xref: /netbsd-src/sys/miscfs/genfs/genfs_io.c (revision ba65fde2d7fefa7d39838fa5fa855e62bd606b5e)
1 /*	$NetBSD: genfs_io.c,v 1.55 2012/05/22 14:20:39 yamt Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.55 2012/05/22 14:20:39 yamt Exp $");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/vnode.h>
42 #include <sys/kmem.h>
43 #include <sys/kauth.h>
44 #include <sys/fstrans.h>
45 #include <sys/buf.h>
46 
47 #include <miscfs/genfs/genfs.h>
48 #include <miscfs/genfs/genfs_node.h>
49 #include <miscfs/specfs/specdev.h>
50 #include <miscfs/syncfs/syncfs.h>
51 
52 #include <uvm/uvm.h>
53 #include <uvm/uvm_pager.h>
54 
55 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
56     off_t, enum uio_rw);
57 static void genfs_dio_iodone(struct buf *);
58 
59 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
60     void (*)(struct buf *));
61 static void genfs_rel_pages(struct vm_page **, unsigned int);
62 static void genfs_markdirty(struct vnode *);
63 
64 int genfs_maxdio = MAXPHYS;
65 
66 static void
67 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
68 {
69 	unsigned int i;
70 
71 	for (i = 0; i < npages; i++) {
72 		struct vm_page *pg = pgs[i];
73 
74 		if (pg == NULL || pg == PGO_DONTCARE)
75 			continue;
76 		KASSERT(uvm_page_locked_p(pg));
77 		if (pg->flags & PG_FAKE) {
78 			pg->flags |= PG_RELEASED;
79 		}
80 	}
81 	mutex_enter(&uvm_pageqlock);
82 	uvm_page_unbusy(pgs, npages);
83 	mutex_exit(&uvm_pageqlock);
84 }
85 
86 static void
87 genfs_markdirty(struct vnode *vp)
88 {
89 	struct genfs_node * const gp = VTOG(vp);
90 
91 	KASSERT(mutex_owned(vp->v_interlock));
92 	gp->g_dirtygen++;
93 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
94 		vn_syncer_add_to_worklist(vp, filedelay);
95 	}
96 	if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
97 		vp->v_iflag |= VI_WRMAPDIRTY;
98 	}
99 }
100 
101 /*
102  * generic VM getpages routine.
103  * Return PG_BUSY pages for the given range,
104  * reading from backing store if necessary.
105  */
106 
107 int
108 genfs_getpages(void *v)
109 {
110 	struct vop_getpages_args /* {
111 		struct vnode *a_vp;
112 		voff_t a_offset;
113 		struct vm_page **a_m;
114 		int *a_count;
115 		int a_centeridx;
116 		vm_prot_t a_access_type;
117 		int a_advice;
118 		int a_flags;
119 	} */ * const ap = v;
120 
121 	off_t diskeof, memeof;
122 	int i, error, npages;
123 	const int flags = ap->a_flags;
124 	struct vnode * const vp = ap->a_vp;
125 	struct uvm_object * const uobj = &vp->v_uobj;
126 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
127 	const bool async = (flags & PGO_SYNCIO) == 0;
128 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
129 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
130 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
131 	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
132 	const bool need_wapbl = blockalloc && vp->v_mount->mnt_wapbl;
133 	bool has_trans_wapbl = false;
134 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
135 
136 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
137 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
138 
139 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
140 	    vp->v_type == VLNK || vp->v_type == VBLK);
141 
142 startover:
143 	error = 0;
144 	const voff_t origvsize = vp->v_size;
145 	const off_t origoffset = ap->a_offset;
146 	const int orignpages = *ap->a_count;
147 
148 	GOP_SIZE(vp, origvsize, &diskeof, 0);
149 	if (flags & PGO_PASTEOF) {
150 		off_t newsize;
151 #if defined(DIAGNOSTIC)
152 		off_t writeeof;
153 #endif /* defined(DIAGNOSTIC) */
154 
155 		newsize = MAX(origvsize,
156 		    origoffset + (orignpages << PAGE_SHIFT));
157 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
158 #if defined(DIAGNOSTIC)
159 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
160 		if (newsize > round_page(writeeof)) {
161 			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
162 			    __func__, newsize, round_page(writeeof));
163 		}
164 #endif /* defined(DIAGNOSTIC) */
165 	} else {
166 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
167 	}
168 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
169 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
170 	KASSERT(orignpages > 0);
171 
172 	/*
173 	 * Bounds-check the request.
174 	 */
175 
176 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
177 		if ((flags & PGO_LOCKED) == 0) {
178 			mutex_exit(uobj->vmobjlock);
179 		}
180 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
181 		    origoffset, *ap->a_count, memeof,0);
182 		error = EINVAL;
183 		goto out_err;
184 	}
185 
186 	/* uobj is locked */
187 
188 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
189 	    (vp->v_type != VBLK ||
190 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
191 		int updflags = 0;
192 
193 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
194 			updflags = GOP_UPDATE_ACCESSED;
195 		}
196 		if (memwrite) {
197 			updflags |= GOP_UPDATE_MODIFIED;
198 		}
199 		if (updflags != 0) {
200 			GOP_MARKUPDATE(vp, updflags);
201 		}
202 	}
203 
204 	/*
205 	 * For PGO_LOCKED requests, just return whatever's in memory.
206 	 */
207 
208 	if (flags & PGO_LOCKED) {
209 		int nfound;
210 		struct vm_page *pg;
211 
212 		KASSERT(!glocked);
213 		npages = *ap->a_count;
214 #if defined(DEBUG)
215 		for (i = 0; i < npages; i++) {
216 			pg = ap->a_m[i];
217 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
218 		}
219 #endif /* defined(DEBUG) */
220 		nfound = uvn_findpages(uobj, origoffset, &npages,
221 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
222 		KASSERT(npages == *ap->a_count);
223 		if (nfound == 0) {
224 			error = EBUSY;
225 			goto out_err;
226 		}
227 		if (!genfs_node_rdtrylock(vp)) {
228 			genfs_rel_pages(ap->a_m, npages);
229 
230 			/*
231 			 * restore the array.
232 			 */
233 
234 			for (i = 0; i < npages; i++) {
235 				pg = ap->a_m[i];
236 
237 				if (pg != NULL && pg != PGO_DONTCARE) {
238 					ap->a_m[i] = NULL;
239 				}
240 				KASSERT(ap->a_m[i] == NULL ||
241 				    ap->a_m[i] == PGO_DONTCARE);
242 			}
243 		} else {
244 			genfs_node_unlock(vp);
245 		}
246 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
247 		if (error == 0 && memwrite) {
248 			genfs_markdirty(vp);
249 		}
250 		goto out_err;
251 	}
252 	mutex_exit(uobj->vmobjlock);
253 
254 	/*
255 	 * find the requested pages and make some simple checks.
256 	 * leave space in the page array for a whole block.
257 	 */
258 
259 	const int fs_bshift = (vp->v_type != VBLK) ?
260 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
261 	const int dev_bshift = (vp->v_type != VBLK) ?
262 	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
263 	const int fs_bsize = 1 << fs_bshift;
264 #define	blk_mask	(fs_bsize - 1)
265 #define	trunc_blk(x)	((x) & ~blk_mask)
266 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
267 
268 	const int orignmempages = MIN(orignpages,
269 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
270 	npages = orignmempages;
271 	const off_t startoffset = trunc_blk(origoffset);
272 	const off_t endoffset = MIN(
273 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
274 	    round_page(memeof));
275 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
276 
277 	const int pgs_size = sizeof(struct vm_page *) *
278 	    ((endoffset - startoffset) >> PAGE_SHIFT);
279 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
280 
281 	if (pgs_size > sizeof(pgs_onstack)) {
282 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
283 		if (pgs == NULL) {
284 			pgs = pgs_onstack;
285 			error = ENOMEM;
286 			goto out_err;
287 		}
288 	} else {
289 		pgs = pgs_onstack;
290 		(void)memset(pgs, 0, pgs_size);
291 	}
292 
293 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
294 	    ridx, npages, startoffset, endoffset);
295 
296 	if (!has_trans_wapbl) {
297 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
298 		/*
299 		 * XXX: This assumes that we come here only via
300 		 * the mmio path
301 		 */
302 		if (need_wapbl) {
303 			error = WAPBL_BEGIN(vp->v_mount);
304 			if (error) {
305 				fstrans_done(vp->v_mount);
306 				goto out_err_free;
307 			}
308 		}
309 		has_trans_wapbl = true;
310 	}
311 
312 	/*
313 	 * hold g_glock to prevent a race with truncate.
314 	 *
315 	 * check if our idea of v_size is still valid.
316 	 */
317 
318 	KASSERT(!glocked || genfs_node_wrlocked(vp));
319 	if (!glocked) {
320 		if (blockalloc) {
321 			genfs_node_wrlock(vp);
322 		} else {
323 			genfs_node_rdlock(vp);
324 		}
325 	}
326 	mutex_enter(uobj->vmobjlock);
327 	if (vp->v_size < origvsize) {
328 		if (!glocked) {
329 			genfs_node_unlock(vp);
330 		}
331 		if (pgs != pgs_onstack)
332 			kmem_free(pgs, pgs_size);
333 		goto startover;
334 	}
335 
336 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
337 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
338 		if (!glocked) {
339 			genfs_node_unlock(vp);
340 		}
341 		KASSERT(async != 0);
342 		genfs_rel_pages(&pgs[ridx], orignmempages);
343 		mutex_exit(uobj->vmobjlock);
344 		error = EBUSY;
345 		goto out_err_free;
346 	}
347 
348 	/*
349 	 * if the pages are already resident, just return them.
350 	 */
351 
352 	for (i = 0; i < npages; i++) {
353 		struct vm_page *pg = pgs[ridx + i];
354 
355 		if ((pg->flags & PG_FAKE) ||
356 		    (blockalloc && (pg->flags & PG_RDONLY))) {
357 			break;
358 		}
359 	}
360 	if (i == npages) {
361 		if (!glocked) {
362 			genfs_node_unlock(vp);
363 		}
364 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
365 		npages += ridx;
366 		goto out;
367 	}
368 
369 	/*
370 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
371 	 */
372 
373 	if (overwrite) {
374 		if (!glocked) {
375 			genfs_node_unlock(vp);
376 		}
377 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
378 
379 		for (i = 0; i < npages; i++) {
380 			struct vm_page *pg = pgs[ridx + i];
381 
382 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
383 		}
384 		npages += ridx;
385 		goto out;
386 	}
387 
388 	/*
389 	 * the page wasn't resident and we're not overwriting,
390 	 * so we're going to have to do some i/o.
391 	 * find any additional pages needed to cover the expanded range.
392 	 */
393 
394 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
395 	if (startoffset != origoffset || npages != orignmempages) {
396 		int npgs;
397 
398 		/*
399 		 * we need to avoid deadlocks caused by locking
400 		 * additional pages at lower offsets than pages we
401 		 * already have locked.  unlock them all and start over.
402 		 */
403 
404 		genfs_rel_pages(&pgs[ridx], orignmempages);
405 		memset(pgs, 0, pgs_size);
406 
407 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
408 		    startoffset, endoffset, 0,0);
409 		npgs = npages;
410 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
411 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
412 			if (!glocked) {
413 				genfs_node_unlock(vp);
414 			}
415 			KASSERT(async != 0);
416 			genfs_rel_pages(pgs, npages);
417 			mutex_exit(uobj->vmobjlock);
418 			error = EBUSY;
419 			goto out_err_free;
420 		}
421 	}
422 
423 	mutex_exit(uobj->vmobjlock);
424 
425     {
426 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
427 	vaddr_t kva;
428 	struct buf *bp, *mbp;
429 	bool sawhole = false;
430 
431 	/*
432 	 * read the desired page(s).
433 	 */
434 
435 	totalbytes = npages << PAGE_SHIFT;
436 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
437 	tailbytes = totalbytes - bytes;
438 	skipbytes = 0;
439 
440 	kva = uvm_pagermapin(pgs, npages,
441 	    UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
442 	if (kva == 0) {
443 		error = EBUSY;
444 		goto mapin_fail;
445 	}
446 
447 	mbp = getiobuf(vp, true);
448 	mbp->b_bufsize = totalbytes;
449 	mbp->b_data = (void *)kva;
450 	mbp->b_resid = mbp->b_bcount = bytes;
451 	mbp->b_cflags = BC_BUSY;
452 	if (async) {
453 		mbp->b_flags = B_READ | B_ASYNC;
454 		mbp->b_iodone = uvm_aio_biodone;
455 	} else {
456 		mbp->b_flags = B_READ;
457 		mbp->b_iodone = NULL;
458 	}
459 	if (async)
460 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
461 	else
462 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
463 
464 	/*
465 	 * if EOF is in the middle of the range, zero the part past EOF.
466 	 * skip over pages which are not PG_FAKE since in that case they have
467 	 * valid data that we need to preserve.
468 	 */
469 
470 	tailstart = bytes;
471 	while (tailbytes > 0) {
472 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
473 
474 		KASSERT(len <= tailbytes);
475 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
476 			memset((void *)(kva + tailstart), 0, len);
477 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
478 			    kva, tailstart, len, 0);
479 		}
480 		tailstart += len;
481 		tailbytes -= len;
482 	}
483 
484 	/*
485 	 * now loop over the pages, reading as needed.
486 	 */
487 
488 	bp = NULL;
489 	off_t offset;
490 	for (offset = startoffset;
491 	    bytes > 0;
492 	    offset += iobytes, bytes -= iobytes) {
493 		int run;
494 		daddr_t lbn, blkno;
495 		int pidx;
496 		struct vnode *devvp;
497 
498 		/*
499 		 * skip pages which don't need to be read.
500 		 */
501 
502 		pidx = (offset - startoffset) >> PAGE_SHIFT;
503 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
504 			size_t b;
505 
506 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
507 			if ((pgs[pidx]->flags & PG_RDONLY)) {
508 				sawhole = true;
509 			}
510 			b = MIN(PAGE_SIZE, bytes);
511 			offset += b;
512 			bytes -= b;
513 			skipbytes += b;
514 			pidx++;
515 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
516 			    offset, 0,0,0);
517 			if (bytes == 0) {
518 				goto loopdone;
519 			}
520 		}
521 
522 		/*
523 		 * bmap the file to find out the blkno to read from and
524 		 * how much we can read in one i/o.  if bmap returns an error,
525 		 * skip the rest of the top-level i/o.
526 		 */
527 
528 		lbn = offset >> fs_bshift;
529 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
530 		if (error) {
531 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
532 			    lbn,error,0,0);
533 			skipbytes += bytes;
534 			bytes = 0;
535 			goto loopdone;
536 		}
537 
538 		/*
539 		 * see how many pages can be read with this i/o.
540 		 * reduce the i/o size if necessary to avoid
541 		 * overwriting pages with valid data.
542 		 */
543 
544 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
545 		    bytes);
546 		if (offset + iobytes > round_page(offset)) {
547 			int pcount;
548 
549 			pcount = 1;
550 			while (pidx + pcount < npages &&
551 			    pgs[pidx + pcount]->flags & PG_FAKE) {
552 				pcount++;
553 			}
554 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
555 			    (offset - trunc_page(offset)));
556 		}
557 
558 		/*
559 		 * if this block isn't allocated, zero it instead of
560 		 * reading it.  unless we are going to allocate blocks,
561 		 * mark the pages we zeroed PG_RDONLY.
562 		 */
563 
564 		if (blkno == (daddr_t)-1) {
565 			int holepages = (round_page(offset + iobytes) -
566 			    trunc_page(offset)) >> PAGE_SHIFT;
567 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
568 
569 			sawhole = true;
570 			memset((char *)kva + (offset - startoffset), 0,
571 			    iobytes);
572 			skipbytes += iobytes;
573 
574 			mutex_enter(uobj->vmobjlock);
575 			for (i = 0; i < holepages; i++) {
576 				if (memwrite) {
577 					pgs[pidx + i]->flags &= ~PG_CLEAN;
578 				}
579 				if (!blockalloc) {
580 					pgs[pidx + i]->flags |= PG_RDONLY;
581 				}
582 			}
583 			mutex_exit(uobj->vmobjlock);
584 			continue;
585 		}
586 
587 		/*
588 		 * allocate a sub-buf for this piece of the i/o
589 		 * (or just use mbp if there's only 1 piece),
590 		 * and start it going.
591 		 */
592 
593 		if (offset == startoffset && iobytes == bytes) {
594 			bp = mbp;
595 		} else {
596 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
597 			    vp, bp, vp->v_numoutput, 0);
598 			bp = getiobuf(vp, true);
599 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
600 		}
601 		bp->b_lblkno = 0;
602 
603 		/* adjust physical blkno for partial blocks */
604 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
605 		    dev_bshift);
606 
607 		UVMHIST_LOG(ubchist,
608 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
609 		    bp, offset, bp->b_bcount, bp->b_blkno);
610 
611 		VOP_STRATEGY(devvp, bp);
612 	}
613 
614 loopdone:
615 	nestiobuf_done(mbp, skipbytes, error);
616 	if (async) {
617 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
618 		if (!glocked) {
619 			genfs_node_unlock(vp);
620 		}
621 		error = 0;
622 		goto out_err_free;
623 	}
624 	if (bp != NULL) {
625 		error = biowait(mbp);
626 	}
627 
628 	/* Remove the mapping (make KVA available as soon as possible) */
629 	uvm_pagermapout(kva, npages);
630 
631 	/*
632 	 * if this we encountered a hole then we have to do a little more work.
633 	 * for read faults, we marked the page PG_RDONLY so that future
634 	 * write accesses to the page will fault again.
635 	 * for write faults, we must make sure that the backing store for
636 	 * the page is completely allocated while the pages are locked.
637 	 */
638 
639 	if (!error && sawhole && blockalloc) {
640 		error = GOP_ALLOC(vp, startoffset,
641 		    npages << PAGE_SHIFT, 0, cred);
642 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
643 		    startoffset, npages << PAGE_SHIFT, error,0);
644 		if (!error) {
645 			mutex_enter(uobj->vmobjlock);
646 			for (i = 0; i < npages; i++) {
647 				struct vm_page *pg = pgs[i];
648 
649 				if (pg == NULL) {
650 					continue;
651 				}
652 				pg->flags &= ~(PG_CLEAN|PG_RDONLY);
653 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
654 				    pg,0,0,0);
655 			}
656 			mutex_exit(uobj->vmobjlock);
657 		}
658 	}
659 
660 	putiobuf(mbp);
661     }
662 
663 mapin_fail:
664 	if (!glocked) {
665 		genfs_node_unlock(vp);
666 	}
667 	mutex_enter(uobj->vmobjlock);
668 
669 	/*
670 	 * we're almost done!  release the pages...
671 	 * for errors, we free the pages.
672 	 * otherwise we activate them and mark them as valid and clean.
673 	 * also, unbusy pages that were not actually requested.
674 	 */
675 
676 	if (error) {
677 		genfs_rel_pages(pgs, npages);
678 		mutex_exit(uobj->vmobjlock);
679 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
680 		goto out_err_free;
681 	}
682 
683 out:
684 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
685 	error = 0;
686 	mutex_enter(&uvm_pageqlock);
687 	for (i = 0; i < npages; i++) {
688 		struct vm_page *pg = pgs[i];
689 		if (pg == NULL) {
690 			continue;
691 		}
692 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
693 		    pg, pg->flags, 0,0);
694 		if (pg->flags & PG_FAKE && !overwrite) {
695 			pg->flags &= ~(PG_FAKE);
696 			pmap_clear_modify(pgs[i]);
697 		}
698 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
699 		if (i < ridx || i >= ridx + orignmempages || async) {
700 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
701 			    pg, pg->offset,0,0);
702 			if (pg->flags & PG_WANTED) {
703 				wakeup(pg);
704 			}
705 			if (pg->flags & PG_FAKE) {
706 				KASSERT(overwrite);
707 				uvm_pagezero(pg);
708 			}
709 			if (pg->flags & PG_RELEASED) {
710 				uvm_pagefree(pg);
711 				continue;
712 			}
713 			uvm_pageenqueue(pg);
714 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
715 			UVM_PAGE_OWN(pg, NULL);
716 		}
717 	}
718 	mutex_exit(&uvm_pageqlock);
719 	if (memwrite) {
720 		genfs_markdirty(vp);
721 	}
722 	mutex_exit(uobj->vmobjlock);
723 	if (ap->a_m != NULL) {
724 		memcpy(ap->a_m, &pgs[ridx],
725 		    orignmempages * sizeof(struct vm_page *));
726 	}
727 
728 out_err_free:
729 	if (pgs != NULL && pgs != pgs_onstack)
730 		kmem_free(pgs, pgs_size);
731 out_err:
732 	if (has_trans_wapbl) {
733 		if (need_wapbl)
734 			WAPBL_END(vp->v_mount);
735 		fstrans_done(vp->v_mount);
736 	}
737 	return error;
738 }
739 
740 /*
741  * generic VM putpages routine.
742  * Write the given range of pages to backing store.
743  *
744  * => "offhi == 0" means flush all pages at or after "offlo".
745  * => object should be locked by caller.  we return with the
746  *      object unlocked.
747  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
748  *	thus, a caller might want to unlock higher level resources
749  *	(e.g. vm_map) before calling flush.
750  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
751  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
752  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
753  *	that new pages are inserted on the tail end of the list.   thus,
754  *	we can make a complete pass through the object in one go by starting
755  *	at the head and working towards the tail (new pages are put in
756  *	front of us).
757  * => NOTE: we are allowed to lock the page queues, so the caller
758  *	must not be holding the page queue lock.
759  *
760  * note on "cleaning" object and PG_BUSY pages:
761  *	this routine is holding the lock on the object.   the only time
762  *	that it can run into a PG_BUSY page that it does not own is if
763  *	some other process has started I/O on the page (e.g. either
764  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
765  *	in, then it can not be dirty (!PG_CLEAN) because no one has
766  *	had a chance to modify it yet.    if the PG_BUSY page is being
767  *	paged out then it means that someone else has already started
768  *	cleaning the page for us (how nice!).    in this case, if we
769  *	have syncio specified, then after we make our pass through the
770  *	object we need to wait for the other PG_BUSY pages to clear
771  *	off (i.e. we need to do an iosync).   also note that once a
772  *	page is PG_BUSY it must stay in its object until it is un-busyed.
773  *
774  * note on page traversal:
775  *	we can traverse the pages in an object either by going down the
776  *	linked list in "uobj->memq", or we can go over the address range
777  *	by page doing hash table lookups for each address.    depending
778  *	on how many pages are in the object it may be cheaper to do one
779  *	or the other.   we set "by_list" to true if we are using memq.
780  *	if the cost of a hash lookup was equal to the cost of the list
781  *	traversal we could compare the number of pages in the start->stop
782  *	range to the total number of pages in the object.   however, it
783  *	seems that a hash table lookup is more expensive than the linked
784  *	list traversal, so we multiply the number of pages in the
785  *	range by an estimate of the relatively higher cost of the hash lookup.
786  */
787 
788 int
789 genfs_putpages(void *v)
790 {
791 	struct vop_putpages_args /* {
792 		struct vnode *a_vp;
793 		voff_t a_offlo;
794 		voff_t a_offhi;
795 		int a_flags;
796 	} */ * const ap = v;
797 
798 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
799 	    ap->a_flags, NULL);
800 }
801 
802 int
803 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
804     int origflags, struct vm_page **busypg)
805 {
806 	struct uvm_object * const uobj = &vp->v_uobj;
807 	kmutex_t * const slock = uobj->vmobjlock;
808 	off_t off;
809 	/* Even for strange MAXPHYS, the shift rounds down to a page */
810 #define maxpages (MAXPHYS >> PAGE_SHIFT)
811 	int i, error, npages, nback;
812 	int freeflag;
813 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
814 	bool wasclean, by_list, needs_clean, yld;
815 	bool async = (origflags & PGO_SYNCIO) == 0;
816 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
817 	struct lwp * const l = curlwp ? curlwp : &lwp0;
818 	struct genfs_node * const gp = VTOG(vp);
819 	int flags;
820 	int dirtygen;
821 	bool modified;
822 	bool need_wapbl;
823 	bool has_trans;
824 	bool cleanall;
825 	bool onworklst;
826 
827 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
828 
829 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
830 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
831 	KASSERT(startoff < endoff || endoff == 0);
832 
833 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
834 	    vp, uobj->uo_npages, startoff, endoff - startoff);
835 
836 	has_trans = false;
837 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
838 	    (origflags & PGO_JOURNALLOCKED) == 0);
839 
840 retry:
841 	modified = false;
842 	flags = origflags;
843 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
844 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
845 	if (uobj->uo_npages == 0) {
846 		if (vp->v_iflag & VI_ONWORKLST) {
847 			vp->v_iflag &= ~VI_WRMAPDIRTY;
848 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
849 				vn_syncer_remove_from_worklist(vp);
850 		}
851 		if (has_trans) {
852 			if (need_wapbl)
853 				WAPBL_END(vp->v_mount);
854 			fstrans_done(vp->v_mount);
855 		}
856 		mutex_exit(slock);
857 		return (0);
858 	}
859 
860 	/*
861 	 * the vnode has pages, set up to process the request.
862 	 */
863 
864 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
865 		mutex_exit(slock);
866 		if (pagedaemon) {
867 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
868 			if (error)
869 				return error;
870 		} else
871 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
872 		if (need_wapbl) {
873 			error = WAPBL_BEGIN(vp->v_mount);
874 			if (error) {
875 				fstrans_done(vp->v_mount);
876 				return error;
877 			}
878 		}
879 		has_trans = true;
880 		mutex_enter(slock);
881 		goto retry;
882 	}
883 
884 	error = 0;
885 	wasclean = (vp->v_numoutput == 0);
886 	off = startoff;
887 	if (endoff == 0 || flags & PGO_ALLPAGES) {
888 		endoff = trunc_page(LLONG_MAX);
889 	}
890 	by_list = (uobj->uo_npages <=
891 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
892 
893 	/*
894 	 * if this vnode is known not to have dirty pages,
895 	 * don't bother to clean it out.
896 	 */
897 
898 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
899 #if !defined(DEBUG)
900 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
901 			goto skip_scan;
902 		}
903 #endif /* !defined(DEBUG) */
904 		flags &= ~PGO_CLEANIT;
905 	}
906 
907 	/*
908 	 * start the loop.  when scanning by list, hold the last page
909 	 * in the list before we start.  pages allocated after we start
910 	 * will be added to the end of the list, so we can stop at the
911 	 * current last page.
912 	 */
913 
914 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
915 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
916 	    (vp->v_iflag & VI_ONWORKLST) != 0;
917 	dirtygen = gp->g_dirtygen;
918 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
919 	if (by_list) {
920 		curmp.flags = PG_MARKER;
921 		endmp.flags = PG_MARKER;
922 		pg = TAILQ_FIRST(&uobj->memq);
923 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
924 	} else {
925 		pg = uvm_pagelookup(uobj, off);
926 	}
927 	nextpg = NULL;
928 	while (by_list || off < endoff) {
929 
930 		/*
931 		 * if the current page is not interesting, move on to the next.
932 		 */
933 
934 		KASSERT(pg == NULL || pg->uobject == uobj ||
935 		    (pg->flags & PG_MARKER) != 0);
936 		KASSERT(pg == NULL ||
937 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
938 		    (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
939 		if (by_list) {
940 			if (pg == &endmp) {
941 				break;
942 			}
943 			if (pg->flags & PG_MARKER) {
944 				pg = TAILQ_NEXT(pg, listq.queue);
945 				continue;
946 			}
947 			if (pg->offset < startoff || pg->offset >= endoff ||
948 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
949 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
950 					wasclean = false;
951 				}
952 				pg = TAILQ_NEXT(pg, listq.queue);
953 				continue;
954 			}
955 			off = pg->offset;
956 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
957 			if (pg != NULL) {
958 				wasclean = false;
959 			}
960 			off += PAGE_SIZE;
961 			if (off < endoff) {
962 				pg = uvm_pagelookup(uobj, off);
963 			}
964 			continue;
965 		}
966 
967 		/*
968 		 * if the current page needs to be cleaned and it's busy,
969 		 * wait for it to become unbusy.
970 		 */
971 
972 		yld = (l->l_cpu->ci_schedstate.spc_flags &
973 		    SPCF_SHOULDYIELD) && !pagedaemon;
974 		if (pg->flags & PG_BUSY || yld) {
975 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
976 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
977 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
978 				error = EDEADLK;
979 				if (busypg != NULL)
980 					*busypg = pg;
981 				break;
982 			}
983 			if (pagedaemon) {
984 				/*
985 				 * someone has taken the page while we
986 				 * dropped the lock for fstrans_start.
987 				 */
988 				break;
989 			}
990 			if (by_list) {
991 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
992 				UVMHIST_LOG(ubchist, "curmp next %p",
993 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
994 			}
995 			if (yld) {
996 				mutex_exit(slock);
997 				preempt();
998 				mutex_enter(slock);
999 			} else {
1000 				pg->flags |= PG_WANTED;
1001 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1002 				mutex_enter(slock);
1003 			}
1004 			if (by_list) {
1005 				UVMHIST_LOG(ubchist, "after next %p",
1006 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1007 				pg = TAILQ_NEXT(&curmp, listq.queue);
1008 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1009 			} else {
1010 				pg = uvm_pagelookup(uobj, off);
1011 			}
1012 			continue;
1013 		}
1014 
1015 		/*
1016 		 * if we're freeing, remove all mappings of the page now.
1017 		 * if we're cleaning, check if the page is needs to be cleaned.
1018 		 */
1019 
1020 		if (flags & PGO_FREE) {
1021 			pmap_page_protect(pg, VM_PROT_NONE);
1022 		} else if (flags & PGO_CLEANIT) {
1023 
1024 			/*
1025 			 * if we still have some hope to pull this vnode off
1026 			 * from the syncer queue, write-protect the page.
1027 			 */
1028 
1029 			if (cleanall && wasclean &&
1030 			    gp->g_dirtygen == dirtygen) {
1031 
1032 				/*
1033 				 * uobj pages get wired only by uvm_fault
1034 				 * where uobj is locked.
1035 				 */
1036 
1037 				if (pg->wire_count == 0) {
1038 					pmap_page_protect(pg,
1039 					    VM_PROT_READ|VM_PROT_EXECUTE);
1040 				} else {
1041 					cleanall = false;
1042 				}
1043 			}
1044 		}
1045 
1046 		if (flags & PGO_CLEANIT) {
1047 			needs_clean = pmap_clear_modify(pg) ||
1048 			    (pg->flags & PG_CLEAN) == 0;
1049 			pg->flags |= PG_CLEAN;
1050 		} else {
1051 			needs_clean = false;
1052 		}
1053 
1054 		/*
1055 		 * if we're cleaning, build a cluster.
1056 		 * the cluster will consist of pages which are currently dirty,
1057 		 * but they will be returned to us marked clean.
1058 		 * if not cleaning, just operate on the one page.
1059 		 */
1060 
1061 		if (needs_clean) {
1062 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
1063 			wasclean = false;
1064 			memset(pgs, 0, sizeof(pgs));
1065 			pg->flags |= PG_BUSY;
1066 			UVM_PAGE_OWN(pg, "genfs_putpages");
1067 
1068 			/*
1069 			 * first look backward.
1070 			 */
1071 
1072 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1073 			nback = npages;
1074 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1075 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1076 			if (nback) {
1077 				memmove(&pgs[0], &pgs[npages - nback],
1078 				    nback * sizeof(pgs[0]));
1079 				if (npages - nback < nback)
1080 					memset(&pgs[nback], 0,
1081 					    (npages - nback) * sizeof(pgs[0]));
1082 				else
1083 					memset(&pgs[npages - nback], 0,
1084 					    nback * sizeof(pgs[0]));
1085 			}
1086 
1087 			/*
1088 			 * then plug in our page of interest.
1089 			 */
1090 
1091 			pgs[nback] = pg;
1092 
1093 			/*
1094 			 * then look forward to fill in the remaining space in
1095 			 * the array of pages.
1096 			 */
1097 
1098 			npages = maxpages - nback - 1;
1099 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1100 			    &pgs[nback + 1],
1101 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1102 			npages += nback + 1;
1103 		} else {
1104 			pgs[0] = pg;
1105 			npages = 1;
1106 			nback = 0;
1107 		}
1108 
1109 		/*
1110 		 * apply FREE or DEACTIVATE options if requested.
1111 		 */
1112 
1113 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1114 			mutex_enter(&uvm_pageqlock);
1115 		}
1116 		for (i = 0; i < npages; i++) {
1117 			tpg = pgs[i];
1118 			KASSERT(tpg->uobject == uobj);
1119 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1120 				pg = tpg;
1121 			if (tpg->offset < startoff || tpg->offset >= endoff)
1122 				continue;
1123 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1124 				uvm_pagedeactivate(tpg);
1125 			} else if (flags & PGO_FREE) {
1126 				pmap_page_protect(tpg, VM_PROT_NONE);
1127 				if (tpg->flags & PG_BUSY) {
1128 					tpg->flags |= freeflag;
1129 					if (pagedaemon) {
1130 						uvm_pageout_start(1);
1131 						uvm_pagedequeue(tpg);
1132 					}
1133 				} else {
1134 
1135 					/*
1136 					 * ``page is not busy''
1137 					 * implies that npages is 1
1138 					 * and needs_clean is false.
1139 					 */
1140 
1141 					nextpg = TAILQ_NEXT(tpg, listq.queue);
1142 					uvm_pagefree(tpg);
1143 					if (pagedaemon)
1144 						uvmexp.pdfreed++;
1145 				}
1146 			}
1147 		}
1148 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1149 			mutex_exit(&uvm_pageqlock);
1150 		}
1151 		if (needs_clean) {
1152 			modified = true;
1153 
1154 			/*
1155 			 * start the i/o.  if we're traversing by list,
1156 			 * keep our place in the list with a marker page.
1157 			 */
1158 
1159 			if (by_list) {
1160 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1161 				    listq.queue);
1162 			}
1163 			mutex_exit(slock);
1164 			error = GOP_WRITE(vp, pgs, npages, flags);
1165 			mutex_enter(slock);
1166 			if (by_list) {
1167 				pg = TAILQ_NEXT(&curmp, listq.queue);
1168 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1169 			}
1170 			if (error) {
1171 				break;
1172 			}
1173 			if (by_list) {
1174 				continue;
1175 			}
1176 		}
1177 
1178 		/*
1179 		 * find the next page and continue if there was no error.
1180 		 */
1181 
1182 		if (by_list) {
1183 			if (nextpg) {
1184 				pg = nextpg;
1185 				nextpg = NULL;
1186 			} else {
1187 				pg = TAILQ_NEXT(pg, listq.queue);
1188 			}
1189 		} else {
1190 			off += (npages - nback) << PAGE_SHIFT;
1191 			if (off < endoff) {
1192 				pg = uvm_pagelookup(uobj, off);
1193 			}
1194 		}
1195 	}
1196 	if (by_list) {
1197 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1198 	}
1199 
1200 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1201 	    (vp->v_type != VBLK ||
1202 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1203 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1204 	}
1205 
1206 	/*
1207 	 * if we're cleaning and there was nothing to clean,
1208 	 * take us off the syncer list.  if we started any i/o
1209 	 * and we're doing sync i/o, wait for all writes to finish.
1210 	 */
1211 
1212 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1213 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
1214 #if defined(DEBUG)
1215 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1216 			if ((pg->flags & (PG_FAKE | PG_MARKER)) != 0) {
1217 				continue;
1218 			}
1219 			if ((pg->flags & PG_CLEAN) == 0) {
1220 				printf("%s: %p: !CLEAN\n", __func__, pg);
1221 			}
1222 			if (pmap_is_modified(pg)) {
1223 				printf("%s: %p: modified\n", __func__, pg);
1224 			}
1225 		}
1226 #endif /* defined(DEBUG) */
1227 		vp->v_iflag &= ~VI_WRMAPDIRTY;
1228 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1229 			vn_syncer_remove_from_worklist(vp);
1230 	}
1231 
1232 #if !defined(DEBUG)
1233 skip_scan:
1234 #endif /* !defined(DEBUG) */
1235 
1236 	/* Wait for output to complete. */
1237 	if (!wasclean && !async && vp->v_numoutput != 0) {
1238 		while (vp->v_numoutput != 0)
1239 			cv_wait(&vp->v_cv, slock);
1240 	}
1241 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1242 	mutex_exit(slock);
1243 
1244 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1245 		/*
1246 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1247 		 * retrying is not a big deal because, in many cases,
1248 		 * uobj->uo_npages is already 0 here.
1249 		 */
1250 		mutex_enter(slock);
1251 		goto retry;
1252 	}
1253 
1254 	if (has_trans) {
1255 		if (need_wapbl)
1256 			WAPBL_END(vp->v_mount);
1257 		fstrans_done(vp->v_mount);
1258 	}
1259 
1260 	return (error);
1261 }
1262 
1263 int
1264 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1265 {
1266 	off_t off;
1267 	vaddr_t kva;
1268 	size_t len;
1269 	int error;
1270 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1271 
1272 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1273 	    vp, pgs, npages, flags);
1274 
1275 	off = pgs[0]->offset;
1276 	kva = uvm_pagermapin(pgs, npages,
1277 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1278 	len = npages << PAGE_SHIFT;
1279 
1280 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1281 			    uvm_aio_biodone);
1282 
1283 	return error;
1284 }
1285 
1286 int
1287 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1288 {
1289 	off_t off;
1290 	vaddr_t kva;
1291 	size_t len;
1292 	int error;
1293 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1294 
1295 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1296 	    vp, pgs, npages, flags);
1297 
1298 	off = pgs[0]->offset;
1299 	kva = uvm_pagermapin(pgs, npages,
1300 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1301 	len = npages << PAGE_SHIFT;
1302 
1303 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1304 			    uvm_aio_biodone);
1305 
1306 	return error;
1307 }
1308 
1309 /*
1310  * Backend routine for doing I/O to vnode pages.  Pages are already locked
1311  * and mapped into kernel memory.  Here we just look up the underlying
1312  * device block addresses and call the strategy routine.
1313  */
1314 
1315 static int
1316 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1317     enum uio_rw rw, void (*iodone)(struct buf *))
1318 {
1319 	int s, error;
1320 	int fs_bshift, dev_bshift;
1321 	off_t eof, offset, startoffset;
1322 	size_t bytes, iobytes, skipbytes;
1323 	struct buf *mbp, *bp;
1324 	const bool async = (flags & PGO_SYNCIO) == 0;
1325 	const bool lazy = (flags & PGO_LAZY) == 0;
1326 	const bool iowrite = rw == UIO_WRITE;
1327 	const int brw = iowrite ? B_WRITE : B_READ;
1328 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1329 
1330 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1331 	    vp, kva, len, flags);
1332 
1333 	KASSERT(vp->v_size <= vp->v_writesize);
1334 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1335 	if (vp->v_type != VBLK) {
1336 		fs_bshift = vp->v_mount->mnt_fs_bshift;
1337 		dev_bshift = vp->v_mount->mnt_dev_bshift;
1338 	} else {
1339 		fs_bshift = DEV_BSHIFT;
1340 		dev_bshift = DEV_BSHIFT;
1341 	}
1342 	error = 0;
1343 	startoffset = off;
1344 	bytes = MIN(len, eof - startoffset);
1345 	skipbytes = 0;
1346 	KASSERT(bytes != 0);
1347 
1348 	if (iowrite) {
1349 		mutex_enter(vp->v_interlock);
1350 		vp->v_numoutput += 2;
1351 		mutex_exit(vp->v_interlock);
1352 	}
1353 	mbp = getiobuf(vp, true);
1354 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1355 	    vp, mbp, vp->v_numoutput, bytes);
1356 	mbp->b_bufsize = len;
1357 	mbp->b_data = (void *)kva;
1358 	mbp->b_resid = mbp->b_bcount = bytes;
1359 	mbp->b_cflags = BC_BUSY | BC_AGE;
1360 	if (async) {
1361 		mbp->b_flags = brw | B_ASYNC;
1362 		mbp->b_iodone = iodone;
1363 	} else {
1364 		mbp->b_flags = brw;
1365 		mbp->b_iodone = NULL;
1366 	}
1367 	if (curlwp == uvm.pagedaemon_lwp)
1368 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1369 	else if (async || lazy)
1370 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1371 	else
1372 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1373 
1374 	bp = NULL;
1375 	for (offset = startoffset;
1376 	    bytes > 0;
1377 	    offset += iobytes, bytes -= iobytes) {
1378 		int run;
1379 		daddr_t lbn, blkno;
1380 		struct vnode *devvp;
1381 
1382 		/*
1383 		 * bmap the file to find out the blkno to read from and
1384 		 * how much we can read in one i/o.  if bmap returns an error,
1385 		 * skip the rest of the top-level i/o.
1386 		 */
1387 
1388 		lbn = offset >> fs_bshift;
1389 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1390 		if (error) {
1391 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1392 			    lbn,error,0,0);
1393 			skipbytes += bytes;
1394 			bytes = 0;
1395 			goto loopdone;
1396 		}
1397 
1398 		/*
1399 		 * see how many pages can be read with this i/o.
1400 		 * reduce the i/o size if necessary to avoid
1401 		 * overwriting pages with valid data.
1402 		 */
1403 
1404 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1405 		    bytes);
1406 
1407 		/*
1408 		 * if this block isn't allocated, zero it instead of
1409 		 * reading it.  unless we are going to allocate blocks,
1410 		 * mark the pages we zeroed PG_RDONLY.
1411 		 */
1412 
1413 		if (blkno == (daddr_t)-1) {
1414 			if (!iowrite) {
1415 				memset((char *)kva + (offset - startoffset), 0,
1416 				    iobytes);
1417 			}
1418 			skipbytes += iobytes;
1419 			continue;
1420 		}
1421 
1422 		/*
1423 		 * allocate a sub-buf for this piece of the i/o
1424 		 * (or just use mbp if there's only 1 piece),
1425 		 * and start it going.
1426 		 */
1427 
1428 		if (offset == startoffset && iobytes == bytes) {
1429 			bp = mbp;
1430 		} else {
1431 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1432 			    vp, bp, vp->v_numoutput, 0);
1433 			bp = getiobuf(vp, true);
1434 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1435 		}
1436 		bp->b_lblkno = 0;
1437 
1438 		/* adjust physical blkno for partial blocks */
1439 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1440 		    dev_bshift);
1441 
1442 		UVMHIST_LOG(ubchist,
1443 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1444 		    bp, offset, bp->b_bcount, bp->b_blkno);
1445 
1446 		VOP_STRATEGY(devvp, bp);
1447 	}
1448 
1449 loopdone:
1450 	if (skipbytes) {
1451 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1452 	}
1453 	nestiobuf_done(mbp, skipbytes, error);
1454 	if (async) {
1455 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1456 		return (0);
1457 	}
1458 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1459 	error = biowait(mbp);
1460 	s = splbio();
1461 	(*iodone)(mbp);
1462 	splx(s);
1463 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1464 	return (error);
1465 }
1466 
1467 int
1468 genfs_compat_getpages(void *v)
1469 {
1470 	struct vop_getpages_args /* {
1471 		struct vnode *a_vp;
1472 		voff_t a_offset;
1473 		struct vm_page **a_m;
1474 		int *a_count;
1475 		int a_centeridx;
1476 		vm_prot_t a_access_type;
1477 		int a_advice;
1478 		int a_flags;
1479 	} */ *ap = v;
1480 
1481 	off_t origoffset;
1482 	struct vnode *vp = ap->a_vp;
1483 	struct uvm_object *uobj = &vp->v_uobj;
1484 	struct vm_page *pg, **pgs;
1485 	vaddr_t kva;
1486 	int i, error, orignpages, npages;
1487 	struct iovec iov;
1488 	struct uio uio;
1489 	kauth_cred_t cred = curlwp->l_cred;
1490 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1491 
1492 	error = 0;
1493 	origoffset = ap->a_offset;
1494 	orignpages = *ap->a_count;
1495 	pgs = ap->a_m;
1496 
1497 	if (ap->a_flags & PGO_LOCKED) {
1498 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1499 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1500 
1501 		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1502 		if (error == 0 && memwrite) {
1503 			genfs_markdirty(vp);
1504 		}
1505 		return error;
1506 	}
1507 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1508 		mutex_exit(uobj->vmobjlock);
1509 		return EINVAL;
1510 	}
1511 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
1512 		mutex_exit(uobj->vmobjlock);
1513 		return 0;
1514 	}
1515 	npages = orignpages;
1516 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1517 	mutex_exit(uobj->vmobjlock);
1518 	kva = uvm_pagermapin(pgs, npages,
1519 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1520 	for (i = 0; i < npages; i++) {
1521 		pg = pgs[i];
1522 		if ((pg->flags & PG_FAKE) == 0) {
1523 			continue;
1524 		}
1525 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1526 		iov.iov_len = PAGE_SIZE;
1527 		uio.uio_iov = &iov;
1528 		uio.uio_iovcnt = 1;
1529 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1530 		uio.uio_rw = UIO_READ;
1531 		uio.uio_resid = PAGE_SIZE;
1532 		UIO_SETUP_SYSSPACE(&uio);
1533 		/* XXX vn_lock */
1534 		error = VOP_READ(vp, &uio, 0, cred);
1535 		if (error) {
1536 			break;
1537 		}
1538 		if (uio.uio_resid) {
1539 			memset(iov.iov_base, 0, uio.uio_resid);
1540 		}
1541 	}
1542 	uvm_pagermapout(kva, npages);
1543 	mutex_enter(uobj->vmobjlock);
1544 	mutex_enter(&uvm_pageqlock);
1545 	for (i = 0; i < npages; i++) {
1546 		pg = pgs[i];
1547 		if (error && (pg->flags & PG_FAKE) != 0) {
1548 			pg->flags |= PG_RELEASED;
1549 		} else {
1550 			pmap_clear_modify(pg);
1551 			uvm_pageactivate(pg);
1552 		}
1553 	}
1554 	if (error) {
1555 		uvm_page_unbusy(pgs, npages);
1556 	}
1557 	mutex_exit(&uvm_pageqlock);
1558 	if (error == 0 && memwrite) {
1559 		genfs_markdirty(vp);
1560 	}
1561 	mutex_exit(uobj->vmobjlock);
1562 	return error;
1563 }
1564 
1565 int
1566 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1567     int flags)
1568 {
1569 	off_t offset;
1570 	struct iovec iov;
1571 	struct uio uio;
1572 	kauth_cred_t cred = curlwp->l_cred;
1573 	struct buf *bp;
1574 	vaddr_t kva;
1575 	int error;
1576 
1577 	offset = pgs[0]->offset;
1578 	kva = uvm_pagermapin(pgs, npages,
1579 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1580 
1581 	iov.iov_base = (void *)kva;
1582 	iov.iov_len = npages << PAGE_SHIFT;
1583 	uio.uio_iov = &iov;
1584 	uio.uio_iovcnt = 1;
1585 	uio.uio_offset = offset;
1586 	uio.uio_rw = UIO_WRITE;
1587 	uio.uio_resid = npages << PAGE_SHIFT;
1588 	UIO_SETUP_SYSSPACE(&uio);
1589 	/* XXX vn_lock */
1590 	error = VOP_WRITE(vp, &uio, 0, cred);
1591 
1592 	mutex_enter(vp->v_interlock);
1593 	vp->v_numoutput++;
1594 	mutex_exit(vp->v_interlock);
1595 
1596 	bp = getiobuf(vp, true);
1597 	bp->b_cflags = BC_BUSY | BC_AGE;
1598 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1599 	bp->b_data = (char *)kva;
1600 	bp->b_bcount = npages << PAGE_SHIFT;
1601 	bp->b_bufsize = npages << PAGE_SHIFT;
1602 	bp->b_resid = 0;
1603 	bp->b_error = error;
1604 	uvm_aio_aiodone(bp);
1605 	return (error);
1606 }
1607 
1608 /*
1609  * Process a uio using direct I/O.  If we reach a part of the request
1610  * which cannot be processed in this fashion for some reason, just return.
1611  * The caller must handle some additional part of the request using
1612  * buffered I/O before trying direct I/O again.
1613  */
1614 
1615 void
1616 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1617 {
1618 	struct vmspace *vs;
1619 	struct iovec *iov;
1620 	vaddr_t va;
1621 	size_t len;
1622 	const int mask = DEV_BSIZE - 1;
1623 	int error;
1624 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1625 	    (ioflag & IO_JOURNALLOCKED) == 0);
1626 
1627 	/*
1628 	 * We only support direct I/O to user space for now.
1629 	 */
1630 
1631 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1632 		return;
1633 	}
1634 
1635 	/*
1636 	 * If the vnode is mapped, we would need to get the getpages lock
1637 	 * to stabilize the bmap, but then we would get into trouble while
1638 	 * locking the pages if the pages belong to this same vnode (or a
1639 	 * multi-vnode cascade to the same effect).  Just fall back to
1640 	 * buffered I/O if the vnode is mapped to avoid this mess.
1641 	 */
1642 
1643 	if (vp->v_vflag & VV_MAPPED) {
1644 		return;
1645 	}
1646 
1647 	if (need_wapbl) {
1648 		error = WAPBL_BEGIN(vp->v_mount);
1649 		if (error)
1650 			return;
1651 	}
1652 
1653 	/*
1654 	 * Do as much of the uio as possible with direct I/O.
1655 	 */
1656 
1657 	vs = uio->uio_vmspace;
1658 	while (uio->uio_resid) {
1659 		iov = uio->uio_iov;
1660 		if (iov->iov_len == 0) {
1661 			uio->uio_iov++;
1662 			uio->uio_iovcnt--;
1663 			continue;
1664 		}
1665 		va = (vaddr_t)iov->iov_base;
1666 		len = MIN(iov->iov_len, genfs_maxdio);
1667 		len &= ~mask;
1668 
1669 		/*
1670 		 * If the next chunk is smaller than DEV_BSIZE or extends past
1671 		 * the current EOF, then fall back to buffered I/O.
1672 		 */
1673 
1674 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
1675 			break;
1676 		}
1677 
1678 		/*
1679 		 * Check alignment.  The file offset must be at least
1680 		 * sector-aligned.  The exact constraint on memory alignment
1681 		 * is very hardware-dependent, but requiring sector-aligned
1682 		 * addresses there too is safe.
1683 		 */
1684 
1685 		if (uio->uio_offset & mask || va & mask) {
1686 			break;
1687 		}
1688 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1689 					  uio->uio_rw);
1690 		if (error) {
1691 			break;
1692 		}
1693 		iov->iov_base = (char *)iov->iov_base + len;
1694 		iov->iov_len -= len;
1695 		uio->uio_offset += len;
1696 		uio->uio_resid -= len;
1697 	}
1698 
1699 	if (need_wapbl)
1700 		WAPBL_END(vp->v_mount);
1701 }
1702 
1703 /*
1704  * Iodone routine for direct I/O.  We don't do much here since the request is
1705  * always synchronous, so the caller will do most of the work after biowait().
1706  */
1707 
1708 static void
1709 genfs_dio_iodone(struct buf *bp)
1710 {
1711 
1712 	KASSERT((bp->b_flags & B_ASYNC) == 0);
1713 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1714 		mutex_enter(bp->b_objlock);
1715 		vwakeup(bp);
1716 		mutex_exit(bp->b_objlock);
1717 	}
1718 	putiobuf(bp);
1719 }
1720 
1721 /*
1722  * Process one chunk of a direct I/O request.
1723  */
1724 
1725 static int
1726 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1727     off_t off, enum uio_rw rw)
1728 {
1729 	struct vm_map *map;
1730 	struct pmap *upm, *kpm;
1731 	size_t klen = round_page(uva + len) - trunc_page(uva);
1732 	off_t spoff, epoff;
1733 	vaddr_t kva, puva;
1734 	paddr_t pa;
1735 	vm_prot_t prot;
1736 	int error, rv, poff, koff;
1737 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1738 		(rw == UIO_WRITE ? PGO_FREE : 0);
1739 
1740 	/*
1741 	 * For writes, verify that this range of the file already has fully
1742 	 * allocated backing store.  If there are any holes, just punt and
1743 	 * make the caller take the buffered write path.
1744 	 */
1745 
1746 	if (rw == UIO_WRITE) {
1747 		daddr_t lbn, elbn, blkno;
1748 		int bsize, bshift, run;
1749 
1750 		bshift = vp->v_mount->mnt_fs_bshift;
1751 		bsize = 1 << bshift;
1752 		lbn = off >> bshift;
1753 		elbn = (off + len + bsize - 1) >> bshift;
1754 		while (lbn < elbn) {
1755 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1756 			if (error) {
1757 				return error;
1758 			}
1759 			if (blkno == (daddr_t)-1) {
1760 				return ENOSPC;
1761 			}
1762 			lbn += 1 + run;
1763 		}
1764 	}
1765 
1766 	/*
1767 	 * Flush any cached pages for parts of the file that we're about to
1768 	 * access.  If we're writing, invalidate pages as well.
1769 	 */
1770 
1771 	spoff = trunc_page(off);
1772 	epoff = round_page(off + len);
1773 	mutex_enter(vp->v_interlock);
1774 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1775 	if (error) {
1776 		return error;
1777 	}
1778 
1779 	/*
1780 	 * Wire the user pages and remap them into kernel memory.
1781 	 */
1782 
1783 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1784 	error = uvm_vslock(vs, (void *)uva, len, prot);
1785 	if (error) {
1786 		return error;
1787 	}
1788 
1789 	map = &vs->vm_map;
1790 	upm = vm_map_pmap(map);
1791 	kpm = vm_map_pmap(kernel_map);
1792 	puva = trunc_page(uva);
1793 	kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1794 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1795 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1796 		rv = pmap_extract(upm, puva + poff, &pa);
1797 		KASSERT(rv);
1798 		pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1799 	}
1800 	pmap_update(kpm);
1801 
1802 	/*
1803 	 * Do the I/O.
1804 	 */
1805 
1806 	koff = uva - trunc_page(uva);
1807 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1808 			    genfs_dio_iodone);
1809 
1810 	/*
1811 	 * Tear down the kernel mapping.
1812 	 */
1813 
1814 	pmap_kremove(kva, klen);
1815 	pmap_update(kpm);
1816 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1817 
1818 	/*
1819 	 * Unwire the user pages.
1820 	 */
1821 
1822 	uvm_vsunlock(vs, (void *)uva, len);
1823 	return error;
1824 }
1825