xref: /netbsd-src/sys/miscfs/genfs/genfs_io.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /*	$NetBSD: genfs_io.c,v 1.61 2015/05/06 15:57:08 hannken Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.61 2015/05/06 15:57:08 hannken Exp $");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/vnode.h>
42 #include <sys/kmem.h>
43 #include <sys/kauth.h>
44 #include <sys/fstrans.h>
45 #include <sys/buf.h>
46 
47 #include <miscfs/genfs/genfs.h>
48 #include <miscfs/genfs/genfs_node.h>
49 #include <miscfs/specfs/specdev.h>
50 
51 #include <uvm/uvm.h>
52 #include <uvm/uvm_pager.h>
53 
54 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
55     off_t, enum uio_rw);
56 static void genfs_dio_iodone(struct buf *);
57 
58 static int genfs_getpages_read(struct vnode *, struct vm_page **, int, off_t,
59     off_t, bool, bool, bool, bool);
60 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
61     void (*)(struct buf *));
62 static void genfs_rel_pages(struct vm_page **, unsigned int);
63 static void genfs_markdirty(struct vnode *);
64 
65 int genfs_maxdio = MAXPHYS;
66 
67 static void
68 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
69 {
70 	unsigned int i;
71 
72 	for (i = 0; i < npages; i++) {
73 		struct vm_page *pg = pgs[i];
74 
75 		if (pg == NULL || pg == PGO_DONTCARE)
76 			continue;
77 		KASSERT(uvm_page_locked_p(pg));
78 		if (pg->flags & PG_FAKE) {
79 			pg->flags |= PG_RELEASED;
80 		}
81 	}
82 	mutex_enter(&uvm_pageqlock);
83 	uvm_page_unbusy(pgs, npages);
84 	mutex_exit(&uvm_pageqlock);
85 }
86 
87 static void
88 genfs_markdirty(struct vnode *vp)
89 {
90 	struct genfs_node * const gp = VTOG(vp);
91 
92 	KASSERT(mutex_owned(vp->v_interlock));
93 	gp->g_dirtygen++;
94 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
95 		vn_syncer_add_to_worklist(vp, filedelay);
96 	}
97 	if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
98 		vp->v_iflag |= VI_WRMAPDIRTY;
99 	}
100 }
101 
102 /*
103  * generic VM getpages routine.
104  * Return PG_BUSY pages for the given range,
105  * reading from backing store if necessary.
106  */
107 
108 int
109 genfs_getpages(void *v)
110 {
111 	struct vop_getpages_args /* {
112 		struct vnode *a_vp;
113 		voff_t a_offset;
114 		struct vm_page **a_m;
115 		int *a_count;
116 		int a_centeridx;
117 		vm_prot_t a_access_type;
118 		int a_advice;
119 		int a_flags;
120 	} */ * const ap = v;
121 
122 	off_t diskeof, memeof;
123 	int i, error, npages;
124 	const int flags = ap->a_flags;
125 	struct vnode * const vp = ap->a_vp;
126 	struct uvm_object * const uobj = &vp->v_uobj;
127 	const bool async = (flags & PGO_SYNCIO) == 0;
128 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
129 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
130 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
131 	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
132 	const bool need_wapbl = blockalloc && vp->v_mount->mnt_wapbl;
133 	bool has_trans_wapbl = false;
134 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
135 
136 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
137 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
138 
139 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
140 	    vp->v_type == VLNK || vp->v_type == VBLK);
141 
142 startover:
143 	error = 0;
144 	const voff_t origvsize = vp->v_size;
145 	const off_t origoffset = ap->a_offset;
146 	const int orignpages = *ap->a_count;
147 
148 	GOP_SIZE(vp, origvsize, &diskeof, 0);
149 	if (flags & PGO_PASTEOF) {
150 		off_t newsize;
151 #if defined(DIAGNOSTIC)
152 		off_t writeeof;
153 #endif /* defined(DIAGNOSTIC) */
154 
155 		newsize = MAX(origvsize,
156 		    origoffset + (orignpages << PAGE_SHIFT));
157 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
158 #if defined(DIAGNOSTIC)
159 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
160 		if (newsize > round_page(writeeof)) {
161 			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
162 			    __func__, newsize, round_page(writeeof));
163 		}
164 #endif /* defined(DIAGNOSTIC) */
165 	} else {
166 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
167 	}
168 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
169 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
170 	KASSERT(orignpages > 0);
171 
172 	/*
173 	 * Bounds-check the request.
174 	 */
175 
176 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
177 		if ((flags & PGO_LOCKED) == 0) {
178 			mutex_exit(uobj->vmobjlock);
179 		}
180 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
181 		    origoffset, *ap->a_count, memeof,0);
182 		error = EINVAL;
183 		goto out_err;
184 	}
185 
186 	/* uobj is locked */
187 
188 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
189 	    (vp->v_type != VBLK ||
190 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
191 		int updflags = 0;
192 
193 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
194 			updflags = GOP_UPDATE_ACCESSED;
195 		}
196 		if (memwrite) {
197 			updflags |= GOP_UPDATE_MODIFIED;
198 		}
199 		if (updflags != 0) {
200 			GOP_MARKUPDATE(vp, updflags);
201 		}
202 	}
203 
204 	/*
205 	 * For PGO_LOCKED requests, just return whatever's in memory.
206 	 */
207 
208 	if (flags & PGO_LOCKED) {
209 		int nfound;
210 		struct vm_page *pg;
211 
212 		KASSERT(!glocked);
213 		npages = *ap->a_count;
214 #if defined(DEBUG)
215 		for (i = 0; i < npages; i++) {
216 			pg = ap->a_m[i];
217 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
218 		}
219 #endif /* defined(DEBUG) */
220 		nfound = uvn_findpages(uobj, origoffset, &npages,
221 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
222 		KASSERT(npages == *ap->a_count);
223 		if (nfound == 0) {
224 			error = EBUSY;
225 			goto out_err;
226 		}
227 		if (!genfs_node_rdtrylock(vp)) {
228 			genfs_rel_pages(ap->a_m, npages);
229 
230 			/*
231 			 * restore the array.
232 			 */
233 
234 			for (i = 0; i < npages; i++) {
235 				pg = ap->a_m[i];
236 
237 				if (pg != NULL && pg != PGO_DONTCARE) {
238 					ap->a_m[i] = NULL;
239 				}
240 				KASSERT(ap->a_m[i] == NULL ||
241 				    ap->a_m[i] == PGO_DONTCARE);
242 			}
243 		} else {
244 			genfs_node_unlock(vp);
245 		}
246 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
247 		if (error == 0 && memwrite) {
248 			genfs_markdirty(vp);
249 		}
250 		goto out_err;
251 	}
252 	mutex_exit(uobj->vmobjlock);
253 
254 	/*
255 	 * find the requested pages and make some simple checks.
256 	 * leave space in the page array for a whole block.
257 	 */
258 
259 	const int fs_bshift = (vp->v_type != VBLK) ?
260 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
261 	const int fs_bsize = 1 << fs_bshift;
262 #define	blk_mask	(fs_bsize - 1)
263 #define	trunc_blk(x)	((x) & ~blk_mask)
264 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
265 
266 	const int orignmempages = MIN(orignpages,
267 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
268 	npages = orignmempages;
269 	const off_t startoffset = trunc_blk(origoffset);
270 	const off_t endoffset = MIN(
271 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
272 	    round_page(memeof));
273 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
274 
275 	const int pgs_size = sizeof(struct vm_page *) *
276 	    ((endoffset - startoffset) >> PAGE_SHIFT);
277 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
278 
279 	if (pgs_size > sizeof(pgs_onstack)) {
280 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
281 		if (pgs == NULL) {
282 			pgs = pgs_onstack;
283 			error = ENOMEM;
284 			goto out_err;
285 		}
286 	} else {
287 		pgs = pgs_onstack;
288 		(void)memset(pgs, 0, pgs_size);
289 	}
290 
291 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
292 	    ridx, npages, startoffset, endoffset);
293 
294 	if (!has_trans_wapbl) {
295 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
296 		/*
297 		 * XXX: This assumes that we come here only via
298 		 * the mmio path
299 		 */
300 		if (need_wapbl) {
301 			error = WAPBL_BEGIN(vp->v_mount);
302 			if (error) {
303 				fstrans_done(vp->v_mount);
304 				goto out_err_free;
305 			}
306 		}
307 		has_trans_wapbl = true;
308 	}
309 
310 	/*
311 	 * hold g_glock to prevent a race with truncate.
312 	 *
313 	 * check if our idea of v_size is still valid.
314 	 */
315 
316 	KASSERT(!glocked || genfs_node_wrlocked(vp));
317 	if (!glocked) {
318 		if (blockalloc) {
319 			genfs_node_wrlock(vp);
320 		} else {
321 			genfs_node_rdlock(vp);
322 		}
323 	}
324 	mutex_enter(uobj->vmobjlock);
325 	if (vp->v_size < origvsize) {
326 		if (!glocked) {
327 			genfs_node_unlock(vp);
328 		}
329 		if (pgs != pgs_onstack)
330 			kmem_free(pgs, pgs_size);
331 		goto startover;
332 	}
333 
334 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
335 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
336 		if (!glocked) {
337 			genfs_node_unlock(vp);
338 		}
339 		KASSERT(async != 0);
340 		genfs_rel_pages(&pgs[ridx], orignmempages);
341 		mutex_exit(uobj->vmobjlock);
342 		error = EBUSY;
343 		goto out_err_free;
344 	}
345 
346 	/*
347 	 * if the pages are already resident, just return them.
348 	 */
349 
350 	for (i = 0; i < npages; i++) {
351 		struct vm_page *pg = pgs[ridx + i];
352 
353 		if ((pg->flags & PG_FAKE) ||
354 		    (blockalloc && (pg->flags & PG_RDONLY))) {
355 			break;
356 		}
357 	}
358 	if (i == npages) {
359 		if (!glocked) {
360 			genfs_node_unlock(vp);
361 		}
362 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
363 		npages += ridx;
364 		goto out;
365 	}
366 
367 	/*
368 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
369 	 */
370 
371 	if (overwrite) {
372 		if (!glocked) {
373 			genfs_node_unlock(vp);
374 		}
375 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
376 
377 		for (i = 0; i < npages; i++) {
378 			struct vm_page *pg = pgs[ridx + i];
379 
380 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
381 		}
382 		npages += ridx;
383 		goto out;
384 	}
385 
386 	/*
387 	 * the page wasn't resident and we're not overwriting,
388 	 * so we're going to have to do some i/o.
389 	 * find any additional pages needed to cover the expanded range.
390 	 */
391 
392 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
393 	if (startoffset != origoffset || npages != orignmempages) {
394 		int npgs;
395 
396 		/*
397 		 * we need to avoid deadlocks caused by locking
398 		 * additional pages at lower offsets than pages we
399 		 * already have locked.  unlock them all and start over.
400 		 */
401 
402 		genfs_rel_pages(&pgs[ridx], orignmempages);
403 		memset(pgs, 0, pgs_size);
404 
405 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
406 		    startoffset, endoffset, 0,0);
407 		npgs = npages;
408 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
409 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
410 			if (!glocked) {
411 				genfs_node_unlock(vp);
412 			}
413 			KASSERT(async != 0);
414 			genfs_rel_pages(pgs, npages);
415 			mutex_exit(uobj->vmobjlock);
416 			error = EBUSY;
417 			goto out_err_free;
418 		}
419 	}
420 
421 	mutex_exit(uobj->vmobjlock);
422 	error = genfs_getpages_read(vp, pgs, npages, startoffset, diskeof,
423 	    async, memwrite, blockalloc, glocked);
424 	if (error == 0 && async)
425 		goto out_err_free;
426 	if (!glocked) {
427 		genfs_node_unlock(vp);
428 	}
429 	mutex_enter(uobj->vmobjlock);
430 
431 	/*
432 	 * we're almost done!  release the pages...
433 	 * for errors, we free the pages.
434 	 * otherwise we activate them and mark them as valid and clean.
435 	 * also, unbusy pages that were not actually requested.
436 	 */
437 
438 	if (error) {
439 		genfs_rel_pages(pgs, npages);
440 		mutex_exit(uobj->vmobjlock);
441 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
442 		goto out_err_free;
443 	}
444 
445 out:
446 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
447 	error = 0;
448 	mutex_enter(&uvm_pageqlock);
449 	for (i = 0; i < npages; i++) {
450 		struct vm_page *pg = pgs[i];
451 		if (pg == NULL) {
452 			continue;
453 		}
454 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
455 		    pg, pg->flags, 0,0);
456 		if (pg->flags & PG_FAKE && !overwrite) {
457 			pg->flags &= ~(PG_FAKE);
458 			pmap_clear_modify(pgs[i]);
459 		}
460 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
461 		if (i < ridx || i >= ridx + orignmempages || async) {
462 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
463 			    pg, pg->offset,0,0);
464 			if (pg->flags & PG_WANTED) {
465 				wakeup(pg);
466 			}
467 			if (pg->flags & PG_FAKE) {
468 				KASSERT(overwrite);
469 				uvm_pagezero(pg);
470 			}
471 			if (pg->flags & PG_RELEASED) {
472 				uvm_pagefree(pg);
473 				continue;
474 			}
475 			uvm_pageenqueue(pg);
476 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
477 			UVM_PAGE_OWN(pg, NULL);
478 		}
479 	}
480 	mutex_exit(&uvm_pageqlock);
481 	if (memwrite) {
482 		genfs_markdirty(vp);
483 	}
484 	mutex_exit(uobj->vmobjlock);
485 	if (ap->a_m != NULL) {
486 		memcpy(ap->a_m, &pgs[ridx],
487 		    orignmempages * sizeof(struct vm_page *));
488 	}
489 
490 out_err_free:
491 	if (pgs != NULL && pgs != pgs_onstack)
492 		kmem_free(pgs, pgs_size);
493 out_err:
494 	if (has_trans_wapbl) {
495 		if (need_wapbl)
496 			WAPBL_END(vp->v_mount);
497 		fstrans_done(vp->v_mount);
498 	}
499 	return error;
500 }
501 
502 /*
503  * genfs_getpages_read: Read the pages in with VOP_BMAP/VOP_STRATEGY.
504  */
505 static int
506 genfs_getpages_read(struct vnode *vp, struct vm_page **pgs, int npages,
507     off_t startoffset, off_t diskeof,
508     bool async, bool memwrite, bool blockalloc, bool glocked)
509 {
510 	struct uvm_object * const uobj = &vp->v_uobj;
511 	const int fs_bshift = (vp->v_type != VBLK) ?
512 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
513 	const int dev_bshift = (vp->v_type != VBLK) ?
514 	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
515 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
516 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
517 	vaddr_t kva;
518 	struct buf *bp, *mbp;
519 	bool sawhole = false;
520 	int i;
521 	int error = 0;
522 
523 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
524 
525 	/*
526 	 * read the desired page(s).
527 	 */
528 
529 	totalbytes = npages << PAGE_SHIFT;
530 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
531 	tailbytes = totalbytes - bytes;
532 	skipbytes = 0;
533 
534 	kva = uvm_pagermapin(pgs, npages,
535 	    UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
536 	if (kva == 0)
537 		return EBUSY;
538 
539 	mbp = getiobuf(vp, true);
540 	mbp->b_bufsize = totalbytes;
541 	mbp->b_data = (void *)kva;
542 	mbp->b_resid = mbp->b_bcount = bytes;
543 	mbp->b_cflags = BC_BUSY;
544 	if (async) {
545 		mbp->b_flags = B_READ | B_ASYNC;
546 		mbp->b_iodone = uvm_aio_biodone;
547 	} else {
548 		mbp->b_flags = B_READ;
549 		mbp->b_iodone = NULL;
550 	}
551 	if (async)
552 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
553 	else
554 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
555 
556 	/*
557 	 * if EOF is in the middle of the range, zero the part past EOF.
558 	 * skip over pages which are not PG_FAKE since in that case they have
559 	 * valid data that we need to preserve.
560 	 */
561 
562 	tailstart = bytes;
563 	while (tailbytes > 0) {
564 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
565 
566 		KASSERT(len <= tailbytes);
567 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
568 			memset((void *)(kva + tailstart), 0, len);
569 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
570 			    kva, tailstart, len, 0);
571 		}
572 		tailstart += len;
573 		tailbytes -= len;
574 	}
575 
576 	/*
577 	 * now loop over the pages, reading as needed.
578 	 */
579 
580 	bp = NULL;
581 	off_t offset;
582 	for (offset = startoffset;
583 	    bytes > 0;
584 	    offset += iobytes, bytes -= iobytes) {
585 		int run;
586 		daddr_t lbn, blkno;
587 		int pidx;
588 		struct vnode *devvp;
589 
590 		/*
591 		 * skip pages which don't need to be read.
592 		 */
593 
594 		pidx = (offset - startoffset) >> PAGE_SHIFT;
595 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
596 			size_t b;
597 
598 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
599 			if ((pgs[pidx]->flags & PG_RDONLY)) {
600 				sawhole = true;
601 			}
602 			b = MIN(PAGE_SIZE, bytes);
603 			offset += b;
604 			bytes -= b;
605 			skipbytes += b;
606 			pidx++;
607 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
608 			    offset, 0,0,0);
609 			if (bytes == 0) {
610 				goto loopdone;
611 			}
612 		}
613 
614 		/*
615 		 * bmap the file to find out the blkno to read from and
616 		 * how much we can read in one i/o.  if bmap returns an error,
617 		 * skip the rest of the top-level i/o.
618 		 */
619 
620 		lbn = offset >> fs_bshift;
621 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
622 		if (error) {
623 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
624 			    lbn,error,0,0);
625 			skipbytes += bytes;
626 			bytes = 0;
627 			goto loopdone;
628 		}
629 
630 		/*
631 		 * see how many pages can be read with this i/o.
632 		 * reduce the i/o size if necessary to avoid
633 		 * overwriting pages with valid data.
634 		 */
635 
636 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
637 		    bytes);
638 		if (offset + iobytes > round_page(offset)) {
639 			int pcount;
640 
641 			pcount = 1;
642 			while (pidx + pcount < npages &&
643 			    pgs[pidx + pcount]->flags & PG_FAKE) {
644 				pcount++;
645 			}
646 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
647 			    (offset - trunc_page(offset)));
648 		}
649 
650 		/*
651 		 * if this block isn't allocated, zero it instead of
652 		 * reading it.  unless we are going to allocate blocks,
653 		 * mark the pages we zeroed PG_RDONLY.
654 		 */
655 
656 		if (blkno == (daddr_t)-1) {
657 			int holepages = (round_page(offset + iobytes) -
658 			    trunc_page(offset)) >> PAGE_SHIFT;
659 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
660 
661 			sawhole = true;
662 			memset((char *)kva + (offset - startoffset), 0,
663 			    iobytes);
664 			skipbytes += iobytes;
665 
666 			mutex_enter(uobj->vmobjlock);
667 			for (i = 0; i < holepages; i++) {
668 				if (memwrite) {
669 					pgs[pidx + i]->flags &= ~PG_CLEAN;
670 				}
671 				if (!blockalloc) {
672 					pgs[pidx + i]->flags |= PG_RDONLY;
673 				}
674 			}
675 			mutex_exit(uobj->vmobjlock);
676 			continue;
677 		}
678 
679 		/*
680 		 * allocate a sub-buf for this piece of the i/o
681 		 * (or just use mbp if there's only 1 piece),
682 		 * and start it going.
683 		 */
684 
685 		if (offset == startoffset && iobytes == bytes) {
686 			bp = mbp;
687 		} else {
688 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
689 			    vp, bp, vp->v_numoutput, 0);
690 			bp = getiobuf(vp, true);
691 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
692 		}
693 		bp->b_lblkno = 0;
694 
695 		/* adjust physical blkno for partial blocks */
696 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
697 		    dev_bshift);
698 
699 		UVMHIST_LOG(ubchist,
700 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
701 		    bp, offset, bp->b_bcount, bp->b_blkno);
702 
703 		VOP_STRATEGY(devvp, bp);
704 	}
705 
706 loopdone:
707 	nestiobuf_done(mbp, skipbytes, error);
708 	if (async) {
709 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
710 		if (!glocked) {
711 			genfs_node_unlock(vp);
712 		}
713 		return 0;
714 	}
715 	if (bp != NULL) {
716 		error = biowait(mbp);
717 	}
718 
719 	/* Remove the mapping (make KVA available as soon as possible) */
720 	uvm_pagermapout(kva, npages);
721 
722 	/*
723 	 * if this we encountered a hole then we have to do a little more work.
724 	 * for read faults, we marked the page PG_RDONLY so that future
725 	 * write accesses to the page will fault again.
726 	 * for write faults, we must make sure that the backing store for
727 	 * the page is completely allocated while the pages are locked.
728 	 */
729 
730 	if (!error && sawhole && blockalloc) {
731 		error = GOP_ALLOC(vp, startoffset,
732 		    npages << PAGE_SHIFT, 0, cred);
733 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
734 		    startoffset, npages << PAGE_SHIFT, error,0);
735 		if (!error) {
736 			mutex_enter(uobj->vmobjlock);
737 			for (i = 0; i < npages; i++) {
738 				struct vm_page *pg = pgs[i];
739 
740 				if (pg == NULL) {
741 					continue;
742 				}
743 				pg->flags &= ~(PG_CLEAN|PG_RDONLY);
744 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
745 				    pg,0,0,0);
746 			}
747 			mutex_exit(uobj->vmobjlock);
748 		}
749 	}
750 
751 	putiobuf(mbp);
752 	return error;
753 }
754 
755 /*
756  * generic VM putpages routine.
757  * Write the given range of pages to backing store.
758  *
759  * => "offhi == 0" means flush all pages at or after "offlo".
760  * => object should be locked by caller.  we return with the
761  *      object unlocked.
762  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
763  *	thus, a caller might want to unlock higher level resources
764  *	(e.g. vm_map) before calling flush.
765  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
766  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
767  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
768  *	that new pages are inserted on the tail end of the list.   thus,
769  *	we can make a complete pass through the object in one go by starting
770  *	at the head and working towards the tail (new pages are put in
771  *	front of us).
772  * => NOTE: we are allowed to lock the page queues, so the caller
773  *	must not be holding the page queue lock.
774  *
775  * note on "cleaning" object and PG_BUSY pages:
776  *	this routine is holding the lock on the object.   the only time
777  *	that it can run into a PG_BUSY page that it does not own is if
778  *	some other process has started I/O on the page (e.g. either
779  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
780  *	in, then it can not be dirty (!PG_CLEAN) because no one has
781  *	had a chance to modify it yet.    if the PG_BUSY page is being
782  *	paged out then it means that someone else has already started
783  *	cleaning the page for us (how nice!).    in this case, if we
784  *	have syncio specified, then after we make our pass through the
785  *	object we need to wait for the other PG_BUSY pages to clear
786  *	off (i.e. we need to do an iosync).   also note that once a
787  *	page is PG_BUSY it must stay in its object until it is un-busyed.
788  *
789  * note on page traversal:
790  *	we can traverse the pages in an object either by going down the
791  *	linked list in "uobj->memq", or we can go over the address range
792  *	by page doing hash table lookups for each address.    depending
793  *	on how many pages are in the object it may be cheaper to do one
794  *	or the other.   we set "by_list" to true if we are using memq.
795  *	if the cost of a hash lookup was equal to the cost of the list
796  *	traversal we could compare the number of pages in the start->stop
797  *	range to the total number of pages in the object.   however, it
798  *	seems that a hash table lookup is more expensive than the linked
799  *	list traversal, so we multiply the number of pages in the
800  *	range by an estimate of the relatively higher cost of the hash lookup.
801  */
802 
803 int
804 genfs_putpages(void *v)
805 {
806 	struct vop_putpages_args /* {
807 		struct vnode *a_vp;
808 		voff_t a_offlo;
809 		voff_t a_offhi;
810 		int a_flags;
811 	} */ * const ap = v;
812 
813 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
814 	    ap->a_flags, NULL);
815 }
816 
817 int
818 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
819     int origflags, struct vm_page **busypg)
820 {
821 	struct uvm_object * const uobj = &vp->v_uobj;
822 	kmutex_t * const slock = uobj->vmobjlock;
823 	off_t off;
824 	/* Even for strange MAXPHYS, the shift rounds down to a page */
825 #define maxpages (MAXPHYS >> PAGE_SHIFT)
826 	int i, error, npages, nback;
827 	int freeflag;
828 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
829 	bool wasclean, by_list, needs_clean, yld;
830 	bool async = (origflags & PGO_SYNCIO) == 0;
831 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
832 	struct lwp * const l = curlwp ? curlwp : &lwp0;
833 	struct genfs_node * const gp = VTOG(vp);
834 	int flags;
835 	int dirtygen;
836 	bool modified;
837 	bool need_wapbl;
838 	bool has_trans;
839 	bool cleanall;
840 	bool onworklst;
841 
842 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
843 
844 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
845 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
846 	KASSERT(startoff < endoff || endoff == 0);
847 
848 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
849 	    vp, uobj->uo_npages, startoff, endoff - startoff);
850 
851 	has_trans = false;
852 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
853 	    (origflags & PGO_JOURNALLOCKED) == 0);
854 
855 retry:
856 	modified = false;
857 	flags = origflags;
858 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
859 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
860 	if (uobj->uo_npages == 0) {
861 		if (vp->v_iflag & VI_ONWORKLST) {
862 			vp->v_iflag &= ~VI_WRMAPDIRTY;
863 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
864 				vn_syncer_remove_from_worklist(vp);
865 		}
866 		if (has_trans) {
867 			if (need_wapbl)
868 				WAPBL_END(vp->v_mount);
869 			fstrans_done(vp->v_mount);
870 		}
871 		mutex_exit(slock);
872 		return (0);
873 	}
874 
875 	/*
876 	 * the vnode has pages, set up to process the request.
877 	 */
878 
879 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
880 		mutex_exit(slock);
881 		if (pagedaemon) {
882 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
883 			if (error)
884 				return error;
885 		} else
886 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
887 		if (need_wapbl) {
888 			error = WAPBL_BEGIN(vp->v_mount);
889 			if (error) {
890 				fstrans_done(vp->v_mount);
891 				return error;
892 			}
893 		}
894 		has_trans = true;
895 		mutex_enter(slock);
896 		goto retry;
897 	}
898 
899 	error = 0;
900 	wasclean = (vp->v_numoutput == 0);
901 	off = startoff;
902 	if (endoff == 0 || flags & PGO_ALLPAGES) {
903 		endoff = trunc_page(LLONG_MAX);
904 	}
905 	by_list = (uobj->uo_npages <=
906 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
907 
908 	/*
909 	 * if this vnode is known not to have dirty pages,
910 	 * don't bother to clean it out.
911 	 */
912 
913 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
914 #if !defined(DEBUG)
915 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
916 			goto skip_scan;
917 		}
918 #endif /* !defined(DEBUG) */
919 		flags &= ~PGO_CLEANIT;
920 	}
921 
922 	/*
923 	 * start the loop.  when scanning by list, hold the last page
924 	 * in the list before we start.  pages allocated after we start
925 	 * will be added to the end of the list, so we can stop at the
926 	 * current last page.
927 	 */
928 
929 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
930 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
931 	    (vp->v_iflag & VI_ONWORKLST) != 0;
932 	dirtygen = gp->g_dirtygen;
933 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
934 	if (by_list) {
935 		curmp.flags = PG_MARKER;
936 		endmp.flags = PG_MARKER;
937 		pg = TAILQ_FIRST(&uobj->memq);
938 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
939 	} else {
940 		pg = uvm_pagelookup(uobj, off);
941 	}
942 	nextpg = NULL;
943 	while (by_list || off < endoff) {
944 
945 		/*
946 		 * if the current page is not interesting, move on to the next.
947 		 */
948 
949 		KASSERT(pg == NULL || pg->uobject == uobj ||
950 		    (pg->flags & PG_MARKER) != 0);
951 		KASSERT(pg == NULL ||
952 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
953 		    (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
954 		if (by_list) {
955 			if (pg == &endmp) {
956 				break;
957 			}
958 			if (pg->flags & PG_MARKER) {
959 				pg = TAILQ_NEXT(pg, listq.queue);
960 				continue;
961 			}
962 			if (pg->offset < startoff || pg->offset >= endoff ||
963 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
964 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
965 					wasclean = false;
966 				}
967 				pg = TAILQ_NEXT(pg, listq.queue);
968 				continue;
969 			}
970 			off = pg->offset;
971 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
972 			if (pg != NULL) {
973 				wasclean = false;
974 			}
975 			off += PAGE_SIZE;
976 			if (off < endoff) {
977 				pg = uvm_pagelookup(uobj, off);
978 			}
979 			continue;
980 		}
981 
982 		/*
983 		 * if the current page needs to be cleaned and it's busy,
984 		 * wait for it to become unbusy.
985 		 */
986 
987 		yld = (l->l_cpu->ci_schedstate.spc_flags &
988 		    SPCF_SHOULDYIELD) && !pagedaemon;
989 		if (pg->flags & PG_BUSY || yld) {
990 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
991 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
992 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
993 				error = EDEADLK;
994 				if (busypg != NULL)
995 					*busypg = pg;
996 				break;
997 			}
998 			if (pagedaemon) {
999 				/*
1000 				 * someone has taken the page while we
1001 				 * dropped the lock for fstrans_start.
1002 				 */
1003 				break;
1004 			}
1005 			if (by_list) {
1006 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1007 				UVMHIST_LOG(ubchist, "curmp next %p",
1008 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1009 			}
1010 			if (yld) {
1011 				mutex_exit(slock);
1012 				preempt();
1013 				mutex_enter(slock);
1014 			} else {
1015 				pg->flags |= PG_WANTED;
1016 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1017 				mutex_enter(slock);
1018 			}
1019 			if (by_list) {
1020 				UVMHIST_LOG(ubchist, "after next %p",
1021 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1022 				pg = TAILQ_NEXT(&curmp, listq.queue);
1023 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1024 			} else {
1025 				pg = uvm_pagelookup(uobj, off);
1026 			}
1027 			continue;
1028 		}
1029 
1030 		/*
1031 		 * if we're freeing, remove all mappings of the page now.
1032 		 * if we're cleaning, check if the page is needs to be cleaned.
1033 		 */
1034 
1035 		if (flags & PGO_FREE) {
1036 			pmap_page_protect(pg, VM_PROT_NONE);
1037 		} else if (flags & PGO_CLEANIT) {
1038 
1039 			/*
1040 			 * if we still have some hope to pull this vnode off
1041 			 * from the syncer queue, write-protect the page.
1042 			 */
1043 
1044 			if (cleanall && wasclean &&
1045 			    gp->g_dirtygen == dirtygen) {
1046 
1047 				/*
1048 				 * uobj pages get wired only by uvm_fault
1049 				 * where uobj is locked.
1050 				 */
1051 
1052 				if (pg->wire_count == 0) {
1053 					pmap_page_protect(pg,
1054 					    VM_PROT_READ|VM_PROT_EXECUTE);
1055 				} else {
1056 					cleanall = false;
1057 				}
1058 			}
1059 		}
1060 
1061 		if (flags & PGO_CLEANIT) {
1062 			needs_clean = pmap_clear_modify(pg) ||
1063 			    (pg->flags & PG_CLEAN) == 0;
1064 			pg->flags |= PG_CLEAN;
1065 		} else {
1066 			needs_clean = false;
1067 		}
1068 
1069 		/*
1070 		 * if we're cleaning, build a cluster.
1071 		 * the cluster will consist of pages which are currently dirty,
1072 		 * but they will be returned to us marked clean.
1073 		 * if not cleaning, just operate on the one page.
1074 		 */
1075 
1076 		if (needs_clean) {
1077 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
1078 			wasclean = false;
1079 			memset(pgs, 0, sizeof(pgs));
1080 			pg->flags |= PG_BUSY;
1081 			UVM_PAGE_OWN(pg, "genfs_putpages");
1082 
1083 			/*
1084 			 * first look backward.
1085 			 */
1086 
1087 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1088 			nback = npages;
1089 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1090 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1091 			if (nback) {
1092 				memmove(&pgs[0], &pgs[npages - nback],
1093 				    nback * sizeof(pgs[0]));
1094 				if (npages - nback < nback)
1095 					memset(&pgs[nback], 0,
1096 					    (npages - nback) * sizeof(pgs[0]));
1097 				else
1098 					memset(&pgs[npages - nback], 0,
1099 					    nback * sizeof(pgs[0]));
1100 			}
1101 
1102 			/*
1103 			 * then plug in our page of interest.
1104 			 */
1105 
1106 			pgs[nback] = pg;
1107 
1108 			/*
1109 			 * then look forward to fill in the remaining space in
1110 			 * the array of pages.
1111 			 */
1112 
1113 			npages = maxpages - nback - 1;
1114 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1115 			    &pgs[nback + 1],
1116 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1117 			npages += nback + 1;
1118 		} else {
1119 			pgs[0] = pg;
1120 			npages = 1;
1121 			nback = 0;
1122 		}
1123 
1124 		/*
1125 		 * apply FREE or DEACTIVATE options if requested.
1126 		 */
1127 
1128 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1129 			mutex_enter(&uvm_pageqlock);
1130 		}
1131 		for (i = 0; i < npages; i++) {
1132 			tpg = pgs[i];
1133 			KASSERT(tpg->uobject == uobj);
1134 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1135 				pg = tpg;
1136 			if (tpg->offset < startoff || tpg->offset >= endoff)
1137 				continue;
1138 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1139 				uvm_pagedeactivate(tpg);
1140 			} else if (flags & PGO_FREE) {
1141 				pmap_page_protect(tpg, VM_PROT_NONE);
1142 				if (tpg->flags & PG_BUSY) {
1143 					tpg->flags |= freeflag;
1144 					if (pagedaemon) {
1145 						uvm_pageout_start(1);
1146 						uvm_pagedequeue(tpg);
1147 					}
1148 				} else {
1149 
1150 					/*
1151 					 * ``page is not busy''
1152 					 * implies that npages is 1
1153 					 * and needs_clean is false.
1154 					 */
1155 
1156 					nextpg = TAILQ_NEXT(tpg, listq.queue);
1157 					uvm_pagefree(tpg);
1158 					if (pagedaemon)
1159 						uvmexp.pdfreed++;
1160 				}
1161 			}
1162 		}
1163 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1164 			mutex_exit(&uvm_pageqlock);
1165 		}
1166 		if (needs_clean) {
1167 			modified = true;
1168 
1169 			/*
1170 			 * start the i/o.  if we're traversing by list,
1171 			 * keep our place in the list with a marker page.
1172 			 */
1173 
1174 			if (by_list) {
1175 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1176 				    listq.queue);
1177 			}
1178 			mutex_exit(slock);
1179 			error = GOP_WRITE(vp, pgs, npages, flags);
1180 			mutex_enter(slock);
1181 			if (by_list) {
1182 				pg = TAILQ_NEXT(&curmp, listq.queue);
1183 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1184 			}
1185 			if (error) {
1186 				break;
1187 			}
1188 			if (by_list) {
1189 				continue;
1190 			}
1191 		}
1192 
1193 		/*
1194 		 * find the next page and continue if there was no error.
1195 		 */
1196 
1197 		if (by_list) {
1198 			if (nextpg) {
1199 				pg = nextpg;
1200 				nextpg = NULL;
1201 			} else {
1202 				pg = TAILQ_NEXT(pg, listq.queue);
1203 			}
1204 		} else {
1205 			off += (npages - nback) << PAGE_SHIFT;
1206 			if (off < endoff) {
1207 				pg = uvm_pagelookup(uobj, off);
1208 			}
1209 		}
1210 	}
1211 	if (by_list) {
1212 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1213 	}
1214 
1215 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1216 	    (vp->v_type != VBLK ||
1217 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1218 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1219 	}
1220 
1221 	/*
1222 	 * if we're cleaning and there was nothing to clean,
1223 	 * take us off the syncer list.  if we started any i/o
1224 	 * and we're doing sync i/o, wait for all writes to finish.
1225 	 */
1226 
1227 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1228 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
1229 #if defined(DEBUG)
1230 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1231 			if ((pg->flags & (PG_FAKE | PG_MARKER)) != 0) {
1232 				continue;
1233 			}
1234 			if ((pg->flags & PG_CLEAN) == 0) {
1235 				printf("%s: %p: !CLEAN\n", __func__, pg);
1236 			}
1237 			if (pmap_is_modified(pg)) {
1238 				printf("%s: %p: modified\n", __func__, pg);
1239 			}
1240 		}
1241 #endif /* defined(DEBUG) */
1242 		vp->v_iflag &= ~VI_WRMAPDIRTY;
1243 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1244 			vn_syncer_remove_from_worklist(vp);
1245 	}
1246 
1247 #if !defined(DEBUG)
1248 skip_scan:
1249 #endif /* !defined(DEBUG) */
1250 
1251 	/* Wait for output to complete. */
1252 	if (!wasclean && !async && vp->v_numoutput != 0) {
1253 		while (vp->v_numoutput != 0)
1254 			cv_wait(&vp->v_cv, slock);
1255 	}
1256 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1257 	mutex_exit(slock);
1258 
1259 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1260 		/*
1261 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1262 		 * retrying is not a big deal because, in many cases,
1263 		 * uobj->uo_npages is already 0 here.
1264 		 */
1265 		mutex_enter(slock);
1266 		goto retry;
1267 	}
1268 
1269 	if (has_trans) {
1270 		if (need_wapbl)
1271 			WAPBL_END(vp->v_mount);
1272 		fstrans_done(vp->v_mount);
1273 	}
1274 
1275 	return (error);
1276 }
1277 
1278 int
1279 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1280 {
1281 	off_t off;
1282 	vaddr_t kva;
1283 	size_t len;
1284 	int error;
1285 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1286 
1287 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1288 	    vp, pgs, npages, flags);
1289 
1290 	off = pgs[0]->offset;
1291 	kva = uvm_pagermapin(pgs, npages,
1292 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1293 	len = npages << PAGE_SHIFT;
1294 
1295 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1296 			    uvm_aio_biodone);
1297 
1298 	return error;
1299 }
1300 
1301 int
1302 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1303 {
1304 	off_t off;
1305 	vaddr_t kva;
1306 	size_t len;
1307 	int error;
1308 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1309 
1310 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1311 	    vp, pgs, npages, flags);
1312 
1313 	off = pgs[0]->offset;
1314 	kva = uvm_pagermapin(pgs, npages,
1315 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1316 	len = npages << PAGE_SHIFT;
1317 
1318 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1319 			    uvm_aio_biodone);
1320 
1321 	return error;
1322 }
1323 
1324 /*
1325  * Backend routine for doing I/O to vnode pages.  Pages are already locked
1326  * and mapped into kernel memory.  Here we just look up the underlying
1327  * device block addresses and call the strategy routine.
1328  */
1329 
1330 static int
1331 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1332     enum uio_rw rw, void (*iodone)(struct buf *))
1333 {
1334 	int s, error;
1335 	int fs_bshift, dev_bshift;
1336 	off_t eof, offset, startoffset;
1337 	size_t bytes, iobytes, skipbytes;
1338 	struct buf *mbp, *bp;
1339 	const bool async = (flags & PGO_SYNCIO) == 0;
1340 	const bool lazy = (flags & PGO_LAZY) == 0;
1341 	const bool iowrite = rw == UIO_WRITE;
1342 	const int brw = iowrite ? B_WRITE : B_READ;
1343 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1344 
1345 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1346 	    vp, kva, len, flags);
1347 
1348 	KASSERT(vp->v_size <= vp->v_writesize);
1349 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1350 	if (vp->v_type != VBLK) {
1351 		fs_bshift = vp->v_mount->mnt_fs_bshift;
1352 		dev_bshift = vp->v_mount->mnt_dev_bshift;
1353 	} else {
1354 		fs_bshift = DEV_BSHIFT;
1355 		dev_bshift = DEV_BSHIFT;
1356 	}
1357 	error = 0;
1358 	startoffset = off;
1359 	bytes = MIN(len, eof - startoffset);
1360 	skipbytes = 0;
1361 	KASSERT(bytes != 0);
1362 
1363 	if (iowrite) {
1364 		mutex_enter(vp->v_interlock);
1365 		vp->v_numoutput += 2;
1366 		mutex_exit(vp->v_interlock);
1367 	}
1368 	mbp = getiobuf(vp, true);
1369 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1370 	    vp, mbp, vp->v_numoutput, bytes);
1371 	mbp->b_bufsize = len;
1372 	mbp->b_data = (void *)kva;
1373 	mbp->b_resid = mbp->b_bcount = bytes;
1374 	mbp->b_cflags = BC_BUSY | BC_AGE;
1375 	if (async) {
1376 		mbp->b_flags = brw | B_ASYNC;
1377 		mbp->b_iodone = iodone;
1378 	} else {
1379 		mbp->b_flags = brw;
1380 		mbp->b_iodone = NULL;
1381 	}
1382 	if (curlwp == uvm.pagedaemon_lwp)
1383 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1384 	else if (async || lazy)
1385 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1386 	else
1387 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1388 
1389 	bp = NULL;
1390 	for (offset = startoffset;
1391 	    bytes > 0;
1392 	    offset += iobytes, bytes -= iobytes) {
1393 		int run;
1394 		daddr_t lbn, blkno;
1395 		struct vnode *devvp;
1396 
1397 		/*
1398 		 * bmap the file to find out the blkno to read from and
1399 		 * how much we can read in one i/o.  if bmap returns an error,
1400 		 * skip the rest of the top-level i/o.
1401 		 */
1402 
1403 		lbn = offset >> fs_bshift;
1404 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1405 		if (error) {
1406 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1407 			    lbn,error,0,0);
1408 			skipbytes += bytes;
1409 			bytes = 0;
1410 			goto loopdone;
1411 		}
1412 
1413 		/*
1414 		 * see how many pages can be read with this i/o.
1415 		 * reduce the i/o size if necessary to avoid
1416 		 * overwriting pages with valid data.
1417 		 */
1418 
1419 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1420 		    bytes);
1421 
1422 		/*
1423 		 * if this block isn't allocated, zero it instead of
1424 		 * reading it.  unless we are going to allocate blocks,
1425 		 * mark the pages we zeroed PG_RDONLY.
1426 		 */
1427 
1428 		if (blkno == (daddr_t)-1) {
1429 			if (!iowrite) {
1430 				memset((char *)kva + (offset - startoffset), 0,
1431 				    iobytes);
1432 			}
1433 			skipbytes += iobytes;
1434 			continue;
1435 		}
1436 
1437 		/*
1438 		 * allocate a sub-buf for this piece of the i/o
1439 		 * (or just use mbp if there's only 1 piece),
1440 		 * and start it going.
1441 		 */
1442 
1443 		if (offset == startoffset && iobytes == bytes) {
1444 			bp = mbp;
1445 		} else {
1446 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1447 			    vp, bp, vp->v_numoutput, 0);
1448 			bp = getiobuf(vp, true);
1449 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1450 		}
1451 		bp->b_lblkno = 0;
1452 
1453 		/* adjust physical blkno for partial blocks */
1454 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1455 		    dev_bshift);
1456 
1457 		UVMHIST_LOG(ubchist,
1458 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1459 		    bp, offset, bp->b_bcount, bp->b_blkno);
1460 
1461 		VOP_STRATEGY(devvp, bp);
1462 	}
1463 
1464 loopdone:
1465 	if (skipbytes) {
1466 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1467 	}
1468 	nestiobuf_done(mbp, skipbytes, error);
1469 	if (async) {
1470 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1471 		return (0);
1472 	}
1473 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1474 	error = biowait(mbp);
1475 	s = splbio();
1476 	(*iodone)(mbp);
1477 	splx(s);
1478 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1479 	return (error);
1480 }
1481 
1482 int
1483 genfs_compat_getpages(void *v)
1484 {
1485 	struct vop_getpages_args /* {
1486 		struct vnode *a_vp;
1487 		voff_t a_offset;
1488 		struct vm_page **a_m;
1489 		int *a_count;
1490 		int a_centeridx;
1491 		vm_prot_t a_access_type;
1492 		int a_advice;
1493 		int a_flags;
1494 	} */ *ap = v;
1495 
1496 	off_t origoffset;
1497 	struct vnode *vp = ap->a_vp;
1498 	struct uvm_object *uobj = &vp->v_uobj;
1499 	struct vm_page *pg, **pgs;
1500 	vaddr_t kva;
1501 	int i, error, orignpages, npages;
1502 	struct iovec iov;
1503 	struct uio uio;
1504 	kauth_cred_t cred = curlwp->l_cred;
1505 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1506 
1507 	error = 0;
1508 	origoffset = ap->a_offset;
1509 	orignpages = *ap->a_count;
1510 	pgs = ap->a_m;
1511 
1512 	if (ap->a_flags & PGO_LOCKED) {
1513 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1514 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1515 
1516 		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1517 		if (error == 0 && memwrite) {
1518 			genfs_markdirty(vp);
1519 		}
1520 		return error;
1521 	}
1522 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1523 		mutex_exit(uobj->vmobjlock);
1524 		return EINVAL;
1525 	}
1526 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
1527 		mutex_exit(uobj->vmobjlock);
1528 		return 0;
1529 	}
1530 	npages = orignpages;
1531 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1532 	mutex_exit(uobj->vmobjlock);
1533 	kva = uvm_pagermapin(pgs, npages,
1534 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1535 	for (i = 0; i < npages; i++) {
1536 		pg = pgs[i];
1537 		if ((pg->flags & PG_FAKE) == 0) {
1538 			continue;
1539 		}
1540 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1541 		iov.iov_len = PAGE_SIZE;
1542 		uio.uio_iov = &iov;
1543 		uio.uio_iovcnt = 1;
1544 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1545 		uio.uio_rw = UIO_READ;
1546 		uio.uio_resid = PAGE_SIZE;
1547 		UIO_SETUP_SYSSPACE(&uio);
1548 		/* XXX vn_lock */
1549 		error = VOP_READ(vp, &uio, 0, cred);
1550 		if (error) {
1551 			break;
1552 		}
1553 		if (uio.uio_resid) {
1554 			memset(iov.iov_base, 0, uio.uio_resid);
1555 		}
1556 	}
1557 	uvm_pagermapout(kva, npages);
1558 	mutex_enter(uobj->vmobjlock);
1559 	mutex_enter(&uvm_pageqlock);
1560 	for (i = 0; i < npages; i++) {
1561 		pg = pgs[i];
1562 		if (error && (pg->flags & PG_FAKE) != 0) {
1563 			pg->flags |= PG_RELEASED;
1564 		} else {
1565 			pmap_clear_modify(pg);
1566 			uvm_pageactivate(pg);
1567 		}
1568 	}
1569 	if (error) {
1570 		uvm_page_unbusy(pgs, npages);
1571 	}
1572 	mutex_exit(&uvm_pageqlock);
1573 	if (error == 0 && memwrite) {
1574 		genfs_markdirty(vp);
1575 	}
1576 	mutex_exit(uobj->vmobjlock);
1577 	return error;
1578 }
1579 
1580 int
1581 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1582     int flags)
1583 {
1584 	off_t offset;
1585 	struct iovec iov;
1586 	struct uio uio;
1587 	kauth_cred_t cred = curlwp->l_cred;
1588 	struct buf *bp;
1589 	vaddr_t kva;
1590 	int error;
1591 
1592 	offset = pgs[0]->offset;
1593 	kva = uvm_pagermapin(pgs, npages,
1594 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1595 
1596 	iov.iov_base = (void *)kva;
1597 	iov.iov_len = npages << PAGE_SHIFT;
1598 	uio.uio_iov = &iov;
1599 	uio.uio_iovcnt = 1;
1600 	uio.uio_offset = offset;
1601 	uio.uio_rw = UIO_WRITE;
1602 	uio.uio_resid = npages << PAGE_SHIFT;
1603 	UIO_SETUP_SYSSPACE(&uio);
1604 	/* XXX vn_lock */
1605 	error = VOP_WRITE(vp, &uio, 0, cred);
1606 
1607 	mutex_enter(vp->v_interlock);
1608 	vp->v_numoutput++;
1609 	mutex_exit(vp->v_interlock);
1610 
1611 	bp = getiobuf(vp, true);
1612 	bp->b_cflags = BC_BUSY | BC_AGE;
1613 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1614 	bp->b_data = (char *)kva;
1615 	bp->b_bcount = npages << PAGE_SHIFT;
1616 	bp->b_bufsize = npages << PAGE_SHIFT;
1617 	bp->b_resid = 0;
1618 	bp->b_error = error;
1619 	uvm_aio_aiodone(bp);
1620 	return (error);
1621 }
1622 
1623 /*
1624  * Process a uio using direct I/O.  If we reach a part of the request
1625  * which cannot be processed in this fashion for some reason, just return.
1626  * The caller must handle some additional part of the request using
1627  * buffered I/O before trying direct I/O again.
1628  */
1629 
1630 void
1631 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1632 {
1633 	struct vmspace *vs;
1634 	struct iovec *iov;
1635 	vaddr_t va;
1636 	size_t len;
1637 	const int mask = DEV_BSIZE - 1;
1638 	int error;
1639 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1640 	    (ioflag & IO_JOURNALLOCKED) == 0);
1641 
1642 	/*
1643 	 * We only support direct I/O to user space for now.
1644 	 */
1645 
1646 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1647 		return;
1648 	}
1649 
1650 	/*
1651 	 * If the vnode is mapped, we would need to get the getpages lock
1652 	 * to stabilize the bmap, but then we would get into trouble while
1653 	 * locking the pages if the pages belong to this same vnode (or a
1654 	 * multi-vnode cascade to the same effect).  Just fall back to
1655 	 * buffered I/O if the vnode is mapped to avoid this mess.
1656 	 */
1657 
1658 	if (vp->v_vflag & VV_MAPPED) {
1659 		return;
1660 	}
1661 
1662 	if (need_wapbl) {
1663 		error = WAPBL_BEGIN(vp->v_mount);
1664 		if (error)
1665 			return;
1666 	}
1667 
1668 	/*
1669 	 * Do as much of the uio as possible with direct I/O.
1670 	 */
1671 
1672 	vs = uio->uio_vmspace;
1673 	while (uio->uio_resid) {
1674 		iov = uio->uio_iov;
1675 		if (iov->iov_len == 0) {
1676 			uio->uio_iov++;
1677 			uio->uio_iovcnt--;
1678 			continue;
1679 		}
1680 		va = (vaddr_t)iov->iov_base;
1681 		len = MIN(iov->iov_len, genfs_maxdio);
1682 		len &= ~mask;
1683 
1684 		/*
1685 		 * If the next chunk is smaller than DEV_BSIZE or extends past
1686 		 * the current EOF, then fall back to buffered I/O.
1687 		 */
1688 
1689 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
1690 			break;
1691 		}
1692 
1693 		/*
1694 		 * Check alignment.  The file offset must be at least
1695 		 * sector-aligned.  The exact constraint on memory alignment
1696 		 * is very hardware-dependent, but requiring sector-aligned
1697 		 * addresses there too is safe.
1698 		 */
1699 
1700 		if (uio->uio_offset & mask || va & mask) {
1701 			break;
1702 		}
1703 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1704 					  uio->uio_rw);
1705 		if (error) {
1706 			break;
1707 		}
1708 		iov->iov_base = (char *)iov->iov_base + len;
1709 		iov->iov_len -= len;
1710 		uio->uio_offset += len;
1711 		uio->uio_resid -= len;
1712 	}
1713 
1714 	if (need_wapbl)
1715 		WAPBL_END(vp->v_mount);
1716 }
1717 
1718 /*
1719  * Iodone routine for direct I/O.  We don't do much here since the request is
1720  * always synchronous, so the caller will do most of the work after biowait().
1721  */
1722 
1723 static void
1724 genfs_dio_iodone(struct buf *bp)
1725 {
1726 
1727 	KASSERT((bp->b_flags & B_ASYNC) == 0);
1728 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1729 		mutex_enter(bp->b_objlock);
1730 		vwakeup(bp);
1731 		mutex_exit(bp->b_objlock);
1732 	}
1733 	putiobuf(bp);
1734 }
1735 
1736 /*
1737  * Process one chunk of a direct I/O request.
1738  */
1739 
1740 static int
1741 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1742     off_t off, enum uio_rw rw)
1743 {
1744 	struct vm_map *map;
1745 	struct pmap *upm, *kpm __unused;
1746 	size_t klen = round_page(uva + len) - trunc_page(uva);
1747 	off_t spoff, epoff;
1748 	vaddr_t kva, puva;
1749 	paddr_t pa;
1750 	vm_prot_t prot;
1751 	int error, rv __diagused, poff, koff;
1752 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1753 		(rw == UIO_WRITE ? PGO_FREE : 0);
1754 
1755 	/*
1756 	 * For writes, verify that this range of the file already has fully
1757 	 * allocated backing store.  If there are any holes, just punt and
1758 	 * make the caller take the buffered write path.
1759 	 */
1760 
1761 	if (rw == UIO_WRITE) {
1762 		daddr_t lbn, elbn, blkno;
1763 		int bsize, bshift, run;
1764 
1765 		bshift = vp->v_mount->mnt_fs_bshift;
1766 		bsize = 1 << bshift;
1767 		lbn = off >> bshift;
1768 		elbn = (off + len + bsize - 1) >> bshift;
1769 		while (lbn < elbn) {
1770 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1771 			if (error) {
1772 				return error;
1773 			}
1774 			if (blkno == (daddr_t)-1) {
1775 				return ENOSPC;
1776 			}
1777 			lbn += 1 + run;
1778 		}
1779 	}
1780 
1781 	/*
1782 	 * Flush any cached pages for parts of the file that we're about to
1783 	 * access.  If we're writing, invalidate pages as well.
1784 	 */
1785 
1786 	spoff = trunc_page(off);
1787 	epoff = round_page(off + len);
1788 	mutex_enter(vp->v_interlock);
1789 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1790 	if (error) {
1791 		return error;
1792 	}
1793 
1794 	/*
1795 	 * Wire the user pages and remap them into kernel memory.
1796 	 */
1797 
1798 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1799 	error = uvm_vslock(vs, (void *)uva, len, prot);
1800 	if (error) {
1801 		return error;
1802 	}
1803 
1804 	map = &vs->vm_map;
1805 	upm = vm_map_pmap(map);
1806 	kpm = vm_map_pmap(kernel_map);
1807 	puva = trunc_page(uva);
1808 	kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1809 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1810 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1811 		rv = pmap_extract(upm, puva + poff, &pa);
1812 		KASSERT(rv);
1813 		pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1814 	}
1815 	pmap_update(kpm);
1816 
1817 	/*
1818 	 * Do the I/O.
1819 	 */
1820 
1821 	koff = uva - trunc_page(uva);
1822 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1823 			    genfs_dio_iodone);
1824 
1825 	/*
1826 	 * Tear down the kernel mapping.
1827 	 */
1828 
1829 	pmap_kremove(kva, klen);
1830 	pmap_update(kpm);
1831 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1832 
1833 	/*
1834 	 * Unwire the user pages.
1835 	 */
1836 
1837 	uvm_vsunlock(vs, (void *)uva, len);
1838 	return error;
1839 }
1840