xref: /netbsd-src/sys/miscfs/genfs/genfs_io.c (revision 53d1339bf7f9c7367b35a9e1ebe693f9b047a47b)
1 /*	$NetBSD: genfs_io.c,v 1.101 2020/08/19 07:29:00 simonb Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.101 2020/08/19 07:29:00 simonb Exp $");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/vnode.h>
42 #include <sys/kmem.h>
43 #include <sys/kauth.h>
44 #include <sys/fstrans.h>
45 #include <sys/buf.h>
46 #include <sys/atomic.h>
47 
48 #include <miscfs/genfs/genfs.h>
49 #include <miscfs/genfs/genfs_node.h>
50 #include <miscfs/specfs/specdev.h>
51 
52 #include <uvm/uvm.h>
53 #include <uvm/uvm_pager.h>
54 #include <uvm/uvm_page_array.h>
55 
56 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
57     off_t, enum uio_rw);
58 static void genfs_dio_iodone(struct buf *);
59 
60 static int genfs_getpages_read(struct vnode *, struct vm_page **, int, off_t,
61     off_t, bool, bool, bool, bool);
62 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
63     void (*)(struct buf *));
64 static void genfs_rel_pages(struct vm_page **, unsigned int);
65 
66 int genfs_maxdio = MAXPHYS;
67 
68 static void
69 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
70 {
71 	unsigned int i;
72 
73 	for (i = 0; i < npages; i++) {
74 		struct vm_page *pg = pgs[i];
75 
76 		if (pg == NULL || pg == PGO_DONTCARE)
77 			continue;
78 		KASSERT(uvm_page_owner_locked_p(pg, true));
79 		if (pg->flags & PG_FAKE) {
80 			pg->flags |= PG_RELEASED;
81 		}
82 	}
83 	uvm_page_unbusy(pgs, npages);
84 }
85 
86 /*
87  * generic VM getpages routine.
88  * Return PG_BUSY pages for the given range,
89  * reading from backing store if necessary.
90  */
91 
92 int
93 genfs_getpages(void *v)
94 {
95 	struct vop_getpages_args /* {
96 		struct vnode *a_vp;
97 		voff_t a_offset;
98 		struct vm_page **a_m;
99 		int *a_count;
100 		int a_centeridx;
101 		vm_prot_t a_access_type;
102 		int a_advice;
103 		int a_flags;
104 	} */ * const ap = v;
105 
106 	off_t diskeof, memeof;
107 	int i, error, npages, iflag;
108 	const int flags = ap->a_flags;
109 	struct vnode * const vp = ap->a_vp;
110 	struct uvm_object * const uobj = &vp->v_uobj;
111 	const bool async = (flags & PGO_SYNCIO) == 0;
112 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
113 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
114 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
115 	const bool need_wapbl = (vp->v_mount->mnt_wapbl &&
116 			(flags & PGO_JOURNALLOCKED) == 0);
117 	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
118 	bool holds_wapbl = false;
119 	struct mount *trans_mount = NULL;
120 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
121 
122 	UVMHIST_LOG(ubchist, "vp %#jx off 0x%jx/%jx count %jd",
123 	    (uintptr_t)vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
124 
125 	KASSERT(memwrite >= overwrite);
126 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
127 	    vp->v_type == VLNK || vp->v_type == VBLK);
128 
129 	/*
130 	 * the object must be locked.  it can only be a read lock when
131 	 * processing a read fault with PGO_LOCKED.
132 	 */
133 
134 	KASSERT(rw_lock_held(uobj->vmobjlock));
135 	KASSERT(rw_write_held(uobj->vmobjlock) ||
136 	   ((flags & PGO_LOCKED) != 0 && !memwrite));
137 
138 #ifdef DIAGNOSTIC
139 	if ((flags & PGO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
140                 WAPBL_JLOCK_ASSERT(vp->v_mount);
141 #endif
142 
143 	/*
144 	 * check for reclaimed vnode.  v_interlock is not held here, but
145 	 * VI_DEADCHECK is set with vmobjlock held.
146 	 */
147 
148 	iflag = atomic_load_relaxed(&vp->v_iflag);
149 	if (__predict_false((iflag & VI_DEADCHECK) != 0)) {
150 		mutex_enter(vp->v_interlock);
151 		error = vdead_check(vp, VDEAD_NOWAIT);
152 		mutex_exit(vp->v_interlock);
153 		if (error) {
154 			if ((flags & PGO_LOCKED) == 0)
155 				rw_exit(uobj->vmobjlock);
156 			return error;
157 		}
158 	}
159 
160 startover:
161 	error = 0;
162 	const voff_t origvsize = vp->v_size;
163 	const off_t origoffset = ap->a_offset;
164 	const int orignpages = *ap->a_count;
165 
166 	GOP_SIZE(vp, origvsize, &diskeof, 0);
167 	if (flags & PGO_PASTEOF) {
168 		off_t newsize;
169 #if defined(DIAGNOSTIC)
170 		off_t writeeof;
171 #endif /* defined(DIAGNOSTIC) */
172 
173 		newsize = MAX(origvsize,
174 		    origoffset + (orignpages << PAGE_SHIFT));
175 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
176 #if defined(DIAGNOSTIC)
177 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
178 		if (newsize > round_page(writeeof)) {
179 			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
180 			    __func__, newsize, round_page(writeeof));
181 		}
182 #endif /* defined(DIAGNOSTIC) */
183 	} else {
184 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
185 	}
186 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
187 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
188 	KASSERT(orignpages > 0);
189 
190 	/*
191 	 * Bounds-check the request.
192 	 */
193 
194 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
195 		if ((flags & PGO_LOCKED) == 0) {
196 			rw_exit(uobj->vmobjlock);
197 		}
198 		UVMHIST_LOG(ubchist, "off 0x%jx count %jd goes past EOF 0x%jx",
199 		    origoffset, *ap->a_count, memeof,0);
200 		error = EINVAL;
201 		goto out_err;
202 	}
203 
204 	/* uobj is locked */
205 
206 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
207 	    (vp->v_type != VBLK ||
208 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
209 		int updflags = 0;
210 
211 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
212 			updflags = GOP_UPDATE_ACCESSED;
213 		}
214 		if (memwrite) {
215 			updflags |= GOP_UPDATE_MODIFIED;
216 		}
217 		if (updflags != 0) {
218 			GOP_MARKUPDATE(vp, updflags);
219 		}
220 	}
221 
222 	/*
223 	 * For PGO_LOCKED requests, just return whatever's in memory.
224 	 */
225 
226 	if (flags & PGO_LOCKED) {
227 		int nfound;
228 		struct vm_page *pg;
229 
230 		KASSERT(!glocked);
231 		npages = *ap->a_count;
232 #if defined(DEBUG)
233 		for (i = 0; i < npages; i++) {
234 			pg = ap->a_m[i];
235 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
236 		}
237 #endif /* defined(DEBUG) */
238  		nfound = uvn_findpages(uobj, origoffset, &npages,
239 		    ap->a_m, NULL,
240 		    UFP_NOWAIT | UFP_NOALLOC | UFP_NOBUSY |
241 		    (memwrite ? UFP_NORDONLY : 0));
242 		KASSERT(npages == *ap->a_count);
243 		if (nfound == 0) {
244 			error = EBUSY;
245 			goto out_err;
246 		}
247 		/*
248 		 * lock and unlock g_glock to ensure that no one is truncating
249 		 * the file behind us.
250 		 */
251 		if (!genfs_node_rdtrylock(vp)) {
252 			/*
253 			 * restore the array.
254 			 */
255 
256 			for (i = 0; i < npages; i++) {
257 				pg = ap->a_m[i];
258 
259 				if (pg != NULL && pg != PGO_DONTCARE) {
260 					ap->a_m[i] = NULL;
261 				}
262 				KASSERT(ap->a_m[i] == NULL ||
263 				    ap->a_m[i] == PGO_DONTCARE);
264 			}
265 		} else {
266 			genfs_node_unlock(vp);
267 		}
268 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
269 		if (error == 0 && memwrite) {
270 			for (i = 0; i < npages; i++) {
271 				pg = ap->a_m[i];
272 				if (pg == NULL || pg == PGO_DONTCARE) {
273 					continue;
274 				}
275 				if (uvm_pagegetdirty(pg) ==
276 				    UVM_PAGE_STATUS_CLEAN) {
277 					uvm_pagemarkdirty(pg,
278 					    UVM_PAGE_STATUS_UNKNOWN);
279 				}
280 			}
281 		}
282 		goto out_err;
283 	}
284 	rw_exit(uobj->vmobjlock);
285 
286 	/*
287 	 * find the requested pages and make some simple checks.
288 	 * leave space in the page array for a whole block.
289 	 */
290 
291 	const int fs_bshift = (vp->v_type != VBLK) ?
292 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
293 	const int fs_bsize = 1 << fs_bshift;
294 #define	blk_mask	(fs_bsize - 1)
295 #define	trunc_blk(x)	((x) & ~blk_mask)
296 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
297 
298 	const int orignmempages = MIN(orignpages,
299 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
300 	npages = orignmempages;
301 	const off_t startoffset = trunc_blk(origoffset);
302 	const off_t endoffset = MIN(
303 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
304 	    round_page(memeof));
305 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
306 
307 	const int pgs_size = sizeof(struct vm_page *) *
308 	    ((endoffset - startoffset) >> PAGE_SHIFT);
309 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
310 
311 	if (pgs_size > sizeof(pgs_onstack)) {
312 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
313 		if (pgs == NULL) {
314 			pgs = pgs_onstack;
315 			error = ENOMEM;
316 			goto out_err;
317 		}
318 	} else {
319 		pgs = pgs_onstack;
320 		(void)memset(pgs, 0, pgs_size);
321 	}
322 
323 	UVMHIST_LOG(ubchist, "ridx %jd npages %jd startoff %#jx endoff %#jx",
324 	    ridx, npages, startoffset, endoffset);
325 
326 	if (trans_mount == NULL) {
327 		trans_mount = vp->v_mount;
328 		fstrans_start(trans_mount);
329 		/*
330 		 * check if this vnode is still valid.
331 		 */
332 		mutex_enter(vp->v_interlock);
333 		error = vdead_check(vp, 0);
334 		mutex_exit(vp->v_interlock);
335 		if (error)
336 			goto out_err_free;
337 		/*
338 		 * XXX: This assumes that we come here only via
339 		 * the mmio path
340 		 */
341 		if (blockalloc && need_wapbl) {
342 			error = WAPBL_BEGIN(trans_mount);
343 			if (error)
344 				goto out_err_free;
345 			holds_wapbl = true;
346 		}
347 	}
348 
349 	/*
350 	 * hold g_glock to prevent a race with truncate.
351 	 *
352 	 * check if our idea of v_size is still valid.
353 	 */
354 
355 	KASSERT(!glocked || genfs_node_wrlocked(vp));
356 	if (!glocked) {
357 		if (blockalloc) {
358 			genfs_node_wrlock(vp);
359 		} else {
360 			genfs_node_rdlock(vp);
361 		}
362 	}
363 	rw_enter(uobj->vmobjlock, RW_WRITER);
364 	if (vp->v_size < origvsize) {
365 		if (!glocked) {
366 			genfs_node_unlock(vp);
367 		}
368 		if (pgs != pgs_onstack)
369 			kmem_free(pgs, pgs_size);
370 		goto startover;
371 	}
372 
373 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], NULL,
374 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
375 		if (!glocked) {
376 			genfs_node_unlock(vp);
377 		}
378 		KASSERT(async != 0);
379 		genfs_rel_pages(&pgs[ridx], orignmempages);
380 		rw_exit(uobj->vmobjlock);
381 		error = EBUSY;
382 		goto out_err_free;
383 	}
384 
385 	/*
386 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
387 	 */
388 
389 	if (overwrite) {
390 		if (!glocked) {
391 			genfs_node_unlock(vp);
392 		}
393 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
394 
395 		for (i = 0; i < npages; i++) {
396 			struct vm_page *pg = pgs[ridx + i];
397 
398 			/*
399 			 * it's caller's responsibility to allocate blocks
400 			 * beforehand for the overwrite case.
401 			 */
402 
403 			KASSERT((pg->flags & PG_RDONLY) == 0 || !blockalloc);
404 			pg->flags &= ~PG_RDONLY;
405 
406 			/*
407 			 * mark the page DIRTY.
408 			 * otherwise another thread can do putpages and pull
409 			 * our vnode from syncer's queue before our caller does
410 			 * ubc_release.  note that putpages won't see CLEAN
411 			 * pages even if they are BUSY.
412 			 */
413 
414 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
415 		}
416 		npages += ridx;
417 		goto out;
418 	}
419 
420 	/*
421 	 * if the pages are already resident, just return them.
422 	 */
423 
424 	for (i = 0; i < npages; i++) {
425 		struct vm_page *pg = pgs[ridx + i];
426 
427 		if ((pg->flags & PG_FAKE) ||
428 		    (blockalloc && (pg->flags & PG_RDONLY) != 0)) {
429 			break;
430 		}
431 	}
432 	if (i == npages) {
433 		if (!glocked) {
434 			genfs_node_unlock(vp);
435 		}
436 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
437 		npages += ridx;
438 		goto out;
439 	}
440 
441 	/*
442 	 * the page wasn't resident and we're not overwriting,
443 	 * so we're going to have to do some i/o.
444 	 * find any additional pages needed to cover the expanded range.
445 	 */
446 
447 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
448 	if (startoffset != origoffset || npages != orignmempages) {
449 		int npgs;
450 
451 		/*
452 		 * we need to avoid deadlocks caused by locking
453 		 * additional pages at lower offsets than pages we
454 		 * already have locked.  unlock them all and start over.
455 		 */
456 
457 		genfs_rel_pages(&pgs[ridx], orignmempages);
458 		memset(pgs, 0, pgs_size);
459 
460 		UVMHIST_LOG(ubchist, "reset npages start 0x%jx end 0x%jx",
461 		    startoffset, endoffset, 0,0);
462 		npgs = npages;
463 		if (uvn_findpages(uobj, startoffset, &npgs, pgs, NULL,
464 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
465 			if (!glocked) {
466 				genfs_node_unlock(vp);
467 			}
468 			KASSERT(async != 0);
469 			genfs_rel_pages(pgs, npages);
470 			rw_exit(uobj->vmobjlock);
471 			error = EBUSY;
472 			goto out_err_free;
473 		}
474 	}
475 
476 	rw_exit(uobj->vmobjlock);
477 	error = genfs_getpages_read(vp, pgs, npages, startoffset, diskeof,
478 	    async, memwrite, blockalloc, glocked);
479 	if (!glocked) {
480 		genfs_node_unlock(vp);
481 	}
482 	if (error == 0 && async)
483 		goto out_err_free;
484 	rw_enter(uobj->vmobjlock, RW_WRITER);
485 
486 	/*
487 	 * we're almost done!  release the pages...
488 	 * for errors, we free the pages.
489 	 * otherwise we activate them and mark them as valid and clean.
490 	 * also, unbusy pages that were not actually requested.
491 	 */
492 
493 	if (error) {
494 		genfs_rel_pages(pgs, npages);
495 		rw_exit(uobj->vmobjlock);
496 		UVMHIST_LOG(ubchist, "returning error %jd", error,0,0,0);
497 		goto out_err_free;
498 	}
499 
500 out:
501 	UVMHIST_LOG(ubchist, "succeeding, npages %jd", npages,0,0,0);
502 	error = 0;
503 	for (i = 0; i < npages; i++) {
504 		struct vm_page *pg = pgs[i];
505 		if (pg == NULL) {
506 			continue;
507 		}
508 		UVMHIST_LOG(ubchist, "examining pg %#jx flags 0x%jx",
509 		    (uintptr_t)pg, pg->flags, 0,0);
510 		if (pg->flags & PG_FAKE && !overwrite) {
511 			/*
512 			 * we've read page's contents from the backing storage.
513 			 *
514 			 * for a read fault, we keep them CLEAN;  if we
515 			 * encountered a hole while reading, the pages can
516 			 * already been dirtied with zeros.
517 			 */
518 			KASSERTMSG(blockalloc || uvm_pagegetdirty(pg) ==
519 			    UVM_PAGE_STATUS_CLEAN, "page %p not clean", pg);
520 			pg->flags &= ~PG_FAKE;
521 		}
522 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
523 		if (i < ridx || i >= ridx + orignmempages || async) {
524 			UVMHIST_LOG(ubchist, "unbusy pg %#jx offset 0x%jx",
525 			    (uintptr_t)pg, pg->offset,0,0);
526 			if (pg->flags & PG_FAKE) {
527 				KASSERT(overwrite);
528 				uvm_pagezero(pg);
529 			}
530 			if (pg->flags & PG_RELEASED) {
531 				uvm_pagefree(pg);
532 				continue;
533 			}
534 			uvm_pagelock(pg);
535 			uvm_pageenqueue(pg);
536 			uvm_pagewakeup(pg);
537 			uvm_pageunlock(pg);
538 			pg->flags &= ~(PG_BUSY|PG_FAKE);
539 			UVM_PAGE_OWN(pg, NULL);
540 		} else if (memwrite && !overwrite &&
541 		    uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN) {
542 			/*
543 			 * for a write fault, start dirtiness tracking of
544 			 * requested pages.
545 			 */
546 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
547 		}
548 	}
549 	rw_exit(uobj->vmobjlock);
550 	if (ap->a_m != NULL) {
551 		memcpy(ap->a_m, &pgs[ridx],
552 		    orignmempages * sizeof(struct vm_page *));
553 	}
554 
555 out_err_free:
556 	if (pgs != NULL && pgs != pgs_onstack)
557 		kmem_free(pgs, pgs_size);
558 out_err:
559 	if (trans_mount != NULL) {
560 		if (holds_wapbl)
561 			WAPBL_END(trans_mount);
562 		fstrans_done(trans_mount);
563 	}
564 	return error;
565 }
566 
567 /*
568  * genfs_getpages_read: Read the pages in with VOP_BMAP/VOP_STRATEGY.
569  *
570  * "glocked" (which is currently not actually used) tells us not whether
571  * the genfs_node is locked on entry (it always is) but whether it was
572  * locked on entry to genfs_getpages.
573  */
574 static int
575 genfs_getpages_read(struct vnode *vp, struct vm_page **pgs, int npages,
576     off_t startoffset, off_t diskeof,
577     bool async, bool memwrite, bool blockalloc, bool glocked)
578 {
579 	struct uvm_object * const uobj = &vp->v_uobj;
580 	const int fs_bshift = (vp->v_type != VBLK) ?
581 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
582 	const int dev_bshift = (vp->v_type != VBLK) ?
583 	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
584 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
585 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
586 	vaddr_t kva;
587 	struct buf *bp, *mbp;
588 	bool sawhole = false;
589 	int i;
590 	int error = 0;
591 
592 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
593 
594 	/*
595 	 * read the desired page(s).
596 	 */
597 
598 	totalbytes = npages << PAGE_SHIFT;
599 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
600 	tailbytes = totalbytes - bytes;
601 	skipbytes = 0;
602 
603 	kva = uvm_pagermapin(pgs, npages,
604 	    UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
605 	if (kva == 0)
606 		return EBUSY;
607 
608 	mbp = getiobuf(vp, true);
609 	mbp->b_bufsize = totalbytes;
610 	mbp->b_data = (void *)kva;
611 	mbp->b_resid = mbp->b_bcount = bytes;
612 	mbp->b_cflags |= BC_BUSY;
613 	if (async) {
614 		mbp->b_flags = B_READ | B_ASYNC;
615 		mbp->b_iodone = uvm_aio_aiodone;
616 	} else {
617 		mbp->b_flags = B_READ;
618 		mbp->b_iodone = NULL;
619 	}
620 	if (async)
621 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
622 	else
623 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
624 
625 	/*
626 	 * if EOF is in the middle of the range, zero the part past EOF.
627 	 * skip over pages which are not PG_FAKE since in that case they have
628 	 * valid data that we need to preserve.
629 	 */
630 
631 	tailstart = bytes;
632 	while (tailbytes > 0) {
633 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
634 
635 		KASSERT(len <= tailbytes);
636 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
637 			memset((void *)(kva + tailstart), 0, len);
638 			UVMHIST_LOG(ubchist, "tailbytes %#jx 0x%jx 0x%jx",
639 			    (uintptr_t)kva, tailstart, len, 0);
640 		}
641 		tailstart += len;
642 		tailbytes -= len;
643 	}
644 
645 	/*
646 	 * now loop over the pages, reading as needed.
647 	 */
648 
649 	bp = NULL;
650 	off_t offset;
651 	for (offset = startoffset;
652 	    bytes > 0;
653 	    offset += iobytes, bytes -= iobytes) {
654 		int run;
655 		daddr_t lbn, blkno;
656 		int pidx;
657 		struct vnode *devvp;
658 
659 		/*
660 		 * skip pages which don't need to be read.
661 		 */
662 
663 		pidx = (offset - startoffset) >> PAGE_SHIFT;
664 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
665 			size_t b;
666 
667 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
668 			if ((pgs[pidx]->flags & PG_RDONLY)) {
669 				sawhole = true;
670 			}
671 			b = MIN(PAGE_SIZE, bytes);
672 			offset += b;
673 			bytes -= b;
674 			skipbytes += b;
675 			pidx++;
676 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%jx",
677 			    offset, 0,0,0);
678 			if (bytes == 0) {
679 				goto loopdone;
680 			}
681 		}
682 
683 		/*
684 		 * bmap the file to find out the blkno to read from and
685 		 * how much we can read in one i/o.  if bmap returns an error,
686 		 * skip the rest of the top-level i/o.
687 		 */
688 
689 		lbn = offset >> fs_bshift;
690 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
691 		if (error) {
692 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd",
693 			    lbn,error,0,0);
694 			skipbytes += bytes;
695 			bytes = 0;
696 			goto loopdone;
697 		}
698 
699 		/*
700 		 * see how many pages can be read with this i/o.
701 		 * reduce the i/o size if necessary to avoid
702 		 * overwriting pages with valid data.
703 		 */
704 
705 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
706 		    bytes);
707 		if (offset + iobytes > round_page(offset)) {
708 			int pcount;
709 
710 			pcount = 1;
711 			while (pidx + pcount < npages &&
712 			    pgs[pidx + pcount]->flags & PG_FAKE) {
713 				pcount++;
714 			}
715 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
716 			    (offset - trunc_page(offset)));
717 		}
718 
719 		/*
720 		 * if this block isn't allocated, zero it instead of
721 		 * reading it.  unless we are going to allocate blocks,
722 		 * mark the pages we zeroed PG_RDONLY.
723 		 */
724 
725 		if (blkno == (daddr_t)-1) {
726 			int holepages = (round_page(offset + iobytes) -
727 			    trunc_page(offset)) >> PAGE_SHIFT;
728 			UVMHIST_LOG(ubchist, "lbn 0x%jx -> HOLE", lbn,0,0,0);
729 
730 			sawhole = true;
731 			memset((char *)kva + (offset - startoffset), 0,
732 			    iobytes);
733 			skipbytes += iobytes;
734 
735 			if (!blockalloc) {
736 				rw_enter(uobj->vmobjlock, RW_WRITER);
737 				for (i = 0; i < holepages; i++) {
738 					pgs[pidx + i]->flags |= PG_RDONLY;
739 				}
740 				rw_exit(uobj->vmobjlock);
741 			}
742 			continue;
743 		}
744 
745 		/*
746 		 * allocate a sub-buf for this piece of the i/o
747 		 * (or just use mbp if there's only 1 piece),
748 		 * and start it going.
749 		 */
750 
751 		if (offset == startoffset && iobytes == bytes) {
752 			bp = mbp;
753 		} else {
754 			UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
755 			    (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
756 			bp = getiobuf(vp, true);
757 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
758 		}
759 		bp->b_lblkno = 0;
760 
761 		/* adjust physical blkno for partial blocks */
762 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
763 		    dev_bshift);
764 
765 		UVMHIST_LOG(ubchist,
766 		    "bp %#jx offset 0x%x bcount 0x%x blkno 0x%x",
767 		    (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
768 
769 		VOP_STRATEGY(devvp, bp);
770 	}
771 
772 loopdone:
773 	nestiobuf_done(mbp, skipbytes, error);
774 	if (async) {
775 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
776 		return 0;
777 	}
778 	if (bp != NULL) {
779 		error = biowait(mbp);
780 	}
781 
782 	/* Remove the mapping (make KVA available as soon as possible) */
783 	uvm_pagermapout(kva, npages);
784 
785 	/*
786 	 * if this we encountered a hole then we have to do a little more work.
787 	 * for read faults, we marked the page PG_RDONLY so that future
788 	 * write accesses to the page will fault again.
789 	 * for write faults, we must make sure that the backing store for
790 	 * the page is completely allocated while the pages are locked.
791 	 */
792 
793 	if (!error && sawhole && blockalloc) {
794 		error = GOP_ALLOC(vp, startoffset,
795 		    npages << PAGE_SHIFT, 0, cred);
796 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%jx/0x%jx -> %jd",
797 		    startoffset, npages << PAGE_SHIFT, error,0);
798 		if (!error) {
799 			rw_enter(uobj->vmobjlock, RW_WRITER);
800 			for (i = 0; i < npages; i++) {
801 				struct vm_page *pg = pgs[i];
802 
803 				if (pg == NULL) {
804 					continue;
805 				}
806 				pg->flags &= ~PG_RDONLY;
807 				uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
808 				UVMHIST_LOG(ubchist, "mark dirty pg %#jx",
809 				    (uintptr_t)pg, 0, 0, 0);
810 			}
811 			rw_exit(uobj->vmobjlock);
812 		}
813 	}
814 
815 	putiobuf(mbp);
816 	return error;
817 }
818 
819 /*
820  * generic VM putpages routine.
821  * Write the given range of pages to backing store.
822  *
823  * => "offhi == 0" means flush all pages at or after "offlo".
824  * => object should be locked by caller.  we return with the
825  *      object unlocked.
826  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
827  *	thus, a caller might want to unlock higher level resources
828  *	(e.g. vm_map) before calling flush.
829  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
830  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
831  *
832  * note on "cleaning" object and PG_BUSY pages:
833  *	this routine is holding the lock on the object.   the only time
834  *	that it can run into a PG_BUSY page that it does not own is if
835  *	some other process has started I/O on the page (e.g. either
836  *	a pagein, or a pageout).  if the PG_BUSY page is being paged
837  *	in, then it can not be dirty (!UVM_PAGE_STATUS_CLEAN) because no
838  *	one has	had a chance to modify it yet.  if the PG_BUSY page is
839  *	being paged out then it means that someone else has already started
840  *	cleaning the page for us (how nice!).  in this case, if we
841  *	have syncio specified, then after we make our pass through the
842  *	object we need to wait for the other PG_BUSY pages to clear
843  *	off (i.e. we need to do an iosync).   also note that once a
844  *	page is PG_BUSY it must stay in its object until it is un-busyed.
845  */
846 
847 int
848 genfs_putpages(void *v)
849 {
850 	struct vop_putpages_args /* {
851 		struct vnode *a_vp;
852 		voff_t a_offlo;
853 		voff_t a_offhi;
854 		int a_flags;
855 	} */ * const ap = v;
856 
857 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
858 	    ap->a_flags, NULL);
859 }
860 
861 int
862 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
863     int origflags, struct vm_page **busypg)
864 {
865 	struct uvm_object * const uobj = &vp->v_uobj;
866 	krwlock_t * const slock = uobj->vmobjlock;
867 	off_t nextoff;
868 	int i, error, npages, nback;
869 	int freeflag;
870 	/*
871 	 * This array is larger than it should so that it's size is constant.
872 	 * The right size is MAXPAGES.
873 	 */
874 	struct vm_page *pgs[MAXPHYS / MIN_PAGE_SIZE];
875 #define MAXPAGES (MAXPHYS / PAGE_SIZE)
876 	struct vm_page *pg, *tpg;
877 	struct uvm_page_array a;
878 	bool wasclean, needs_clean;
879 	bool async = (origflags & PGO_SYNCIO) == 0;
880 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
881 	struct mount *trans_mp;
882 	int flags;
883 	bool modified;		/* if we write out any pages */
884 	bool holds_wapbl;
885 	bool cleanall;		/* try to pull off from the syncer's list */
886 	bool onworklst;
887 	bool nodirty;
888 	const bool dirtyonly = (origflags & (PGO_DEACTIVATE|PGO_FREE)) == 0;
889 
890 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
891 
892 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
893 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
894 	KASSERT(startoff < endoff || endoff == 0);
895 	KASSERT(rw_write_held(slock));
896 
897 	UVMHIST_LOG(ubchist, "vp %#jx pages %jd off 0x%jx len 0x%jx",
898 	    (uintptr_t)vp, uobj->uo_npages, startoff, endoff - startoff);
899 
900 #ifdef DIAGNOSTIC
901 	if ((origflags & PGO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
902                 WAPBL_JLOCK_ASSERT(vp->v_mount);
903 #endif
904 
905 	trans_mp = NULL;
906 	holds_wapbl = false;
907 
908 retry:
909 	modified = false;
910 	flags = origflags;
911 
912 	/*
913 	 * shortcut if we have no pages to process.
914 	 */
915 
916 	nodirty = uvm_obj_clean_p(uobj);
917 #ifdef DIAGNOSTIC
918 	mutex_enter(vp->v_interlock);
919 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 || nodirty);
920 	mutex_exit(vp->v_interlock);
921 #endif
922 	if (uobj->uo_npages == 0 || (dirtyonly && nodirty)) {
923 		mutex_enter(vp->v_interlock);
924 		if (vp->v_iflag & VI_ONWORKLST && LIST_EMPTY(&vp->v_dirtyblkhd)) {
925 			vn_syncer_remove_from_worklist(vp);
926 		}
927 		mutex_exit(vp->v_interlock);
928 		if (trans_mp) {
929 			if (holds_wapbl)
930 				WAPBL_END(trans_mp);
931 			fstrans_done(trans_mp);
932 		}
933 		rw_exit(slock);
934 		return (0);
935 	}
936 
937 	/*
938 	 * the vnode has pages, set up to process the request.
939 	 */
940 
941 	if (trans_mp == NULL && (flags & PGO_CLEANIT) != 0) {
942 		if (pagedaemon) {
943 			/* Pagedaemon must not sleep here. */
944 			trans_mp = vp->v_mount;
945 			error = fstrans_start_nowait(trans_mp);
946 			if (error) {
947 				rw_exit(slock);
948 				return error;
949 			}
950 		} else {
951 			/*
952 			 * Cannot use vdeadcheck() here as this operation
953 			 * usually gets used from VOP_RECLAIM().  Test for
954 			 * change of v_mount instead and retry on change.
955 			 */
956 			rw_exit(slock);
957 			trans_mp = vp->v_mount;
958 			fstrans_start(trans_mp);
959 			if (vp->v_mount != trans_mp) {
960 				fstrans_done(trans_mp);
961 				trans_mp = NULL;
962 			} else {
963 				holds_wapbl = (trans_mp->mnt_wapbl &&
964 				    (origflags & PGO_JOURNALLOCKED) == 0);
965 				if (holds_wapbl) {
966 					error = WAPBL_BEGIN(trans_mp);
967 					if (error) {
968 						fstrans_done(trans_mp);
969 						return error;
970 					}
971 				}
972 			}
973 			rw_enter(slock, RW_WRITER);
974 			goto retry;
975 		}
976 	}
977 
978 	error = 0;
979 	wasclean = uvm_obj_nowriteback_p(uobj);
980 	nextoff = startoff;
981 	if (endoff == 0 || flags & PGO_ALLPAGES) {
982 		endoff = trunc_page(LLONG_MAX);
983 	}
984 
985 	/*
986 	 * if this vnode is known not to have dirty pages,
987 	 * don't bother to clean it out.
988 	 */
989 
990 	if (nodirty) {
991 #if !defined(DEBUG)
992 		if (dirtyonly) {
993 			goto skip_scan;
994 		}
995 #endif /* !defined(DEBUG) */
996 		flags &= ~PGO_CLEANIT;
997 	}
998 
999 	/*
1000 	 * start the loop to scan pages.
1001 	 */
1002 
1003 	cleanall = true;
1004 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1005 	uvm_page_array_init(&a, uobj, dirtyonly ? (UVM_PAGE_ARRAY_FILL_DIRTY |
1006 	    (!async ? UVM_PAGE_ARRAY_FILL_WRITEBACK : 0)) : 0);
1007 	for (;;) {
1008 		bool pgprotected;
1009 
1010 		/*
1011 		 * if !dirtyonly, iterate over all resident pages in the range.
1012 		 *
1013 		 * if dirtyonly, only possibly dirty pages are interesting.
1014 		 * however, if we are asked to sync for integrity, we should
1015 		 * wait on pages being written back by other threads as well.
1016 		 */
1017 
1018 		pg = uvm_page_array_fill_and_peek(&a, nextoff, 0);
1019 		if (pg == NULL) {
1020 			break;
1021 		}
1022 
1023 		KASSERT(pg->uobject == uobj);
1024 		KASSERT((pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1025 		    (pg->flags & (PG_BUSY)) != 0);
1026 		KASSERT(pg->offset >= startoff);
1027 		KASSERT(pg->offset >= nextoff);
1028 		KASSERT(!dirtyonly ||
1029 		    uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN ||
1030 		    uvm_obj_page_writeback_p(pg));
1031 
1032 		if (pg->offset >= endoff) {
1033 			break;
1034 		}
1035 
1036 		/*
1037 		 * a preempt point.
1038 		 */
1039 
1040 		if (preempt_needed()) {
1041 			nextoff = pg->offset; /* visit this page again */
1042 			rw_exit(slock);
1043 			preempt();
1044 			/*
1045 			 * as we dropped the object lock, our cached pages can
1046 			 * be stale.
1047 			 */
1048 			uvm_page_array_clear(&a);
1049 			rw_enter(slock, RW_WRITER);
1050 			continue;
1051 		}
1052 
1053 		/*
1054 		 * if the current page is busy, wait for it to become unbusy.
1055 		 */
1056 
1057 		if ((pg->flags & PG_BUSY) != 0) {
1058 			UVMHIST_LOG(ubchist, "busy %#jx", (uintptr_t)pg,
1059 			   0, 0, 0);
1060 			if ((pg->flags & (PG_RELEASED|PG_PAGEOUT)) != 0
1061 			    && (flags & PGO_BUSYFAIL) != 0) {
1062 				UVMHIST_LOG(ubchist, "busyfail %#jx",
1063 				    (uintptr_t)pg, 0, 0, 0);
1064 				error = EDEADLK;
1065 				if (busypg != NULL)
1066 					*busypg = pg;
1067 				break;
1068 			}
1069 			if (pagedaemon) {
1070 				/*
1071 				 * someone has taken the page while we
1072 				 * dropped the lock for fstrans_start.
1073 				 */
1074 				break;
1075 			}
1076 			/*
1077 			 * don't bother to wait on other's activities
1078 			 * unless we are asked to sync for integrity.
1079 			 */
1080 			if (!async && (flags & PGO_RECLAIM) == 0) {
1081 				wasclean = false;
1082 				nextoff = pg->offset + PAGE_SIZE;
1083 				uvm_page_array_advance(&a);
1084 				continue;
1085 			}
1086 			nextoff = pg->offset; /* visit this page again */
1087 			uvm_pagewait(pg, slock, "genput");
1088 			/*
1089 			 * as we dropped the object lock, our cached pages can
1090 			 * be stale.
1091 			 */
1092 			uvm_page_array_clear(&a);
1093 			rw_enter(slock, RW_WRITER);
1094 			continue;
1095 		}
1096 
1097 		nextoff = pg->offset + PAGE_SIZE;
1098 		uvm_page_array_advance(&a);
1099 
1100 		/*
1101 		 * if we're freeing, remove all mappings of the page now.
1102 		 * if we're cleaning, check if the page is needs to be cleaned.
1103 		 */
1104 
1105 		pgprotected = false;
1106 		if (flags & PGO_FREE) {
1107 			pmap_page_protect(pg, VM_PROT_NONE);
1108 			pgprotected = true;
1109 		} else if (flags & PGO_CLEANIT) {
1110 
1111 			/*
1112 			 * if we still have some hope to pull this vnode off
1113 			 * from the syncer queue, write-protect the page.
1114 			 */
1115 
1116 			if (cleanall && wasclean) {
1117 
1118 				/*
1119 				 * uobj pages get wired only by uvm_fault
1120 				 * where uobj is locked.
1121 				 */
1122 
1123 				if (pg->wire_count == 0) {
1124 					pmap_page_protect(pg,
1125 					    VM_PROT_READ|VM_PROT_EXECUTE);
1126 					pgprotected = true;
1127 				} else {
1128 					cleanall = false;
1129 				}
1130 			}
1131 		}
1132 
1133 		if (flags & PGO_CLEANIT) {
1134 			needs_clean = uvm_pagecheckdirty(pg, pgprotected);
1135 		} else {
1136 			needs_clean = false;
1137 		}
1138 
1139 		/*
1140 		 * if we're cleaning, build a cluster.
1141 		 * the cluster will consist of pages which are currently dirty.
1142 		 * if not cleaning, just operate on the one page.
1143 		 */
1144 
1145 		if (needs_clean) {
1146 			wasclean = false;
1147 			memset(pgs, 0, sizeof(pgs));
1148 			pg->flags |= PG_BUSY;
1149 			UVM_PAGE_OWN(pg, "genfs_putpages");
1150 
1151 			/*
1152 			 * let the fs constrain the offset range of the cluster.
1153 			 * we additionally constrain the range here such that
1154 			 * it fits in the "pgs" pages array.
1155 			 */
1156 
1157 			off_t fslo, fshi, genlo, lo, off = pg->offset;
1158 			GOP_PUTRANGE(vp, off, &fslo, &fshi);
1159 			KASSERT(fslo == trunc_page(fslo));
1160 			KASSERT(fslo <= off);
1161 			KASSERT(fshi == trunc_page(fshi));
1162 			KASSERT(fshi == 0 || off < fshi);
1163 
1164 			if (off > MAXPHYS / 2)
1165 				genlo = trunc_page(off - (MAXPHYS / 2));
1166 			else
1167 				genlo = 0;
1168 			lo = MAX(fslo, genlo);
1169 
1170 			/*
1171 			 * first look backward.
1172 			 */
1173 
1174 			npages = (off - lo) >> PAGE_SHIFT;
1175 			nback = npages;
1176 			uvn_findpages(uobj, off - PAGE_SIZE, &nback,
1177 			    &pgs[0], NULL,
1178 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1179 			if (nback) {
1180 				memmove(&pgs[0], &pgs[npages - nback],
1181 				    nback * sizeof(pgs[0]));
1182 				if (npages - nback < nback)
1183 					memset(&pgs[nback], 0,
1184 					    (npages - nback) * sizeof(pgs[0]));
1185 				else
1186 					memset(&pgs[npages - nback], 0,
1187 					    nback * sizeof(pgs[0]));
1188 			}
1189 
1190 			/*
1191 			 * then plug in our page of interest.
1192 			 */
1193 
1194 			pgs[nback] = pg;
1195 
1196 			/*
1197 			 * then look forward to fill in the remaining space in
1198 			 * the array of pages.
1199 			 *
1200 			 * pass our cached array of pages so that hopefully
1201 			 * uvn_findpages can find some good pages in it.
1202 			 * the array a was filled above with the one of
1203 			 * following sets of flags:
1204 			 *	0
1205 			 *	UVM_PAGE_ARRAY_FILL_DIRTY
1206 			 *	UVM_PAGE_ARRAY_FILL_DIRTY|WRITEBACK
1207 			 *
1208 			 * XXX this is fragile but it'll work: the array
1209 			 * was earlier filled sparsely, but UFP_DIRTYONLY
1210 			 * implies dense.  see corresponding comment in
1211 			 * uvn_findpages().
1212 			 */
1213 
1214 			npages = MAXPAGES - nback - 1;
1215 			if (fshi)
1216 				npages = MIN(npages,
1217 					     (fshi - off - 1) >> PAGE_SHIFT);
1218 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1219 			    &pgs[nback + 1], &a,
1220 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1221 			npages += nback + 1;
1222 		} else {
1223 			pgs[0] = pg;
1224 			npages = 1;
1225 			nback = 0;
1226 		}
1227 
1228 		/*
1229 		 * apply FREE or DEACTIVATE options if requested.
1230 		 */
1231 
1232 		for (i = 0; i < npages; i++) {
1233 			tpg = pgs[i];
1234 			KASSERT(tpg->uobject == uobj);
1235 			KASSERT(i == 0 ||
1236 			    pgs[i-1]->offset + PAGE_SIZE == tpg->offset);
1237 			KASSERT(!needs_clean || uvm_pagegetdirty(pgs[i]) !=
1238 			    UVM_PAGE_STATUS_DIRTY);
1239 			if (needs_clean) {
1240 				/*
1241 				 * mark pages as WRITEBACK so that concurrent
1242 				 * fsync can find and wait for our activities.
1243 				 */
1244 				uvm_obj_page_set_writeback(pgs[i]);
1245 			}
1246 			if (tpg->offset < startoff || tpg->offset >= endoff)
1247 				continue;
1248 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1249 				uvm_pagelock(tpg);
1250 				uvm_pagedeactivate(tpg);
1251 				uvm_pageunlock(tpg);
1252 			} else if (flags & PGO_FREE) {
1253 				pmap_page_protect(tpg, VM_PROT_NONE);
1254 				if (tpg->flags & PG_BUSY) {
1255 					tpg->flags |= freeflag;
1256 					if (pagedaemon) {
1257 						uvm_pageout_start(1);
1258 						uvm_pagelock(tpg);
1259 						uvm_pagedequeue(tpg);
1260 						uvm_pageunlock(tpg);
1261 					}
1262 				} else {
1263 
1264 					/*
1265 					 * ``page is not busy''
1266 					 * implies that npages is 1
1267 					 * and needs_clean is false.
1268 					 */
1269 
1270 					KASSERT(npages == 1);
1271 					KASSERT(!needs_clean);
1272 					KASSERT(pg == tpg);
1273 					KASSERT(nextoff ==
1274 					    tpg->offset + PAGE_SIZE);
1275 					uvm_pagefree(tpg);
1276 					if (pagedaemon)
1277 						uvmexp.pdfreed++;
1278 				}
1279 			}
1280 		}
1281 		if (needs_clean) {
1282 			modified = true;
1283 			KASSERT(nextoff == pg->offset + PAGE_SIZE);
1284 			KASSERT(nback < npages);
1285 			nextoff = pg->offset + ((npages - nback) << PAGE_SHIFT);
1286 			KASSERT(pgs[nback] == pg);
1287 			KASSERT(nextoff == pgs[npages - 1]->offset + PAGE_SIZE);
1288 
1289 			/*
1290 			 * start the i/o.
1291 			 */
1292 			rw_exit(slock);
1293 			error = GOP_WRITE(vp, pgs, npages, flags);
1294 			/*
1295 			 * as we dropped the object lock, our cached pages can
1296 			 * be stale.
1297 			 */
1298 			uvm_page_array_clear(&a);
1299 			rw_enter(slock, RW_WRITER);
1300 			if (error) {
1301 				break;
1302 			}
1303 		}
1304 	}
1305 	uvm_page_array_fini(&a);
1306 
1307 	/*
1308 	 * update ctime/mtime if the modification we started writing out might
1309 	 * be from mmap'ed write.
1310 	 *
1311 	 * this is necessary when an application keeps a file mmaped and
1312 	 * repeatedly modifies it via the window.  note that, because we
1313 	 * don't always write-protect pages when cleaning, such modifications
1314 	 * might not involve any page faults.
1315 	 */
1316 
1317 	mutex_enter(vp->v_interlock);
1318 	if (modified && (vp->v_iflag & VI_WRMAP) != 0 &&
1319 	    (vp->v_type != VBLK ||
1320 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1321 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1322 	}
1323 
1324 	/*
1325 	 * if we no longer have any possibly dirty pages, take us off the
1326 	 * syncer list.
1327 	 */
1328 
1329 	if ((vp->v_iflag & VI_ONWORKLST) != 0 && uvm_obj_clean_p(uobj) &&
1330 	    LIST_EMPTY(&vp->v_dirtyblkhd)) {
1331 		vn_syncer_remove_from_worklist(vp);
1332 	}
1333 
1334 #if !defined(DEBUG)
1335 skip_scan:
1336 #endif /* !defined(DEBUG) */
1337 
1338 	/* Wait for output to complete. */
1339 	rw_exit(slock);
1340 	if (!wasclean && !async && vp->v_numoutput != 0) {
1341 		while (vp->v_numoutput != 0)
1342 			cv_wait(&vp->v_cv, vp->v_interlock);
1343 	}
1344 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1345 	mutex_exit(vp->v_interlock);
1346 
1347 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1348 		/*
1349 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1350 		 * retrying is not a big deal because, in many cases,
1351 		 * uobj->uo_npages is already 0 here.
1352 		 */
1353 		rw_enter(slock, RW_WRITER);
1354 		goto retry;
1355 	}
1356 
1357 	if (trans_mp) {
1358 		if (holds_wapbl)
1359 			WAPBL_END(trans_mp);
1360 		fstrans_done(trans_mp);
1361 	}
1362 
1363 	return (error);
1364 }
1365 
1366 /*
1367  * Default putrange method for file systems that do not care
1368  * how many pages are given to one GOP_WRITE() call.
1369  */
1370 void
1371 genfs_gop_putrange(struct vnode *vp, off_t off, off_t *lop, off_t *hip)
1372 {
1373 
1374 	*lop = 0;
1375 	*hip = 0;
1376 }
1377 
1378 int
1379 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1380 {
1381 	off_t off;
1382 	vaddr_t kva;
1383 	size_t len;
1384 	int error;
1385 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1386 
1387 	UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
1388 	    (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
1389 
1390 	off = pgs[0]->offset;
1391 	kva = uvm_pagermapin(pgs, npages,
1392 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1393 	len = npages << PAGE_SHIFT;
1394 
1395 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1396 			    uvm_aio_aiodone);
1397 
1398 	return error;
1399 }
1400 
1401 /*
1402  * genfs_gop_write_rwmap:
1403  *
1404  * a variant of genfs_gop_write.  it's used by UDF for its directory buffers.
1405  * this maps pages with PROT_WRITE so that VOP_STRATEGY can modifies
1406  * the contents before writing it out to the underlying storage.
1407  */
1408 
1409 int
1410 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages,
1411     int flags)
1412 {
1413 	off_t off;
1414 	vaddr_t kva;
1415 	size_t len;
1416 	int error;
1417 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1418 
1419 	UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
1420 	    (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
1421 
1422 	off = pgs[0]->offset;
1423 	kva = uvm_pagermapin(pgs, npages,
1424 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1425 	len = npages << PAGE_SHIFT;
1426 
1427 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1428 			    uvm_aio_aiodone);
1429 
1430 	return error;
1431 }
1432 
1433 /*
1434  * Backend routine for doing I/O to vnode pages.  Pages are already locked
1435  * and mapped into kernel memory.  Here we just look up the underlying
1436  * device block addresses and call the strategy routine.
1437  */
1438 
1439 static int
1440 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1441     enum uio_rw rw, void (*iodone)(struct buf *))
1442 {
1443 	int s, error;
1444 	int fs_bshift, dev_bshift;
1445 	off_t eof, offset, startoffset;
1446 	size_t bytes, iobytes, skipbytes;
1447 	struct buf *mbp, *bp;
1448 	const bool async = (flags & PGO_SYNCIO) == 0;
1449 	const bool lazy = (flags & PGO_LAZY) == 0;
1450 	const bool iowrite = rw == UIO_WRITE;
1451 	const int brw = iowrite ? B_WRITE : B_READ;
1452 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1453 
1454 	UVMHIST_LOG(ubchist, "vp %#jx kva %#jx len 0x%jx flags 0x%jx",
1455 	    (uintptr_t)vp, (uintptr_t)kva, len, flags);
1456 
1457 	KASSERT(vp->v_size <= vp->v_writesize);
1458 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1459 	if (vp->v_type != VBLK) {
1460 		fs_bshift = vp->v_mount->mnt_fs_bshift;
1461 		dev_bshift = vp->v_mount->mnt_dev_bshift;
1462 	} else {
1463 		fs_bshift = DEV_BSHIFT;
1464 		dev_bshift = DEV_BSHIFT;
1465 	}
1466 	error = 0;
1467 	startoffset = off;
1468 	bytes = MIN(len, eof - startoffset);
1469 	skipbytes = 0;
1470 	KASSERT(bytes != 0);
1471 
1472 	if (iowrite) {
1473 		/*
1474 		 * why += 2?
1475 		 * 1 for biodone, 1 for uvm_aio_aiodone.
1476 		 */
1477 		mutex_enter(vp->v_interlock);
1478 		vp->v_numoutput += 2;
1479 		mutex_exit(vp->v_interlock);
1480 	}
1481 	mbp = getiobuf(vp, true);
1482 	UVMHIST_LOG(ubchist, "vp %#jx mbp %#jx num now %jd bytes 0x%jx",
1483 	    (uintptr_t)vp, (uintptr_t)mbp, vp->v_numoutput, bytes);
1484 	mbp->b_bufsize = len;
1485 	mbp->b_data = (void *)kva;
1486 	mbp->b_resid = mbp->b_bcount = bytes;
1487 	mbp->b_cflags |= BC_BUSY | BC_AGE;
1488 	if (async) {
1489 		mbp->b_flags = brw | B_ASYNC;
1490 		mbp->b_iodone = iodone;
1491 	} else {
1492 		mbp->b_flags = brw;
1493 		mbp->b_iodone = NULL;
1494 	}
1495 	if (curlwp == uvm.pagedaemon_lwp)
1496 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1497 	else if (async || lazy)
1498 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1499 	else
1500 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1501 
1502 	bp = NULL;
1503 	for (offset = startoffset;
1504 	    bytes > 0;
1505 	    offset += iobytes, bytes -= iobytes) {
1506 		int run;
1507 		daddr_t lbn, blkno;
1508 		struct vnode *devvp;
1509 
1510 		/*
1511 		 * bmap the file to find out the blkno to read from and
1512 		 * how much we can read in one i/o.  if bmap returns an error,
1513 		 * skip the rest of the top-level i/o.
1514 		 */
1515 
1516 		lbn = offset >> fs_bshift;
1517 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1518 		if (error) {
1519 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd",
1520 			    lbn, error, 0, 0);
1521 			skipbytes += bytes;
1522 			bytes = 0;
1523 			goto loopdone;
1524 		}
1525 
1526 		/*
1527 		 * see how many pages can be read with this i/o.
1528 		 * reduce the i/o size if necessary to avoid
1529 		 * overwriting pages with valid data.
1530 		 */
1531 
1532 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1533 		    bytes);
1534 
1535 		/*
1536 		 * if this block isn't allocated, zero it instead of
1537 		 * reading it.  unless we are going to allocate blocks,
1538 		 * mark the pages we zeroed PG_RDONLY.
1539 		 */
1540 
1541 		if (blkno == (daddr_t)-1) {
1542 			if (!iowrite) {
1543 				memset((char *)kva + (offset - startoffset), 0,
1544 				    iobytes);
1545 			}
1546 			skipbytes += iobytes;
1547 			continue;
1548 		}
1549 
1550 		/*
1551 		 * allocate a sub-buf for this piece of the i/o
1552 		 * (or just use mbp if there's only 1 piece),
1553 		 * and start it going.
1554 		 */
1555 
1556 		if (offset == startoffset && iobytes == bytes) {
1557 			bp = mbp;
1558 		} else {
1559 			UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
1560 			    (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
1561 			bp = getiobuf(vp, true);
1562 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1563 		}
1564 		bp->b_lblkno = 0;
1565 
1566 		/* adjust physical blkno for partial blocks */
1567 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1568 		    dev_bshift);
1569 
1570 		UVMHIST_LOG(ubchist,
1571 		    "bp %#jx offset 0x%jx bcount 0x%jx blkno 0x%jx",
1572 		    (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
1573 
1574 		VOP_STRATEGY(devvp, bp);
1575 	}
1576 
1577 loopdone:
1578 	if (skipbytes) {
1579 		UVMHIST_LOG(ubchist, "skipbytes %jd", skipbytes, 0,0,0);
1580 	}
1581 	nestiobuf_done(mbp, skipbytes, error);
1582 	if (async) {
1583 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1584 		return (0);
1585 	}
1586 	UVMHIST_LOG(ubchist, "waiting for mbp %#jx", (uintptr_t)mbp, 0, 0, 0);
1587 	error = biowait(mbp);
1588 	s = splbio();
1589 	(*iodone)(mbp);
1590 	splx(s);
1591 	UVMHIST_LOG(ubchist, "returning, error %jd", error, 0, 0, 0);
1592 	return (error);
1593 }
1594 
1595 int
1596 genfs_compat_getpages(void *v)
1597 {
1598 	struct vop_getpages_args /* {
1599 		struct vnode *a_vp;
1600 		voff_t a_offset;
1601 		struct vm_page **a_m;
1602 		int *a_count;
1603 		int a_centeridx;
1604 		vm_prot_t a_access_type;
1605 		int a_advice;
1606 		int a_flags;
1607 	} */ *ap = v;
1608 
1609 	off_t origoffset;
1610 	struct vnode *vp = ap->a_vp;
1611 	struct uvm_object *uobj = &vp->v_uobj;
1612 	struct vm_page *pg, **pgs;
1613 	vaddr_t kva;
1614 	int i, error, orignpages, npages;
1615 	struct iovec iov;
1616 	struct uio uio;
1617 	kauth_cred_t cred = curlwp->l_cred;
1618 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1619 
1620 	error = 0;
1621 	origoffset = ap->a_offset;
1622 	orignpages = *ap->a_count;
1623 	pgs = ap->a_m;
1624 
1625 	if (ap->a_flags & PGO_LOCKED) {
1626 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, NULL,
1627 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1628 
1629 		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1630 		return error;
1631 	}
1632 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1633 		rw_exit(uobj->vmobjlock);
1634 		return EINVAL;
1635 	}
1636 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
1637 		rw_exit(uobj->vmobjlock);
1638 		return 0;
1639 	}
1640 	npages = orignpages;
1641 	uvn_findpages(uobj, origoffset, &npages, pgs, NULL, UFP_ALL);
1642 	rw_exit(uobj->vmobjlock);
1643 	kva = uvm_pagermapin(pgs, npages,
1644 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1645 	for (i = 0; i < npages; i++) {
1646 		pg = pgs[i];
1647 		if ((pg->flags & PG_FAKE) == 0) {
1648 			continue;
1649 		}
1650 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1651 		iov.iov_len = PAGE_SIZE;
1652 		uio.uio_iov = &iov;
1653 		uio.uio_iovcnt = 1;
1654 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1655 		uio.uio_rw = UIO_READ;
1656 		uio.uio_resid = PAGE_SIZE;
1657 		UIO_SETUP_SYSSPACE(&uio);
1658 		/* XXX vn_lock */
1659 		error = VOP_READ(vp, &uio, 0, cred);
1660 		if (error) {
1661 			break;
1662 		}
1663 		if (uio.uio_resid) {
1664 			memset(iov.iov_base, 0, uio.uio_resid);
1665 		}
1666 	}
1667 	uvm_pagermapout(kva, npages);
1668 	rw_enter(uobj->vmobjlock, RW_WRITER);
1669 	for (i = 0; i < npages; i++) {
1670 		pg = pgs[i];
1671 		if (error && (pg->flags & PG_FAKE) != 0) {
1672 			pg->flags |= PG_RELEASED;
1673 		} else {
1674 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
1675 			uvm_pagelock(pg);
1676 			uvm_pageactivate(pg);
1677 			uvm_pageunlock(pg);
1678 		}
1679 	}
1680 	if (error) {
1681 		uvm_page_unbusy(pgs, npages);
1682 	}
1683 	rw_exit(uobj->vmobjlock);
1684 	return error;
1685 }
1686 
1687 int
1688 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1689     int flags)
1690 {
1691 	off_t offset;
1692 	struct iovec iov;
1693 	struct uio uio;
1694 	kauth_cred_t cred = curlwp->l_cred;
1695 	struct buf *bp;
1696 	vaddr_t kva;
1697 	int error;
1698 
1699 	offset = pgs[0]->offset;
1700 	kva = uvm_pagermapin(pgs, npages,
1701 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1702 
1703 	iov.iov_base = (void *)kva;
1704 	iov.iov_len = npages << PAGE_SHIFT;
1705 	uio.uio_iov = &iov;
1706 	uio.uio_iovcnt = 1;
1707 	uio.uio_offset = offset;
1708 	uio.uio_rw = UIO_WRITE;
1709 	uio.uio_resid = npages << PAGE_SHIFT;
1710 	UIO_SETUP_SYSSPACE(&uio);
1711 	/* XXX vn_lock */
1712 	error = VOP_WRITE(vp, &uio, 0, cred);
1713 
1714 	mutex_enter(vp->v_interlock);
1715 	vp->v_numoutput++;
1716 	mutex_exit(vp->v_interlock);
1717 
1718 	bp = getiobuf(vp, true);
1719 	bp->b_cflags |= BC_BUSY | BC_AGE;
1720 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1721 	bp->b_data = (char *)kva;
1722 	bp->b_bcount = npages << PAGE_SHIFT;
1723 	bp->b_bufsize = npages << PAGE_SHIFT;
1724 	bp->b_resid = 0;
1725 	bp->b_error = error;
1726 	uvm_aio_aiodone(bp);
1727 	return (error);
1728 }
1729 
1730 /*
1731  * Process a uio using direct I/O.  If we reach a part of the request
1732  * which cannot be processed in this fashion for some reason, just return.
1733  * The caller must handle some additional part of the request using
1734  * buffered I/O before trying direct I/O again.
1735  */
1736 
1737 void
1738 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1739 {
1740 	struct vmspace *vs;
1741 	struct iovec *iov;
1742 	vaddr_t va;
1743 	size_t len;
1744 	const int mask = DEV_BSIZE - 1;
1745 	int error;
1746 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1747 	    (ioflag & IO_JOURNALLOCKED) == 0);
1748 
1749 #ifdef DIAGNOSTIC
1750 	if ((ioflag & IO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
1751                 WAPBL_JLOCK_ASSERT(vp->v_mount);
1752 #endif
1753 
1754 	/*
1755 	 * We only support direct I/O to user space for now.
1756 	 */
1757 
1758 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1759 		return;
1760 	}
1761 
1762 	/*
1763 	 * If the vnode is mapped, we would need to get the getpages lock
1764 	 * to stabilize the bmap, but then we would get into trouble while
1765 	 * locking the pages if the pages belong to this same vnode (or a
1766 	 * multi-vnode cascade to the same effect).  Just fall back to
1767 	 * buffered I/O if the vnode is mapped to avoid this mess.
1768 	 */
1769 
1770 	if (vp->v_vflag & VV_MAPPED) {
1771 		return;
1772 	}
1773 
1774 	if (need_wapbl) {
1775 		error = WAPBL_BEGIN(vp->v_mount);
1776 		if (error)
1777 			return;
1778 	}
1779 
1780 	/*
1781 	 * Do as much of the uio as possible with direct I/O.
1782 	 */
1783 
1784 	vs = uio->uio_vmspace;
1785 	while (uio->uio_resid) {
1786 		iov = uio->uio_iov;
1787 		if (iov->iov_len == 0) {
1788 			uio->uio_iov++;
1789 			uio->uio_iovcnt--;
1790 			continue;
1791 		}
1792 		va = (vaddr_t)iov->iov_base;
1793 		len = MIN(iov->iov_len, genfs_maxdio);
1794 		len &= ~mask;
1795 
1796 		/*
1797 		 * If the next chunk is smaller than DEV_BSIZE or extends past
1798 		 * the current EOF, then fall back to buffered I/O.
1799 		 */
1800 
1801 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
1802 			break;
1803 		}
1804 
1805 		/*
1806 		 * Check alignment.  The file offset must be at least
1807 		 * sector-aligned.  The exact constraint on memory alignment
1808 		 * is very hardware-dependent, but requiring sector-aligned
1809 		 * addresses there too is safe.
1810 		 */
1811 
1812 		if (uio->uio_offset & mask || va & mask) {
1813 			break;
1814 		}
1815 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1816 					  uio->uio_rw);
1817 		if (error) {
1818 			break;
1819 		}
1820 		iov->iov_base = (char *)iov->iov_base + len;
1821 		iov->iov_len -= len;
1822 		uio->uio_offset += len;
1823 		uio->uio_resid -= len;
1824 	}
1825 
1826 	if (need_wapbl)
1827 		WAPBL_END(vp->v_mount);
1828 }
1829 
1830 /*
1831  * Iodone routine for direct I/O.  We don't do much here since the request is
1832  * always synchronous, so the caller will do most of the work after biowait().
1833  */
1834 
1835 static void
1836 genfs_dio_iodone(struct buf *bp)
1837 {
1838 
1839 	KASSERT((bp->b_flags & B_ASYNC) == 0);
1840 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1841 		mutex_enter(bp->b_objlock);
1842 		vwakeup(bp);
1843 		mutex_exit(bp->b_objlock);
1844 	}
1845 	putiobuf(bp);
1846 }
1847 
1848 /*
1849  * Process one chunk of a direct I/O request.
1850  */
1851 
1852 static int
1853 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1854     off_t off, enum uio_rw rw)
1855 {
1856 	struct vm_map *map;
1857 	struct pmap *upm, *kpm __unused;
1858 	size_t klen = round_page(uva + len) - trunc_page(uva);
1859 	off_t spoff, epoff;
1860 	vaddr_t kva, puva;
1861 	paddr_t pa;
1862 	vm_prot_t prot;
1863 	int error, rv __diagused, poff, koff;
1864 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1865 		(rw == UIO_WRITE ? PGO_FREE : 0);
1866 
1867 	/*
1868 	 * For writes, verify that this range of the file already has fully
1869 	 * allocated backing store.  If there are any holes, just punt and
1870 	 * make the caller take the buffered write path.
1871 	 */
1872 
1873 	if (rw == UIO_WRITE) {
1874 		daddr_t lbn, elbn, blkno;
1875 		int bsize, bshift, run;
1876 
1877 		bshift = vp->v_mount->mnt_fs_bshift;
1878 		bsize = 1 << bshift;
1879 		lbn = off >> bshift;
1880 		elbn = (off + len + bsize - 1) >> bshift;
1881 		while (lbn < elbn) {
1882 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1883 			if (error) {
1884 				return error;
1885 			}
1886 			if (blkno == (daddr_t)-1) {
1887 				return ENOSPC;
1888 			}
1889 			lbn += 1 + run;
1890 		}
1891 	}
1892 
1893 	/*
1894 	 * Flush any cached pages for parts of the file that we're about to
1895 	 * access.  If we're writing, invalidate pages as well.
1896 	 */
1897 
1898 	spoff = trunc_page(off);
1899 	epoff = round_page(off + len);
1900 	rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
1901 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1902 	if (error) {
1903 		return error;
1904 	}
1905 
1906 	/*
1907 	 * Wire the user pages and remap them into kernel memory.
1908 	 */
1909 
1910 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1911 	error = uvm_vslock(vs, (void *)uva, len, prot);
1912 	if (error) {
1913 		return error;
1914 	}
1915 
1916 	map = &vs->vm_map;
1917 	upm = vm_map_pmap(map);
1918 	kpm = vm_map_pmap(kernel_map);
1919 	puva = trunc_page(uva);
1920 	kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1921 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1922 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1923 		rv = pmap_extract(upm, puva + poff, &pa);
1924 		KASSERT(rv);
1925 		pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1926 	}
1927 	pmap_update(kpm);
1928 
1929 	/*
1930 	 * Do the I/O.
1931 	 */
1932 
1933 	koff = uva - trunc_page(uva);
1934 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1935 			    genfs_dio_iodone);
1936 
1937 	/*
1938 	 * Tear down the kernel mapping.
1939 	 */
1940 
1941 	pmap_kremove(kva, klen);
1942 	pmap_update(kpm);
1943 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1944 
1945 	/*
1946 	 * Unwire the user pages.
1947 	 */
1948 
1949 	uvm_vsunlock(vs, (void *)uva, len);
1950 	return error;
1951 }
1952