr(&gp->g_glock, LK_SHARED, NULL);
624 	}
625 	simple_lock(&uobj->vmobjlock);
626 	if (vp->v_size < origvsize) {
627 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
628 		if (pgs != pgs_onstack)
629 			free(pgs, M_DEVBUF);
630 		goto startover;
631 	}
632 
633 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
634 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
635 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
636 		KASSERT(async != 0);
637 		genfs_rel_pages(&pgs[ridx], orignpages);
638 		simple_unlock(&uobj->vmobjlock);
639 		if (pgs != pgs_onstack)
640 			free(pgs, M_DEVBUF);
641 		return (EBUSY);
642 	}
643 
644 	/*
645 	 * if the pages are already resident, just return them.
646 	 */
647 
648 	for (i = 0; i < npages; i++) {
649 		struct vm_page *pg1 = pgs[ridx + i];
650 
651 		if ((pg1->flags & PG_FAKE) ||
652 		    (blockalloc && (pg1->flags & PG_RDONLY))) {
653 			break;
654 		}
655 	}
656 	if (i == npages) {
657 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
658 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
659 		npages += ridx;
660 		goto out;
661 	}
662 
663 	/*
664 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
665 	 */
666 
667 	if (overwrite) {
668 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
669 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
670 
671 		for (i = 0; i < npages; i++) {
672 			struct vm_page *pg1 = pgs[ridx + i];
673 
674 			pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
675 		}
676 		npages += ridx;
677 		goto out;
678 	}
679 
680 	/*
681 	 * the page wasn't resident and we're not overwriting,
682 	 * so we're going to have to do some i/o.
683 	 * find any additional pages needed to cover the expanded range.
684 	 */
685 
686 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
687 	if (startoffset != origoffset || npages != orignpages) {
688 
689 		/*
690 		 * we need to avoid deadlocks caused by locking
691 		 * additional pages at lower offsets than pages we
692 		 * already have locked.  unlock them all and start over.
693 		 */
694 
695 		genfs_rel_pages(&pgs[ridx], orignpages);
696 		memset(pgs, 0, pgs_size);
697 
698 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
699 		    startoffset, endoffset, 0,0);
700 		npgs = npages;
701 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
702 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
703 			lockmgr(&gp->g_glock, LK_RELEASE, NULL);
704 			KASSERT(async != 0);
705 			genfs_rel_pages(pgs, npages);
706 			simple_unlock(&uobj->vmobjlock);
707 			if (pgs != pgs_onstack)
708 				free(pgs, M_DEVBUF);
709 			return (EBUSY);
710 		}
711 	}
712 	simple_unlock(&uobj->vmobjlock);
713 
714 	/*
715 	 * read the desired page(s).
716 	 */
717 
718 	totalbytes = npages << PAGE_SHIFT;
719 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
720 	tailbytes = totalbytes - bytes;
721 	skipbytes = 0;
722 
723 	kva = uvm_pagermapin(pgs, npages,
724 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
725 
726 	mbp = getiobuf();
727 	mbp->b_bufsize = totalbytes;
728 	mbp->b_data = (void *)kva;
729 	mbp->b_resid = mbp->b_bcount = bytes;
730 	mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
731 	mbp->b_iodone = (async ? uvm_aio_biodone : 0);
732 	mbp->b_vp = vp;
733 	if (async)
734 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
735 	else
736 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
737 
738 	/*
739 	 * if EOF is in the middle of the range, zero the part past EOF.
740 	 * if the page including EOF is not PG_FAKE, skip over it since
741 	 * in that case it has valid data that we need to preserve.
742 	 */
743 
744 	if (tailbytes > 0) {
745 		size_t tailstart = bytes;
746 
747 		if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
748 			tailstart = round_page(tailstart);
749 			tailbytes -= tailstart - bytes;
750 		}
751 		UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
752 		    kva, tailstart, tailbytes,0);
753 		memset((void *)(kva + tailstart), 0, tailbytes);
754 	}
755 
756 	/*
757 	 * now loop over the pages, reading as needed.
758 	 */
759 
760 	bp = NULL;
761 	for (offset = startoffset;
762 	    bytes > 0;
763 	    offset += iobytes, bytes -= iobytes) {
764 
765 		/*
766 		 * skip pages which don't need to be read.
767 		 */
768 
769 		pidx = (offset - startoffset) >> PAGE_SHIFT;
770 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
771 			size_t b;
772 
773 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
774 			if ((pgs[pidx]->flags & PG_RDONLY)) {
775 				sawhole = TRUE;
776 			}
777 			b = MIN(PAGE_SIZE, bytes);
778 			offset += b;
779 			bytes -= b;
780 			skipbytes += b;
781 			pidx++;
782 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
783 			    offset, 0,0,0);
784 			if (bytes == 0) {
785 				goto loopdone;
786 			}
787 		}
788 
789 		/*
790 		 * bmap the file to find out the blkno to read from and
791 		 * how much we can read in one i/o.  if bmap returns an error,
792 		 * skip the rest of the top-level i/o.
793 		 */
794 
795 		lbn = offset >> fs_bshift;
796 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
797 		if (error) {
798 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
799 			    lbn, error,0,0);
800 			skipbytes += bytes;
801 			goto loopdone;
802 		}
803 
804 		/*
805 		 * see how many pages can be read with this i/o.
806 		 * reduce the i/o size if necessary to avoid
807 		 * overwriting pages with valid data.
808 		 */
809 
810 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
811 		    bytes);
812 		if (offset + iobytes > round_page(offset)) {
813 			pcount = 1;
814 			while (pidx + pcount < npages &&
815 			    pgs[pidx + pcount]->flags & PG_FAKE) {
816 				pcount++;
817 			}
818 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
819 			    (offset - trunc_page(offset)));
820 		}
821 
822 		/*
823 		 * if this block isn't allocated, zero it instead of
824 		 * reading it.  unless we are going to allocate blocks,
825 		 * mark the pages we zeroed PG_RDONLY.
826 		 */
827 
828 		if (blkno < 0) {
829 			int holepages = (round_page(offset + iobytes) -
830 			    trunc_page(offset)) >> PAGE_SHIFT;
831 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
832 
833 			sawhole = TRUE;
834 			memset((char *)kva + (offset - startoffset), 0,
835 			    iobytes);
836 			skipbytes += iobytes;
837 
838 			for (i = 0; i < holepages; i++) {
839 				if (write) {
840 					pgs[pidx + i]->flags &= ~PG_CLEAN;
841 				}
842 				if (!blockalloc) {
843 					pgs[pidx + i]->flags |= PG_RDONLY;
844 				}
845 			}
846 			continue;
847 		}
848 
849 		/*
850 		 * allocate a sub-buf for this piece of the i/o
851 		 * (or just use mbp if there's only 1 piece),
852 		 * and start it going.
853 		 */
854 
855 		if (offset == startoffset && iobytes == bytes) {
856 			bp = mbp;
857 		} else {
858 			bp = getiobuf();
859 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
860 		}
861 		bp->b_lblkno = 0;
862 
863 		/* adjust physical blkno for partial blocks */
864 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
865 		    dev_bshift);
866 
867 		UVMHIST_LOG(ubchist,
868 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
869 		    bp, offset, iobytes, bp->b_blkno);
870 
871 		VOP_STRATEGY(devvp, bp);
872 	}
873 
874 loopdone:
875 	nestiobuf_done(mbp, skipbytes, error);
876 	if (async) {
877 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
878 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
879 		if (pgs != pgs_onstack)
880 			free(pgs, M_DEVBUF);
881 		return (0);
882 	}
883 	if (bp != NULL) {
884 		error = biowait(mbp);
885 	}
886 	putiobuf(mbp);
887 	uvm_pagermapout(kva, npages);
888 
889 	/*
890 	 * if this we encountered a hole then we have to do a little more work.
891 	 * for read faults, we marked the page PG_RDONLY so that future
892 	 * write accesses to the page will fault again.
893 	 * for write faults, we must make sure that the backing store for
894 	 * the page is completely allocated while the pages are locked.
895 	 */
896 
897 	if (!error && sawhole && blockalloc) {
898 		error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
899 		    cred);
900 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
901 		    startoffset, npages << PAGE_SHIFT, error,0);
902 		if (!error) {
903 			for (i = 0; i < npages; i++) {
904 				if (pgs[i] == NULL) {
905 					continue;
906 				}
907 				pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
908 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
909 				    pgs[i],0,0,0);
910 			}
911 		}
912 	}
913 	lockmgr(&gp->g_glock, LK_RELEASE, NULL);
914 	simple_lock(&uobj->vmobjlock);
915 
916 	/*
917 	 * we're almost done!  release the pages...
918 	 * for errors, we free the pages.
919 	 * otherwise we activate them and mark them as valid and clean.
920 	 * also, unbusy pages that were not actually requested.
921 	 */
922 
923 	if (error) {
924 		for (i = 0; i < npages; i++) {
925 			if (pgs[i] == NULL) {
926 				continue;
927 			}
928 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
929 			    pgs[i], pgs[i]->flags, 0,0);
930 			if (pgs[i]->flags & PG_FAKE) {
931 				pgs[i]->flags |= PG_RELEASED;
932 			}
933 		}
934 		uvm_lock_pageq();
935 		uvm_page_unbusy(pgs, npages);
936 		uvm_unlock_pageq();
937 		simple_unlock(&uobj->vmobjlock);
938 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
939 		if (pgs != pgs_onstack)
940 			free(pgs, M_DEVBUF);
941 		return (error);
942 	}
943 
944 out:
945 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
946 	uvm_lock_pageq();
947 	for (i = 0; i < npages; i++) {
948 		pg = pgs[i];
949 		if (pg == NULL) {
950 			continue;
951 		}
952 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
953 		    pg, pg->flags, 0,0);
954 		if (pg->flags & PG_FAKE && !overwrite) {
955 			pg->flags &= ~(PG_FAKE);
956 			pmap_clear_modify(pgs[i]);
957 		}
958 		KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
959 		if (i < ridx || i >= ridx + orignpages || async) {
960 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
961 			    pg, pg->offset,0,0);
962 			if (pg->flags & PG_WANTED) {
963 				wakeup(pg);
964 			}
965 			if (pg->flags & PG_FAKE) {
966 				KASSERT(overwrite);
967 				uvm_pagezero(pg);
968 			}
969 			if (pg->flags & PG_RELEASED) {
970 				uvm_pagefree(pg);
971 				continue;
972 			}
973 			uvm_pageenqueue(pg);
974 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
975 			UVM_PAGE_OWN(pg, NULL);
976 		}
977 	}
978 	uvm_unlock_pageq();
979 	simple_unlock(&uobj->vmobjlock);
980 	if (ap->a_m != NULL) {
981 		memcpy(ap->a_m, &pgs[ridx],
982 		    orignpages * sizeof(struct vm_page *));
983 	}
984 	if (pgs != pgs_onstack)
985 		free(pgs, M_DEVBUF);
986 	return (0);
987 }
988 
989 /*
990  * generic VM putpages routine.
991  * Write the given range of pages to backing store.
992  *
993  * => "offhi == 0" means flush all pages at or after "offlo".
994  * => object should be locked by caller.   we may _unlock_ the object
995  *	if (and only if) we need to clean a page (PGO_CLEANIT), or
996  *	if PGO_SYNCIO is set and there are pages busy.
997  *	we return with the object locked.
998  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
999  *	thus, a caller might want to unlock higher level resources
1000  *	(e.g. vm_map) before calling flush.
1001  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
1002  *	unlock the object nor block.
1003  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
1004  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
1005  *	that new pages are inserted on the tail end of the list.   thus,
1006  *	we can make a complete pass through the object in one go by starting
1007  *	at the head and working towards the tail (new pages are put in
1008  *	front of us).
1009  * => NOTE: we are allowed to lock the page queues, so the caller
1010  *	must not be holding the page queue lock.
1011  *
1012  * note on "cleaning" object and PG_BUSY pages:
1013  *	this routine is holding the lock on the object.   the only time
1014  *	that it can run into a PG_BUSY page that it does not own is if
1015  *	some other process has started I/O on the page (e.g. either
1016  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
1017  *	in, then it can not be dirty (!PG_CLEAN) because no one has
1018  *	had a chance to modify it yet.    if the PG_BUSY page is being
1019  *	paged out then it means that someone else has already started
1020  *	cleaning the page for us (how nice!).    in this case, if we
1021  *	have syncio specified, then after we make our pass through the
1022  *	object we need to wait for the other PG_BUSY pages to clear
1023  *	off (i.e. we need to do an iosync).   also note that once a
1024  *	page is PG_BUSY it must stay in its object until it is un-busyed.
1025  *
1026  * note on page traversal:
1027  *	we can traverse the pages in an object either by going down the
1028  *	linked list in "uobj->memq", or we can go over the address range
1029  *	by page doing hash table lookups for each address.    depending
1030  *	on how many pages are in the object it may be cheaper to do one
1031  *	or the other.   we set "by_list" to true if we are using memq.
1032  *	if the cost of a hash lookup was equal to the cost of the list
1033  *	traversal we could compare the number of pages in the start->stop
1034  *	range to the total number of pages in the object.   however, it
1035  *	seems that a hash table lookup is more expensive than the linked
1036  *	list traversal, so we multiply the number of pages in the
1037  *	range by an estimate of the relatively higher cost of the hash lookup.
1038  */
1039 
1040 int
1041 genfs_putpages(void *v)
1042 {
1043 	struct vop_putpages_args /* {
1044 		struct vnode *a_vp;
1045 		voff_t a_offlo;
1046 		voff_t a_offhi;
1047 		int a_flags;
1048 	} */ *ap = v;
1049 	struct vnode *vp = ap->a_vp;
1050 	struct uvm_object *uobj = &vp->v_uobj;
1051 	struct simplelock *slock = &uobj->vmobjlock;
1052 	off_t startoff = ap->a_offlo;
1053 	off_t endoff = ap->a_offhi;
1054 	off_t off;
1055 	int flags = ap->a_flags;
1056 	/* Even for strange MAXPHYS, the shift rounds down to a page */
1057 	const int maxpages = MAXPHYS >> PAGE_SHIFT;
1058 	int i, s, error, npages, nback;
1059 	int freeflag;
1060 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1061 	boolean_t wasclean, by_list, needs_clean, yld;
1062 	boolean_t async = (flags & PGO_SYNCIO) == 0;
1063 	boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1064 	struct lwp *l = curlwp ? curlwp : &lwp0;
1065 	struct genfs_node *gp = VTOG(vp);
1066 	int dirtygen;
1067 	boolean_t modified = FALSE;
1068 	boolean_t cleanall;
1069 
1070 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1071 
1072 	KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1073 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1074 	KASSERT(startoff < endoff || endoff == 0);
1075 
1076 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1077 	    vp, uobj->uo_npages, startoff, endoff - startoff);
1078 
1079 	KASSERT((vp->v_flag & VONWORKLST) != 0 ||
1080 	    (vp->v_flag & VWRITEMAPDIRTY) == 0);
1081 	if (uobj->uo_npages == 0) {
1082 		s = splbio();
1083 		if (vp->v_flag & VONWORKLST) {
1084 			vp->v_flag &= ~VWRITEMAPDIRTY;
1085 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1086 				vp->v_flag &= ~VONWORKLST;
1087 				LIST_REMOVE(vp, v_synclist);
1088 			}
1089 		}
1090 		splx(s);
1091 		simple_unlock(slock);
1092 		return (0);
1093 	}
1094 
1095 	/*
1096 	 * the vnode has pages, set up to process the request.
1097 	 */
1098 
1099 	error = 0;
1100 	s = splbio();
1101 	simple_lock(&global_v_numoutput_slock);
1102 	wasclean = (vp->v_numoutput == 0);
1103 	simple_unlock(&global_v_numoutput_slock);
1104 	splx(s);
1105 	off = startoff;
1106 	if (endoff == 0 || flags & PGO_ALLPAGES) {
1107 		endoff = trunc_page(LLONG_MAX);
1108 	}
1109 	by_list = (uobj->uo_npages <=
1110 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1111 
1112 #if !defined(DEBUG)
1113 	/*
1114 	 * if this vnode is known not to have dirty pages,
1115 	 * don't bother to clean it out.
1116 	 */
1117 
1118 	if ((vp->v_flag & VONWORKLST) == 0) {
1119 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1120 			goto skip_scan;
1121 		}
1122 		flags &= ~PGO_CLEANIT;
1123 	}
1124 #endif /* !defined(DEBUG) */
1125 
1126 	/*
1127 	 * start the loop.  when scanning by list, hold the last page
1128 	 * in the list before we start.  pages allocated after we start
1129 	 * will be added to the end of the list, so we can stop at the
1130 	 * current last page.
1131 	 */
1132 
1133 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1134 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1135 	    (vp->v_flag & VONWORKLST) != 0;
1136 	dirtygen = gp->g_dirtygen;
1137 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1138 	if (by_list) {
1139 		curmp.uobject = uobj;
1140 		curmp.offset = (voff_t)-1;
1141 		curmp.flags = PG_BUSY;
1142 		endmp.uobject = uobj;
1143 		endmp.offset = (voff_t)-1;
1144 		endmp.flags = PG_BUSY;
1145 		pg = TAILQ_FIRST(&uobj->memq);
1146 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1147 		PHOLD(l);
1148 	} else {
1149 		pg = uvm_pagelookup(uobj, off);
1150 	}
1151 	nextpg = NULL;
1152 	while (by_list || off < endoff) {
1153 
1154 		/*
1155 		 * if the current page is not interesting, move on to the next.
1156 		 */
1157 
1158 		KASSERT(pg == NULL || pg->uobject == uobj);
1159 		KASSERT(pg == NULL ||
1160 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1161 		    (pg->flags & PG_BUSY) != 0);
1162 		if (by_list) {
1163 			if (pg == &endmp) {
1164 				break;
1165 			}
1166 			if (pg->offset < startoff || pg->offset >= endoff ||
1167 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1168 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1169 					wasclean = FALSE;
1170 				}
1171 				pg = TAILQ_NEXT(pg, listq);
1172 				continue;
1173 			}
1174 			off = pg->offset;
1175 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1176 			if (pg != NULL) {
1177 				wasclean = FALSE;
1178 			}
1179 			off += PAGE_SIZE;
1180 			if (off < endoff) {
1181 				pg = uvm_pagelookup(uobj, off);
1182 			}
1183 			continue;
1184 		}
1185 
1186 		/*
1187 		 * if the current page needs to be cleaned and it's busy,
1188 		 * wait for it to become unbusy.
1189 		 */
1190 
1191 		yld = (l->l_cpu->ci_schedstate.spc_flags &
1192 		    SPCF_SHOULDYIELD) && !pagedaemon;
1193 		if (pg->flags & PG_BUSY || yld) {
1194 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1195 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1196 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1197 				error = EDEADLK;
1198 				break;
1199 			}
1200 			KASSERT(!pagedaemon);
1201 			if (by_list) {
1202 				TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1203 				UVMHIST_LOG(ubchist, "curmp next %p",
1204 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
1205 			}
1206 			if (yld) {
1207 				simple_unlock(slock);
1208 				preempt(1);
1209 				simple_lock(slock);
1210 			} else {
1211 				pg->flags |= PG_WANTED;
1212 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1213 				simple_lock(slock);
1214 			}
1215 			if (by_list) {
1216 				UVMHIST_LOG(ubchist, "after next %p",
1217 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
1218 				pg = TAILQ_NEXT(&curmp, listq);
1219 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1220 			} else {
1221 				pg = uvm_pagelookup(uobj, off);
1222 			}
1223 			continue;
1224 		}
1225 
1226 		/*
1227 		 * if we're freeing, remove all mappings of the page now.
1228 		 * if we're cleaning, check if the page is needs to be cleaned.
1229 		 */
1230 
1231 		if (flags & PGO_FREE) {
1232 			pmap_page_protect(pg, VM_PROT_NONE);
1233 		} else if (flags & PGO_CLEANIT) {
1234 
1235 			/*
1236 			 * if we still have some hope to pull this vnode off
1237 			 * from the syncer queue, write-protect the page.
1238 			 */
1239 
1240 			if (cleanall && wasclean &&
1241 			    gp->g_dirtygen == dirtygen) {
1242 
1243 				/*
1244 				 * uobj pages get wired only by uvm_fault
1245 				 * where uobj is locked.
1246 				 */
1247 
1248 				if (pg->wire_count == 0) {
1249 					pmap_page_protect(pg,
1250 					    VM_PROT_READ|VM_PROT_EXECUTE);
1251 				} else {
1252 					cleanall = FALSE;
1253 				}
1254 			}
1255 		}
1256 
1257 		if (flags & PGO_CLEANIT) {
1258 			needs_clean = pmap_clear_modify(pg) ||
1259 			    (pg->flags & PG_CLEAN) == 0;
1260 			pg->flags |= PG_CLEAN;
1261 		} else {
1262 			needs_clean = FALSE;
1263 		}
1264 
1265 		/*
1266 		 * if we're cleaning, build a cluster.
1267 		 * the cluster will consist of pages which are currently dirty,
1268 		 * but they will be returned to us marked clean.
1269 		 * if not cleaning, just operate on the one page.
1270 		 */
1271 
1272 		if (needs_clean) {
1273 			KDASSERT((vp->v_flag & VONWORKLST));
1274 			wasclean = FALSE;
1275 			memset(pgs, 0, sizeof(pgs));
1276 			pg->flags |= PG_BUSY;
1277 			UVM_PAGE_OWN(pg, "genfs_putpages");
1278 
1279 			/*
1280 			 * first look backward.
1281 			 */
1282 
1283 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1284 			nback = npages;
1285 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1286 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1287 			if (nback) {
1288 				memmove(&pgs[0], &pgs[npages - nback],
1289 				    nback * sizeof(pgs[0]));
1290 				if (npages - nback < nback)
1291 					memset(&pgs[nback], 0,
1292 					    (npages - nback) * sizeof(pgs[0]));
1293 				else
1294 					memset(&pgs[npages - nback], 0,
1295 					    nback * sizeof(pgs[0]));
1296 			}
1297 
1298 			/*
1299 			 * then plug in our page of interest.
1300 			 */
1301 
1302 			pgs[nback] = pg;
1303 
1304 			/*
1305 			 * then look forward to fill in the remaining space in
1306 			 * the array of pages.
1307 			 */
1308 
1309 			npages = maxpages - nback - 1;
1310 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1311 			    &pgs[nback + 1],
1312 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1313 			npages += nback + 1;
1314 		} else {
1315 			pgs[0] = pg;
1316 			npages = 1;
1317 			nback = 0;
1318 		}
1319 
1320 		/*
1321 		 * apply FREE or DEACTIVATE options if requested.
1322 		 */
1323 
1324 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1325 			uvm_lock_pageq();
1326 		}
1327 		for (i = 0; i < npages; i++) {
1328 			tpg = pgs[i];
1329 			KASSERT(tpg->uobject == uobj);
1330 			if (by_list && tpg == TAILQ_NEXT(pg, listq))
1331 				pg = tpg;
1332 			if (tpg->offset < startoff || tpg->offset >= endoff)
1333 				continue;
1334 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1335 				(void) pmap_clear_reference(tpg);
1336 				uvm_pagedeactivate(tpg);
1337 			} else if (flags & PGO_FREE) {
1338 				pmap_page_protect(tpg, VM_PROT_NONE);
1339 				if (tpg->flags & PG_BUSY) {
1340 					tpg->flags |= freeflag;
1341 					if (pagedaemon) {
1342 						uvmexp.paging++;
1343 						uvm_pagedequeue(tpg);
1344 					}
1345 				} else {
1346 
1347 					/*
1348 					 * ``page is not busy''
1349 					 * implies that npages is 1
1350 					 * and needs_clean is false.
1351 					 */
1352 
1353 					nextpg = TAILQ_NEXT(tpg, listq);
1354 					uvm_pagefree(tpg);
1355 					if (pagedaemon)
1356 						uvmexp.pdfreed++;
1357 				}
1358 			}
1359 		}
1360 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1361 			uvm_unlock_pageq();
1362 		}
1363 		if (needs_clean) {
1364 			modified = TRUE;
1365 
1366 			/*
1367 			 * start the i/o.  if we're traversing by list,
1368 			 * keep our place in the list with a marker page.
1369 			 */
1370 
1371 			if (by_list) {
1372 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1373 				    listq);
1374 			}
1375 			simple_unlock(slock);
1376 			error = GOP_WRITE(vp, pgs, npages, flags);
1377 			simple_lock(slock);
1378 			if (by_list) {
1379 				pg = TAILQ_NEXT(&curmp, listq);
1380 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1381 			}
1382 			if (error) {
1383 				break;
1384 			}
1385 			if (by_list) {
1386 				continue;
1387 			}
1388 		}
1389 
1390 		/*
1391 		 * find the next page and continue if there was no error.
1392 		 */
1393 
1394 		if (by_list) {
1395 			if (nextpg) {
1396 				pg = nextpg;
1397 				nextpg = NULL;
1398 			} else {
1399 				pg = TAILQ_NEXT(pg, listq);
1400 			}
1401 		} else {
1402 			off += (npages - nback) << PAGE_SHIFT;
1403 			if (off < endoff) {
1404 				pg = uvm_pagelookup(uobj, off);
1405 			}
1406 		}
1407 	}
1408 	if (by_list) {
1409 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1410 		PRELE(l);
1411 	}
1412 
1413 	if (modified && (vp->v_flag & VWRITEMAPDIRTY) != 0 &&
1414 	    (vp->v_type != VBLK ||
1415 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1416 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1417 	}
1418 
1419 	/*
1420 	 * if we're cleaning and there was nothing to clean,
1421 	 * take us off the syncer list.  if we started any i/o
1422 	 * and we're doing sync i/o, wait for all writes to finish.
1423 	 */
1424 
1425 	s = splbio();
1426 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1427 	    (vp->v_flag & VONWORKLST) != 0) {
1428 		vp->v_flag &= ~VWRITEMAPDIRTY;
1429 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1430 			vp->v_flag &= ~VONWORKLST;
1431 			LIST_REMOVE(vp, v_synclist);
1432 		}
1433 	}
1434 	splx(s);
1435 
1436 #if !defined(DEBUG)
1437 skip_scan:
1438 #endif /* !defined(DEBUG) */
1439 	if (!wasclean && !async) {
1440 		s = splbio();
1441 		/*
1442 		 * XXX - we want simple_unlock(&global_v_numoutput_slock);
1443 		 *	 but the slot in ltsleep() is taken!
1444 		 * XXX - try to recover from missed wakeups with a timeout..
1445 		 *	 must think of something better.
1446 		 */
1447 		while (vp->v_numoutput != 0) {
1448 			vp->v_flag |= VBWAIT;
1449 			UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1450 			    "genput2", hz);
1451 			simple_lock(slock);
1452 		}
1453 		splx(s);
1454 	}
1455 	simple_unlock(&uobj->vmobjlock);
1456 	return (error);
1457 }
1458 
1459 int
1460 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1461 {
1462 	int s, error, run;
1463 	int fs_bshift, dev_bshift;
1464 	vaddr_t kva;
1465 	off_t eof, offset, startoffset;
1466 	size_t bytes, iobytes, skipbytes;
1467 	daddr_t lbn, blkno;
1468 	struct vm_page *pg;
1469 	struct buf *mbp, *bp;
1470 	struct vnode *devvp;
1471 	boolean_t async = (flags & PGO_SYNCIO) == 0;
1472 	UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
1473 
1474 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1475 	    vp, pgs, npages, flags);
1476 
1477 	GOP_SIZE(vp, vp->v_size, &eof, 0);
1478 	if (vp->v_type != VBLK) {
1479 		fs_bshift = vp->v_mount->mnt_fs_bshift;
1480 		dev_bshift = vp->v_mount->mnt_dev_bshift;
1481 	} else {
1482 		fs_bshift = DEV_BSHIFT;
1483 		dev_bshift = DEV_BSHIFT;
1484 	}
1485 	error = 0;
1486 	pg = pgs[0];
1487 	startoffset = pg->offset;
1488 	bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1489 	skipbytes = 0;
1490 	KASSERT(bytes != 0);
1491 
1492 	kva = uvm_pagermapin(pgs, npages,
1493 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1494 
1495 	s = splbio();
1496 	simple_lock(&global_v_numoutput_slock);
1497 	vp->v_numoutput += 2;
1498 	simple_unlock(&global_v_numoutput_slock);
1499 	splx(s);
1500 	mbp = getiobuf();
1501 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1502 	    vp, mbp, vp->v_numoutput, bytes);
1503 	mbp->b_bufsize = npages << PAGE_SHIFT;
1504 	mbp->b_data = (void *)kva;
1505 	mbp->b_resid = mbp->b_bcount = bytes;
1506 	mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
1507 	mbp->b_iodone = uvm_aio_biodone;
1508 	mbp->b_vp = vp;
1509 	if (curproc == uvm.pagedaemon_proc)
1510 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1511 	else if (async)
1512 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1513 	else
1514 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1515 
1516 	bp = NULL;
1517 	for (offset = startoffset;
1518 	    bytes > 0;
1519 	    offset += iobytes, bytes -= iobytes) {
1520 		lbn = offset >> fs_bshift;
1521 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1522 		if (error) {
1523 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1524 			skipbytes += bytes;
1525 			bytes = 0;
1526 			break;
1527 		}
1528 
1529 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1530 		    bytes);
1531 		if (blkno == (daddr_t)-1) {
1532 			skipbytes += iobytes;
1533 			continue;
1534 		}
1535 
1536 		/* if it's really one i/o, don't make a second buf */
1537 		if (offset == startoffset && iobytes == bytes) {
1538 			bp = mbp;
1539 		} else {
1540 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1541 			    vp, bp, vp->v_numoutput, 0);
1542 			bp = getiobuf();
1543 			nestiobuf_setup(mbp, bp, offset - pg->offset, iobytes);
1544 		}
1545 		bp->b_lblkno = 0;
1546 
1547 		/* adjust physical blkno for partial blocks */
1548 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1549 		    dev_bshift);
1550 		UVMHIST_LOG(ubchist,
1551 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1552 		    vp, offset, bp->b_bcount, bp->b_blkno);
1553 
1554 		VOP_STRATEGY(devvp, bp);
1555 	}
1556 	if (skipbytes) {
1557 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1558 	}
1559 	nestiobuf_done(mbp, skipbytes, error);
1560 	if (async) {
1561 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1562 		return (0);
1563 	}
1564 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1565 	error = biowait(mbp);
1566 	uvm_aio_aiodone(mbp);
1567 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1568 	return (error);
1569 }
1570 
1571 /*
1572  * VOP_PUTPAGES() for vnodes which never have pages.
1573  */
1574 
1575 int
1576 genfs_null_putpages(void *v)
1577 {
1578 	struct vop_putpages_args /* {
1579 		struct vnode *a_vp;
1580 		voff_t a_offlo;
1581 		voff_t a_offhi;
1582 		int a_flags;
1583 	} */ *ap = v;
1584 	struct vnode *vp = ap->a_vp;
1585 
1586 	KASSERT(vp->v_uobj.uo_npages == 0);
1587 	simple_unlock(&vp->v_interlock);
1588 	return (0);
1589 }
1590 
1591 void
1592 genfs_node_init(struct vnode *vp, const struct genfs_ops *ops)
1593 {
1594 	struct genfs_node *gp = VTOG(vp);
1595 
1596 	lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1597 	gp->g_op = ops;
1598 }
1599 
1600 void
1601 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1602 {
1603 	int bsize;
1604 
1605 	bsize = 1 << vp->v_mount->mnt_fs_bshift;
1606 	*eobp = (size + bsize - 1) & ~(bsize - 1);
1607 }
1608 
1609 int
1610 genfs_compat_getpages(void *v)
1611 {
1612 	struct vop_getpages_args /* {
1613 		struct vnode *a_vp;
1614 		voff_t a_offset;
1615 		struct vm_page **a_m;
1616 		int *a_count;
1617 		int a_centeridx;
1618 		vm_prot_t a_access_type;
1619 		int a_advice;
1620 		int a_flags;
1621 	} */ *ap = v;
1622 
1623 	off_t origoffset;
1624 	struct vnode *vp = ap->a_vp;
1625 	struct uvm_object *uobj = &vp->v_uobj;
1626 	struct vm_page *pg, **pgs;
1627 	vaddr_t kva;
1628 	int i, error, orignpages, npages;
1629 	struct iovec iov;
1630 	struct uio uio;
1631 	kauth_cred_t cred = curlwp->l_cred;
1632 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1633 
1634 	error = 0;
1635 	origoffset = ap->a_offset;
1636 	orignpages = *ap->a_count;
1637 	pgs = ap->a_m;
1638 
1639 	if (write && (vp->v_flag & VONWORKLST) == 0) {
1640 		vn_syncer_add_to_worklist(vp, filedelay);
1641 	}
1642 	if (ap->a_flags & PGO_LOCKED) {
1643 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1644 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1645 
1646 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1647 	}
1648 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1649 		simple_unlock(&uobj->vmobjlock);
1650 		return (EINVAL);
1651 	}
1652 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
1653 		simple_unlock(&uobj->vmobjlock);
1654 		return 0;
1655 	}
1656 	npages = orignpages;
1657 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1658 	simple_unlock(&uobj->vmobjlock);
1659 	kva = uvm_pagermapin(pgs, npages,
1660 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1661 	for (i = 0; i < npages; i++) {
1662 		pg = pgs[i];
1663 		if ((pg->flags & PG_FAKE) == 0) {
1664 			continue;
1665 		}
1666 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1667 		iov.iov_len = PAGE_SIZE;
1668 		uio.uio_iov = &iov;
1669 		uio.uio_iovcnt = 1;
1670 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1671 		uio.uio_rw = UIO_READ;
1672 		uio.uio_resid = PAGE_SIZE;
1673 		UIO_SETUP_SYSSPACE(&uio);
1674 		/* XXX vn_lock */
1675 		error = VOP_READ(vp, &uio, 0, cred);
1676 		if (error) {
1677 			break;
1678 		}
1679 		if (uio.uio_resid) {
1680 			memset(iov.iov_base, 0, uio.uio_resid);
1681 		}
1682 	}
1683 	uvm_pagermapout(kva, npages);
1684 	simple_lock(&uobj->vmobjlock);
1685 	uvm_lock_pageq();
1686 	for (i = 0; i < npages; i++) {
1687 		pg = pgs[i];
1688 		if (error && (pg->flags & PG_FAKE) != 0) {
1689 			pg->flags |= PG_RELEASED;
1690 		} else {
1691 			pmap_clear_modify(pg);
1692 			uvm_pageactivate(pg);
1693 		}
1694 	}
1695 	if (error) {
1696 		uvm_page_unbusy(pgs, npages);
1697 	}
1698 	uvm_unlock_pageq();
1699 	simple_unlock(&uobj->vmobjlock);
1700 	return (error);
1701 }
1702 
1703 int
1704 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1705     int flags)
1706 {
1707 	off_t offset;
1708 	struct iovec iov;
1709 	struct uio uio;
1710 	kauth_cred_t cred = curlwp->l_cred;
1711 	struct buf *bp;
1712 	vaddr_t kva;
1713 	int s, error;
1714 
1715 	offset = pgs[0]->offset;
1716 	kva = uvm_pagermapin(pgs, npages,
1717 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1718 
1719 	iov.iov_base = (void *)kva;
1720 	iov.iov_len = npages << PAGE_SHIFT;
1721 	uio.uio_iov = &iov;
1722 	uio.uio_iovcnt = 1;
1723 	uio.uio_offset = offset;
1724 	uio.uio_rw = UIO_WRITE;
1725 	uio.uio_resid = npages << PAGE_SHIFT;
1726 	UIO_SETUP_SYSSPACE(&uio);
1727 	/* XXX vn_lock */
1728 	error = VOP_WRITE(vp, &uio, 0, cred);
1729 
1730 	s = splbio();
1731 	V_INCR_NUMOUTPUT(vp);
1732 	splx(s);
1733 
1734 	bp = getiobuf();
1735 	bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1736 	bp->b_vp = vp;
1737 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1738 	bp->b_data = (char *)kva;
1739 	bp->b_bcount = npages << PAGE_SHIFT;
1740 	bp->b_bufsize = npages << PAGE_SHIFT;
1741 	bp->b_resid = 0;
1742 	if (error) {
1743 		bp->b_flags |= B_ERROR;
1744 		bp->b_error = error;
1745 	}
1746 	uvm_aio_aiodone(bp);
1747 	return (error);
1748 }
1749 
1750 static void
1751 filt_genfsdetach(struct knote *kn)
1752 {
1753 	struct vnode *vp = (struct vnode *)kn->kn_hook;
1754 
1755 	/* XXXLUKEM lock the struct? */
1756 	SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
1757 }
1758 
1759 static int
1760 filt_genfsread(struct knote *kn, long hint)
1761 {
1762 	struct vnode *vp = (struct vnode *)kn->kn_hook;
1763 
1764 	/*
1765 	 * filesystem is gone, so set the EOF flag and schedule
1766 	 * the knote for deletion.
1767 	 */
1768 	if (hint == NOTE_REVOKE) {
1769 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1770 		return (1);
1771 	}
1772 
1773 	/* XXXLUKEM lock the struct? */
1774 	kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
1775         return (kn->kn_data != 0);
1776 }
1777 
1778 static int
1779 filt_genfsvnode(struct knote *kn, long hint)
1780 {
1781 
1782 	if (kn->kn_sfflags & hint)
1783 		kn->kn_fflags |= hint;
1784 	if (hint == NOTE_REVOKE) {
1785 		kn->kn_flags |= EV_EOF;
1786 		return (1);
1787 	}
1788 	return (kn->kn_fflags != 0);
1789 }
1790 
1791 static const struct filterops genfsread_filtops =
1792 	{ 1, NULL, filt_genfsdetach, filt_genfsread };
1793 static const struct filterops genfsvnode_filtops =
1794 	{ 1, NULL, filt_genfsdetach, filt_genfsvnode };
1795 
1796 int
1797 genfs_kqfilter(void *v)
1798 {
1799 	struct vop_kqfilter_args /* {
1800 		struct vnode	*a_vp;
1801 		struct knote	*a_kn;
1802 	} */ *ap = v;
1803 	struct vnode *vp;
1804 	struct knote *kn;
1805 
1806 	vp = ap->a_vp;
1807 	kn = ap->a_kn;
1808 	switch (kn->kn_filter) {
1809 	case EVFILT_READ:
1810 		kn->kn_fop = &genfsread_filtops;
1811 		break;
1812 	case EVFILT_VNODE:
1813 		kn->kn_fop = &genfsvnode_filtops;
1814 		break;
1815 	default:
1816 		return (1);
1817 	}
1818 
1819 	kn->kn_hook = vp;
1820 
1821 	/* XXXLUKEM lock the struct? */
1822 	SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
1823 
1824 	return (0);
1825 }
1826