xref: /netbsd-src/sys/miscfs/genfs/genfs_io.c (revision b757af438b42b93f8c6571f026d8b8ef3eaf5fc9)
1 /*	$NetBSD: genfs_io.c,v 1.53 2011/10/31 12:49:32 yamt Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.53 2011/10/31 12:49:32 yamt Exp $");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/vnode.h>
42 #include <sys/kmem.h>
43 #include <sys/kauth.h>
44 #include <sys/fstrans.h>
45 #include <sys/buf.h>
46 
47 #include <miscfs/genfs/genfs.h>
48 #include <miscfs/genfs/genfs_node.h>
49 #include <miscfs/specfs/specdev.h>
50 #include <miscfs/syncfs/syncfs.h>
51 
52 #include <uvm/uvm.h>
53 #include <uvm/uvm_pager.h>
54 
55 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
56     off_t, enum uio_rw);
57 static void genfs_dio_iodone(struct buf *);
58 
59 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
60     void (*)(struct buf *));
61 static void genfs_rel_pages(struct vm_page **, int);
62 static void genfs_markdirty(struct vnode *);
63 
64 int genfs_maxdio = MAXPHYS;
65 
66 static void
67 genfs_rel_pages(struct vm_page **pgs, int npages)
68 {
69 	int i;
70 
71 	for (i = 0; i < npages; i++) {
72 		struct vm_page *pg = pgs[i];
73 
74 		if (pg == NULL || pg == PGO_DONTCARE)
75 			continue;
76 		if (pg->flags & PG_FAKE) {
77 			pg->flags |= PG_RELEASED;
78 		}
79 	}
80 	mutex_enter(&uvm_pageqlock);
81 	uvm_page_unbusy(pgs, npages);
82 	mutex_exit(&uvm_pageqlock);
83 }
84 
85 static void
86 genfs_markdirty(struct vnode *vp)
87 {
88 	struct genfs_node * const gp = VTOG(vp);
89 
90 	KASSERT(mutex_owned(vp->v_interlock));
91 	gp->g_dirtygen++;
92 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
93 		vn_syncer_add_to_worklist(vp, filedelay);
94 	}
95 	if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
96 		vp->v_iflag |= VI_WRMAPDIRTY;
97 	}
98 }
99 
100 /*
101  * generic VM getpages routine.
102  * Return PG_BUSY pages for the given range,
103  * reading from backing store if necessary.
104  */
105 
106 int
107 genfs_getpages(void *v)
108 {
109 	struct vop_getpages_args /* {
110 		struct vnode *a_vp;
111 		voff_t a_offset;
112 		struct vm_page **a_m;
113 		int *a_count;
114 		int a_centeridx;
115 		vm_prot_t a_access_type;
116 		int a_advice;
117 		int a_flags;
118 	} */ * const ap = v;
119 
120 	off_t diskeof, memeof;
121 	int i, error, npages;
122 	const int flags = ap->a_flags;
123 	struct vnode * const vp = ap->a_vp;
124 	struct uvm_object * const uobj = &vp->v_uobj;
125 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
126 	const bool async = (flags & PGO_SYNCIO) == 0;
127 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
128 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
129 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
130 	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
131 	const bool need_wapbl = blockalloc && vp->v_mount->mnt_wapbl;
132 	bool has_trans_wapbl = false;
133 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
134 
135 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
136 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
137 
138 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
139 	    vp->v_type == VLNK || vp->v_type == VBLK);
140 
141 startover:
142 	error = 0;
143 	const voff_t origvsize = vp->v_size;
144 	const off_t origoffset = ap->a_offset;
145 	const int orignpages = *ap->a_count;
146 
147 	GOP_SIZE(vp, origvsize, &diskeof, 0);
148 	if (flags & PGO_PASTEOF) {
149 		off_t newsize;
150 #if defined(DIAGNOSTIC)
151 		off_t writeeof;
152 #endif /* defined(DIAGNOSTIC) */
153 
154 		newsize = MAX(origvsize,
155 		    origoffset + (orignpages << PAGE_SHIFT));
156 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
157 #if defined(DIAGNOSTIC)
158 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
159 		if (newsize > round_page(writeeof)) {
160 			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
161 			    __func__, newsize, round_page(writeeof));
162 		}
163 #endif /* defined(DIAGNOSTIC) */
164 	} else {
165 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
166 	}
167 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
168 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
169 	KASSERT(orignpages > 0);
170 
171 	/*
172 	 * Bounds-check the request.
173 	 */
174 
175 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
176 		if ((flags & PGO_LOCKED) == 0) {
177 			mutex_exit(uobj->vmobjlock);
178 		}
179 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
180 		    origoffset, *ap->a_count, memeof,0);
181 		error = EINVAL;
182 		goto out_err;
183 	}
184 
185 	/* uobj is locked */
186 
187 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
188 	    (vp->v_type != VBLK ||
189 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
190 		int updflags = 0;
191 
192 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
193 			updflags = GOP_UPDATE_ACCESSED;
194 		}
195 		if (memwrite) {
196 			updflags |= GOP_UPDATE_MODIFIED;
197 		}
198 		if (updflags != 0) {
199 			GOP_MARKUPDATE(vp, updflags);
200 		}
201 	}
202 
203 	/*
204 	 * For PGO_LOCKED requests, just return whatever's in memory.
205 	 */
206 
207 	if (flags & PGO_LOCKED) {
208 		int nfound;
209 		struct vm_page *pg;
210 
211 		KASSERT(!glocked);
212 		npages = *ap->a_count;
213 #if defined(DEBUG)
214 		for (i = 0; i < npages; i++) {
215 			pg = ap->a_m[i];
216 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
217 		}
218 #endif /* defined(DEBUG) */
219 		nfound = uvn_findpages(uobj, origoffset, &npages,
220 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
221 		KASSERT(npages == *ap->a_count);
222 		if (nfound == 0) {
223 			error = EBUSY;
224 			goto out_err;
225 		}
226 		if (!genfs_node_rdtrylock(vp)) {
227 			genfs_rel_pages(ap->a_m, npages);
228 
229 			/*
230 			 * restore the array.
231 			 */
232 
233 			for (i = 0; i < npages; i++) {
234 				pg = ap->a_m[i];
235 
236 				if (pg != NULL && pg != PGO_DONTCARE) {
237 					ap->a_m[i] = NULL;
238 				}
239 				KASSERT(ap->a_m[i] == NULL ||
240 				    ap->a_m[i] == PGO_DONTCARE);
241 			}
242 		} else {
243 			genfs_node_unlock(vp);
244 		}
245 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
246 		if (error == 0 && memwrite) {
247 			genfs_markdirty(vp);
248 		}
249 		goto out_err;
250 	}
251 	mutex_exit(uobj->vmobjlock);
252 
253 	/*
254 	 * find the requested pages and make some simple checks.
255 	 * leave space in the page array for a whole block.
256 	 */
257 
258 	const int fs_bshift = (vp->v_type != VBLK) ?
259 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
260 	const int dev_bshift = (vp->v_type != VBLK) ?
261 	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
262 	const int fs_bsize = 1 << fs_bshift;
263 #define	blk_mask	(fs_bsize - 1)
264 #define	trunc_blk(x)	((x) & ~blk_mask)
265 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
266 
267 	const int orignmempages = MIN(orignpages,
268 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
269 	npages = orignmempages;
270 	const off_t startoffset = trunc_blk(origoffset);
271 	const off_t endoffset = MIN(
272 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
273 	    round_page(memeof));
274 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
275 
276 	const int pgs_size = sizeof(struct vm_page *) *
277 	    ((endoffset - startoffset) >> PAGE_SHIFT);
278 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
279 
280 	if (pgs_size > sizeof(pgs_onstack)) {
281 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
282 		if (pgs == NULL) {
283 			pgs = pgs_onstack;
284 			error = ENOMEM;
285 			goto out_err;
286 		}
287 	} else {
288 		pgs = pgs_onstack;
289 		(void)memset(pgs, 0, pgs_size);
290 	}
291 
292 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
293 	    ridx, npages, startoffset, endoffset);
294 
295 	if (!has_trans_wapbl) {
296 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
297 		/*
298 		 * XXX: This assumes that we come here only via
299 		 * the mmio path
300 		 */
301 		if (need_wapbl) {
302 			error = WAPBL_BEGIN(vp->v_mount);
303 			if (error) {
304 				fstrans_done(vp->v_mount);
305 				goto out_err_free;
306 			}
307 		}
308 		has_trans_wapbl = true;
309 	}
310 
311 	/*
312 	 * hold g_glock to prevent a race with truncate.
313 	 *
314 	 * check if our idea of v_size is still valid.
315 	 */
316 
317 	KASSERT(!glocked || genfs_node_wrlocked(vp));
318 	if (!glocked) {
319 		if (blockalloc) {
320 			genfs_node_wrlock(vp);
321 		} else {
322 			genfs_node_rdlock(vp);
323 		}
324 	}
325 	mutex_enter(uobj->vmobjlock);
326 	if (vp->v_size < origvsize) {
327 		if (!glocked) {
328 			genfs_node_unlock(vp);
329 		}
330 		if (pgs != pgs_onstack)
331 			kmem_free(pgs, pgs_size);
332 		goto startover;
333 	}
334 
335 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
336 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
337 		if (!glocked) {
338 			genfs_node_unlock(vp);
339 		}
340 		KASSERT(async != 0);
341 		genfs_rel_pages(&pgs[ridx], orignmempages);
342 		mutex_exit(uobj->vmobjlock);
343 		error = EBUSY;
344 		goto out_err_free;
345 	}
346 
347 	/*
348 	 * if the pages are already resident, just return them.
349 	 */
350 
351 	for (i = 0; i < npages; i++) {
352 		struct vm_page *pg = pgs[ridx + i];
353 
354 		if ((pg->flags & PG_FAKE) ||
355 		    (blockalloc && (pg->flags & PG_RDONLY))) {
356 			break;
357 		}
358 	}
359 	if (i == npages) {
360 		if (!glocked) {
361 			genfs_node_unlock(vp);
362 		}
363 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
364 		npages += ridx;
365 		goto out;
366 	}
367 
368 	/*
369 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
370 	 */
371 
372 	if (overwrite) {
373 		if (!glocked) {
374 			genfs_node_unlock(vp);
375 		}
376 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
377 
378 		for (i = 0; i < npages; i++) {
379 			struct vm_page *pg = pgs[ridx + i];
380 
381 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
382 		}
383 		npages += ridx;
384 		goto out;
385 	}
386 
387 	/*
388 	 * the page wasn't resident and we're not overwriting,
389 	 * so we're going to have to do some i/o.
390 	 * find any additional pages needed to cover the expanded range.
391 	 */
392 
393 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
394 	if (startoffset != origoffset || npages != orignmempages) {
395 		int npgs;
396 
397 		/*
398 		 * we need to avoid deadlocks caused by locking
399 		 * additional pages at lower offsets than pages we
400 		 * already have locked.  unlock them all and start over.
401 		 */
402 
403 		genfs_rel_pages(&pgs[ridx], orignmempages);
404 		memset(pgs, 0, pgs_size);
405 
406 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
407 		    startoffset, endoffset, 0,0);
408 		npgs = npages;
409 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
410 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
411 			if (!glocked) {
412 				genfs_node_unlock(vp);
413 			}
414 			KASSERT(async != 0);
415 			genfs_rel_pages(pgs, npages);
416 			mutex_exit(uobj->vmobjlock);
417 			error = EBUSY;
418 			goto out_err_free;
419 		}
420 	}
421 
422 	mutex_exit(uobj->vmobjlock);
423 
424     {
425 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
426 	vaddr_t kva;
427 	struct buf *bp, *mbp;
428 	bool sawhole = false;
429 
430 	/*
431 	 * read the desired page(s).
432 	 */
433 
434 	totalbytes = npages << PAGE_SHIFT;
435 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
436 	tailbytes = totalbytes - bytes;
437 	skipbytes = 0;
438 
439 	kva = uvm_pagermapin(pgs, npages,
440 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
441 
442 	mbp = getiobuf(vp, true);
443 	mbp->b_bufsize = totalbytes;
444 	mbp->b_data = (void *)kva;
445 	mbp->b_resid = mbp->b_bcount = bytes;
446 	mbp->b_cflags = BC_BUSY;
447 	if (async) {
448 		mbp->b_flags = B_READ | B_ASYNC;
449 		mbp->b_iodone = uvm_aio_biodone;
450 	} else {
451 		mbp->b_flags = B_READ;
452 		mbp->b_iodone = NULL;
453 	}
454 	if (async)
455 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
456 	else
457 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
458 
459 	/*
460 	 * if EOF is in the middle of the range, zero the part past EOF.
461 	 * skip over pages which are not PG_FAKE since in that case they have
462 	 * valid data that we need to preserve.
463 	 */
464 
465 	tailstart = bytes;
466 	while (tailbytes > 0) {
467 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
468 
469 		KASSERT(len <= tailbytes);
470 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
471 			memset((void *)(kva + tailstart), 0, len);
472 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
473 			    kva, tailstart, len, 0);
474 		}
475 		tailstart += len;
476 		tailbytes -= len;
477 	}
478 
479 	/*
480 	 * now loop over the pages, reading as needed.
481 	 */
482 
483 	bp = NULL;
484 	off_t offset;
485 	for (offset = startoffset;
486 	    bytes > 0;
487 	    offset += iobytes, bytes -= iobytes) {
488 		int run;
489 		daddr_t lbn, blkno;
490 		int pidx;
491 		struct vnode *devvp;
492 
493 		/*
494 		 * skip pages which don't need to be read.
495 		 */
496 
497 		pidx = (offset - startoffset) >> PAGE_SHIFT;
498 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
499 			size_t b;
500 
501 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
502 			if ((pgs[pidx]->flags & PG_RDONLY)) {
503 				sawhole = true;
504 			}
505 			b = MIN(PAGE_SIZE, bytes);
506 			offset += b;
507 			bytes -= b;
508 			skipbytes += b;
509 			pidx++;
510 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
511 			    offset, 0,0,0);
512 			if (bytes == 0) {
513 				goto loopdone;
514 			}
515 		}
516 
517 		/*
518 		 * bmap the file to find out the blkno to read from and
519 		 * how much we can read in one i/o.  if bmap returns an error,
520 		 * skip the rest of the top-level i/o.
521 		 */
522 
523 		lbn = offset >> fs_bshift;
524 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
525 		if (error) {
526 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
527 			    lbn,error,0,0);
528 			skipbytes += bytes;
529 			bytes = 0;
530 			goto loopdone;
531 		}
532 
533 		/*
534 		 * see how many pages can be read with this i/o.
535 		 * reduce the i/o size if necessary to avoid
536 		 * overwriting pages with valid data.
537 		 */
538 
539 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
540 		    bytes);
541 		if (offset + iobytes > round_page(offset)) {
542 			int pcount;
543 
544 			pcount = 1;
545 			while (pidx + pcount < npages &&
546 			    pgs[pidx + pcount]->flags & PG_FAKE) {
547 				pcount++;
548 			}
549 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
550 			    (offset - trunc_page(offset)));
551 		}
552 
553 		/*
554 		 * if this block isn't allocated, zero it instead of
555 		 * reading it.  unless we are going to allocate blocks,
556 		 * mark the pages we zeroed PG_RDONLY.
557 		 */
558 
559 		if (blkno == (daddr_t)-1) {
560 			int holepages = (round_page(offset + iobytes) -
561 			    trunc_page(offset)) >> PAGE_SHIFT;
562 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
563 
564 			sawhole = true;
565 			memset((char *)kva + (offset - startoffset), 0,
566 			    iobytes);
567 			skipbytes += iobytes;
568 
569 			mutex_enter(uobj->vmobjlock);
570 			for (i = 0; i < holepages; i++) {
571 				if (memwrite) {
572 					pgs[pidx + i]->flags &= ~PG_CLEAN;
573 				}
574 				if (!blockalloc) {
575 					pgs[pidx + i]->flags |= PG_RDONLY;
576 				}
577 			}
578 			mutex_exit(uobj->vmobjlock);
579 			continue;
580 		}
581 
582 		/*
583 		 * allocate a sub-buf for this piece of the i/o
584 		 * (or just use mbp if there's only 1 piece),
585 		 * and start it going.
586 		 */
587 
588 		if (offset == startoffset && iobytes == bytes) {
589 			bp = mbp;
590 		} else {
591 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
592 			    vp, bp, vp->v_numoutput, 0);
593 			bp = getiobuf(vp, true);
594 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
595 		}
596 		bp->b_lblkno = 0;
597 
598 		/* adjust physical blkno for partial blocks */
599 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
600 		    dev_bshift);
601 
602 		UVMHIST_LOG(ubchist,
603 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
604 		    bp, offset, bp->b_bcount, bp->b_blkno);
605 
606 		VOP_STRATEGY(devvp, bp);
607 	}
608 
609 loopdone:
610 	nestiobuf_done(mbp, skipbytes, error);
611 	if (async) {
612 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
613 		if (!glocked) {
614 			genfs_node_unlock(vp);
615 		}
616 		error = 0;
617 		goto out_err_free;
618 	}
619 	if (bp != NULL) {
620 		error = biowait(mbp);
621 	}
622 
623 	/* Remove the mapping (make KVA available as soon as possible) */
624 	uvm_pagermapout(kva, npages);
625 
626 	/*
627 	 * if this we encountered a hole then we have to do a little more work.
628 	 * for read faults, we marked the page PG_RDONLY so that future
629 	 * write accesses to the page will fault again.
630 	 * for write faults, we must make sure that the backing store for
631 	 * the page is completely allocated while the pages are locked.
632 	 */
633 
634 	if (!error && sawhole && blockalloc) {
635 		error = GOP_ALLOC(vp, startoffset,
636 		    npages << PAGE_SHIFT, 0, cred);
637 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
638 		    startoffset, npages << PAGE_SHIFT, error,0);
639 		if (!error) {
640 			mutex_enter(uobj->vmobjlock);
641 			for (i = 0; i < npages; i++) {
642 				struct vm_page *pg = pgs[i];
643 
644 				if (pg == NULL) {
645 					continue;
646 				}
647 				pg->flags &= ~(PG_CLEAN|PG_RDONLY);
648 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
649 				    pg,0,0,0);
650 			}
651 			mutex_exit(uobj->vmobjlock);
652 		}
653 	}
654 	if (!glocked) {
655 		genfs_node_unlock(vp);
656 	}
657 
658 	putiobuf(mbp);
659     }
660 
661 	mutex_enter(uobj->vmobjlock);
662 
663 	/*
664 	 * we're almost done!  release the pages...
665 	 * for errors, we free the pages.
666 	 * otherwise we activate them and mark them as valid and clean.
667 	 * also, unbusy pages that were not actually requested.
668 	 */
669 
670 	if (error) {
671 		for (i = 0; i < npages; i++) {
672 			struct vm_page *pg = pgs[i];
673 
674 			if (pg == NULL) {
675 				continue;
676 			}
677 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
678 			    pg, pg->flags, 0,0);
679 			if (pg->flags & PG_FAKE) {
680 				pg->flags |= PG_RELEASED;
681 			}
682 		}
683 		mutex_enter(&uvm_pageqlock);
684 		uvm_page_unbusy(pgs, npages);
685 		mutex_exit(&uvm_pageqlock);
686 		mutex_exit(uobj->vmobjlock);
687 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
688 		goto out_err_free;
689 	}
690 
691 out:
692 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
693 	error = 0;
694 	mutex_enter(&uvm_pageqlock);
695 	for (i = 0; i < npages; i++) {
696 		struct vm_page *pg = pgs[i];
697 		if (pg == NULL) {
698 			continue;
699 		}
700 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
701 		    pg, pg->flags, 0,0);
702 		if (pg->flags & PG_FAKE && !overwrite) {
703 			pg->flags &= ~(PG_FAKE);
704 			pmap_clear_modify(pgs[i]);
705 		}
706 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
707 		if (i < ridx || i >= ridx + orignmempages || async) {
708 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
709 			    pg, pg->offset,0,0);
710 			if (pg->flags & PG_WANTED) {
711 				wakeup(pg);
712 			}
713 			if (pg->flags & PG_FAKE) {
714 				KASSERT(overwrite);
715 				uvm_pagezero(pg);
716 			}
717 			if (pg->flags & PG_RELEASED) {
718 				uvm_pagefree(pg);
719 				continue;
720 			}
721 			uvm_pageenqueue(pg);
722 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
723 			UVM_PAGE_OWN(pg, NULL);
724 		}
725 	}
726 	mutex_exit(&uvm_pageqlock);
727 	if (memwrite) {
728 		genfs_markdirty(vp);
729 	}
730 	mutex_exit(uobj->vmobjlock);
731 	if (ap->a_m != NULL) {
732 		memcpy(ap->a_m, &pgs[ridx],
733 		    orignmempages * sizeof(struct vm_page *));
734 	}
735 
736 out_err_free:
737 	if (pgs != NULL && pgs != pgs_onstack)
738 		kmem_free(pgs, pgs_size);
739 out_err:
740 	if (has_trans_wapbl) {
741 		if (need_wapbl)
742 			WAPBL_END(vp->v_mount);
743 		fstrans_done(vp->v_mount);
744 	}
745 	return error;
746 }
747 
748 /*
749  * generic VM putpages routine.
750  * Write the given range of pages to backing store.
751  *
752  * => "offhi == 0" means flush all pages at or after "offlo".
753  * => object should be locked by caller.  we return with the
754  *      object unlocked.
755  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
756  *	thus, a caller might want to unlock higher level resources
757  *	(e.g. vm_map) before calling flush.
758  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
759  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
760  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
761  *	that new pages are inserted on the tail end of the list.   thus,
762  *	we can make a complete pass through the object in one go by starting
763  *	at the head and working towards the tail (new pages are put in
764  *	front of us).
765  * => NOTE: we are allowed to lock the page queues, so the caller
766  *	must not be holding the page queue lock.
767  *
768  * note on "cleaning" object and PG_BUSY pages:
769  *	this routine is holding the lock on the object.   the only time
770  *	that it can run into a PG_BUSY page that it does not own is if
771  *	some other process has started I/O on the page (e.g. either
772  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
773  *	in, then it can not be dirty (!PG_CLEAN) because no one has
774  *	had a chance to modify it yet.    if the PG_BUSY page is being
775  *	paged out then it means that someone else has already started
776  *	cleaning the page for us (how nice!).    in this case, if we
777  *	have syncio specified, then after we make our pass through the
778  *	object we need to wait for the other PG_BUSY pages to clear
779  *	off (i.e. we need to do an iosync).   also note that once a
780  *	page is PG_BUSY it must stay in its object until it is un-busyed.
781  *
782  * note on page traversal:
783  *	we can traverse the pages in an object either by going down the
784  *	linked list in "uobj->memq", or we can go over the address range
785  *	by page doing hash table lookups for each address.    depending
786  *	on how many pages are in the object it may be cheaper to do one
787  *	or the other.   we set "by_list" to true if we are using memq.
788  *	if the cost of a hash lookup was equal to the cost of the list
789  *	traversal we could compare the number of pages in the start->stop
790  *	range to the total number of pages in the object.   however, it
791  *	seems that a hash table lookup is more expensive than the linked
792  *	list traversal, so we multiply the number of pages in the
793  *	range by an estimate of the relatively higher cost of the hash lookup.
794  */
795 
796 int
797 genfs_putpages(void *v)
798 {
799 	struct vop_putpages_args /* {
800 		struct vnode *a_vp;
801 		voff_t a_offlo;
802 		voff_t a_offhi;
803 		int a_flags;
804 	} */ * const ap = v;
805 
806 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
807 	    ap->a_flags, NULL);
808 }
809 
810 int
811 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
812     int origflags, struct vm_page **busypg)
813 {
814 	struct uvm_object * const uobj = &vp->v_uobj;
815 	kmutex_t * const slock = uobj->vmobjlock;
816 	off_t off;
817 	/* Even for strange MAXPHYS, the shift rounds down to a page */
818 #define maxpages (MAXPHYS >> PAGE_SHIFT)
819 	int i, error, npages, nback;
820 	int freeflag;
821 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
822 	bool wasclean, by_list, needs_clean, yld;
823 	bool async = (origflags & PGO_SYNCIO) == 0;
824 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
825 	struct lwp * const l = curlwp ? curlwp : &lwp0;
826 	struct genfs_node * const gp = VTOG(vp);
827 	int flags;
828 	int dirtygen;
829 	bool modified;
830 	bool need_wapbl;
831 	bool has_trans;
832 	bool cleanall;
833 	bool onworklst;
834 
835 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
836 
837 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
838 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
839 	KASSERT(startoff < endoff || endoff == 0);
840 
841 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
842 	    vp, uobj->uo_npages, startoff, endoff - startoff);
843 
844 	has_trans = false;
845 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
846 	    (origflags & PGO_JOURNALLOCKED) == 0);
847 
848 retry:
849 	modified = false;
850 	flags = origflags;
851 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
852 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
853 	if (uobj->uo_npages == 0) {
854 		if (vp->v_iflag & VI_ONWORKLST) {
855 			vp->v_iflag &= ~VI_WRMAPDIRTY;
856 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
857 				vn_syncer_remove_from_worklist(vp);
858 		}
859 		if (has_trans) {
860 			if (need_wapbl)
861 				WAPBL_END(vp->v_mount);
862 			fstrans_done(vp->v_mount);
863 		}
864 		mutex_exit(slock);
865 		return (0);
866 	}
867 
868 	/*
869 	 * the vnode has pages, set up to process the request.
870 	 */
871 
872 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
873 		mutex_exit(slock);
874 		if (pagedaemon) {
875 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
876 			if (error)
877 				return error;
878 		} else
879 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
880 		if (need_wapbl) {
881 			error = WAPBL_BEGIN(vp->v_mount);
882 			if (error) {
883 				fstrans_done(vp->v_mount);
884 				return error;
885 			}
886 		}
887 		has_trans = true;
888 		mutex_enter(slock);
889 		goto retry;
890 	}
891 
892 	error = 0;
893 	wasclean = (vp->v_numoutput == 0);
894 	off = startoff;
895 	if (endoff == 0 || flags & PGO_ALLPAGES) {
896 		endoff = trunc_page(LLONG_MAX);
897 	}
898 	by_list = (uobj->uo_npages <=
899 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
900 
901 	/*
902 	 * if this vnode is known not to have dirty pages,
903 	 * don't bother to clean it out.
904 	 */
905 
906 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
907 #if !defined(DEBUG)
908 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
909 			goto skip_scan;
910 		}
911 #endif /* !defined(DEBUG) */
912 		flags &= ~PGO_CLEANIT;
913 	}
914 
915 	/*
916 	 * start the loop.  when scanning by list, hold the last page
917 	 * in the list before we start.  pages allocated after we start
918 	 * will be added to the end of the list, so we can stop at the
919 	 * current last page.
920 	 */
921 
922 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
923 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
924 	    (vp->v_iflag & VI_ONWORKLST) != 0;
925 	dirtygen = gp->g_dirtygen;
926 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
927 	if (by_list) {
928 		curmp.flags = PG_MARKER;
929 		endmp.flags = PG_MARKER;
930 		pg = TAILQ_FIRST(&uobj->memq);
931 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
932 	} else {
933 		pg = uvm_pagelookup(uobj, off);
934 	}
935 	nextpg = NULL;
936 	while (by_list || off < endoff) {
937 
938 		/*
939 		 * if the current page is not interesting, move on to the next.
940 		 */
941 
942 		KASSERT(pg == NULL || pg->uobject == uobj ||
943 		    (pg->flags & PG_MARKER) != 0);
944 		KASSERT(pg == NULL ||
945 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
946 		    (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
947 		if (by_list) {
948 			if (pg == &endmp) {
949 				break;
950 			}
951 			if (pg->flags & PG_MARKER) {
952 				pg = TAILQ_NEXT(pg, listq.queue);
953 				continue;
954 			}
955 			if (pg->offset < startoff || pg->offset >= endoff ||
956 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
957 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
958 					wasclean = false;
959 				}
960 				pg = TAILQ_NEXT(pg, listq.queue);
961 				continue;
962 			}
963 			off = pg->offset;
964 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
965 			if (pg != NULL) {
966 				wasclean = false;
967 			}
968 			off += PAGE_SIZE;
969 			if (off < endoff) {
970 				pg = uvm_pagelookup(uobj, off);
971 			}
972 			continue;
973 		}
974 
975 		/*
976 		 * if the current page needs to be cleaned and it's busy,
977 		 * wait for it to become unbusy.
978 		 */
979 
980 		yld = (l->l_cpu->ci_schedstate.spc_flags &
981 		    SPCF_SHOULDYIELD) && !pagedaemon;
982 		if (pg->flags & PG_BUSY || yld) {
983 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
984 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
985 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
986 				error = EDEADLK;
987 				if (busypg != NULL)
988 					*busypg = pg;
989 				break;
990 			}
991 			if (pagedaemon) {
992 				/*
993 				 * someone has taken the page while we
994 				 * dropped the lock for fstrans_start.
995 				 */
996 				break;
997 			}
998 			if (by_list) {
999 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1000 				UVMHIST_LOG(ubchist, "curmp next %p",
1001 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1002 			}
1003 			if (yld) {
1004 				mutex_exit(slock);
1005 				preempt();
1006 				mutex_enter(slock);
1007 			} else {
1008 				pg->flags |= PG_WANTED;
1009 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1010 				mutex_enter(slock);
1011 			}
1012 			if (by_list) {
1013 				UVMHIST_LOG(ubchist, "after next %p",
1014 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1015 				pg = TAILQ_NEXT(&curmp, listq.queue);
1016 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1017 			} else {
1018 				pg = uvm_pagelookup(uobj, off);
1019 			}
1020 			continue;
1021 		}
1022 
1023 		/*
1024 		 * if we're freeing, remove all mappings of the page now.
1025 		 * if we're cleaning, check if the page is needs to be cleaned.
1026 		 */
1027 
1028 		if (flags & PGO_FREE) {
1029 			pmap_page_protect(pg, VM_PROT_NONE);
1030 		} else if (flags & PGO_CLEANIT) {
1031 
1032 			/*
1033 			 * if we still have some hope to pull this vnode off
1034 			 * from the syncer queue, write-protect the page.
1035 			 */
1036 
1037 			if (cleanall && wasclean &&
1038 			    gp->g_dirtygen == dirtygen) {
1039 
1040 				/*
1041 				 * uobj pages get wired only by uvm_fault
1042 				 * where uobj is locked.
1043 				 */
1044 
1045 				if (pg->wire_count == 0) {
1046 					pmap_page_protect(pg,
1047 					    VM_PROT_READ|VM_PROT_EXECUTE);
1048 				} else {
1049 					cleanall = false;
1050 				}
1051 			}
1052 		}
1053 
1054 		if (flags & PGO_CLEANIT) {
1055 			needs_clean = pmap_clear_modify(pg) ||
1056 			    (pg->flags & PG_CLEAN) == 0;
1057 			pg->flags |= PG_CLEAN;
1058 		} else {
1059 			needs_clean = false;
1060 		}
1061 
1062 		/*
1063 		 * if we're cleaning, build a cluster.
1064 		 * the cluster will consist of pages which are currently dirty,
1065 		 * but they will be returned to us marked clean.
1066 		 * if not cleaning, just operate on the one page.
1067 		 */
1068 
1069 		if (needs_clean) {
1070 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
1071 			wasclean = false;
1072 			memset(pgs, 0, sizeof(pgs));
1073 			pg->flags |= PG_BUSY;
1074 			UVM_PAGE_OWN(pg, "genfs_putpages");
1075 
1076 			/*
1077 			 * first look backward.
1078 			 */
1079 
1080 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1081 			nback = npages;
1082 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1083 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1084 			if (nback) {
1085 				memmove(&pgs[0], &pgs[npages - nback],
1086 				    nback * sizeof(pgs[0]));
1087 				if (npages - nback < nback)
1088 					memset(&pgs[nback], 0,
1089 					    (npages - nback) * sizeof(pgs[0]));
1090 				else
1091 					memset(&pgs[npages - nback], 0,
1092 					    nback * sizeof(pgs[0]));
1093 			}
1094 
1095 			/*
1096 			 * then plug in our page of interest.
1097 			 */
1098 
1099 			pgs[nback] = pg;
1100 
1101 			/*
1102 			 * then look forward to fill in the remaining space in
1103 			 * the array of pages.
1104 			 */
1105 
1106 			npages = maxpages - nback - 1;
1107 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1108 			    &pgs[nback + 1],
1109 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1110 			npages += nback + 1;
1111 		} else {
1112 			pgs[0] = pg;
1113 			npages = 1;
1114 			nback = 0;
1115 		}
1116 
1117 		/*
1118 		 * apply FREE or DEACTIVATE options if requested.
1119 		 */
1120 
1121 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1122 			mutex_enter(&uvm_pageqlock);
1123 		}
1124 		for (i = 0; i < npages; i++) {
1125 			tpg = pgs[i];
1126 			KASSERT(tpg->uobject == uobj);
1127 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1128 				pg = tpg;
1129 			if (tpg->offset < startoff || tpg->offset >= endoff)
1130 				continue;
1131 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1132 				uvm_pagedeactivate(tpg);
1133 			} else if (flags & PGO_FREE) {
1134 				pmap_page_protect(tpg, VM_PROT_NONE);
1135 				if (tpg->flags & PG_BUSY) {
1136 					tpg->flags |= freeflag;
1137 					if (pagedaemon) {
1138 						uvm_pageout_start(1);
1139 						uvm_pagedequeue(tpg);
1140 					}
1141 				} else {
1142 
1143 					/*
1144 					 * ``page is not busy''
1145 					 * implies that npages is 1
1146 					 * and needs_clean is false.
1147 					 */
1148 
1149 					nextpg = TAILQ_NEXT(tpg, listq.queue);
1150 					uvm_pagefree(tpg);
1151 					if (pagedaemon)
1152 						uvmexp.pdfreed++;
1153 				}
1154 			}
1155 		}
1156 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1157 			mutex_exit(&uvm_pageqlock);
1158 		}
1159 		if (needs_clean) {
1160 			modified = true;
1161 
1162 			/*
1163 			 * start the i/o.  if we're traversing by list,
1164 			 * keep our place in the list with a marker page.
1165 			 */
1166 
1167 			if (by_list) {
1168 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1169 				    listq.queue);
1170 			}
1171 			mutex_exit(slock);
1172 			error = GOP_WRITE(vp, pgs, npages, flags);
1173 			mutex_enter(slock);
1174 			if (by_list) {
1175 				pg = TAILQ_NEXT(&curmp, listq.queue);
1176 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1177 			}
1178 			if (error) {
1179 				break;
1180 			}
1181 			if (by_list) {
1182 				continue;
1183 			}
1184 		}
1185 
1186 		/*
1187 		 * find the next page and continue if there was no error.
1188 		 */
1189 
1190 		if (by_list) {
1191 			if (nextpg) {
1192 				pg = nextpg;
1193 				nextpg = NULL;
1194 			} else {
1195 				pg = TAILQ_NEXT(pg, listq.queue);
1196 			}
1197 		} else {
1198 			off += (npages - nback) << PAGE_SHIFT;
1199 			if (off < endoff) {
1200 				pg = uvm_pagelookup(uobj, off);
1201 			}
1202 		}
1203 	}
1204 	if (by_list) {
1205 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1206 	}
1207 
1208 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1209 	    (vp->v_type != VBLK ||
1210 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1211 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1212 	}
1213 
1214 	/*
1215 	 * if we're cleaning and there was nothing to clean,
1216 	 * take us off the syncer list.  if we started any i/o
1217 	 * and we're doing sync i/o, wait for all writes to finish.
1218 	 */
1219 
1220 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1221 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
1222 #if defined(DEBUG)
1223 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1224 			if ((pg->flags & (PG_FAKE | PG_MARKER)) != 0) {
1225 				continue;
1226 			}
1227 			if ((pg->flags & PG_CLEAN) == 0) {
1228 				printf("%s: %p: !CLEAN\n", __func__, pg);
1229 			}
1230 			if (pmap_is_modified(pg)) {
1231 				printf("%s: %p: modified\n", __func__, pg);
1232 			}
1233 		}
1234 #endif /* defined(DEBUG) */
1235 		vp->v_iflag &= ~VI_WRMAPDIRTY;
1236 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1237 			vn_syncer_remove_from_worklist(vp);
1238 	}
1239 
1240 #if !defined(DEBUG)
1241 skip_scan:
1242 #endif /* !defined(DEBUG) */
1243 
1244 	/* Wait for output to complete. */
1245 	if (!wasclean && !async && vp->v_numoutput != 0) {
1246 		while (vp->v_numoutput != 0)
1247 			cv_wait(&vp->v_cv, slock);
1248 	}
1249 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1250 	mutex_exit(slock);
1251 
1252 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1253 		/*
1254 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1255 		 * retrying is not a big deal because, in many cases,
1256 		 * uobj->uo_npages is already 0 here.
1257 		 */
1258 		mutex_enter(slock);
1259 		goto retry;
1260 	}
1261 
1262 	if (has_trans) {
1263 		if (need_wapbl)
1264 			WAPBL_END(vp->v_mount);
1265 		fstrans_done(vp->v_mount);
1266 	}
1267 
1268 	return (error);
1269 }
1270 
1271 int
1272 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1273 {
1274 	off_t off;
1275 	vaddr_t kva;
1276 	size_t len;
1277 	int error;
1278 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1279 
1280 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1281 	    vp, pgs, npages, flags);
1282 
1283 	off = pgs[0]->offset;
1284 	kva = uvm_pagermapin(pgs, npages,
1285 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1286 	len = npages << PAGE_SHIFT;
1287 
1288 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1289 			    uvm_aio_biodone);
1290 
1291 	return error;
1292 }
1293 
1294 int
1295 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1296 {
1297 	off_t off;
1298 	vaddr_t kva;
1299 	size_t len;
1300 	int error;
1301 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1302 
1303 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1304 	    vp, pgs, npages, flags);
1305 
1306 	off = pgs[0]->offset;
1307 	kva = uvm_pagermapin(pgs, npages,
1308 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1309 	len = npages << PAGE_SHIFT;
1310 
1311 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1312 			    uvm_aio_biodone);
1313 
1314 	return error;
1315 }
1316 
1317 /*
1318  * Backend routine for doing I/O to vnode pages.  Pages are already locked
1319  * and mapped into kernel memory.  Here we just look up the underlying
1320  * device block addresses and call the strategy routine.
1321  */
1322 
1323 static int
1324 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1325     enum uio_rw rw, void (*iodone)(struct buf *))
1326 {
1327 	int s, error;
1328 	int fs_bshift, dev_bshift;
1329 	off_t eof, offset, startoffset;
1330 	size_t bytes, iobytes, skipbytes;
1331 	struct buf *mbp, *bp;
1332 	const bool async = (flags & PGO_SYNCIO) == 0;
1333 	const bool iowrite = rw == UIO_WRITE;
1334 	const int brw = iowrite ? B_WRITE : B_READ;
1335 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1336 
1337 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1338 	    vp, kva, len, flags);
1339 
1340 	KASSERT(vp->v_size <= vp->v_writesize);
1341 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1342 	if (vp->v_type != VBLK) {
1343 		fs_bshift = vp->v_mount->mnt_fs_bshift;
1344 		dev_bshift = vp->v_mount->mnt_dev_bshift;
1345 	} else {
1346 		fs_bshift = DEV_BSHIFT;
1347 		dev_bshift = DEV_BSHIFT;
1348 	}
1349 	error = 0;
1350 	startoffset = off;
1351 	bytes = MIN(len, eof - startoffset);
1352 	skipbytes = 0;
1353 	KASSERT(bytes != 0);
1354 
1355 	if (iowrite) {
1356 		mutex_enter(vp->v_interlock);
1357 		vp->v_numoutput += 2;
1358 		mutex_exit(vp->v_interlock);
1359 	}
1360 	mbp = getiobuf(vp, true);
1361 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1362 	    vp, mbp, vp->v_numoutput, bytes);
1363 	mbp->b_bufsize = len;
1364 	mbp->b_data = (void *)kva;
1365 	mbp->b_resid = mbp->b_bcount = bytes;
1366 	mbp->b_cflags = BC_BUSY | BC_AGE;
1367 	if (async) {
1368 		mbp->b_flags = brw | B_ASYNC;
1369 		mbp->b_iodone = iodone;
1370 	} else {
1371 		mbp->b_flags = brw;
1372 		mbp->b_iodone = NULL;
1373 	}
1374 	if (curlwp == uvm.pagedaemon_lwp)
1375 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1376 	else if (async)
1377 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1378 	else
1379 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1380 
1381 	bp = NULL;
1382 	for (offset = startoffset;
1383 	    bytes > 0;
1384 	    offset += iobytes, bytes -= iobytes) {
1385 		int run;
1386 		daddr_t lbn, blkno;
1387 		struct vnode *devvp;
1388 
1389 		/*
1390 		 * bmap the file to find out the blkno to read from and
1391 		 * how much we can read in one i/o.  if bmap returns an error,
1392 		 * skip the rest of the top-level i/o.
1393 		 */
1394 
1395 		lbn = offset >> fs_bshift;
1396 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1397 		if (error) {
1398 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1399 			    lbn,error,0,0);
1400 			skipbytes += bytes;
1401 			bytes = 0;
1402 			goto loopdone;
1403 		}
1404 
1405 		/*
1406 		 * see how many pages can be read with this i/o.
1407 		 * reduce the i/o size if necessary to avoid
1408 		 * overwriting pages with valid data.
1409 		 */
1410 
1411 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1412 		    bytes);
1413 
1414 		/*
1415 		 * if this block isn't allocated, zero it instead of
1416 		 * reading it.  unless we are going to allocate blocks,
1417 		 * mark the pages we zeroed PG_RDONLY.
1418 		 */
1419 
1420 		if (blkno == (daddr_t)-1) {
1421 			if (!iowrite) {
1422 				memset((char *)kva + (offset - startoffset), 0,
1423 				    iobytes);
1424 			}
1425 			skipbytes += iobytes;
1426 			continue;
1427 		}
1428 
1429 		/*
1430 		 * allocate a sub-buf for this piece of the i/o
1431 		 * (or just use mbp if there's only 1 piece),
1432 		 * and start it going.
1433 		 */
1434 
1435 		if (offset == startoffset && iobytes == bytes) {
1436 			bp = mbp;
1437 		} else {
1438 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1439 			    vp, bp, vp->v_numoutput, 0);
1440 			bp = getiobuf(vp, true);
1441 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1442 		}
1443 		bp->b_lblkno = 0;
1444 
1445 		/* adjust physical blkno for partial blocks */
1446 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1447 		    dev_bshift);
1448 
1449 		UVMHIST_LOG(ubchist,
1450 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1451 		    bp, offset, bp->b_bcount, bp->b_blkno);
1452 
1453 		VOP_STRATEGY(devvp, bp);
1454 	}
1455 
1456 loopdone:
1457 	if (skipbytes) {
1458 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1459 	}
1460 	nestiobuf_done(mbp, skipbytes, error);
1461 	if (async) {
1462 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1463 		return (0);
1464 	}
1465 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1466 	error = biowait(mbp);
1467 	s = splbio();
1468 	(*iodone)(mbp);
1469 	splx(s);
1470 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1471 	return (error);
1472 }
1473 
1474 int
1475 genfs_compat_getpages(void *v)
1476 {
1477 	struct vop_getpages_args /* {
1478 		struct vnode *a_vp;
1479 		voff_t a_offset;
1480 		struct vm_page **a_m;
1481 		int *a_count;
1482 		int a_centeridx;
1483 		vm_prot_t a_access_type;
1484 		int a_advice;
1485 		int a_flags;
1486 	} */ *ap = v;
1487 
1488 	off_t origoffset;
1489 	struct vnode *vp = ap->a_vp;
1490 	struct uvm_object *uobj = &vp->v_uobj;
1491 	struct vm_page *pg, **pgs;
1492 	vaddr_t kva;
1493 	int i, error, orignpages, npages;
1494 	struct iovec iov;
1495 	struct uio uio;
1496 	kauth_cred_t cred = curlwp->l_cred;
1497 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1498 
1499 	error = 0;
1500 	origoffset = ap->a_offset;
1501 	orignpages = *ap->a_count;
1502 	pgs = ap->a_m;
1503 
1504 	if (ap->a_flags & PGO_LOCKED) {
1505 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1506 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1507 
1508 		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1509 		if (error == 0 && memwrite) {
1510 			genfs_markdirty(vp);
1511 		}
1512 		return error;
1513 	}
1514 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1515 		mutex_exit(uobj->vmobjlock);
1516 		return EINVAL;
1517 	}
1518 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
1519 		mutex_exit(uobj->vmobjlock);
1520 		return 0;
1521 	}
1522 	npages = orignpages;
1523 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1524 	mutex_exit(uobj->vmobjlock);
1525 	kva = uvm_pagermapin(pgs, npages,
1526 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1527 	for (i = 0; i < npages; i++) {
1528 		pg = pgs[i];
1529 		if ((pg->flags & PG_FAKE) == 0) {
1530 			continue;
1531 		}
1532 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1533 		iov.iov_len = PAGE_SIZE;
1534 		uio.uio_iov = &iov;
1535 		uio.uio_iovcnt = 1;
1536 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1537 		uio.uio_rw = UIO_READ;
1538 		uio.uio_resid = PAGE_SIZE;
1539 		UIO_SETUP_SYSSPACE(&uio);
1540 		/* XXX vn_lock */
1541 		error = VOP_READ(vp, &uio, 0, cred);
1542 		if (error) {
1543 			break;
1544 		}
1545 		if (uio.uio_resid) {
1546 			memset(iov.iov_base, 0, uio.uio_resid);
1547 		}
1548 	}
1549 	uvm_pagermapout(kva, npages);
1550 	mutex_enter(uobj->vmobjlock);
1551 	mutex_enter(&uvm_pageqlock);
1552 	for (i = 0; i < npages; i++) {
1553 		pg = pgs[i];
1554 		if (error && (pg->flags & PG_FAKE) != 0) {
1555 			pg->flags |= PG_RELEASED;
1556 		} else {
1557 			pmap_clear_modify(pg);
1558 			uvm_pageactivate(pg);
1559 		}
1560 	}
1561 	if (error) {
1562 		uvm_page_unbusy(pgs, npages);
1563 	}
1564 	mutex_exit(&uvm_pageqlock);
1565 	if (error == 0 && memwrite) {
1566 		genfs_markdirty(vp);
1567 	}
1568 	mutex_exit(uobj->vmobjlock);
1569 	return error;
1570 }
1571 
1572 int
1573 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1574     int flags)
1575 {
1576 	off_t offset;
1577 	struct iovec iov;
1578 	struct uio uio;
1579 	kauth_cred_t cred = curlwp->l_cred;
1580 	struct buf *bp;
1581 	vaddr_t kva;
1582 	int error;
1583 
1584 	offset = pgs[0]->offset;
1585 	kva = uvm_pagermapin(pgs, npages,
1586 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1587 
1588 	iov.iov_base = (void *)kva;
1589 	iov.iov_len = npages << PAGE_SHIFT;
1590 	uio.uio_iov = &iov;
1591 	uio.uio_iovcnt = 1;
1592 	uio.uio_offset = offset;
1593 	uio.uio_rw = UIO_WRITE;
1594 	uio.uio_resid = npages << PAGE_SHIFT;
1595 	UIO_SETUP_SYSSPACE(&uio);
1596 	/* XXX vn_lock */
1597 	error = VOP_WRITE(vp, &uio, 0, cred);
1598 
1599 	mutex_enter(vp->v_interlock);
1600 	vp->v_numoutput++;
1601 	mutex_exit(vp->v_interlock);
1602 
1603 	bp = getiobuf(vp, true);
1604 	bp->b_cflags = BC_BUSY | BC_AGE;
1605 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1606 	bp->b_data = (char *)kva;
1607 	bp->b_bcount = npages << PAGE_SHIFT;
1608 	bp->b_bufsize = npages << PAGE_SHIFT;
1609 	bp->b_resid = 0;
1610 	bp->b_error = error;
1611 	uvm_aio_aiodone(bp);
1612 	return (error);
1613 }
1614 
1615 /*
1616  * Process a uio using direct I/O.  If we reach a part of the request
1617  * which cannot be processed in this fashion for some reason, just return.
1618  * The caller must handle some additional part of the request using
1619  * buffered I/O before trying direct I/O again.
1620  */
1621 
1622 void
1623 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1624 {
1625 	struct vmspace *vs;
1626 	struct iovec *iov;
1627 	vaddr_t va;
1628 	size_t len;
1629 	const int mask = DEV_BSIZE - 1;
1630 	int error;
1631 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1632 	    (ioflag & IO_JOURNALLOCKED) == 0);
1633 
1634 	/*
1635 	 * We only support direct I/O to user space for now.
1636 	 */
1637 
1638 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1639 		return;
1640 	}
1641 
1642 	/*
1643 	 * If the vnode is mapped, we would need to get the getpages lock
1644 	 * to stabilize the bmap, but then we would get into trouble while
1645 	 * locking the pages if the pages belong to this same vnode (or a
1646 	 * multi-vnode cascade to the same effect).  Just fall back to
1647 	 * buffered I/O if the vnode is mapped to avoid this mess.
1648 	 */
1649 
1650 	if (vp->v_vflag & VV_MAPPED) {
1651 		return;
1652 	}
1653 
1654 	if (need_wapbl) {
1655 		error = WAPBL_BEGIN(vp->v_mount);
1656 		if (error)
1657 			return;
1658 	}
1659 
1660 	/*
1661 	 * Do as much of the uio as possible with direct I/O.
1662 	 */
1663 
1664 	vs = uio->uio_vmspace;
1665 	while (uio->uio_resid) {
1666 		iov = uio->uio_iov;
1667 		if (iov->iov_len == 0) {
1668 			uio->uio_iov++;
1669 			uio->uio_iovcnt--;
1670 			continue;
1671 		}
1672 		va = (vaddr_t)iov->iov_base;
1673 		len = MIN(iov->iov_len, genfs_maxdio);
1674 		len &= ~mask;
1675 
1676 		/*
1677 		 * If the next chunk is smaller than DEV_BSIZE or extends past
1678 		 * the current EOF, then fall back to buffered I/O.
1679 		 */
1680 
1681 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
1682 			break;
1683 		}
1684 
1685 		/*
1686 		 * Check alignment.  The file offset must be at least
1687 		 * sector-aligned.  The exact constraint on memory alignment
1688 		 * is very hardware-dependent, but requiring sector-aligned
1689 		 * addresses there too is safe.
1690 		 */
1691 
1692 		if (uio->uio_offset & mask || va & mask) {
1693 			break;
1694 		}
1695 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1696 					  uio->uio_rw);
1697 		if (error) {
1698 			break;
1699 		}
1700 		iov->iov_base = (char *)iov->iov_base + len;
1701 		iov->iov_len -= len;
1702 		uio->uio_offset += len;
1703 		uio->uio_resid -= len;
1704 	}
1705 
1706 	if (need_wapbl)
1707 		WAPBL_END(vp->v_mount);
1708 }
1709 
1710 /*
1711  * Iodone routine for direct I/O.  We don't do much here since the request is
1712  * always synchronous, so the caller will do most of the work after biowait().
1713  */
1714 
1715 static void
1716 genfs_dio_iodone(struct buf *bp)
1717 {
1718 
1719 	KASSERT((bp->b_flags & B_ASYNC) == 0);
1720 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1721 		mutex_enter(bp->b_objlock);
1722 		vwakeup(bp);
1723 		mutex_exit(bp->b_objlock);
1724 	}
1725 	putiobuf(bp);
1726 }
1727 
1728 /*
1729  * Process one chunk of a direct I/O request.
1730  */
1731 
1732 static int
1733 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1734     off_t off, enum uio_rw rw)
1735 {
1736 	struct vm_map *map;
1737 	struct pmap *upm, *kpm;
1738 	size_t klen = round_page(uva + len) - trunc_page(uva);
1739 	off_t spoff, epoff;
1740 	vaddr_t kva, puva;
1741 	paddr_t pa;
1742 	vm_prot_t prot;
1743 	int error, rv, poff, koff;
1744 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1745 		(rw == UIO_WRITE ? PGO_FREE : 0);
1746 
1747 	/*
1748 	 * For writes, verify that this range of the file already has fully
1749 	 * allocated backing store.  If there are any holes, just punt and
1750 	 * make the caller take the buffered write path.
1751 	 */
1752 
1753 	if (rw == UIO_WRITE) {
1754 		daddr_t lbn, elbn, blkno;
1755 		int bsize, bshift, run;
1756 
1757 		bshift = vp->v_mount->mnt_fs_bshift;
1758 		bsize = 1 << bshift;
1759 		lbn = off >> bshift;
1760 		elbn = (off + len + bsize - 1) >> bshift;
1761 		while (lbn < elbn) {
1762 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1763 			if (error) {
1764 				return error;
1765 			}
1766 			if (blkno == (daddr_t)-1) {
1767 				return ENOSPC;
1768 			}
1769 			lbn += 1 + run;
1770 		}
1771 	}
1772 
1773 	/*
1774 	 * Flush any cached pages for parts of the file that we're about to
1775 	 * access.  If we're writing, invalidate pages as well.
1776 	 */
1777 
1778 	spoff = trunc_page(off);
1779 	epoff = round_page(off + len);
1780 	mutex_enter(vp->v_interlock);
1781 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1782 	if (error) {
1783 		return error;
1784 	}
1785 
1786 	/*
1787 	 * Wire the user pages and remap them into kernel memory.
1788 	 */
1789 
1790 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1791 	error = uvm_vslock(vs, (void *)uva, len, prot);
1792 	if (error) {
1793 		return error;
1794 	}
1795 
1796 	map = &vs->vm_map;
1797 	upm = vm_map_pmap(map);
1798 	kpm = vm_map_pmap(kernel_map);
1799 	puva = trunc_page(uva);
1800 	kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1801 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1802 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1803 		rv = pmap_extract(upm, puva + poff, &pa);
1804 		KASSERT(rv);
1805 		pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1806 	}
1807 	pmap_update(kpm);
1808 
1809 	/*
1810 	 * Do the I/O.
1811 	 */
1812 
1813 	koff = uva - trunc_page(uva);
1814 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1815 			    genfs_dio_iodone);
1816 
1817 	/*
1818 	 * Tear down the kernel mapping.
1819 	 */
1820 
1821 	pmap_kremove(kva, klen);
1822 	pmap_update(kpm);
1823 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1824 
1825 	/*
1826 	 * Unwire the user pages.
1827 	 */
1828 
1829 	uvm_vsunlock(vs, (void *)uva, len);
1830 	return error;
1831 }
1832