xref: /netbsd-src/sys/miscfs/genfs/genfs_io.c (revision fff57c5525bbe431aee7bdb3983954f0627a42cb)
1 /*	$NetBSD: genfs_io.c,v 1.8 2008/06/04 12:41:40 ad Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.8 2008/06/04 12:41:40 ad Exp $");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/namei.h>
42 #include <sys/vnode.h>
43 #include <sys/fcntl.h>
44 #include <sys/kmem.h>
45 #include <sys/poll.h>
46 #include <sys/mman.h>
47 #include <sys/file.h>
48 #include <sys/kauth.h>
49 #include <sys/fstrans.h>
50 
51 #include <miscfs/genfs/genfs.h>
52 #include <miscfs/genfs/genfs_node.h>
53 #include <miscfs/specfs/specdev.h>
54 
55 #include <uvm/uvm.h>
56 #include <uvm/uvm_pager.h>
57 
58 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
59     off_t, enum uio_rw);
60 static void genfs_dio_iodone(struct buf *);
61 
62 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
63     void (*)(struct buf *));
64 static inline void genfs_rel_pages(struct vm_page **, int);
65 
66 #define MAX_READ_PAGES	16 	/* XXXUBC 16 */
67 
68 int genfs_maxdio = MAXPHYS;
69 
70 static inline void
71 genfs_rel_pages(struct vm_page **pgs, int npages)
72 {
73 	int i;
74 
75 	for (i = 0; i < npages; i++) {
76 		struct vm_page *pg = pgs[i];
77 
78 		if (pg == NULL || pg == PGO_DONTCARE)
79 			continue;
80 		if (pg->flags & PG_FAKE) {
81 			pg->flags |= PG_RELEASED;
82 		}
83 	}
84 	mutex_enter(&uvm_pageqlock);
85 	uvm_page_unbusy(pgs, npages);
86 	mutex_exit(&uvm_pageqlock);
87 }
88 
89 /*
90  * generic VM getpages routine.
91  * Return PG_BUSY pages for the given range,
92  * reading from backing store if necessary.
93  */
94 
95 int
96 genfs_getpages(void *v)
97 {
98 	struct vop_getpages_args /* {
99 		struct vnode *a_vp;
100 		voff_t a_offset;
101 		struct vm_page **a_m;
102 		int *a_count;
103 		int a_centeridx;
104 		vm_prot_t a_access_type;
105 		int a_advice;
106 		int a_flags;
107 	} */ *ap = v;
108 
109 	off_t newsize, diskeof, memeof;
110 	off_t offset, origoffset, startoffset, endoffset;
111 	daddr_t lbn, blkno;
112 	int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
113 	int fs_bshift, fs_bsize, dev_bshift;
114 	int flags = ap->a_flags;
115 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
116 	vaddr_t kva;
117 	struct buf *bp, *mbp;
118 	struct vnode *vp = ap->a_vp;
119 	struct vnode *devvp;
120 	struct genfs_node *gp = VTOG(vp);
121 	struct uvm_object *uobj = &vp->v_uobj;
122 	struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES];
123 	int pgs_size;
124 	kauth_cred_t cred = curlwp->l_cred;		/* XXXUBC curlwp */
125 	bool async = (flags & PGO_SYNCIO) == 0;
126 	bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
127 	bool sawhole = false;
128 	bool has_trans = false;
129 	bool overwrite = (flags & PGO_OVERWRITE) != 0;
130 	bool blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
131 	voff_t origvsize;
132 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
133 
134 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
135 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
136 
137 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
138 	    vp->v_type == VLNK || vp->v_type == VBLK);
139 
140 	/* XXXUBC temp limit */
141 	if (*ap->a_count > MAX_READ_PAGES) {
142 		panic("genfs_getpages: too many pages");
143 	}
144 
145 	pgs = pgs_onstack;
146 	pgs_size = sizeof(pgs_onstack);
147 
148 startover:
149 	error = 0;
150 	origvsize = vp->v_size;
151 	origoffset = ap->a_offset;
152 	orignpages = *ap->a_count;
153 	GOP_SIZE(vp, origvsize, &diskeof, 0);
154 	if (flags & PGO_PASTEOF) {
155 #if defined(DIAGNOSTIC)
156 		off_t writeeof;
157 #endif /* defined(DIAGNOSTIC) */
158 
159 		newsize = MAX(origvsize,
160 		    origoffset + (orignpages << PAGE_SHIFT));
161 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
162 #if defined(DIAGNOSTIC)
163 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
164 		if (newsize > round_page(writeeof)) {
165 			panic("%s: past eof", __func__);
166 		}
167 #endif /* defined(DIAGNOSTIC) */
168 	} else {
169 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
170 	}
171 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
172 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
173 	KASSERT(orignpages > 0);
174 
175 	/*
176 	 * Bounds-check the request.
177 	 */
178 
179 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
180 		if ((flags & PGO_LOCKED) == 0) {
181 			mutex_exit(&uobj->vmobjlock);
182 		}
183 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
184 		    origoffset, *ap->a_count, memeof,0);
185 		error = EINVAL;
186 		goto out_err;
187 	}
188 
189 	/* uobj is locked */
190 
191 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
192 	    (vp->v_type != VBLK ||
193 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
194 		int updflags = 0;
195 
196 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
197 			updflags = GOP_UPDATE_ACCESSED;
198 		}
199 		if (write) {
200 			updflags |= GOP_UPDATE_MODIFIED;
201 		}
202 		if (updflags != 0) {
203 			GOP_MARKUPDATE(vp, updflags);
204 		}
205 	}
206 
207 	if (write) {
208 		gp->g_dirtygen++;
209 		if ((vp->v_iflag & VI_ONWORKLST) == 0) {
210 			vn_syncer_add_to_worklist(vp, filedelay);
211 		}
212 		if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
213 			vp->v_iflag |= VI_WRMAPDIRTY;
214 		}
215 	}
216 
217 	/*
218 	 * For PGO_LOCKED requests, just return whatever's in memory.
219 	 */
220 
221 	if (flags & PGO_LOCKED) {
222 		int nfound;
223 
224 		npages = *ap->a_count;
225 #if defined(DEBUG)
226 		for (i = 0; i < npages; i++) {
227 			pg = ap->a_m[i];
228 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
229 		}
230 #endif /* defined(DEBUG) */
231 		nfound = uvn_findpages(uobj, origoffset, &npages,
232 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
233 		KASSERT(npages == *ap->a_count);
234 		if (nfound == 0) {
235 			error = EBUSY;
236 			goto out_err;
237 		}
238 		if (!rw_tryenter(&gp->g_glock, RW_READER)) {
239 			genfs_rel_pages(ap->a_m, npages);
240 
241 			/*
242 			 * restore the array.
243 			 */
244 
245 			for (i = 0; i < npages; i++) {
246 				pg = ap->a_m[i];
247 
248 				if (pg != NULL || pg != PGO_DONTCARE) {
249 					ap->a_m[i] = NULL;
250 				}
251 			}
252 		} else {
253 			rw_exit(&gp->g_glock);
254 		}
255 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
256 		goto out_err;
257 	}
258 	mutex_exit(&uobj->vmobjlock);
259 
260 	/*
261 	 * find the requested pages and make some simple checks.
262 	 * leave space in the page array for a whole block.
263 	 */
264 
265 	if (vp->v_type != VBLK) {
266 		fs_bshift = vp->v_mount->mnt_fs_bshift;
267 		dev_bshift = vp->v_mount->mnt_dev_bshift;
268 	} else {
269 		fs_bshift = DEV_BSHIFT;
270 		dev_bshift = DEV_BSHIFT;
271 	}
272 	fs_bsize = 1 << fs_bshift;
273 
274 	orignpages = MIN(orignpages,
275 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
276 	npages = orignpages;
277 	startoffset = origoffset & ~(fs_bsize - 1);
278 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
279 	    fs_bsize - 1) & ~(fs_bsize - 1));
280 	endoffset = MIN(endoffset, round_page(memeof));
281 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
282 
283 	pgs_size = sizeof(struct vm_page *) *
284 	    ((endoffset - startoffset) >> PAGE_SHIFT);
285 	if (pgs_size > sizeof(pgs_onstack)) {
286 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
287 		if (pgs == NULL) {
288 			pgs = pgs_onstack;
289 			error = ENOMEM;
290 			goto out_err;
291 		}
292 	} else {
293 		/* pgs == pgs_onstack */
294 		memset(pgs, 0, pgs_size);
295 	}
296 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
297 	    ridx, npages, startoffset, endoffset);
298 
299 	if (!has_trans) {
300 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
301 		has_trans = true;
302 	}
303 
304 	/*
305 	 * hold g_glock to prevent a race with truncate.
306 	 *
307 	 * check if our idea of v_size is still valid.
308 	 */
309 
310 	if (blockalloc) {
311 		rw_enter(&gp->g_glock, RW_WRITER);
312 	} else {
313 		rw_enter(&gp->g_glock, RW_READER);
314 	}
315 	mutex_enter(&uobj->vmobjlock);
316 	if (vp->v_size < origvsize) {
317 		rw_exit(&gp->g_glock);
318 		if (pgs != pgs_onstack)
319 			kmem_free(pgs, pgs_size);
320 		goto startover;
321 	}
322 
323 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
324 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
325 		rw_exit(&gp->g_glock);
326 		KASSERT(async != 0);
327 		genfs_rel_pages(&pgs[ridx], orignpages);
328 		mutex_exit(&uobj->vmobjlock);
329 		error = EBUSY;
330 		goto out_err;
331 	}
332 
333 	/*
334 	 * if the pages are already resident, just return them.
335 	 */
336 
337 	for (i = 0; i < npages; i++) {
338 		struct vm_page *pg1 = pgs[ridx + i];
339 
340 		if ((pg1->flags & PG_FAKE) ||
341 		    (blockalloc && (pg1->flags & PG_RDONLY))) {
342 			break;
343 		}
344 	}
345 	if (i == npages) {
346 		rw_exit(&gp->g_glock);
347 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
348 		npages += ridx;
349 		goto out;
350 	}
351 
352 	/*
353 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
354 	 */
355 
356 	if (overwrite) {
357 		rw_exit(&gp->g_glock);
358 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
359 
360 		for (i = 0; i < npages; i++) {
361 			struct vm_page *pg1 = pgs[ridx + i];
362 
363 			pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
364 		}
365 		npages += ridx;
366 		goto out;
367 	}
368 
369 	/*
370 	 * the page wasn't resident and we're not overwriting,
371 	 * so we're going to have to do some i/o.
372 	 * find any additional pages needed to cover the expanded range.
373 	 */
374 
375 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
376 	if (startoffset != origoffset || npages != orignpages) {
377 
378 		/*
379 		 * we need to avoid deadlocks caused by locking
380 		 * additional pages at lower offsets than pages we
381 		 * already have locked.  unlock them all and start over.
382 		 */
383 
384 		genfs_rel_pages(&pgs[ridx], orignpages);
385 		memset(pgs, 0, pgs_size);
386 
387 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
388 		    startoffset, endoffset, 0,0);
389 		npgs = npages;
390 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
391 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
392 			rw_exit(&gp->g_glock);
393 			KASSERT(async != 0);
394 			genfs_rel_pages(pgs, npages);
395 			mutex_exit(&uobj->vmobjlock);
396 			error = EBUSY;
397 			goto out_err;
398 		}
399 	}
400 	mutex_exit(&uobj->vmobjlock);
401 
402 	/*
403 	 * read the desired page(s).
404 	 */
405 
406 	totalbytes = npages << PAGE_SHIFT;
407 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
408 	tailbytes = totalbytes - bytes;
409 	skipbytes = 0;
410 
411 	kva = uvm_pagermapin(pgs, npages,
412 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
413 
414 	mbp = getiobuf(vp, true);
415 	mbp->b_bufsize = totalbytes;
416 	mbp->b_data = (void *)kva;
417 	mbp->b_resid = mbp->b_bcount = bytes;
418 	mbp->b_cflags = BC_BUSY;
419 	if (async) {
420 		mbp->b_flags = B_READ | B_ASYNC;
421 		mbp->b_iodone = uvm_aio_biodone;
422 	} else {
423 		mbp->b_flags = B_READ;
424 		mbp->b_iodone = NULL;
425 	}
426 	if (async)
427 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
428 	else
429 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
430 
431 	/*
432 	 * if EOF is in the middle of the range, zero the part past EOF.
433 	 * skip over pages which are not PG_FAKE since in that case they have
434 	 * valid data that we need to preserve.
435 	 */
436 
437 	tailstart = bytes;
438 	while (tailbytes > 0) {
439 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
440 
441 		KASSERT(len <= tailbytes);
442 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
443 			memset((void *)(kva + tailstart), 0, len);
444 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
445 			    kva, tailstart, len, 0);
446 		}
447 		tailstart += len;
448 		tailbytes -= len;
449 	}
450 
451 	/*
452 	 * now loop over the pages, reading as needed.
453 	 */
454 
455 	bp = NULL;
456 	for (offset = startoffset;
457 	    bytes > 0;
458 	    offset += iobytes, bytes -= iobytes) {
459 
460 		/*
461 		 * skip pages which don't need to be read.
462 		 */
463 
464 		pidx = (offset - startoffset) >> PAGE_SHIFT;
465 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
466 			size_t b;
467 
468 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
469 			if ((pgs[pidx]->flags & PG_RDONLY)) {
470 				sawhole = true;
471 			}
472 			b = MIN(PAGE_SIZE, bytes);
473 			offset += b;
474 			bytes -= b;
475 			skipbytes += b;
476 			pidx++;
477 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
478 			    offset, 0,0,0);
479 			if (bytes == 0) {
480 				goto loopdone;
481 			}
482 		}
483 
484 		/*
485 		 * bmap the file to find out the blkno to read from and
486 		 * how much we can read in one i/o.  if bmap returns an error,
487 		 * skip the rest of the top-level i/o.
488 		 */
489 
490 		lbn = offset >> fs_bshift;
491 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
492 		if (error) {
493 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
494 			    lbn, error,0,0);
495 			skipbytes += bytes;
496 			goto loopdone;
497 		}
498 
499 		/*
500 		 * see how many pages can be read with this i/o.
501 		 * reduce the i/o size if necessary to avoid
502 		 * overwriting pages with valid data.
503 		 */
504 
505 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
506 		    bytes);
507 		if (offset + iobytes > round_page(offset)) {
508 			pcount = 1;
509 			while (pidx + pcount < npages &&
510 			    pgs[pidx + pcount]->flags & PG_FAKE) {
511 				pcount++;
512 			}
513 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
514 			    (offset - trunc_page(offset)));
515 		}
516 
517 		/*
518 		 * if this block isn't allocated, zero it instead of
519 		 * reading it.  unless we are going to allocate blocks,
520 		 * mark the pages we zeroed PG_RDONLY.
521 		 */
522 
523 		if (blkno < 0) {
524 			int holepages = (round_page(offset + iobytes) -
525 			    trunc_page(offset)) >> PAGE_SHIFT;
526 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
527 
528 			sawhole = true;
529 			memset((char *)kva + (offset - startoffset), 0,
530 			    iobytes);
531 			skipbytes += iobytes;
532 
533 			for (i = 0; i < holepages; i++) {
534 				if (write) {
535 					pgs[pidx + i]->flags &= ~PG_CLEAN;
536 				}
537 				if (!blockalloc) {
538 					pgs[pidx + i]->flags |= PG_RDONLY;
539 				}
540 			}
541 			continue;
542 		}
543 
544 		/*
545 		 * allocate a sub-buf for this piece of the i/o
546 		 * (or just use mbp if there's only 1 piece),
547 		 * and start it going.
548 		 */
549 
550 		if (offset == startoffset && iobytes == bytes) {
551 			bp = mbp;
552 		} else {
553 			bp = getiobuf(vp, true);
554 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
555 		}
556 		bp->b_lblkno = 0;
557 
558 		/* adjust physical blkno for partial blocks */
559 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
560 		    dev_bshift);
561 
562 		UVMHIST_LOG(ubchist,
563 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
564 		    bp, offset, iobytes, bp->b_blkno);
565 
566 		VOP_STRATEGY(devvp, bp);
567 	}
568 
569 loopdone:
570 	nestiobuf_done(mbp, skipbytes, error);
571 	if (async) {
572 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
573 		rw_exit(&gp->g_glock);
574 		error = 0;
575 		goto out_err;
576 	}
577 	if (bp != NULL) {
578 		error = biowait(mbp);
579 	}
580 	putiobuf(mbp);
581 	uvm_pagermapout(kva, npages);
582 
583 	/*
584 	 * if this we encountered a hole then we have to do a little more work.
585 	 * for read faults, we marked the page PG_RDONLY so that future
586 	 * write accesses to the page will fault again.
587 	 * for write faults, we must make sure that the backing store for
588 	 * the page is completely allocated while the pages are locked.
589 	 */
590 
591 	if (!error && sawhole && blockalloc) {
592 		error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
593 		    cred);
594 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
595 		    startoffset, npages << PAGE_SHIFT, error,0);
596 		if (!error) {
597 			for (i = 0; i < npages; i++) {
598 				if (pgs[i] == NULL) {
599 					continue;
600 				}
601 				pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
602 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
603 				    pgs[i],0,0,0);
604 			}
605 		}
606 	}
607 	rw_exit(&gp->g_glock);
608 	mutex_enter(&uobj->vmobjlock);
609 
610 	/*
611 	 * we're almost done!  release the pages...
612 	 * for errors, we free the pages.
613 	 * otherwise we activate them and mark them as valid and clean.
614 	 * also, unbusy pages that were not actually requested.
615 	 */
616 
617 	if (error) {
618 		for (i = 0; i < npages; i++) {
619 			if (pgs[i] == NULL) {
620 				continue;
621 			}
622 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
623 			    pgs[i], pgs[i]->flags, 0,0);
624 			if (pgs[i]->flags & PG_FAKE) {
625 				pgs[i]->flags |= PG_RELEASED;
626 			}
627 		}
628 		mutex_enter(&uvm_pageqlock);
629 		uvm_page_unbusy(pgs, npages);
630 		mutex_exit(&uvm_pageqlock);
631 		mutex_exit(&uobj->vmobjlock);
632 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
633 		goto out_err;
634 	}
635 
636 out:
637 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
638 	error = 0;
639 	mutex_enter(&uvm_pageqlock);
640 	for (i = 0; i < npages; i++) {
641 		pg = pgs[i];
642 		if (pg == NULL) {
643 			continue;
644 		}
645 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
646 		    pg, pg->flags, 0,0);
647 		if (pg->flags & PG_FAKE && !overwrite) {
648 			pg->flags &= ~(PG_FAKE);
649 			pmap_clear_modify(pgs[i]);
650 		}
651 		KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
652 		if (i < ridx || i >= ridx + orignpages || async) {
653 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
654 			    pg, pg->offset,0,0);
655 			if (pg->flags & PG_WANTED) {
656 				wakeup(pg);
657 			}
658 			if (pg->flags & PG_FAKE) {
659 				KASSERT(overwrite);
660 				uvm_pagezero(pg);
661 			}
662 			if (pg->flags & PG_RELEASED) {
663 				uvm_pagefree(pg);
664 				continue;
665 			}
666 			uvm_pageenqueue(pg);
667 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
668 			UVM_PAGE_OWN(pg, NULL);
669 		}
670 	}
671 	mutex_exit(&uvm_pageqlock);
672 	mutex_exit(&uobj->vmobjlock);
673 	if (ap->a_m != NULL) {
674 		memcpy(ap->a_m, &pgs[ridx],
675 		    orignpages * sizeof(struct vm_page *));
676 	}
677 
678 out_err:
679 	if (pgs != pgs_onstack)
680 		kmem_free(pgs, pgs_size);
681 	if (has_trans)
682 		fstrans_done(vp->v_mount);
683 	return (error);
684 }
685 
686 /*
687  * generic VM putpages routine.
688  * Write the given range of pages to backing store.
689  *
690  * => "offhi == 0" means flush all pages at or after "offlo".
691  * => object should be locked by caller.  we return with the
692  *      object unlocked.
693  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
694  *	thus, a caller might want to unlock higher level resources
695  *	(e.g. vm_map) before calling flush.
696  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
697  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
698  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
699  *	that new pages are inserted on the tail end of the list.   thus,
700  *	we can make a complete pass through the object in one go by starting
701  *	at the head and working towards the tail (new pages are put in
702  *	front of us).
703  * => NOTE: we are allowed to lock the page queues, so the caller
704  *	must not be holding the page queue lock.
705  *
706  * note on "cleaning" object and PG_BUSY pages:
707  *	this routine is holding the lock on the object.   the only time
708  *	that it can run into a PG_BUSY page that it does not own is if
709  *	some other process has started I/O on the page (e.g. either
710  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
711  *	in, then it can not be dirty (!PG_CLEAN) because no one has
712  *	had a chance to modify it yet.    if the PG_BUSY page is being
713  *	paged out then it means that someone else has already started
714  *	cleaning the page for us (how nice!).    in this case, if we
715  *	have syncio specified, then after we make our pass through the
716  *	object we need to wait for the other PG_BUSY pages to clear
717  *	off (i.e. we need to do an iosync).   also note that once a
718  *	page is PG_BUSY it must stay in its object until it is un-busyed.
719  *
720  * note on page traversal:
721  *	we can traverse the pages in an object either by going down the
722  *	linked list in "uobj->memq", or we can go over the address range
723  *	by page doing hash table lookups for each address.    depending
724  *	on how many pages are in the object it may be cheaper to do one
725  *	or the other.   we set "by_list" to true if we are using memq.
726  *	if the cost of a hash lookup was equal to the cost of the list
727  *	traversal we could compare the number of pages in the start->stop
728  *	range to the total number of pages in the object.   however, it
729  *	seems that a hash table lookup is more expensive than the linked
730  *	list traversal, so we multiply the number of pages in the
731  *	range by an estimate of the relatively higher cost of the hash lookup.
732  */
733 
734 int
735 genfs_putpages(void *v)
736 {
737 	struct vop_putpages_args /* {
738 		struct vnode *a_vp;
739 		voff_t a_offlo;
740 		voff_t a_offhi;
741 		int a_flags;
742 	} */ *ap = v;
743 
744 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
745 	    ap->a_flags, NULL);
746 }
747 
748 int
749 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
750     int origflags, struct vm_page **busypg)
751 {
752 	struct uvm_object *uobj = &vp->v_uobj;
753 	kmutex_t *slock = &uobj->vmobjlock;
754 	off_t off;
755 	/* Even for strange MAXPHYS, the shift rounds down to a page */
756 #define maxpages (MAXPHYS >> PAGE_SHIFT)
757 	int i, error, npages, nback;
758 	int freeflag;
759 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
760 	bool wasclean, by_list, needs_clean, yld;
761 	bool async = (origflags & PGO_SYNCIO) == 0;
762 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
763 	struct lwp *l = curlwp ? curlwp : &lwp0;
764 	struct genfs_node *gp = VTOG(vp);
765 	int flags;
766 	int dirtygen;
767 	bool modified;
768 	bool has_trans;
769 	bool cleanall;
770 	bool onworklst;
771 
772 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
773 
774 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
775 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
776 	KASSERT(startoff < endoff || endoff == 0);
777 
778 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
779 	    vp, uobj->uo_npages, startoff, endoff - startoff);
780 
781 	has_trans = false;
782 
783 retry:
784 	modified = false;
785 	flags = origflags;
786 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
787 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
788 	if (uobj->uo_npages == 0) {
789 		if (vp->v_iflag & VI_ONWORKLST) {
790 			vp->v_iflag &= ~VI_WRMAPDIRTY;
791 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
792 				vn_syncer_remove_from_worklist(vp);
793 		}
794 		if (has_trans)
795 			fstrans_done(vp->v_mount);
796 		mutex_exit(slock);
797 		return (0);
798 	}
799 
800 	/*
801 	 * the vnode has pages, set up to process the request.
802 	 */
803 
804 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
805 		mutex_exit(slock);
806 		if (pagedaemon) {
807 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
808 			if (error)
809 				return error;
810 		} else
811 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
812 		has_trans = true;
813 		mutex_enter(slock);
814 		goto retry;
815 	}
816 
817 	error = 0;
818 	wasclean = (vp->v_numoutput == 0);
819 	off = startoff;
820 	if (endoff == 0 || flags & PGO_ALLPAGES) {
821 		endoff = trunc_page(LLONG_MAX);
822 	}
823 	by_list = (uobj->uo_npages <=
824 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
825 
826 #if !defined(DEBUG)
827 	/*
828 	 * if this vnode is known not to have dirty pages,
829 	 * don't bother to clean it out.
830 	 */
831 
832 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
833 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
834 			goto skip_scan;
835 		}
836 		flags &= ~PGO_CLEANIT;
837 	}
838 #endif /* !defined(DEBUG) */
839 
840 	/*
841 	 * start the loop.  when scanning by list, hold the last page
842 	 * in the list before we start.  pages allocated after we start
843 	 * will be added to the end of the list, so we can stop at the
844 	 * current last page.
845 	 */
846 
847 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
848 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
849 	    (vp->v_iflag & VI_ONWORKLST) != 0;
850 	dirtygen = gp->g_dirtygen;
851 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
852 	if (by_list) {
853 		curmp.uobject = uobj;
854 		curmp.offset = (voff_t)-1;
855 		curmp.flags = PG_BUSY;
856 		endmp.uobject = uobj;
857 		endmp.offset = (voff_t)-1;
858 		endmp.flags = PG_BUSY;
859 		pg = TAILQ_FIRST(&uobj->memq);
860 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
861 		uvm_lwp_hold(l);
862 	} else {
863 		pg = uvm_pagelookup(uobj, off);
864 	}
865 	nextpg = NULL;
866 	while (by_list || off < endoff) {
867 
868 		/*
869 		 * if the current page is not interesting, move on to the next.
870 		 */
871 
872 		KASSERT(pg == NULL || pg->uobject == uobj);
873 		KASSERT(pg == NULL ||
874 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
875 		    (pg->flags & PG_BUSY) != 0);
876 		if (by_list) {
877 			if (pg == &endmp) {
878 				break;
879 			}
880 			if (pg->offset < startoff || pg->offset >= endoff ||
881 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
882 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
883 					wasclean = false;
884 				}
885 				pg = TAILQ_NEXT(pg, listq.queue);
886 				continue;
887 			}
888 			off = pg->offset;
889 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
890 			if (pg != NULL) {
891 				wasclean = false;
892 			}
893 			off += PAGE_SIZE;
894 			if (off < endoff) {
895 				pg = uvm_pagelookup(uobj, off);
896 			}
897 			continue;
898 		}
899 
900 		/*
901 		 * if the current page needs to be cleaned and it's busy,
902 		 * wait for it to become unbusy.
903 		 */
904 
905 		yld = (l->l_cpu->ci_schedstate.spc_flags &
906 		    SPCF_SHOULDYIELD) && !pagedaemon;
907 		if (pg->flags & PG_BUSY || yld) {
908 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
909 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
910 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
911 				error = EDEADLK;
912 				if (busypg != NULL)
913 					*busypg = pg;
914 				break;
915 			}
916 			if (pagedaemon) {
917 				/*
918 				 * someone has taken the page while we
919 				 * dropped the lock for fstrans_start.
920 				 */
921 				break;
922 			}
923 			if (by_list) {
924 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
925 				UVMHIST_LOG(ubchist, "curmp next %p",
926 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
927 			}
928 			if (yld) {
929 				mutex_exit(slock);
930 				preempt();
931 				mutex_enter(slock);
932 			} else {
933 				pg->flags |= PG_WANTED;
934 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
935 				mutex_enter(slock);
936 			}
937 			if (by_list) {
938 				UVMHIST_LOG(ubchist, "after next %p",
939 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
940 				pg = TAILQ_NEXT(&curmp, listq.queue);
941 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
942 			} else {
943 				pg = uvm_pagelookup(uobj, off);
944 			}
945 			continue;
946 		}
947 
948 		/*
949 		 * if we're freeing, remove all mappings of the page now.
950 		 * if we're cleaning, check if the page is needs to be cleaned.
951 		 */
952 
953 		if (flags & PGO_FREE) {
954 			pmap_page_protect(pg, VM_PROT_NONE);
955 		} else if (flags & PGO_CLEANIT) {
956 
957 			/*
958 			 * if we still have some hope to pull this vnode off
959 			 * from the syncer queue, write-protect the page.
960 			 */
961 
962 			if (cleanall && wasclean &&
963 			    gp->g_dirtygen == dirtygen) {
964 
965 				/*
966 				 * uobj pages get wired only by uvm_fault
967 				 * where uobj is locked.
968 				 */
969 
970 				if (pg->wire_count == 0) {
971 					pmap_page_protect(pg,
972 					    VM_PROT_READ|VM_PROT_EXECUTE);
973 				} else {
974 					cleanall = false;
975 				}
976 			}
977 		}
978 
979 		if (flags & PGO_CLEANIT) {
980 			needs_clean = pmap_clear_modify(pg) ||
981 			    (pg->flags & PG_CLEAN) == 0;
982 			pg->flags |= PG_CLEAN;
983 		} else {
984 			needs_clean = false;
985 		}
986 
987 		/*
988 		 * if we're cleaning, build a cluster.
989 		 * the cluster will consist of pages which are currently dirty,
990 		 * but they will be returned to us marked clean.
991 		 * if not cleaning, just operate on the one page.
992 		 */
993 
994 		if (needs_clean) {
995 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
996 			wasclean = false;
997 			memset(pgs, 0, sizeof(pgs));
998 			pg->flags |= PG_BUSY;
999 			UVM_PAGE_OWN(pg, "genfs_putpages");
1000 
1001 			/*
1002 			 * first look backward.
1003 			 */
1004 
1005 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1006 			nback = npages;
1007 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1008 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1009 			if (nback) {
1010 				memmove(&pgs[0], &pgs[npages - nback],
1011 				    nback * sizeof(pgs[0]));
1012 				if (npages - nback < nback)
1013 					memset(&pgs[nback], 0,
1014 					    (npages - nback) * sizeof(pgs[0]));
1015 				else
1016 					memset(&pgs[npages - nback], 0,
1017 					    nback * sizeof(pgs[0]));
1018 			}
1019 
1020 			/*
1021 			 * then plug in our page of interest.
1022 			 */
1023 
1024 			pgs[nback] = pg;
1025 
1026 			/*
1027 			 * then look forward to fill in the remaining space in
1028 			 * the array of pages.
1029 			 */
1030 
1031 			npages = maxpages - nback - 1;
1032 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1033 			    &pgs[nback + 1],
1034 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1035 			npages += nback + 1;
1036 		} else {
1037 			pgs[0] = pg;
1038 			npages = 1;
1039 			nback = 0;
1040 		}
1041 
1042 		/*
1043 		 * apply FREE or DEACTIVATE options if requested.
1044 		 */
1045 
1046 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1047 			mutex_enter(&uvm_pageqlock);
1048 		}
1049 		for (i = 0; i < npages; i++) {
1050 			tpg = pgs[i];
1051 			KASSERT(tpg->uobject == uobj);
1052 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1053 				pg = tpg;
1054 			if (tpg->offset < startoff || tpg->offset >= endoff)
1055 				continue;
1056 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1057 				uvm_pagedeactivate(tpg);
1058 			} else if (flags & PGO_FREE) {
1059 				pmap_page_protect(tpg, VM_PROT_NONE);
1060 				if (tpg->flags & PG_BUSY) {
1061 					tpg->flags |= freeflag;
1062 					if (pagedaemon) {
1063 						uvm_pageout_start(1);
1064 						uvm_pagedequeue(tpg);
1065 					}
1066 				} else {
1067 
1068 					/*
1069 					 * ``page is not busy''
1070 					 * implies that npages is 1
1071 					 * and needs_clean is false.
1072 					 */
1073 
1074 					nextpg = TAILQ_NEXT(tpg, listq.queue);
1075 					uvm_pagefree(tpg);
1076 					if (pagedaemon)
1077 						uvmexp.pdfreed++;
1078 				}
1079 			}
1080 		}
1081 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1082 			mutex_exit(&uvm_pageqlock);
1083 		}
1084 		if (needs_clean) {
1085 			modified = true;
1086 
1087 			/*
1088 			 * start the i/o.  if we're traversing by list,
1089 			 * keep our place in the list with a marker page.
1090 			 */
1091 
1092 			if (by_list) {
1093 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1094 				    listq.queue);
1095 			}
1096 			mutex_exit(slock);
1097 			error = GOP_WRITE(vp, pgs, npages, flags);
1098 			mutex_enter(slock);
1099 			if (by_list) {
1100 				pg = TAILQ_NEXT(&curmp, listq.queue);
1101 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1102 			}
1103 			if (error) {
1104 				break;
1105 			}
1106 			if (by_list) {
1107 				continue;
1108 			}
1109 		}
1110 
1111 		/*
1112 		 * find the next page and continue if there was no error.
1113 		 */
1114 
1115 		if (by_list) {
1116 			if (nextpg) {
1117 				pg = nextpg;
1118 				nextpg = NULL;
1119 			} else {
1120 				pg = TAILQ_NEXT(pg, listq.queue);
1121 			}
1122 		} else {
1123 			off += (npages - nback) << PAGE_SHIFT;
1124 			if (off < endoff) {
1125 				pg = uvm_pagelookup(uobj, off);
1126 			}
1127 		}
1128 	}
1129 	if (by_list) {
1130 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1131 		uvm_lwp_rele(l);
1132 	}
1133 
1134 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1135 	    (vp->v_type != VBLK ||
1136 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1137 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1138 	}
1139 
1140 	/*
1141 	 * if we're cleaning and there was nothing to clean,
1142 	 * take us off the syncer list.  if we started any i/o
1143 	 * and we're doing sync i/o, wait for all writes to finish.
1144 	 */
1145 
1146 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1147 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
1148 #if defined(DEBUG)
1149 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1150 			if ((pg->flags & PG_CLEAN) == 0) {
1151 				printf("%s: %p: !CLEAN\n", __func__, pg);
1152 			}
1153 			if (pmap_is_modified(pg)) {
1154 				printf("%s: %p: modified\n", __func__, pg);
1155 			}
1156 		}
1157 #endif /* defined(DEBUG) */
1158 		vp->v_iflag &= ~VI_WRMAPDIRTY;
1159 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1160 			vn_syncer_remove_from_worklist(vp);
1161 	}
1162 
1163 #if !defined(DEBUG)
1164 skip_scan:
1165 #endif /* !defined(DEBUG) */
1166 
1167 	/* Wait for output to complete. */
1168 	if (!wasclean && !async && vp->v_numoutput != 0) {
1169 		while (vp->v_numoutput != 0)
1170 			cv_wait(&vp->v_cv, slock);
1171 	}
1172 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1173 	mutex_exit(slock);
1174 
1175 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1176 		/*
1177 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1178 		 * retrying is not a big deal because, in many cases,
1179 		 * uobj->uo_npages is already 0 here.
1180 		 */
1181 		mutex_enter(slock);
1182 		goto retry;
1183 	}
1184 
1185 	if (has_trans)
1186 		fstrans_done(vp->v_mount);
1187 
1188 	return (error);
1189 }
1190 
1191 int
1192 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1193 {
1194 	off_t off;
1195 	vaddr_t kva;
1196 	size_t len;
1197 	int error;
1198 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1199 
1200 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1201 	    vp, pgs, npages, flags);
1202 
1203 	off = pgs[0]->offset;
1204 	kva = uvm_pagermapin(pgs, npages,
1205 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1206 	len = npages << PAGE_SHIFT;
1207 
1208 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1209 			    uvm_aio_biodone);
1210 
1211 	return error;
1212 }
1213 
1214 int
1215 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1216 {
1217 	off_t off;
1218 	vaddr_t kva;
1219 	size_t len;
1220 	int error;
1221 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1222 
1223 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1224 	    vp, pgs, npages, flags);
1225 
1226 	off = pgs[0]->offset;
1227 	kva = uvm_pagermapin(pgs, npages,
1228 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1229 	len = npages << PAGE_SHIFT;
1230 
1231 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1232 			    uvm_aio_biodone);
1233 
1234 	return error;
1235 }
1236 
1237 /*
1238  * Backend routine for doing I/O to vnode pages.  Pages are already locked
1239  * and mapped into kernel memory.  Here we just look up the underlying
1240  * device block addresses and call the strategy routine.
1241  */
1242 
1243 static int
1244 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1245     enum uio_rw rw, void (*iodone)(struct buf *))
1246 {
1247 	int s, error, run;
1248 	int fs_bshift, dev_bshift;
1249 	off_t eof, offset, startoffset;
1250 	size_t bytes, iobytes, skipbytes;
1251 	daddr_t lbn, blkno;
1252 	struct buf *mbp, *bp;
1253 	struct vnode *devvp;
1254 	bool async = (flags & PGO_SYNCIO) == 0;
1255 	bool write = rw == UIO_WRITE;
1256 	int brw = write ? B_WRITE : B_READ;
1257 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1258 
1259 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1260 	    vp, kva, len, flags);
1261 
1262 	KASSERT(vp->v_size <= vp->v_writesize);
1263 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1264 	if (vp->v_type != VBLK) {
1265 		fs_bshift = vp->v_mount->mnt_fs_bshift;
1266 		dev_bshift = vp->v_mount->mnt_dev_bshift;
1267 	} else {
1268 		fs_bshift = DEV_BSHIFT;
1269 		dev_bshift = DEV_BSHIFT;
1270 	}
1271 	error = 0;
1272 	startoffset = off;
1273 	bytes = MIN(len, eof - startoffset);
1274 	skipbytes = 0;
1275 	KASSERT(bytes != 0);
1276 
1277 	if (write) {
1278 		mutex_enter(&vp->v_interlock);
1279 		vp->v_numoutput += 2;
1280 		mutex_exit(&vp->v_interlock);
1281 	}
1282 	mbp = getiobuf(vp, true);
1283 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1284 	    vp, mbp, vp->v_numoutput, bytes);
1285 	mbp->b_bufsize = len;
1286 	mbp->b_data = (void *)kva;
1287 	mbp->b_resid = mbp->b_bcount = bytes;
1288 	mbp->b_cflags = BC_BUSY | BC_AGE;
1289 	if (async) {
1290 		mbp->b_flags = brw | B_ASYNC;
1291 		mbp->b_iodone = iodone;
1292 	} else {
1293 		mbp->b_flags = brw;
1294 		mbp->b_iodone = NULL;
1295 	}
1296 	if (curlwp == uvm.pagedaemon_lwp)
1297 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1298 	else if (async)
1299 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1300 	else
1301 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1302 
1303 	bp = NULL;
1304 	for (offset = startoffset;
1305 	    bytes > 0;
1306 	    offset += iobytes, bytes -= iobytes) {
1307 		lbn = offset >> fs_bshift;
1308 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1309 		if (error) {
1310 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1311 			skipbytes += bytes;
1312 			bytes = 0;
1313 			break;
1314 		}
1315 
1316 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1317 		    bytes);
1318 		if (blkno == (daddr_t)-1) {
1319 			if (!write) {
1320 				memset((char *)kva + (offset - startoffset), 0,
1321 				   iobytes);
1322 			}
1323 			skipbytes += iobytes;
1324 			continue;
1325 		}
1326 
1327 		/* if it's really one i/o, don't make a second buf */
1328 		if (offset == startoffset && iobytes == bytes) {
1329 			bp = mbp;
1330 		} else {
1331 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1332 			    vp, bp, vp->v_numoutput, 0);
1333 			bp = getiobuf(vp, true);
1334 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1335 		}
1336 		bp->b_lblkno = 0;
1337 
1338 		/* adjust physical blkno for partial blocks */
1339 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1340 		    dev_bshift);
1341 		UVMHIST_LOG(ubchist,
1342 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1343 		    vp, offset, bp->b_bcount, bp->b_blkno);
1344 
1345 		VOP_STRATEGY(devvp, bp);
1346 	}
1347 	if (skipbytes) {
1348 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1349 	}
1350 	nestiobuf_done(mbp, skipbytes, error);
1351 	if (async) {
1352 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1353 		return (0);
1354 	}
1355 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1356 	error = biowait(mbp);
1357 	s = splbio();
1358 	(*iodone)(mbp);
1359 	splx(s);
1360 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1361 	return (error);
1362 }
1363 
1364 /*
1365  * VOP_PUTPAGES() for vnodes which never have pages.
1366  */
1367 
1368 int
1369 genfs_null_putpages(void *v)
1370 {
1371 	struct vop_putpages_args /* {
1372 		struct vnode *a_vp;
1373 		voff_t a_offlo;
1374 		voff_t a_offhi;
1375 		int a_flags;
1376 	} */ *ap = v;
1377 	struct vnode *vp = ap->a_vp;
1378 
1379 	KASSERT(vp->v_uobj.uo_npages == 0);
1380 	mutex_exit(&vp->v_interlock);
1381 	return (0);
1382 }
1383 
1384 int
1385 genfs_compat_getpages(void *v)
1386 {
1387 	struct vop_getpages_args /* {
1388 		struct vnode *a_vp;
1389 		voff_t a_offset;
1390 		struct vm_page **a_m;
1391 		int *a_count;
1392 		int a_centeridx;
1393 		vm_prot_t a_access_type;
1394 		int a_advice;
1395 		int a_flags;
1396 	} */ *ap = v;
1397 
1398 	off_t origoffset;
1399 	struct vnode *vp = ap->a_vp;
1400 	struct uvm_object *uobj = &vp->v_uobj;
1401 	struct vm_page *pg, **pgs;
1402 	vaddr_t kva;
1403 	int i, error, orignpages, npages;
1404 	struct iovec iov;
1405 	struct uio uio;
1406 	kauth_cred_t cred = curlwp->l_cred;
1407 	bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1408 
1409 	error = 0;
1410 	origoffset = ap->a_offset;
1411 	orignpages = *ap->a_count;
1412 	pgs = ap->a_m;
1413 
1414 	if (write && (vp->v_iflag & VI_ONWORKLST) == 0) {
1415 		vn_syncer_add_to_worklist(vp, filedelay);
1416 	}
1417 	if (ap->a_flags & PGO_LOCKED) {
1418 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1419 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1420 
1421 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1422 	}
1423 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1424 		mutex_exit(&uobj->vmobjlock);
1425 		return (EINVAL);
1426 	}
1427 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
1428 		mutex_exit(&uobj->vmobjlock);
1429 		return 0;
1430 	}
1431 	npages = orignpages;
1432 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1433 	mutex_exit(&uobj->vmobjlock);
1434 	kva = uvm_pagermapin(pgs, npages,
1435 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1436 	for (i = 0; i < npages; i++) {
1437 		pg = pgs[i];
1438 		if ((pg->flags & PG_FAKE) == 0) {
1439 			continue;
1440 		}
1441 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1442 		iov.iov_len = PAGE_SIZE;
1443 		uio.uio_iov = &iov;
1444 		uio.uio_iovcnt = 1;
1445 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1446 		uio.uio_rw = UIO_READ;
1447 		uio.uio_resid = PAGE_SIZE;
1448 		UIO_SETUP_SYSSPACE(&uio);
1449 		/* XXX vn_lock */
1450 		error = VOP_READ(vp, &uio, 0, cred);
1451 		if (error) {
1452 			break;
1453 		}
1454 		if (uio.uio_resid) {
1455 			memset(iov.iov_base, 0, uio.uio_resid);
1456 		}
1457 	}
1458 	uvm_pagermapout(kva, npages);
1459 	mutex_enter(&uobj->vmobjlock);
1460 	mutex_enter(&uvm_pageqlock);
1461 	for (i = 0; i < npages; i++) {
1462 		pg = pgs[i];
1463 		if (error && (pg->flags & PG_FAKE) != 0) {
1464 			pg->flags |= PG_RELEASED;
1465 		} else {
1466 			pmap_clear_modify(pg);
1467 			uvm_pageactivate(pg);
1468 		}
1469 	}
1470 	if (error) {
1471 		uvm_page_unbusy(pgs, npages);
1472 	}
1473 	mutex_exit(&uvm_pageqlock);
1474 	mutex_exit(&uobj->vmobjlock);
1475 	return (error);
1476 }
1477 
1478 int
1479 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1480     int flags)
1481 {
1482 	off_t offset;
1483 	struct iovec iov;
1484 	struct uio uio;
1485 	kauth_cred_t cred = curlwp->l_cred;
1486 	struct buf *bp;
1487 	vaddr_t kva;
1488 	int error;
1489 
1490 	offset = pgs[0]->offset;
1491 	kva = uvm_pagermapin(pgs, npages,
1492 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1493 
1494 	iov.iov_base = (void *)kva;
1495 	iov.iov_len = npages << PAGE_SHIFT;
1496 	uio.uio_iov = &iov;
1497 	uio.uio_iovcnt = 1;
1498 	uio.uio_offset = offset;
1499 	uio.uio_rw = UIO_WRITE;
1500 	uio.uio_resid = npages << PAGE_SHIFT;
1501 	UIO_SETUP_SYSSPACE(&uio);
1502 	/* XXX vn_lock */
1503 	error = VOP_WRITE(vp, &uio, 0, cred);
1504 
1505 	mutex_enter(&vp->v_interlock);
1506 	vp->v_numoutput++;
1507 	mutex_exit(&vp->v_interlock);
1508 
1509 	bp = getiobuf(vp, true);
1510 	bp->b_cflags = BC_BUSY | BC_AGE;
1511 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1512 	bp->b_data = (char *)kva;
1513 	bp->b_bcount = npages << PAGE_SHIFT;
1514 	bp->b_bufsize = npages << PAGE_SHIFT;
1515 	bp->b_resid = 0;
1516 	bp->b_error = error;
1517 	uvm_aio_aiodone(bp);
1518 	return (error);
1519 }
1520 
1521 /*
1522  * Process a uio using direct I/O.  If we reach a part of the request
1523  * which cannot be processed in this fashion for some reason, just return.
1524  * The caller must handle some additional part of the request using
1525  * buffered I/O before trying direct I/O again.
1526  */
1527 
1528 void
1529 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1530 {
1531 	struct vmspace *vs;
1532 	struct iovec *iov;
1533 	vaddr_t va;
1534 	size_t len;
1535 	const int mask = DEV_BSIZE - 1;
1536 	int error;
1537 
1538 	/*
1539 	 * We only support direct I/O to user space for now.
1540 	 */
1541 
1542 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1543 		return;
1544 	}
1545 
1546 	/*
1547 	 * If the vnode is mapped, we would need to get the getpages lock
1548 	 * to stabilize the bmap, but then we would get into trouble whil e
1549 	 * locking the pages if the pages belong to this same vnode (or a
1550 	 * multi-vnode cascade to the same effect).  Just fall back to
1551 	 * buffered I/O if the vnode is mapped to avoid this mess.
1552 	 */
1553 
1554 	if (vp->v_vflag & VV_MAPPED) {
1555 		return;
1556 	}
1557 
1558 	/*
1559 	 * Do as much of the uio as possible with direct I/O.
1560 	 */
1561 
1562 	vs = uio->uio_vmspace;
1563 	while (uio->uio_resid) {
1564 		iov = uio->uio_iov;
1565 		if (iov->iov_len == 0) {
1566 			uio->uio_iov++;
1567 			uio->uio_iovcnt--;
1568 			continue;
1569 		}
1570 		va = (vaddr_t)iov->iov_base;
1571 		len = MIN(iov->iov_len, genfs_maxdio);
1572 		len &= ~mask;
1573 
1574 		/*
1575 		 * If the next chunk is smaller than DEV_BSIZE or extends past
1576 		 * the current EOF, then fall back to buffered I/O.
1577 		 */
1578 
1579 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
1580 			return;
1581 		}
1582 
1583 		/*
1584 		 * Check alignment.  The file offset must be at least
1585 		 * sector-aligned.  The exact constraint on memory alignment
1586 		 * is very hardware-dependent, but requiring sector-aligned
1587 		 * addresses there too is safe.
1588 		 */
1589 
1590 		if (uio->uio_offset & mask || va & mask) {
1591 			return;
1592 		}
1593 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1594 					  uio->uio_rw);
1595 		if (error) {
1596 			break;
1597 		}
1598 		iov->iov_base = (char *)iov->iov_base + len;
1599 		iov->iov_len -= len;
1600 		uio->uio_offset += len;
1601 		uio->uio_resid -= len;
1602 	}
1603 }
1604 
1605 /*
1606  * Iodone routine for direct I/O.  We don't do much here since the request is
1607  * always synchronous, so the caller will do most of the work after biowait().
1608  */
1609 
1610 static void
1611 genfs_dio_iodone(struct buf *bp)
1612 {
1613 
1614 	KASSERT((bp->b_flags & B_ASYNC) == 0);
1615 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1616 		mutex_enter(bp->b_objlock);
1617 		vwakeup(bp);
1618 		mutex_exit(bp->b_objlock);
1619 	}
1620 	putiobuf(bp);
1621 }
1622 
1623 /*
1624  * Process one chunk of a direct I/O request.
1625  */
1626 
1627 static int
1628 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1629     off_t off, enum uio_rw rw)
1630 {
1631 	struct vm_map *map;
1632 	struct pmap *upm, *kpm;
1633 	size_t klen = round_page(uva + len) - trunc_page(uva);
1634 	off_t spoff, epoff;
1635 	vaddr_t kva, puva;
1636 	paddr_t pa;
1637 	vm_prot_t prot;
1638 	int error, rv, poff, koff;
1639 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO |
1640 		(rw == UIO_WRITE ? PGO_FREE : 0);
1641 
1642 	/*
1643 	 * For writes, verify that this range of the file already has fully
1644 	 * allocated backing store.  If there are any holes, just punt and
1645 	 * make the caller take the buffered write path.
1646 	 */
1647 
1648 	if (rw == UIO_WRITE) {
1649 		daddr_t lbn, elbn, blkno;
1650 		int bsize, bshift, run;
1651 
1652 		bshift = vp->v_mount->mnt_fs_bshift;
1653 		bsize = 1 << bshift;
1654 		lbn = off >> bshift;
1655 		elbn = (off + len + bsize - 1) >> bshift;
1656 		while (lbn < elbn) {
1657 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1658 			if (error) {
1659 				return error;
1660 			}
1661 			if (blkno == (daddr_t)-1) {
1662 				return ENOSPC;
1663 			}
1664 			lbn += 1 + run;
1665 		}
1666 	}
1667 
1668 	/*
1669 	 * Flush any cached pages for parts of the file that we're about to
1670 	 * access.  If we're writing, invalidate pages as well.
1671 	 */
1672 
1673 	spoff = trunc_page(off);
1674 	epoff = round_page(off + len);
1675 	mutex_enter(&vp->v_interlock);
1676 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1677 	if (error) {
1678 		return error;
1679 	}
1680 
1681 	/*
1682 	 * Wire the user pages and remap them into kernel memory.
1683 	 */
1684 
1685 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1686 	error = uvm_vslock(vs, (void *)uva, len, prot);
1687 	if (error) {
1688 		return error;
1689 	}
1690 
1691 	map = &vs->vm_map;
1692 	upm = vm_map_pmap(map);
1693 	kpm = vm_map_pmap(kernel_map);
1694 	kva = uvm_km_alloc(kernel_map, klen, 0,
1695 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
1696 	puva = trunc_page(uva);
1697 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1698 		rv = pmap_extract(upm, puva + poff, &pa);
1699 		KASSERT(rv);
1700 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
1701 	}
1702 	pmap_update(kpm);
1703 
1704 	/*
1705 	 * Do the I/O.
1706 	 */
1707 
1708 	koff = uva - trunc_page(uva);
1709 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1710 			    genfs_dio_iodone);
1711 
1712 	/*
1713 	 * Tear down the kernel mapping.
1714 	 */
1715 
1716 	pmap_remove(kpm, kva, kva + klen);
1717 	pmap_update(kpm);
1718 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1719 
1720 	/*
1721 	 * Unwire the user pages.
1722 	 */
1723 
1724 	uvm_vsunlock(vs, (void *)uva, len);
1725 	return error;
1726 }
1727 
1728