xref: /netbsd-src/sys/miscfs/genfs/genfs_io.c (revision e89934bbf778a6d6d6894877c4da59d0c7835b0f)
1 /*	$NetBSD: genfs_io.c,v 1.63 2016/09/29 19:08:48 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.63 2016/09/29 19:08:48 christos Exp $");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/vnode.h>
42 #include <sys/kmem.h>
43 #include <sys/kauth.h>
44 #include <sys/fstrans.h>
45 #include <sys/buf.h>
46 
47 #include <miscfs/genfs/genfs.h>
48 #include <miscfs/genfs/genfs_node.h>
49 #include <miscfs/specfs/specdev.h>
50 
51 #include <uvm/uvm.h>
52 #include <uvm/uvm_pager.h>
53 
54 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
55     off_t, enum uio_rw);
56 static void genfs_dio_iodone(struct buf *);
57 
58 static int genfs_getpages_read(struct vnode *, struct vm_page **, int, off_t,
59     off_t, bool, bool, bool, bool);
60 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
61     void (*)(struct buf *));
62 static void genfs_rel_pages(struct vm_page **, unsigned int);
63 static void genfs_markdirty(struct vnode *);
64 
65 int genfs_maxdio = MAXPHYS;
66 
67 static void
68 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
69 {
70 	unsigned int i;
71 
72 	for (i = 0; i < npages; i++) {
73 		struct vm_page *pg = pgs[i];
74 
75 		if (pg == NULL || pg == PGO_DONTCARE)
76 			continue;
77 		KASSERT(uvm_page_locked_p(pg));
78 		if (pg->flags & PG_FAKE) {
79 			pg->flags |= PG_RELEASED;
80 		}
81 	}
82 	mutex_enter(&uvm_pageqlock);
83 	uvm_page_unbusy(pgs, npages);
84 	mutex_exit(&uvm_pageqlock);
85 }
86 
87 static void
88 genfs_markdirty(struct vnode *vp)
89 {
90 	struct genfs_node * const gp = VTOG(vp);
91 
92 	KASSERT(mutex_owned(vp->v_interlock));
93 	gp->g_dirtygen++;
94 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
95 		vn_syncer_add_to_worklist(vp, filedelay);
96 	}
97 	if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
98 		vp->v_iflag |= VI_WRMAPDIRTY;
99 	}
100 }
101 
102 /*
103  * generic VM getpages routine.
104  * Return PG_BUSY pages for the given range,
105  * reading from backing store if necessary.
106  */
107 
108 int
109 genfs_getpages(void *v)
110 {
111 	struct vop_getpages_args /* {
112 		struct vnode *a_vp;
113 		voff_t a_offset;
114 		struct vm_page **a_m;
115 		int *a_count;
116 		int a_centeridx;
117 		vm_prot_t a_access_type;
118 		int a_advice;
119 		int a_flags;
120 	} */ * const ap = v;
121 
122 	off_t diskeof, memeof;
123 	int i, error, npages;
124 	const int flags = ap->a_flags;
125 	struct vnode * const vp = ap->a_vp;
126 	struct uvm_object * const uobj = &vp->v_uobj;
127 	const bool async = (flags & PGO_SYNCIO) == 0;
128 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
129 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
130 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
131 	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
132 	const bool need_wapbl = blockalloc && vp->v_mount->mnt_wapbl;
133 	bool has_trans_wapbl = false;
134 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
135 
136 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
137 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
138 
139 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
140 	    vp->v_type == VLNK || vp->v_type == VBLK);
141 
142 startover:
143 	error = 0;
144 	const voff_t origvsize = vp->v_size;
145 	const off_t origoffset = ap->a_offset;
146 	const int orignpages = *ap->a_count;
147 
148 	GOP_SIZE(vp, origvsize, &diskeof, 0);
149 	if (flags & PGO_PASTEOF) {
150 		off_t newsize;
151 #if defined(DIAGNOSTIC)
152 		off_t writeeof;
153 #endif /* defined(DIAGNOSTIC) */
154 
155 		newsize = MAX(origvsize,
156 		    origoffset + (orignpages << PAGE_SHIFT));
157 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
158 #if defined(DIAGNOSTIC)
159 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
160 		if (newsize > round_page(writeeof)) {
161 			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
162 			    __func__, newsize, round_page(writeeof));
163 		}
164 #endif /* defined(DIAGNOSTIC) */
165 	} else {
166 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
167 	}
168 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
169 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
170 	KASSERT(orignpages > 0);
171 
172 	/*
173 	 * Bounds-check the request.
174 	 */
175 
176 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
177 		if ((flags & PGO_LOCKED) == 0) {
178 			mutex_exit(uobj->vmobjlock);
179 		}
180 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
181 		    origoffset, *ap->a_count, memeof,0);
182 		error = EINVAL;
183 		goto out_err;
184 	}
185 
186 	/* uobj is locked */
187 
188 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
189 	    (vp->v_type != VBLK ||
190 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
191 		int updflags = 0;
192 
193 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
194 			updflags = GOP_UPDATE_ACCESSED;
195 		}
196 		if (memwrite) {
197 			updflags |= GOP_UPDATE_MODIFIED;
198 		}
199 		if (updflags != 0) {
200 			GOP_MARKUPDATE(vp, updflags);
201 		}
202 	}
203 
204 	/*
205 	 * For PGO_LOCKED requests, just return whatever's in memory.
206 	 */
207 
208 	if (flags & PGO_LOCKED) {
209 		int nfound;
210 		struct vm_page *pg;
211 
212 		KASSERT(!glocked);
213 		npages = *ap->a_count;
214 #if defined(DEBUG)
215 		for (i = 0; i < npages; i++) {
216 			pg = ap->a_m[i];
217 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
218 		}
219 #endif /* defined(DEBUG) */
220 		nfound = uvn_findpages(uobj, origoffset, &npages,
221 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
222 		KASSERT(npages == *ap->a_count);
223 		if (nfound == 0) {
224 			error = EBUSY;
225 			goto out_err;
226 		}
227 		if (!genfs_node_rdtrylock(vp)) {
228 			genfs_rel_pages(ap->a_m, npages);
229 
230 			/*
231 			 * restore the array.
232 			 */
233 
234 			for (i = 0; i < npages; i++) {
235 				pg = ap->a_m[i];
236 
237 				if (pg != NULL && pg != PGO_DONTCARE) {
238 					ap->a_m[i] = NULL;
239 				}
240 				KASSERT(ap->a_m[i] == NULL ||
241 				    ap->a_m[i] == PGO_DONTCARE);
242 			}
243 		} else {
244 			genfs_node_unlock(vp);
245 		}
246 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
247 		if (error == 0 && memwrite) {
248 			genfs_markdirty(vp);
249 		}
250 		goto out_err;
251 	}
252 	mutex_exit(uobj->vmobjlock);
253 
254 	/*
255 	 * find the requested pages and make some simple checks.
256 	 * leave space in the page array for a whole block.
257 	 */
258 
259 	const int fs_bshift = (vp->v_type != VBLK) ?
260 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
261 	const int fs_bsize = 1 << fs_bshift;
262 #define	blk_mask	(fs_bsize - 1)
263 #define	trunc_blk(x)	((x) & ~blk_mask)
264 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
265 
266 	const int orignmempages = MIN(orignpages,
267 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
268 	npages = orignmempages;
269 	const off_t startoffset = trunc_blk(origoffset);
270 	const off_t endoffset = MIN(
271 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
272 	    round_page(memeof));
273 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
274 
275 	const int pgs_size = sizeof(struct vm_page *) *
276 	    ((endoffset - startoffset) >> PAGE_SHIFT);
277 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
278 
279 	if (pgs_size > sizeof(pgs_onstack)) {
280 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
281 		if (pgs == NULL) {
282 			pgs = pgs_onstack;
283 			error = ENOMEM;
284 			goto out_err;
285 		}
286 	} else {
287 		pgs = pgs_onstack;
288 		(void)memset(pgs, 0, pgs_size);
289 	}
290 
291 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
292 	    ridx, npages, startoffset, endoffset);
293 
294 	if (!has_trans_wapbl) {
295 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
296 		/*
297 		 * XXX: This assumes that we come here only via
298 		 * the mmio path
299 		 */
300 		if (need_wapbl) {
301 			error = WAPBL_BEGIN(vp->v_mount);
302 			if (error) {
303 				fstrans_done(vp->v_mount);
304 				goto out_err_free;
305 			}
306 		}
307 		has_trans_wapbl = true;
308 	}
309 
310 	/*
311 	 * hold g_glock to prevent a race with truncate.
312 	 *
313 	 * check if our idea of v_size is still valid.
314 	 */
315 
316 	KASSERT(!glocked || genfs_node_wrlocked(vp));
317 	if (!glocked) {
318 		if (blockalloc) {
319 			genfs_node_wrlock(vp);
320 		} else {
321 			genfs_node_rdlock(vp);
322 		}
323 	}
324 	mutex_enter(uobj->vmobjlock);
325 	if (vp->v_size < origvsize) {
326 		if (!glocked) {
327 			genfs_node_unlock(vp);
328 		}
329 		if (pgs != pgs_onstack)
330 			kmem_free(pgs, pgs_size);
331 		goto startover;
332 	}
333 
334 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
335 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
336 		if (!glocked) {
337 			genfs_node_unlock(vp);
338 		}
339 		KASSERT(async != 0);
340 		genfs_rel_pages(&pgs[ridx], orignmempages);
341 		mutex_exit(uobj->vmobjlock);
342 		error = EBUSY;
343 		goto out_err_free;
344 	}
345 
346 	/*
347 	 * if the pages are already resident, just return them.
348 	 */
349 
350 	for (i = 0; i < npages; i++) {
351 		struct vm_page *pg = pgs[ridx + i];
352 
353 		if ((pg->flags & PG_FAKE) ||
354 		    (blockalloc && (pg->flags & PG_RDONLY))) {
355 			break;
356 		}
357 	}
358 	if (i == npages) {
359 		if (!glocked) {
360 			genfs_node_unlock(vp);
361 		}
362 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
363 		npages += ridx;
364 		goto out;
365 	}
366 
367 	/*
368 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
369 	 */
370 
371 	if (overwrite) {
372 		if (!glocked) {
373 			genfs_node_unlock(vp);
374 		}
375 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
376 
377 		for (i = 0; i < npages; i++) {
378 			struct vm_page *pg = pgs[ridx + i];
379 
380 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
381 		}
382 		npages += ridx;
383 		goto out;
384 	}
385 
386 	/*
387 	 * the page wasn't resident and we're not overwriting,
388 	 * so we're going to have to do some i/o.
389 	 * find any additional pages needed to cover the expanded range.
390 	 */
391 
392 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
393 	if (startoffset != origoffset || npages != orignmempages) {
394 		int npgs;
395 
396 		/*
397 		 * we need to avoid deadlocks caused by locking
398 		 * additional pages at lower offsets than pages we
399 		 * already have locked.  unlock them all and start over.
400 		 */
401 
402 		genfs_rel_pages(&pgs[ridx], orignmempages);
403 		memset(pgs, 0, pgs_size);
404 
405 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
406 		    startoffset, endoffset, 0,0);
407 		npgs = npages;
408 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
409 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
410 			if (!glocked) {
411 				genfs_node_unlock(vp);
412 			}
413 			KASSERT(async != 0);
414 			genfs_rel_pages(pgs, npages);
415 			mutex_exit(uobj->vmobjlock);
416 			error = EBUSY;
417 			goto out_err_free;
418 		}
419 	}
420 
421 	mutex_exit(uobj->vmobjlock);
422 	error = genfs_getpages_read(vp, pgs, npages, startoffset, diskeof,
423 	    async, memwrite, blockalloc, glocked);
424 	if (error == 0 && async)
425 		goto out_err_free;
426 	if (!glocked) {
427 		genfs_node_unlock(vp);
428 	}
429 	mutex_enter(uobj->vmobjlock);
430 
431 	/*
432 	 * we're almost done!  release the pages...
433 	 * for errors, we free the pages.
434 	 * otherwise we activate them and mark them as valid and clean.
435 	 * also, unbusy pages that were not actually requested.
436 	 */
437 
438 	if (error) {
439 		genfs_rel_pages(pgs, npages);
440 		mutex_exit(uobj->vmobjlock);
441 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
442 		goto out_err_free;
443 	}
444 
445 out:
446 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
447 	error = 0;
448 	mutex_enter(&uvm_pageqlock);
449 	for (i = 0; i < npages; i++) {
450 		struct vm_page *pg = pgs[i];
451 		if (pg == NULL) {
452 			continue;
453 		}
454 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
455 		    pg, pg->flags, 0,0);
456 		if (pg->flags & PG_FAKE && !overwrite) {
457 			pg->flags &= ~(PG_FAKE);
458 			pmap_clear_modify(pgs[i]);
459 		}
460 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
461 		if (i < ridx || i >= ridx + orignmempages || async) {
462 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
463 			    pg, pg->offset,0,0);
464 			if (pg->flags & PG_WANTED) {
465 				wakeup(pg);
466 			}
467 			if (pg->flags & PG_FAKE) {
468 				KASSERT(overwrite);
469 				uvm_pagezero(pg);
470 			}
471 			if (pg->flags & PG_RELEASED) {
472 				uvm_pagefree(pg);
473 				continue;
474 			}
475 			uvm_pageenqueue(pg);
476 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
477 			UVM_PAGE_OWN(pg, NULL);
478 		}
479 	}
480 	mutex_exit(&uvm_pageqlock);
481 	if (memwrite) {
482 		genfs_markdirty(vp);
483 	}
484 	mutex_exit(uobj->vmobjlock);
485 	if (ap->a_m != NULL) {
486 		memcpy(ap->a_m, &pgs[ridx],
487 		    orignmempages * sizeof(struct vm_page *));
488 	}
489 
490 out_err_free:
491 	if (pgs != NULL && pgs != pgs_onstack)
492 		kmem_free(pgs, pgs_size);
493 out_err:
494 	if (has_trans_wapbl) {
495 		if (need_wapbl)
496 			WAPBL_END(vp->v_mount);
497 		fstrans_done(vp->v_mount);
498 	}
499 	return error;
500 }
501 
502 /*
503  * genfs_getpages_read: Read the pages in with VOP_BMAP/VOP_STRATEGY.
504  */
505 static int
506 genfs_getpages_read(struct vnode *vp, struct vm_page **pgs, int npages,
507     off_t startoffset, off_t diskeof,
508     bool async, bool memwrite, bool blockalloc, bool glocked)
509 {
510 	struct uvm_object * const uobj = &vp->v_uobj;
511 	const int fs_bshift = (vp->v_type != VBLK) ?
512 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
513 	const int dev_bshift = (vp->v_type != VBLK) ?
514 	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
515 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
516 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
517 	vaddr_t kva;
518 	struct buf *bp, *mbp;
519 	bool sawhole = false;
520 	int i;
521 	int error = 0;
522 
523 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
524 
525 	/*
526 	 * read the desired page(s).
527 	 */
528 
529 	totalbytes = npages << PAGE_SHIFT;
530 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
531 	tailbytes = totalbytes - bytes;
532 	skipbytes = 0;
533 
534 	kva = uvm_pagermapin(pgs, npages,
535 	    UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
536 	if (kva == 0)
537 		return EBUSY;
538 
539 	mbp = getiobuf(vp, true);
540 	mbp->b_bufsize = totalbytes;
541 	mbp->b_data = (void *)kva;
542 	mbp->b_resid = mbp->b_bcount = bytes;
543 	mbp->b_cflags = BC_BUSY;
544 	if (async) {
545 		mbp->b_flags = B_READ | B_ASYNC;
546 		mbp->b_iodone = uvm_aio_biodone;
547 	} else {
548 		mbp->b_flags = B_READ;
549 		mbp->b_iodone = NULL;
550 	}
551 	if (async)
552 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
553 	else
554 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
555 
556 	/*
557 	 * if EOF is in the middle of the range, zero the part past EOF.
558 	 * skip over pages which are not PG_FAKE since in that case they have
559 	 * valid data that we need to preserve.
560 	 */
561 
562 	tailstart = bytes;
563 	while (tailbytes > 0) {
564 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
565 
566 		KASSERT(len <= tailbytes);
567 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
568 			memset((void *)(kva + tailstart), 0, len);
569 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
570 			    kva, tailstart, len, 0);
571 		}
572 		tailstart += len;
573 		tailbytes -= len;
574 	}
575 
576 	/*
577 	 * now loop over the pages, reading as needed.
578 	 */
579 
580 	bp = NULL;
581 	off_t offset;
582 	for (offset = startoffset;
583 	    bytes > 0;
584 	    offset += iobytes, bytes -= iobytes) {
585 		int run;
586 		daddr_t lbn, blkno;
587 		int pidx;
588 		struct vnode *devvp;
589 
590 		/*
591 		 * skip pages which don't need to be read.
592 		 */
593 
594 		pidx = (offset - startoffset) >> PAGE_SHIFT;
595 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
596 			size_t b;
597 
598 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
599 			if ((pgs[pidx]->flags & PG_RDONLY)) {
600 				sawhole = true;
601 			}
602 			b = MIN(PAGE_SIZE, bytes);
603 			offset += b;
604 			bytes -= b;
605 			skipbytes += b;
606 			pidx++;
607 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
608 			    offset, 0,0,0);
609 			if (bytes == 0) {
610 				goto loopdone;
611 			}
612 		}
613 
614 		/*
615 		 * bmap the file to find out the blkno to read from and
616 		 * how much we can read in one i/o.  if bmap returns an error,
617 		 * skip the rest of the top-level i/o.
618 		 */
619 
620 		lbn = offset >> fs_bshift;
621 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
622 		if (error) {
623 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
624 			    lbn,error,0,0);
625 			skipbytes += bytes;
626 			bytes = 0;
627 			goto loopdone;
628 		}
629 
630 		/*
631 		 * see how many pages can be read with this i/o.
632 		 * reduce the i/o size if necessary to avoid
633 		 * overwriting pages with valid data.
634 		 */
635 
636 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
637 		    bytes);
638 		if (offset + iobytes > round_page(offset)) {
639 			int pcount;
640 
641 			pcount = 1;
642 			while (pidx + pcount < npages &&
643 			    pgs[pidx + pcount]->flags & PG_FAKE) {
644 				pcount++;
645 			}
646 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
647 			    (offset - trunc_page(offset)));
648 		}
649 
650 		/*
651 		 * if this block isn't allocated, zero it instead of
652 		 * reading it.  unless we are going to allocate blocks,
653 		 * mark the pages we zeroed PG_RDONLY.
654 		 */
655 
656 		if (blkno == (daddr_t)-1) {
657 			int holepages = (round_page(offset + iobytes) -
658 			    trunc_page(offset)) >> PAGE_SHIFT;
659 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
660 
661 			sawhole = true;
662 			memset((char *)kva + (offset - startoffset), 0,
663 			    iobytes);
664 			skipbytes += iobytes;
665 
666 			mutex_enter(uobj->vmobjlock);
667 			for (i = 0; i < holepages; i++) {
668 				if (memwrite) {
669 					pgs[pidx + i]->flags &= ~PG_CLEAN;
670 				}
671 				if (!blockalloc) {
672 					pgs[pidx + i]->flags |= PG_RDONLY;
673 				}
674 			}
675 			mutex_exit(uobj->vmobjlock);
676 			continue;
677 		}
678 
679 		/*
680 		 * allocate a sub-buf for this piece of the i/o
681 		 * (or just use mbp if there's only 1 piece),
682 		 * and start it going.
683 		 */
684 
685 		if (offset == startoffset && iobytes == bytes) {
686 			bp = mbp;
687 		} else {
688 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
689 			    vp, bp, vp->v_numoutput, 0);
690 			bp = getiobuf(vp, true);
691 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
692 		}
693 		bp->b_lblkno = 0;
694 
695 		/* adjust physical blkno for partial blocks */
696 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
697 		    dev_bshift);
698 
699 		UVMHIST_LOG(ubchist,
700 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
701 		    bp, offset, bp->b_bcount, bp->b_blkno);
702 
703 		VOP_STRATEGY(devvp, bp);
704 	}
705 
706 loopdone:
707 	nestiobuf_done(mbp, skipbytes, error);
708 	if (async) {
709 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
710 		if (!glocked) {
711 			genfs_node_unlock(vp);
712 		}
713 		return 0;
714 	}
715 	if (bp != NULL) {
716 		error = biowait(mbp);
717 	}
718 
719 	/* Remove the mapping (make KVA available as soon as possible) */
720 	uvm_pagermapout(kva, npages);
721 
722 	/*
723 	 * if this we encountered a hole then we have to do a little more work.
724 	 * for read faults, we marked the page PG_RDONLY so that future
725 	 * write accesses to the page will fault again.
726 	 * for write faults, we must make sure that the backing store for
727 	 * the page is completely allocated while the pages are locked.
728 	 */
729 
730 	if (!error && sawhole && blockalloc) {
731 		error = GOP_ALLOC(vp, startoffset,
732 		    npages << PAGE_SHIFT, 0, cred);
733 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
734 		    startoffset, npages << PAGE_SHIFT, error,0);
735 		if (!error) {
736 			mutex_enter(uobj->vmobjlock);
737 			for (i = 0; i < npages; i++) {
738 				struct vm_page *pg = pgs[i];
739 
740 				if (pg == NULL) {
741 					continue;
742 				}
743 				pg->flags &= ~(PG_CLEAN|PG_RDONLY);
744 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
745 				    pg,0,0,0);
746 			}
747 			mutex_exit(uobj->vmobjlock);
748 		}
749 	}
750 
751 	putiobuf(mbp);
752 	return error;
753 }
754 
755 /*
756  * generic VM putpages routine.
757  * Write the given range of pages to backing store.
758  *
759  * => "offhi == 0" means flush all pages at or after "offlo".
760  * => object should be locked by caller.  we return with the
761  *      object unlocked.
762  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
763  *	thus, a caller might want to unlock higher level resources
764  *	(e.g. vm_map) before calling flush.
765  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
766  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
767  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
768  *	that new pages are inserted on the tail end of the list.   thus,
769  *	we can make a complete pass through the object in one go by starting
770  *	at the head and working towards the tail (new pages are put in
771  *	front of us).
772  * => NOTE: we are allowed to lock the page queues, so the caller
773  *	must not be holding the page queue lock.
774  *
775  * note on "cleaning" object and PG_BUSY pages:
776  *	this routine is holding the lock on the object.   the only time
777  *	that it can run into a PG_BUSY page that it does not own is if
778  *	some other process has started I/O on the page (e.g. either
779  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
780  *	in, then it can not be dirty (!PG_CLEAN) because no one has
781  *	had a chance to modify it yet.    if the PG_BUSY page is being
782  *	paged out then it means that someone else has already started
783  *	cleaning the page for us (how nice!).    in this case, if we
784  *	have syncio specified, then after we make our pass through the
785  *	object we need to wait for the other PG_BUSY pages to clear
786  *	off (i.e. we need to do an iosync).   also note that once a
787  *	page is PG_BUSY it must stay in its object until it is un-busyed.
788  *
789  * note on page traversal:
790  *	we can traverse the pages in an object either by going down the
791  *	linked list in "uobj->memq", or we can go over the address range
792  *	by page doing hash table lookups for each address.    depending
793  *	on how many pages are in the object it may be cheaper to do one
794  *	or the other.   we set "by_list" to true if we are using memq.
795  *	if the cost of a hash lookup was equal to the cost of the list
796  *	traversal we could compare the number of pages in the start->stop
797  *	range to the total number of pages in the object.   however, it
798  *	seems that a hash table lookup is more expensive than the linked
799  *	list traversal, so we multiply the number of pages in the
800  *	range by an estimate of the relatively higher cost of the hash lookup.
801  */
802 
803 int
804 genfs_putpages(void *v)
805 {
806 	struct vop_putpages_args /* {
807 		struct vnode *a_vp;
808 		voff_t a_offlo;
809 		voff_t a_offhi;
810 		int a_flags;
811 	} */ * const ap = v;
812 
813 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
814 	    ap->a_flags, NULL);
815 }
816 
817 int
818 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
819     int origflags, struct vm_page **busypg)
820 {
821 	struct uvm_object * const uobj = &vp->v_uobj;
822 	kmutex_t * const slock = uobj->vmobjlock;
823 	off_t off;
824 	int i, error, npages, nback;
825 	int freeflag;
826 	/*
827 	 * This array is larger than it should so that it's size is constant.
828 	 * The right size is MAXPAGES.
829 	 */
830 	struct vm_page *pgs[MAXPHYS / MIN_PAGE_SIZE];
831 #define MAXPAGES (MAXPHYS / PAGE_SIZE)
832 	struct vm_page *pg, *nextpg, *tpg, curmp, endmp;
833 	bool wasclean, by_list, needs_clean, yld;
834 	bool async = (origflags & PGO_SYNCIO) == 0;
835 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
836 	struct lwp * const l = curlwp ? curlwp : &lwp0;
837 	struct genfs_node * const gp = VTOG(vp);
838 	int flags;
839 	int dirtygen;
840 	bool modified;
841 	bool need_wapbl;
842 	bool has_trans;
843 	bool cleanall;
844 	bool onworklst;
845 
846 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
847 
848 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
849 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
850 	KASSERT(startoff < endoff || endoff == 0);
851 
852 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
853 	    vp, uobj->uo_npages, startoff, endoff - startoff);
854 
855 	has_trans = false;
856 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
857 	    (origflags & PGO_JOURNALLOCKED) == 0);
858 
859 retry:
860 	modified = false;
861 	flags = origflags;
862 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
863 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
864 	if (uobj->uo_npages == 0) {
865 		if (vp->v_iflag & VI_ONWORKLST) {
866 			vp->v_iflag &= ~VI_WRMAPDIRTY;
867 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
868 				vn_syncer_remove_from_worklist(vp);
869 		}
870 		if (has_trans) {
871 			if (need_wapbl)
872 				WAPBL_END(vp->v_mount);
873 			fstrans_done(vp->v_mount);
874 		}
875 		mutex_exit(slock);
876 		return (0);
877 	}
878 
879 	/*
880 	 * the vnode has pages, set up to process the request.
881 	 */
882 
883 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
884 		mutex_exit(slock);
885 		if (pagedaemon) {
886 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
887 			if (error)
888 				return error;
889 		} else
890 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
891 		if (need_wapbl) {
892 			error = WAPBL_BEGIN(vp->v_mount);
893 			if (error) {
894 				fstrans_done(vp->v_mount);
895 				return error;
896 			}
897 		}
898 		has_trans = true;
899 		mutex_enter(slock);
900 		goto retry;
901 	}
902 
903 	error = 0;
904 	wasclean = (vp->v_numoutput == 0);
905 	off = startoff;
906 	if (endoff == 0 || flags & PGO_ALLPAGES) {
907 		endoff = trunc_page(LLONG_MAX);
908 	}
909 	by_list = (uobj->uo_npages <=
910 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
911 
912 	/*
913 	 * if this vnode is known not to have dirty pages,
914 	 * don't bother to clean it out.
915 	 */
916 
917 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
918 #if !defined(DEBUG)
919 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
920 			goto skip_scan;
921 		}
922 #endif /* !defined(DEBUG) */
923 		flags &= ~PGO_CLEANIT;
924 	}
925 
926 	/*
927 	 * start the loop.  when scanning by list, hold the last page
928 	 * in the list before we start.  pages allocated after we start
929 	 * will be added to the end of the list, so we can stop at the
930 	 * current last page.
931 	 */
932 
933 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
934 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
935 	    (vp->v_iflag & VI_ONWORKLST) != 0;
936 	dirtygen = gp->g_dirtygen;
937 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
938 	if (by_list) {
939 		curmp.flags = PG_MARKER;
940 		endmp.flags = PG_MARKER;
941 		pg = TAILQ_FIRST(&uobj->memq);
942 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
943 	} else {
944 		pg = uvm_pagelookup(uobj, off);
945 	}
946 	nextpg = NULL;
947 	while (by_list || off < endoff) {
948 
949 		/*
950 		 * if the current page is not interesting, move on to the next.
951 		 */
952 
953 		KASSERT(pg == NULL || pg->uobject == uobj ||
954 		    (pg->flags & PG_MARKER) != 0);
955 		KASSERT(pg == NULL ||
956 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
957 		    (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
958 		if (by_list) {
959 			if (pg == &endmp) {
960 				break;
961 			}
962 			if (pg->flags & PG_MARKER) {
963 				pg = TAILQ_NEXT(pg, listq.queue);
964 				continue;
965 			}
966 			if (pg->offset < startoff || pg->offset >= endoff ||
967 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
968 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
969 					wasclean = false;
970 				}
971 				pg = TAILQ_NEXT(pg, listq.queue);
972 				continue;
973 			}
974 			off = pg->offset;
975 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
976 			if (pg != NULL) {
977 				wasclean = false;
978 			}
979 			off += PAGE_SIZE;
980 			if (off < endoff) {
981 				pg = uvm_pagelookup(uobj, off);
982 			}
983 			continue;
984 		}
985 
986 		/*
987 		 * if the current page needs to be cleaned and it's busy,
988 		 * wait for it to become unbusy.
989 		 */
990 
991 		yld = (l->l_cpu->ci_schedstate.spc_flags &
992 		    SPCF_SHOULDYIELD) && !pagedaemon;
993 		if (pg->flags & PG_BUSY || yld) {
994 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
995 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
996 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
997 				error = EDEADLK;
998 				if (busypg != NULL)
999 					*busypg = pg;
1000 				break;
1001 			}
1002 			if (pagedaemon) {
1003 				/*
1004 				 * someone has taken the page while we
1005 				 * dropped the lock for fstrans_start.
1006 				 */
1007 				break;
1008 			}
1009 			if (by_list) {
1010 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1011 				UVMHIST_LOG(ubchist, "curmp next %p",
1012 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1013 			}
1014 			if (yld) {
1015 				mutex_exit(slock);
1016 				preempt();
1017 				mutex_enter(slock);
1018 			} else {
1019 				pg->flags |= PG_WANTED;
1020 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1021 				mutex_enter(slock);
1022 			}
1023 			if (by_list) {
1024 				UVMHIST_LOG(ubchist, "after next %p",
1025 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1026 				pg = TAILQ_NEXT(&curmp, listq.queue);
1027 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1028 			} else {
1029 				pg = uvm_pagelookup(uobj, off);
1030 			}
1031 			continue;
1032 		}
1033 
1034 		/*
1035 		 * if we're freeing, remove all mappings of the page now.
1036 		 * if we're cleaning, check if the page is needs to be cleaned.
1037 		 */
1038 
1039 		if (flags & PGO_FREE) {
1040 			pmap_page_protect(pg, VM_PROT_NONE);
1041 		} else if (flags & PGO_CLEANIT) {
1042 
1043 			/*
1044 			 * if we still have some hope to pull this vnode off
1045 			 * from the syncer queue, write-protect the page.
1046 			 */
1047 
1048 			if (cleanall && wasclean &&
1049 			    gp->g_dirtygen == dirtygen) {
1050 
1051 				/*
1052 				 * uobj pages get wired only by uvm_fault
1053 				 * where uobj is locked.
1054 				 */
1055 
1056 				if (pg->wire_count == 0) {
1057 					pmap_page_protect(pg,
1058 					    VM_PROT_READ|VM_PROT_EXECUTE);
1059 				} else {
1060 					cleanall = false;
1061 				}
1062 			}
1063 		}
1064 
1065 		if (flags & PGO_CLEANIT) {
1066 			needs_clean = pmap_clear_modify(pg) ||
1067 			    (pg->flags & PG_CLEAN) == 0;
1068 			pg->flags |= PG_CLEAN;
1069 		} else {
1070 			needs_clean = false;
1071 		}
1072 
1073 		/*
1074 		 * if we're cleaning, build a cluster.
1075 		 * the cluster will consist of pages which are currently dirty,
1076 		 * but they will be returned to us marked clean.
1077 		 * if not cleaning, just operate on the one page.
1078 		 */
1079 
1080 		if (needs_clean) {
1081 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
1082 			wasclean = false;
1083 			memset(pgs, 0, sizeof(pgs));
1084 			pg->flags |= PG_BUSY;
1085 			UVM_PAGE_OWN(pg, "genfs_putpages");
1086 
1087 			/*
1088 			 * first look backward.
1089 			 */
1090 
1091 			npages = MIN(MAXPAGES >> 1, off >> PAGE_SHIFT);
1092 			nback = npages;
1093 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1094 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1095 			if (nback) {
1096 				memmove(&pgs[0], &pgs[npages - nback],
1097 				    nback * sizeof(pgs[0]));
1098 				if (npages - nback < nback)
1099 					memset(&pgs[nback], 0,
1100 					    (npages - nback) * sizeof(pgs[0]));
1101 				else
1102 					memset(&pgs[npages - nback], 0,
1103 					    nback * sizeof(pgs[0]));
1104 			}
1105 
1106 			/*
1107 			 * then plug in our page of interest.
1108 			 */
1109 
1110 			pgs[nback] = pg;
1111 
1112 			/*
1113 			 * then look forward to fill in the remaining space in
1114 			 * the array of pages.
1115 			 */
1116 
1117 			npages = MAXPAGES - nback - 1;
1118 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1119 			    &pgs[nback + 1],
1120 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1121 			npages += nback + 1;
1122 		} else {
1123 			pgs[0] = pg;
1124 			npages = 1;
1125 			nback = 0;
1126 		}
1127 
1128 		/*
1129 		 * apply FREE or DEACTIVATE options if requested.
1130 		 */
1131 
1132 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1133 			mutex_enter(&uvm_pageqlock);
1134 		}
1135 		for (i = 0; i < npages; i++) {
1136 			tpg = pgs[i];
1137 			KASSERT(tpg->uobject == uobj);
1138 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1139 				pg = tpg;
1140 			if (tpg->offset < startoff || tpg->offset >= endoff)
1141 				continue;
1142 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1143 				uvm_pagedeactivate(tpg);
1144 			} else if (flags & PGO_FREE) {
1145 				pmap_page_protect(tpg, VM_PROT_NONE);
1146 				if (tpg->flags & PG_BUSY) {
1147 					tpg->flags |= freeflag;
1148 					if (pagedaemon) {
1149 						uvm_pageout_start(1);
1150 						uvm_pagedequeue(tpg);
1151 					}
1152 				} else {
1153 
1154 					/*
1155 					 * ``page is not busy''
1156 					 * implies that npages is 1
1157 					 * and needs_clean is false.
1158 					 */
1159 
1160 					nextpg = TAILQ_NEXT(tpg, listq.queue);
1161 					uvm_pagefree(tpg);
1162 					if (pagedaemon)
1163 						uvmexp.pdfreed++;
1164 				}
1165 			}
1166 		}
1167 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1168 			mutex_exit(&uvm_pageqlock);
1169 		}
1170 		if (needs_clean) {
1171 			modified = true;
1172 
1173 			/*
1174 			 * start the i/o.  if we're traversing by list,
1175 			 * keep our place in the list with a marker page.
1176 			 */
1177 
1178 			if (by_list) {
1179 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1180 				    listq.queue);
1181 			}
1182 			mutex_exit(slock);
1183 			error = GOP_WRITE(vp, pgs, npages, flags);
1184 			mutex_enter(slock);
1185 			if (by_list) {
1186 				pg = TAILQ_NEXT(&curmp, listq.queue);
1187 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1188 			}
1189 			if (error) {
1190 				break;
1191 			}
1192 			if (by_list) {
1193 				continue;
1194 			}
1195 		}
1196 
1197 		/*
1198 		 * find the next page and continue if there was no error.
1199 		 */
1200 
1201 		if (by_list) {
1202 			if (nextpg) {
1203 				pg = nextpg;
1204 				nextpg = NULL;
1205 			} else {
1206 				pg = TAILQ_NEXT(pg, listq.queue);
1207 			}
1208 		} else {
1209 			off += (npages - nback) << PAGE_SHIFT;
1210 			if (off < endoff) {
1211 				pg = uvm_pagelookup(uobj, off);
1212 			}
1213 		}
1214 	}
1215 	if (by_list) {
1216 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1217 	}
1218 
1219 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1220 	    (vp->v_type != VBLK ||
1221 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1222 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1223 	}
1224 
1225 	/*
1226 	 * if we're cleaning and there was nothing to clean,
1227 	 * take us off the syncer list.  if we started any i/o
1228 	 * and we're doing sync i/o, wait for all writes to finish.
1229 	 */
1230 
1231 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1232 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
1233 #if defined(DEBUG)
1234 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1235 			if ((pg->flags & (PG_FAKE | PG_MARKER)) != 0) {
1236 				continue;
1237 			}
1238 			if ((pg->flags & PG_CLEAN) == 0) {
1239 				printf("%s: %p: !CLEAN\n", __func__, pg);
1240 			}
1241 			if (pmap_is_modified(pg)) {
1242 				printf("%s: %p: modified\n", __func__, pg);
1243 			}
1244 		}
1245 #endif /* defined(DEBUG) */
1246 		vp->v_iflag &= ~VI_WRMAPDIRTY;
1247 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1248 			vn_syncer_remove_from_worklist(vp);
1249 	}
1250 
1251 #if !defined(DEBUG)
1252 skip_scan:
1253 #endif /* !defined(DEBUG) */
1254 
1255 	/* Wait for output to complete. */
1256 	if (!wasclean && !async && vp->v_numoutput != 0) {
1257 		while (vp->v_numoutput != 0)
1258 			cv_wait(&vp->v_cv, slock);
1259 	}
1260 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1261 	mutex_exit(slock);
1262 
1263 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1264 		/*
1265 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1266 		 * retrying is not a big deal because, in many cases,
1267 		 * uobj->uo_npages is already 0 here.
1268 		 */
1269 		mutex_enter(slock);
1270 		goto retry;
1271 	}
1272 
1273 	if (has_trans) {
1274 		if (need_wapbl)
1275 			WAPBL_END(vp->v_mount);
1276 		fstrans_done(vp->v_mount);
1277 	}
1278 
1279 	return (error);
1280 }
1281 
1282 int
1283 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1284 {
1285 	off_t off;
1286 	vaddr_t kva;
1287 	size_t len;
1288 	int error;
1289 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1290 
1291 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1292 	    vp, pgs, npages, flags);
1293 
1294 	off = pgs[0]->offset;
1295 	kva = uvm_pagermapin(pgs, npages,
1296 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1297 	len = npages << PAGE_SHIFT;
1298 
1299 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1300 			    uvm_aio_biodone);
1301 
1302 	return error;
1303 }
1304 
1305 int
1306 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1307 {
1308 	off_t off;
1309 	vaddr_t kva;
1310 	size_t len;
1311 	int error;
1312 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1313 
1314 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1315 	    vp, pgs, npages, flags);
1316 
1317 	off = pgs[0]->offset;
1318 	kva = uvm_pagermapin(pgs, npages,
1319 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1320 	len = npages << PAGE_SHIFT;
1321 
1322 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1323 			    uvm_aio_biodone);
1324 
1325 	return error;
1326 }
1327 
1328 /*
1329  * Backend routine for doing I/O to vnode pages.  Pages are already locked
1330  * and mapped into kernel memory.  Here we just look up the underlying
1331  * device block addresses and call the strategy routine.
1332  */
1333 
1334 static int
1335 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1336     enum uio_rw rw, void (*iodone)(struct buf *))
1337 {
1338 	int s, error;
1339 	int fs_bshift, dev_bshift;
1340 	off_t eof, offset, startoffset;
1341 	size_t bytes, iobytes, skipbytes;
1342 	struct buf *mbp, *bp;
1343 	const bool async = (flags & PGO_SYNCIO) == 0;
1344 	const bool lazy = (flags & PGO_LAZY) == 0;
1345 	const bool iowrite = rw == UIO_WRITE;
1346 	const int brw = iowrite ? B_WRITE : B_READ;
1347 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1348 
1349 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1350 	    vp, kva, len, flags);
1351 
1352 	KASSERT(vp->v_size <= vp->v_writesize);
1353 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1354 	if (vp->v_type != VBLK) {
1355 		fs_bshift = vp->v_mount->mnt_fs_bshift;
1356 		dev_bshift = vp->v_mount->mnt_dev_bshift;
1357 	} else {
1358 		fs_bshift = DEV_BSHIFT;
1359 		dev_bshift = DEV_BSHIFT;
1360 	}
1361 	error = 0;
1362 	startoffset = off;
1363 	bytes = MIN(len, eof - startoffset);
1364 	skipbytes = 0;
1365 	KASSERT(bytes != 0);
1366 
1367 	if (iowrite) {
1368 		mutex_enter(vp->v_interlock);
1369 		vp->v_numoutput += 2;
1370 		mutex_exit(vp->v_interlock);
1371 	}
1372 	mbp = getiobuf(vp, true);
1373 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1374 	    vp, mbp, vp->v_numoutput, bytes);
1375 	mbp->b_bufsize = len;
1376 	mbp->b_data = (void *)kva;
1377 	mbp->b_resid = mbp->b_bcount = bytes;
1378 	mbp->b_cflags = BC_BUSY | BC_AGE;
1379 	if (async) {
1380 		mbp->b_flags = brw | B_ASYNC;
1381 		mbp->b_iodone = iodone;
1382 	} else {
1383 		mbp->b_flags = brw;
1384 		mbp->b_iodone = NULL;
1385 	}
1386 	if (curlwp == uvm.pagedaemon_lwp)
1387 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1388 	else if (async || lazy)
1389 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1390 	else
1391 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1392 
1393 	bp = NULL;
1394 	for (offset = startoffset;
1395 	    bytes > 0;
1396 	    offset += iobytes, bytes -= iobytes) {
1397 		int run;
1398 		daddr_t lbn, blkno;
1399 		struct vnode *devvp;
1400 
1401 		/*
1402 		 * bmap the file to find out the blkno to read from and
1403 		 * how much we can read in one i/o.  if bmap returns an error,
1404 		 * skip the rest of the top-level i/o.
1405 		 */
1406 
1407 		lbn = offset >> fs_bshift;
1408 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1409 		if (error) {
1410 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1411 			    lbn,error,0,0);
1412 			skipbytes += bytes;
1413 			bytes = 0;
1414 			goto loopdone;
1415 		}
1416 
1417 		/*
1418 		 * see how many pages can be read with this i/o.
1419 		 * reduce the i/o size if necessary to avoid
1420 		 * overwriting pages with valid data.
1421 		 */
1422 
1423 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1424 		    bytes);
1425 
1426 		/*
1427 		 * if this block isn't allocated, zero it instead of
1428 		 * reading it.  unless we are going to allocate blocks,
1429 		 * mark the pages we zeroed PG_RDONLY.
1430 		 */
1431 
1432 		if (blkno == (daddr_t)-1) {
1433 			if (!iowrite) {
1434 				memset((char *)kva + (offset - startoffset), 0,
1435 				    iobytes);
1436 			}
1437 			skipbytes += iobytes;
1438 			continue;
1439 		}
1440 
1441 		/*
1442 		 * allocate a sub-buf for this piece of the i/o
1443 		 * (or just use mbp if there's only 1 piece),
1444 		 * and start it going.
1445 		 */
1446 
1447 		if (offset == startoffset && iobytes == bytes) {
1448 			bp = mbp;
1449 		} else {
1450 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1451 			    vp, bp, vp->v_numoutput, 0);
1452 			bp = getiobuf(vp, true);
1453 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1454 		}
1455 		bp->b_lblkno = 0;
1456 
1457 		/* adjust physical blkno for partial blocks */
1458 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1459 		    dev_bshift);
1460 
1461 		UVMHIST_LOG(ubchist,
1462 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1463 		    bp, offset, bp->b_bcount, bp->b_blkno);
1464 
1465 		VOP_STRATEGY(devvp, bp);
1466 	}
1467 
1468 loopdone:
1469 	if (skipbytes) {
1470 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1471 	}
1472 	nestiobuf_done(mbp, skipbytes, error);
1473 	if (async) {
1474 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1475 		return (0);
1476 	}
1477 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1478 	error = biowait(mbp);
1479 	s = splbio();
1480 	(*iodone)(mbp);
1481 	splx(s);
1482 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1483 	return (error);
1484 }
1485 
1486 int
1487 genfs_compat_getpages(void *v)
1488 {
1489 	struct vop_getpages_args /* {
1490 		struct vnode *a_vp;
1491 		voff_t a_offset;
1492 		struct vm_page **a_m;
1493 		int *a_count;
1494 		int a_centeridx;
1495 		vm_prot_t a_access_type;
1496 		int a_advice;
1497 		int a_flags;
1498 	} */ *ap = v;
1499 
1500 	off_t origoffset;
1501 	struct vnode *vp = ap->a_vp;
1502 	struct uvm_object *uobj = &vp->v_uobj;
1503 	struct vm_page *pg, **pgs;
1504 	vaddr_t kva;
1505 	int i, error, orignpages, npages;
1506 	struct iovec iov;
1507 	struct uio uio;
1508 	kauth_cred_t cred = curlwp->l_cred;
1509 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1510 
1511 	error = 0;
1512 	origoffset = ap->a_offset;
1513 	orignpages = *ap->a_count;
1514 	pgs = ap->a_m;
1515 
1516 	if (ap->a_flags & PGO_LOCKED) {
1517 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1518 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1519 
1520 		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1521 		if (error == 0 && memwrite) {
1522 			genfs_markdirty(vp);
1523 		}
1524 		return error;
1525 	}
1526 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1527 		mutex_exit(uobj->vmobjlock);
1528 		return EINVAL;
1529 	}
1530 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
1531 		mutex_exit(uobj->vmobjlock);
1532 		return 0;
1533 	}
1534 	npages = orignpages;
1535 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1536 	mutex_exit(uobj->vmobjlock);
1537 	kva = uvm_pagermapin(pgs, npages,
1538 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1539 	for (i = 0; i < npages; i++) {
1540 		pg = pgs[i];
1541 		if ((pg->flags & PG_FAKE) == 0) {
1542 			continue;
1543 		}
1544 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1545 		iov.iov_len = PAGE_SIZE;
1546 		uio.uio_iov = &iov;
1547 		uio.uio_iovcnt = 1;
1548 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1549 		uio.uio_rw = UIO_READ;
1550 		uio.uio_resid = PAGE_SIZE;
1551 		UIO_SETUP_SYSSPACE(&uio);
1552 		/* XXX vn_lock */
1553 		error = VOP_READ(vp, &uio, 0, cred);
1554 		if (error) {
1555 			break;
1556 		}
1557 		if (uio.uio_resid) {
1558 			memset(iov.iov_base, 0, uio.uio_resid);
1559 		}
1560 	}
1561 	uvm_pagermapout(kva, npages);
1562 	mutex_enter(uobj->vmobjlock);
1563 	mutex_enter(&uvm_pageqlock);
1564 	for (i = 0; i < npages; i++) {
1565 		pg = pgs[i];
1566 		if (error && (pg->flags & PG_FAKE) != 0) {
1567 			pg->flags |= PG_RELEASED;
1568 		} else {
1569 			pmap_clear_modify(pg);
1570 			uvm_pageactivate(pg);
1571 		}
1572 	}
1573 	if (error) {
1574 		uvm_page_unbusy(pgs, npages);
1575 	}
1576 	mutex_exit(&uvm_pageqlock);
1577 	if (error == 0 && memwrite) {
1578 		genfs_markdirty(vp);
1579 	}
1580 	mutex_exit(uobj->vmobjlock);
1581 	return error;
1582 }
1583 
1584 int
1585 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1586     int flags)
1587 {
1588 	off_t offset;
1589 	struct iovec iov;
1590 	struct uio uio;
1591 	kauth_cred_t cred = curlwp->l_cred;
1592 	struct buf *bp;
1593 	vaddr_t kva;
1594 	int error;
1595 
1596 	offset = pgs[0]->offset;
1597 	kva = uvm_pagermapin(pgs, npages,
1598 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1599 
1600 	iov.iov_base = (void *)kva;
1601 	iov.iov_len = npages << PAGE_SHIFT;
1602 	uio.uio_iov = &iov;
1603 	uio.uio_iovcnt = 1;
1604 	uio.uio_offset = offset;
1605 	uio.uio_rw = UIO_WRITE;
1606 	uio.uio_resid = npages << PAGE_SHIFT;
1607 	UIO_SETUP_SYSSPACE(&uio);
1608 	/* XXX vn_lock */
1609 	error = VOP_WRITE(vp, &uio, 0, cred);
1610 
1611 	mutex_enter(vp->v_interlock);
1612 	vp->v_numoutput++;
1613 	mutex_exit(vp->v_interlock);
1614 
1615 	bp = getiobuf(vp, true);
1616 	bp->b_cflags = BC_BUSY | BC_AGE;
1617 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1618 	bp->b_data = (char *)kva;
1619 	bp->b_bcount = npages << PAGE_SHIFT;
1620 	bp->b_bufsize = npages << PAGE_SHIFT;
1621 	bp->b_resid = 0;
1622 	bp->b_error = error;
1623 	uvm_aio_aiodone(bp);
1624 	return (error);
1625 }
1626 
1627 /*
1628  * Process a uio using direct I/O.  If we reach a part of the request
1629  * which cannot be processed in this fashion for some reason, just return.
1630  * The caller must handle some additional part of the request using
1631  * buffered I/O before trying direct I/O again.
1632  */
1633 
1634 void
1635 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1636 {
1637 	struct vmspace *vs;
1638 	struct iovec *iov;
1639 	vaddr_t va;
1640 	size_t len;
1641 	const int mask = DEV_BSIZE - 1;
1642 	int error;
1643 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1644 	    (ioflag & IO_JOURNALLOCKED) == 0);
1645 
1646 	/*
1647 	 * We only support direct I/O to user space for now.
1648 	 */
1649 
1650 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1651 		return;
1652 	}
1653 
1654 	/*
1655 	 * If the vnode is mapped, we would need to get the getpages lock
1656 	 * to stabilize the bmap, but then we would get into trouble while
1657 	 * locking the pages if the pages belong to this same vnode (or a
1658 	 * multi-vnode cascade to the same effect).  Just fall back to
1659 	 * buffered I/O if the vnode is mapped to avoid this mess.
1660 	 */
1661 
1662 	if (vp->v_vflag & VV_MAPPED) {
1663 		return;
1664 	}
1665 
1666 	if (need_wapbl) {
1667 		error = WAPBL_BEGIN(vp->v_mount);
1668 		if (error)
1669 			return;
1670 	}
1671 
1672 	/*
1673 	 * Do as much of the uio as possible with direct I/O.
1674 	 */
1675 
1676 	vs = uio->uio_vmspace;
1677 	while (uio->uio_resid) {
1678 		iov = uio->uio_iov;
1679 		if (iov->iov_len == 0) {
1680 			uio->uio_iov++;
1681 			uio->uio_iovcnt--;
1682 			continue;
1683 		}
1684 		va = (vaddr_t)iov->iov_base;
1685 		len = MIN(iov->iov_len, genfs_maxdio);
1686 		len &= ~mask;
1687 
1688 		/*
1689 		 * If the next chunk is smaller than DEV_BSIZE or extends past
1690 		 * the current EOF, then fall back to buffered I/O.
1691 		 */
1692 
1693 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
1694 			break;
1695 		}
1696 
1697 		/*
1698 		 * Check alignment.  The file offset must be at least
1699 		 * sector-aligned.  The exact constraint on memory alignment
1700 		 * is very hardware-dependent, but requiring sector-aligned
1701 		 * addresses there too is safe.
1702 		 */
1703 
1704 		if (uio->uio_offset & mask || va & mask) {
1705 			break;
1706 		}
1707 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1708 					  uio->uio_rw);
1709 		if (error) {
1710 			break;
1711 		}
1712 		iov->iov_base = (char *)iov->iov_base + len;
1713 		iov->iov_len -= len;
1714 		uio->uio_offset += len;
1715 		uio->uio_resid -= len;
1716 	}
1717 
1718 	if (need_wapbl)
1719 		WAPBL_END(vp->v_mount);
1720 }
1721 
1722 /*
1723  * Iodone routine for direct I/O.  We don't do much here since the request is
1724  * always synchronous, so the caller will do most of the work after biowait().
1725  */
1726 
1727 static void
1728 genfs_dio_iodone(struct buf *bp)
1729 {
1730 
1731 	KASSERT((bp->b_flags & B_ASYNC) == 0);
1732 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1733 		mutex_enter(bp->b_objlock);
1734 		vwakeup(bp);
1735 		mutex_exit(bp->b_objlock);
1736 	}
1737 	putiobuf(bp);
1738 }
1739 
1740 /*
1741  * Process one chunk of a direct I/O request.
1742  */
1743 
1744 static int
1745 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1746     off_t off, enum uio_rw rw)
1747 {
1748 	struct vm_map *map;
1749 	struct pmap *upm, *kpm __unused;
1750 	size_t klen = round_page(uva + len) - trunc_page(uva);
1751 	off_t spoff, epoff;
1752 	vaddr_t kva, puva;
1753 	paddr_t pa;
1754 	vm_prot_t prot;
1755 	int error, rv __diagused, poff, koff;
1756 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1757 		(rw == UIO_WRITE ? PGO_FREE : 0);
1758 
1759 	/*
1760 	 * For writes, verify that this range of the file already has fully
1761 	 * allocated backing store.  If there are any holes, just punt and
1762 	 * make the caller take the buffered write path.
1763 	 */
1764 
1765 	if (rw == UIO_WRITE) {
1766 		daddr_t lbn, elbn, blkno;
1767 		int bsize, bshift, run;
1768 
1769 		bshift = vp->v_mount->mnt_fs_bshift;
1770 		bsize = 1 << bshift;
1771 		lbn = off >> bshift;
1772 		elbn = (off + len + bsize - 1) >> bshift;
1773 		while (lbn < elbn) {
1774 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1775 			if (error) {
1776 				return error;
1777 			}
1778 			if (blkno == (daddr_t)-1) {
1779 				return ENOSPC;
1780 			}
1781 			lbn += 1 + run;
1782 		}
1783 	}
1784 
1785 	/*
1786 	 * Flush any cached pages for parts of the file that we're about to
1787 	 * access.  If we're writing, invalidate pages as well.
1788 	 */
1789 
1790 	spoff = trunc_page(off);
1791 	epoff = round_page(off + len);
1792 	mutex_enter(vp->v_interlock);
1793 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1794 	if (error) {
1795 		return error;
1796 	}
1797 
1798 	/*
1799 	 * Wire the user pages and remap them into kernel memory.
1800 	 */
1801 
1802 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1803 	error = uvm_vslock(vs, (void *)uva, len, prot);
1804 	if (error) {
1805 		return error;
1806 	}
1807 
1808 	map = &vs->vm_map;
1809 	upm = vm_map_pmap(map);
1810 	kpm = vm_map_pmap(kernel_map);
1811 	puva = trunc_page(uva);
1812 	kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1813 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1814 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1815 		rv = pmap_extract(upm, puva + poff, &pa);
1816 		KASSERT(rv);
1817 		pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1818 	}
1819 	pmap_update(kpm);
1820 
1821 	/*
1822 	 * Do the I/O.
1823 	 */
1824 
1825 	koff = uva - trunc_page(uva);
1826 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1827 			    genfs_dio_iodone);
1828 
1829 	/*
1830 	 * Tear down the kernel mapping.
1831 	 */
1832 
1833 	pmap_kremove(kva, klen);
1834 	pmap_update(kpm);
1835 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1836 
1837 	/*
1838 	 * Unwire the user pages.
1839 	 */
1840 
1841 	uvm_vsunlock(vs, (void *)uva, len);
1842 	return error;
1843 }
1844