xref: /netbsd-src/sys/miscfs/genfs/genfs_io.c (revision 466a16a118933bd295a8a104f095714fadf9cf68)
1 /*	$NetBSD: genfs_io.c,v 1.16 2008/12/01 11:22:12 joerg Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.16 2008/12/01 11:22:12 joerg Exp $");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/namei.h>
42 #include <sys/vnode.h>
43 #include <sys/fcntl.h>
44 #include <sys/kmem.h>
45 #include <sys/poll.h>
46 #include <sys/mman.h>
47 #include <sys/file.h>
48 #include <sys/kauth.h>
49 #include <sys/fstrans.h>
50 #include <sys/buf.h>
51 
52 #include <miscfs/genfs/genfs.h>
53 #include <miscfs/genfs/genfs_node.h>
54 #include <miscfs/specfs/specdev.h>
55 
56 #include <uvm/uvm.h>
57 #include <uvm/uvm_pager.h>
58 
59 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
60     off_t, enum uio_rw);
61 static void genfs_dio_iodone(struct buf *);
62 
63 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
64     void (*)(struct buf *));
65 static inline void genfs_rel_pages(struct vm_page **, int);
66 
67 int genfs_maxdio = MAXPHYS;
68 
69 static inline void
70 genfs_rel_pages(struct vm_page **pgs, int npages)
71 {
72 	int i;
73 
74 	for (i = 0; i < npages; i++) {
75 		struct vm_page *pg = pgs[i];
76 
77 		if (pg == NULL || pg == PGO_DONTCARE)
78 			continue;
79 		if (pg->flags & PG_FAKE) {
80 			pg->flags |= PG_RELEASED;
81 		}
82 	}
83 	mutex_enter(&uvm_pageqlock);
84 	uvm_page_unbusy(pgs, npages);
85 	mutex_exit(&uvm_pageqlock);
86 }
87 
88 /*
89  * generic VM getpages routine.
90  * Return PG_BUSY pages for the given range,
91  * reading from backing store if necessary.
92  */
93 
94 int
95 genfs_getpages(void *v)
96 {
97 	struct vop_getpages_args /* {
98 		struct vnode *a_vp;
99 		voff_t a_offset;
100 		struct vm_page **a_m;
101 		int *a_count;
102 		int a_centeridx;
103 		vm_prot_t a_access_type;
104 		int a_advice;
105 		int a_flags;
106 	} */ *ap = v;
107 
108 	off_t newsize, diskeof, memeof;
109 	off_t offset, origoffset, startoffset, endoffset;
110 	daddr_t lbn, blkno;
111 	int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
112 	int fs_bshift, fs_bsize, dev_bshift;
113 	const int flags = ap->a_flags;
114 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
115 	vaddr_t kva;
116 	struct buf *bp, *mbp;
117 	struct vnode *vp = ap->a_vp;
118 	struct vnode *devvp;
119 	struct genfs_node *gp = VTOG(vp);
120 	struct uvm_object *uobj = &vp->v_uobj;
121 	struct vm_page *pg, **pgs, *pgs_onstack[UBC_MAX_PAGES];
122 	int pgs_size;
123 	kauth_cred_t cred = curlwp->l_cred;		/* XXXUBC curlwp */
124 	const bool async = (flags & PGO_SYNCIO) == 0;
125 	const bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
126 	bool sawhole = false;
127 	bool has_trans = false;
128 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
129 	const bool blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
130 	voff_t origvsize;
131 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
132 
133 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
134 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
135 
136 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
137 	    vp->v_type == VLNK || vp->v_type == VBLK);
138 
139 	pgs = NULL;
140 	pgs_size = 0;
141 
142 startover:
143 	error = 0;
144 	origvsize = vp->v_size;
145 	origoffset = ap->a_offset;
146 	orignpages = *ap->a_count;
147 	GOP_SIZE(vp, origvsize, &diskeof, 0);
148 	if (flags & PGO_PASTEOF) {
149 #if defined(DIAGNOSTIC)
150 		off_t writeeof;
151 #endif /* defined(DIAGNOSTIC) */
152 
153 		newsize = MAX(origvsize,
154 		    origoffset + (orignpages << PAGE_SHIFT));
155 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
156 #if defined(DIAGNOSTIC)
157 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
158 		if (newsize > round_page(writeeof)) {
159 			panic("%s: past eof", __func__);
160 		}
161 #endif /* defined(DIAGNOSTIC) */
162 	} else {
163 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
164 	}
165 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
166 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
167 	KASSERT(orignpages > 0);
168 
169 	/*
170 	 * Bounds-check the request.
171 	 */
172 
173 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
174 		if ((flags & PGO_LOCKED) == 0) {
175 			mutex_exit(&uobj->vmobjlock);
176 		}
177 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
178 		    origoffset, *ap->a_count, memeof,0);
179 		error = EINVAL;
180 		goto out_err;
181 	}
182 
183 	/* uobj is locked */
184 
185 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
186 	    (vp->v_type != VBLK ||
187 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
188 		int updflags = 0;
189 
190 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
191 			updflags = GOP_UPDATE_ACCESSED;
192 		}
193 		if (write) {
194 			updflags |= GOP_UPDATE_MODIFIED;
195 		}
196 		if (updflags != 0) {
197 			GOP_MARKUPDATE(vp, updflags);
198 		}
199 	}
200 
201 	if (write) {
202 		gp->g_dirtygen++;
203 		if ((vp->v_iflag & VI_ONWORKLST) == 0) {
204 			vn_syncer_add_to_worklist(vp, filedelay);
205 		}
206 		if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
207 			vp->v_iflag |= VI_WRMAPDIRTY;
208 		}
209 	}
210 
211 	/*
212 	 * For PGO_LOCKED requests, just return whatever's in memory.
213 	 */
214 
215 	if (flags & PGO_LOCKED) {
216 		int nfound;
217 
218 		npages = *ap->a_count;
219 #if defined(DEBUG)
220 		for (i = 0; i < npages; i++) {
221 			pg = ap->a_m[i];
222 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
223 		}
224 #endif /* defined(DEBUG) */
225 		nfound = uvn_findpages(uobj, origoffset, &npages,
226 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
227 		KASSERT(npages == *ap->a_count);
228 		if (nfound == 0) {
229 			error = EBUSY;
230 			goto out_err;
231 		}
232 		if (!rw_tryenter(&gp->g_glock, RW_READER)) {
233 			genfs_rel_pages(ap->a_m, npages);
234 
235 			/*
236 			 * restore the array.
237 			 */
238 
239 			for (i = 0; i < npages; i++) {
240 				pg = ap->a_m[i];
241 
242 				if (pg != NULL || pg != PGO_DONTCARE) {
243 					ap->a_m[i] = NULL;
244 				}
245 			}
246 		} else {
247 			rw_exit(&gp->g_glock);
248 		}
249 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
250 		goto out_err;
251 	}
252 	mutex_exit(&uobj->vmobjlock);
253 
254 	/*
255 	 * find the requested pages and make some simple checks.
256 	 * leave space in the page array for a whole block.
257 	 */
258 
259 	if (vp->v_type != VBLK) {
260 		fs_bshift = vp->v_mount->mnt_fs_bshift;
261 		dev_bshift = vp->v_mount->mnt_dev_bshift;
262 	} else {
263 		fs_bshift = DEV_BSHIFT;
264 		dev_bshift = DEV_BSHIFT;
265 	}
266 	fs_bsize = 1 << fs_bshift;
267 
268 	orignpages = MIN(orignpages,
269 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
270 	npages = orignpages;
271 	startoffset = origoffset & ~(fs_bsize - 1);
272 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
273 	    fs_bsize - 1) & ~(fs_bsize - 1));
274 	endoffset = MIN(endoffset, round_page(memeof));
275 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
276 
277 	pgs_size = sizeof(struct vm_page *) *
278 	    ((endoffset - startoffset) >> PAGE_SHIFT);
279 	if (pgs_size > sizeof(pgs_onstack)) {
280 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
281 		if (pgs == NULL) {
282 			pgs = pgs_onstack;
283 			error = ENOMEM;
284 			goto out_err;
285 		}
286 	} else {
287 		pgs = pgs_onstack;
288 		(void)memset(pgs, 0, pgs_size);
289 	}
290 
291 
292 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
293 	    ridx, npages, startoffset, endoffset);
294 
295 	if (!has_trans) {
296 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
297 		has_trans = true;
298 	}
299 
300 	/*
301 	 * hold g_glock to prevent a race with truncate.
302 	 *
303 	 * check if our idea of v_size is still valid.
304 	 */
305 
306 	if (blockalloc) {
307 		rw_enter(&gp->g_glock, RW_WRITER);
308 	} else {
309 		rw_enter(&gp->g_glock, RW_READER);
310 	}
311 	mutex_enter(&uobj->vmobjlock);
312 	if (vp->v_size < origvsize) {
313 		rw_exit(&gp->g_glock);
314 		if (pgs != pgs_onstack)
315 			kmem_free(pgs, pgs_size);
316 		goto startover;
317 	}
318 
319 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
320 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
321 		rw_exit(&gp->g_glock);
322 		KASSERT(async != 0);
323 		genfs_rel_pages(&pgs[ridx], orignpages);
324 		mutex_exit(&uobj->vmobjlock);
325 		error = EBUSY;
326 		goto out_err;
327 	}
328 
329 	/*
330 	 * if the pages are already resident, just return them.
331 	 */
332 
333 	for (i = 0; i < npages; i++) {
334 		struct vm_page *pg1 = pgs[ridx + i];
335 
336 		if ((pg1->flags & PG_FAKE) ||
337 		    (blockalloc && (pg1->flags & PG_RDONLY))) {
338 			break;
339 		}
340 	}
341 	if (i == npages) {
342 		rw_exit(&gp->g_glock);
343 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
344 		npages += ridx;
345 		goto out;
346 	}
347 
348 	/*
349 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
350 	 */
351 
352 	if (overwrite) {
353 		rw_exit(&gp->g_glock);
354 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
355 
356 		for (i = 0; i < npages; i++) {
357 			struct vm_page *pg1 = pgs[ridx + i];
358 
359 			pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
360 		}
361 		npages += ridx;
362 		goto out;
363 	}
364 
365 	/*
366 	 * the page wasn't resident and we're not overwriting,
367 	 * so we're going to have to do some i/o.
368 	 * find any additional pages needed to cover the expanded range.
369 	 */
370 
371 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
372 	if (startoffset != origoffset || npages != orignpages) {
373 
374 		/*
375 		 * we need to avoid deadlocks caused by locking
376 		 * additional pages at lower offsets than pages we
377 		 * already have locked.  unlock them all and start over.
378 		 */
379 
380 		genfs_rel_pages(&pgs[ridx], orignpages);
381 		memset(pgs, 0, pgs_size);
382 
383 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
384 		    startoffset, endoffset, 0,0);
385 		npgs = npages;
386 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
387 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
388 			rw_exit(&gp->g_glock);
389 			KASSERT(async != 0);
390 			genfs_rel_pages(pgs, npages);
391 			mutex_exit(&uobj->vmobjlock);
392 			error = EBUSY;
393 			goto out_err;
394 		}
395 	}
396 	mutex_exit(&uobj->vmobjlock);
397 
398 	/*
399 	 * read the desired page(s).
400 	 */
401 
402 	totalbytes = npages << PAGE_SHIFT;
403 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
404 	tailbytes = totalbytes - bytes;
405 	skipbytes = 0;
406 
407 	kva = uvm_pagermapin(pgs, npages,
408 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
409 
410 	mbp = getiobuf(vp, true);
411 	mbp->b_bufsize = totalbytes;
412 	mbp->b_data = (void *)kva;
413 	mbp->b_resid = mbp->b_bcount = bytes;
414 	mbp->b_cflags = BC_BUSY;
415 	if (async) {
416 		mbp->b_flags = B_READ | B_ASYNC;
417 		mbp->b_iodone = uvm_aio_biodone;
418 	} else {
419 		mbp->b_flags = B_READ;
420 		mbp->b_iodone = NULL;
421 	}
422 	if (async)
423 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
424 	else
425 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
426 
427 	/*
428 	 * if EOF is in the middle of the range, zero the part past EOF.
429 	 * skip over pages which are not PG_FAKE since in that case they have
430 	 * valid data that we need to preserve.
431 	 */
432 
433 	tailstart = bytes;
434 	while (tailbytes > 0) {
435 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
436 
437 		KASSERT(len <= tailbytes);
438 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
439 			memset((void *)(kva + tailstart), 0, len);
440 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
441 			    kva, tailstart, len, 0);
442 		}
443 		tailstart += len;
444 		tailbytes -= len;
445 	}
446 
447 	/*
448 	 * now loop over the pages, reading as needed.
449 	 */
450 
451 	bp = NULL;
452 	for (offset = startoffset;
453 	    bytes > 0;
454 	    offset += iobytes, bytes -= iobytes) {
455 
456 		/*
457 		 * skip pages which don't need to be read.
458 		 */
459 
460 		pidx = (offset - startoffset) >> PAGE_SHIFT;
461 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
462 			size_t b;
463 
464 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
465 			if ((pgs[pidx]->flags & PG_RDONLY)) {
466 				sawhole = true;
467 			}
468 			b = MIN(PAGE_SIZE, bytes);
469 			offset += b;
470 			bytes -= b;
471 			skipbytes += b;
472 			pidx++;
473 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
474 			    offset, 0,0,0);
475 			if (bytes == 0) {
476 				goto loopdone;
477 			}
478 		}
479 
480 		/*
481 		 * bmap the file to find out the blkno to read from and
482 		 * how much we can read in one i/o.  if bmap returns an error,
483 		 * skip the rest of the top-level i/o.
484 		 */
485 
486 		lbn = offset >> fs_bshift;
487 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
488 		if (error) {
489 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
490 			    lbn, error,0,0);
491 			skipbytes += bytes;
492 			goto loopdone;
493 		}
494 
495 		/*
496 		 * see how many pages can be read with this i/o.
497 		 * reduce the i/o size if necessary to avoid
498 		 * overwriting pages with valid data.
499 		 */
500 
501 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
502 		    bytes);
503 		if (offset + iobytes > round_page(offset)) {
504 			pcount = 1;
505 			while (pidx + pcount < npages &&
506 			    pgs[pidx + pcount]->flags & PG_FAKE) {
507 				pcount++;
508 			}
509 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
510 			    (offset - trunc_page(offset)));
511 		}
512 
513 		/*
514 		 * if this block isn't allocated, zero it instead of
515 		 * reading it.  unless we are going to allocate blocks,
516 		 * mark the pages we zeroed PG_RDONLY.
517 		 */
518 
519 		if (blkno < 0) {
520 			int holepages = (round_page(offset + iobytes) -
521 			    trunc_page(offset)) >> PAGE_SHIFT;
522 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
523 
524 			sawhole = true;
525 			memset((char *)kva + (offset - startoffset), 0,
526 			    iobytes);
527 			skipbytes += iobytes;
528 
529 			for (i = 0; i < holepages; i++) {
530 				if (write) {
531 					pgs[pidx + i]->flags &= ~PG_CLEAN;
532 				}
533 				if (!blockalloc) {
534 					pgs[pidx + i]->flags |= PG_RDONLY;
535 				}
536 			}
537 			continue;
538 		}
539 
540 		/*
541 		 * allocate a sub-buf for this piece of the i/o
542 		 * (or just use mbp if there's only 1 piece),
543 		 * and start it going.
544 		 */
545 
546 		if (offset == startoffset && iobytes == bytes) {
547 			bp = mbp;
548 		} else {
549 			bp = getiobuf(vp, true);
550 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
551 		}
552 		bp->b_lblkno = 0;
553 
554 		/* adjust physical blkno for partial blocks */
555 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
556 		    dev_bshift);
557 
558 		UVMHIST_LOG(ubchist,
559 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
560 		    bp, offset, iobytes, bp->b_blkno);
561 
562 		VOP_STRATEGY(devvp, bp);
563 	}
564 
565 loopdone:
566 	nestiobuf_done(mbp, skipbytes, error);
567 	if (async) {
568 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
569 		rw_exit(&gp->g_glock);
570 		error = 0;
571 		goto out_err;
572 	}
573 	if (bp != NULL) {
574 		error = biowait(mbp);
575 	}
576 	putiobuf(mbp);
577 	uvm_pagermapout(kva, npages);
578 
579 	/*
580 	 * if this we encountered a hole then we have to do a little more work.
581 	 * for read faults, we marked the page PG_RDONLY so that future
582 	 * write accesses to the page will fault again.
583 	 * for write faults, we must make sure that the backing store for
584 	 * the page is completely allocated while the pages are locked.
585 	 */
586 
587 	if (!error && sawhole && blockalloc) {
588 		/*
589 		 * XXX: This assumes that we come here only via
590 		 * the mmio path
591 		 */
592 		if (vp->v_mount->mnt_wapbl) {
593 			error = WAPBL_BEGIN(vp->v_mount);
594 		}
595 
596 		if (!error) {
597 			error = GOP_ALLOC(vp, startoffset,
598 			    npages << PAGE_SHIFT, 0, cred);
599 			if (vp->v_mount->mnt_wapbl) {
600 				WAPBL_END(vp->v_mount);
601 			}
602 		}
603 
604 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
605 		    startoffset, npages << PAGE_SHIFT, error,0);
606 		if (!error) {
607 			for (i = 0; i < npages; i++) {
608 				if (pgs[i] == NULL) {
609 					continue;
610 				}
611 				pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
612 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
613 				    pgs[i],0,0,0);
614 			}
615 		}
616 	}
617 	rw_exit(&gp->g_glock);
618 	mutex_enter(&uobj->vmobjlock);
619 
620 	/*
621 	 * we're almost done!  release the pages...
622 	 * for errors, we free the pages.
623 	 * otherwise we activate them and mark them as valid and clean.
624 	 * also, unbusy pages that were not actually requested.
625 	 */
626 
627 	if (error) {
628 		for (i = 0; i < npages; i++) {
629 			if (pgs[i] == NULL) {
630 				continue;
631 			}
632 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
633 			    pgs[i], pgs[i]->flags, 0,0);
634 			if (pgs[i]->flags & PG_FAKE) {
635 				pgs[i]->flags |= PG_RELEASED;
636 			}
637 		}
638 		mutex_enter(&uvm_pageqlock);
639 		uvm_page_unbusy(pgs, npages);
640 		mutex_exit(&uvm_pageqlock);
641 		mutex_exit(&uobj->vmobjlock);
642 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
643 		goto out_err;
644 	}
645 
646 out:
647 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
648 	error = 0;
649 	mutex_enter(&uvm_pageqlock);
650 	for (i = 0; i < npages; i++) {
651 		pg = pgs[i];
652 		if (pg == NULL) {
653 			continue;
654 		}
655 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
656 		    pg, pg->flags, 0,0);
657 		if (pg->flags & PG_FAKE && !overwrite) {
658 			pg->flags &= ~(PG_FAKE);
659 			pmap_clear_modify(pgs[i]);
660 		}
661 		KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
662 		if (i < ridx || i >= ridx + orignpages || async) {
663 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
664 			    pg, pg->offset,0,0);
665 			if (pg->flags & PG_WANTED) {
666 				wakeup(pg);
667 			}
668 			if (pg->flags & PG_FAKE) {
669 				KASSERT(overwrite);
670 				uvm_pagezero(pg);
671 			}
672 			if (pg->flags & PG_RELEASED) {
673 				uvm_pagefree(pg);
674 				continue;
675 			}
676 			uvm_pageenqueue(pg);
677 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
678 			UVM_PAGE_OWN(pg, NULL);
679 		}
680 	}
681 	mutex_exit(&uvm_pageqlock);
682 	mutex_exit(&uobj->vmobjlock);
683 	if (ap->a_m != NULL) {
684 		memcpy(ap->a_m, &pgs[ridx],
685 		    orignpages * sizeof(struct vm_page *));
686 	}
687 
688 out_err:
689 	if (pgs != NULL && pgs != pgs_onstack)
690 		kmem_free(pgs, pgs_size);
691 	if (has_trans)
692 		fstrans_done(vp->v_mount);
693 	return (error);
694 }
695 
696 /*
697  * generic VM putpages routine.
698  * Write the given range of pages to backing store.
699  *
700  * => "offhi == 0" means flush all pages at or after "offlo".
701  * => object should be locked by caller.  we return with the
702  *      object unlocked.
703  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
704  *	thus, a caller might want to unlock higher level resources
705  *	(e.g. vm_map) before calling flush.
706  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
707  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
708  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
709  *	that new pages are inserted on the tail end of the list.   thus,
710  *	we can make a complete pass through the object in one go by starting
711  *	at the head and working towards the tail (new pages are put in
712  *	front of us).
713  * => NOTE: we are allowed to lock the page queues, so the caller
714  *	must not be holding the page queue lock.
715  *
716  * note on "cleaning" object and PG_BUSY pages:
717  *	this routine is holding the lock on the object.   the only time
718  *	that it can run into a PG_BUSY page that it does not own is if
719  *	some other process has started I/O on the page (e.g. either
720  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
721  *	in, then it can not be dirty (!PG_CLEAN) because no one has
722  *	had a chance to modify it yet.    if the PG_BUSY page is being
723  *	paged out then it means that someone else has already started
724  *	cleaning the page for us (how nice!).    in this case, if we
725  *	have syncio specified, then after we make our pass through the
726  *	object we need to wait for the other PG_BUSY pages to clear
727  *	off (i.e. we need to do an iosync).   also note that once a
728  *	page is PG_BUSY it must stay in its object until it is un-busyed.
729  *
730  * note on page traversal:
731  *	we can traverse the pages in an object either by going down the
732  *	linked list in "uobj->memq", or we can go over the address range
733  *	by page doing hash table lookups for each address.    depending
734  *	on how many pages are in the object it may be cheaper to do one
735  *	or the other.   we set "by_list" to true if we are using memq.
736  *	if the cost of a hash lookup was equal to the cost of the list
737  *	traversal we could compare the number of pages in the start->stop
738  *	range to the total number of pages in the object.   however, it
739  *	seems that a hash table lookup is more expensive than the linked
740  *	list traversal, so we multiply the number of pages in the
741  *	range by an estimate of the relatively higher cost of the hash lookup.
742  */
743 
744 int
745 genfs_putpages(void *v)
746 {
747 	struct vop_putpages_args /* {
748 		struct vnode *a_vp;
749 		voff_t a_offlo;
750 		voff_t a_offhi;
751 		int a_flags;
752 	} */ *ap = v;
753 
754 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
755 	    ap->a_flags, NULL);
756 }
757 
758 int
759 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
760     int origflags, struct vm_page **busypg)
761 {
762 	struct uvm_object *uobj = &vp->v_uobj;
763 	kmutex_t *slock = &uobj->vmobjlock;
764 	off_t off;
765 	/* Even for strange MAXPHYS, the shift rounds down to a page */
766 #define maxpages (MAXPHYS >> PAGE_SHIFT)
767 	int i, error, npages, nback;
768 	int freeflag;
769 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
770 	bool wasclean, by_list, needs_clean, yld;
771 	bool async = (origflags & PGO_SYNCIO) == 0;
772 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
773 	struct lwp *l = curlwp ? curlwp : &lwp0;
774 	struct genfs_node *gp = VTOG(vp);
775 	int flags;
776 	int dirtygen;
777 	bool modified;
778 	bool need_wapbl;
779 	bool has_trans;
780 	bool cleanall;
781 	bool onworklst;
782 
783 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
784 
785 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
786 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
787 	KASSERT(startoff < endoff || endoff == 0);
788 
789 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
790 	    vp, uobj->uo_npages, startoff, endoff - startoff);
791 
792 	has_trans = false;
793 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
794 	    (origflags & PGO_JOURNALLOCKED) == 0);
795 
796 retry:
797 	modified = false;
798 	flags = origflags;
799 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
800 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
801 	if (uobj->uo_npages == 0) {
802 		if (vp->v_iflag & VI_ONWORKLST) {
803 			vp->v_iflag &= ~VI_WRMAPDIRTY;
804 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
805 				vn_syncer_remove_from_worklist(vp);
806 		}
807 		if (has_trans) {
808 			if (need_wapbl)
809 				WAPBL_END(vp->v_mount);
810 			fstrans_done(vp->v_mount);
811 		}
812 		mutex_exit(slock);
813 		return (0);
814 	}
815 
816 	/*
817 	 * the vnode has pages, set up to process the request.
818 	 */
819 
820 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
821 		mutex_exit(slock);
822 		if (pagedaemon) {
823 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
824 			if (error)
825 				return error;
826 		} else
827 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
828 		if (need_wapbl) {
829 			error = WAPBL_BEGIN(vp->v_mount);
830 			if (error) {
831 				fstrans_done(vp->v_mount);
832 				return error;
833 			}
834 		}
835 		has_trans = true;
836 		mutex_enter(slock);
837 		goto retry;
838 	}
839 
840 	error = 0;
841 	wasclean = (vp->v_numoutput == 0);
842 	off = startoff;
843 	if (endoff == 0 || flags & PGO_ALLPAGES) {
844 		endoff = trunc_page(LLONG_MAX);
845 	}
846 	by_list = (uobj->uo_npages <=
847 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
848 
849 #if !defined(DEBUG)
850 	/*
851 	 * if this vnode is known not to have dirty pages,
852 	 * don't bother to clean it out.
853 	 */
854 
855 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
856 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
857 			goto skip_scan;
858 		}
859 		flags &= ~PGO_CLEANIT;
860 	}
861 #endif /* !defined(DEBUG) */
862 
863 	/*
864 	 * start the loop.  when scanning by list, hold the last page
865 	 * in the list before we start.  pages allocated after we start
866 	 * will be added to the end of the list, so we can stop at the
867 	 * current last page.
868 	 */
869 
870 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
871 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
872 	    (vp->v_iflag & VI_ONWORKLST) != 0;
873 	dirtygen = gp->g_dirtygen;
874 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
875 	if (by_list) {
876 		curmp.uobject = uobj;
877 		curmp.offset = (voff_t)-1;
878 		curmp.flags = PG_BUSY;
879 		endmp.uobject = uobj;
880 		endmp.offset = (voff_t)-1;
881 		endmp.flags = PG_BUSY;
882 		pg = TAILQ_FIRST(&uobj->memq);
883 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
884 		uvm_lwp_hold(l);
885 	} else {
886 		pg = uvm_pagelookup(uobj, off);
887 	}
888 	nextpg = NULL;
889 	while (by_list || off < endoff) {
890 
891 		/*
892 		 * if the current page is not interesting, move on to the next.
893 		 */
894 
895 		KASSERT(pg == NULL || pg->uobject == uobj);
896 		KASSERT(pg == NULL ||
897 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
898 		    (pg->flags & PG_BUSY) != 0);
899 		if (by_list) {
900 			if (pg == &endmp) {
901 				break;
902 			}
903 			if (pg->offset < startoff || pg->offset >= endoff ||
904 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
905 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
906 					wasclean = false;
907 				}
908 				pg = TAILQ_NEXT(pg, listq.queue);
909 				continue;
910 			}
911 			off = pg->offset;
912 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
913 			if (pg != NULL) {
914 				wasclean = false;
915 			}
916 			off += PAGE_SIZE;
917 			if (off < endoff) {
918 				pg = uvm_pagelookup(uobj, off);
919 			}
920 			continue;
921 		}
922 
923 		/*
924 		 * if the current page needs to be cleaned and it's busy,
925 		 * wait for it to become unbusy.
926 		 */
927 
928 		yld = (l->l_cpu->ci_schedstate.spc_flags &
929 		    SPCF_SHOULDYIELD) && !pagedaemon;
930 		if (pg->flags & PG_BUSY || yld) {
931 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
932 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
933 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
934 				error = EDEADLK;
935 				if (busypg != NULL)
936 					*busypg = pg;
937 				break;
938 			}
939 			if (pagedaemon) {
940 				/*
941 				 * someone has taken the page while we
942 				 * dropped the lock for fstrans_start.
943 				 */
944 				break;
945 			}
946 			if (by_list) {
947 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
948 				UVMHIST_LOG(ubchist, "curmp next %p",
949 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
950 			}
951 			if (yld) {
952 				mutex_exit(slock);
953 				preempt();
954 				mutex_enter(slock);
955 			} else {
956 				pg->flags |= PG_WANTED;
957 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
958 				mutex_enter(slock);
959 			}
960 			if (by_list) {
961 				UVMHIST_LOG(ubchist, "after next %p",
962 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
963 				pg = TAILQ_NEXT(&curmp, listq.queue);
964 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
965 			} else {
966 				pg = uvm_pagelookup(uobj, off);
967 			}
968 			continue;
969 		}
970 
971 		/*
972 		 * if we're freeing, remove all mappings of the page now.
973 		 * if we're cleaning, check if the page is needs to be cleaned.
974 		 */
975 
976 		if (flags & PGO_FREE) {
977 			pmap_page_protect(pg, VM_PROT_NONE);
978 		} else if (flags & PGO_CLEANIT) {
979 
980 			/*
981 			 * if we still have some hope to pull this vnode off
982 			 * from the syncer queue, write-protect the page.
983 			 */
984 
985 			if (cleanall && wasclean &&
986 			    gp->g_dirtygen == dirtygen) {
987 
988 				/*
989 				 * uobj pages get wired only by uvm_fault
990 				 * where uobj is locked.
991 				 */
992 
993 				if (pg->wire_count == 0) {
994 					pmap_page_protect(pg,
995 					    VM_PROT_READ|VM_PROT_EXECUTE);
996 				} else {
997 					cleanall = false;
998 				}
999 			}
1000 		}
1001 
1002 		if (flags & PGO_CLEANIT) {
1003 			needs_clean = pmap_clear_modify(pg) ||
1004 			    (pg->flags & PG_CLEAN) == 0;
1005 			pg->flags |= PG_CLEAN;
1006 		} else {
1007 			needs_clean = false;
1008 		}
1009 
1010 		/*
1011 		 * if we're cleaning, build a cluster.
1012 		 * the cluster will consist of pages which are currently dirty,
1013 		 * but they will be returned to us marked clean.
1014 		 * if not cleaning, just operate on the one page.
1015 		 */
1016 
1017 		if (needs_clean) {
1018 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
1019 			wasclean = false;
1020 			memset(pgs, 0, sizeof(pgs));
1021 			pg->flags |= PG_BUSY;
1022 			UVM_PAGE_OWN(pg, "genfs_putpages");
1023 
1024 			/*
1025 			 * first look backward.
1026 			 */
1027 
1028 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1029 			nback = npages;
1030 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1031 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1032 			if (nback) {
1033 				memmove(&pgs[0], &pgs[npages - nback],
1034 				    nback * sizeof(pgs[0]));
1035 				if (npages - nback < nback)
1036 					memset(&pgs[nback], 0,
1037 					    (npages - nback) * sizeof(pgs[0]));
1038 				else
1039 					memset(&pgs[npages - nback], 0,
1040 					    nback * sizeof(pgs[0]));
1041 			}
1042 
1043 			/*
1044 			 * then plug in our page of interest.
1045 			 */
1046 
1047 			pgs[nback] = pg;
1048 
1049 			/*
1050 			 * then look forward to fill in the remaining space in
1051 			 * the array of pages.
1052 			 */
1053 
1054 			npages = maxpages - nback - 1;
1055 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1056 			    &pgs[nback + 1],
1057 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1058 			npages += nback + 1;
1059 		} else {
1060 			pgs[0] = pg;
1061 			npages = 1;
1062 			nback = 0;
1063 		}
1064 
1065 		/*
1066 		 * apply FREE or DEACTIVATE options if requested.
1067 		 */
1068 
1069 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1070 			mutex_enter(&uvm_pageqlock);
1071 		}
1072 		for (i = 0; i < npages; i++) {
1073 			tpg = pgs[i];
1074 			KASSERT(tpg->uobject == uobj);
1075 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1076 				pg = tpg;
1077 			if (tpg->offset < startoff || tpg->offset >= endoff)
1078 				continue;
1079 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1080 				uvm_pagedeactivate(tpg);
1081 			} else if (flags & PGO_FREE) {
1082 				pmap_page_protect(tpg, VM_PROT_NONE);
1083 				if (tpg->flags & PG_BUSY) {
1084 					tpg->flags |= freeflag;
1085 					if (pagedaemon) {
1086 						uvm_pageout_start(1);
1087 						uvm_pagedequeue(tpg);
1088 					}
1089 				} else {
1090 
1091 					/*
1092 					 * ``page is not busy''
1093 					 * implies that npages is 1
1094 					 * and needs_clean is false.
1095 					 */
1096 
1097 					nextpg = TAILQ_NEXT(tpg, listq.queue);
1098 					uvm_pagefree(tpg);
1099 					if (pagedaemon)
1100 						uvmexp.pdfreed++;
1101 				}
1102 			}
1103 		}
1104 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1105 			mutex_exit(&uvm_pageqlock);
1106 		}
1107 		if (needs_clean) {
1108 			modified = true;
1109 
1110 			/*
1111 			 * start the i/o.  if we're traversing by list,
1112 			 * keep our place in the list with a marker page.
1113 			 */
1114 
1115 			if (by_list) {
1116 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1117 				    listq.queue);
1118 			}
1119 			mutex_exit(slock);
1120 			error = GOP_WRITE(vp, pgs, npages, flags);
1121 			mutex_enter(slock);
1122 			if (by_list) {
1123 				pg = TAILQ_NEXT(&curmp, listq.queue);
1124 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1125 			}
1126 			if (error) {
1127 				break;
1128 			}
1129 			if (by_list) {
1130 				continue;
1131 			}
1132 		}
1133 
1134 		/*
1135 		 * find the next page and continue if there was no error.
1136 		 */
1137 
1138 		if (by_list) {
1139 			if (nextpg) {
1140 				pg = nextpg;
1141 				nextpg = NULL;
1142 			} else {
1143 				pg = TAILQ_NEXT(pg, listq.queue);
1144 			}
1145 		} else {
1146 			off += (npages - nback) << PAGE_SHIFT;
1147 			if (off < endoff) {
1148 				pg = uvm_pagelookup(uobj, off);
1149 			}
1150 		}
1151 	}
1152 	if (by_list) {
1153 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1154 		uvm_lwp_rele(l);
1155 	}
1156 
1157 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1158 	    (vp->v_type != VBLK ||
1159 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1160 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1161 	}
1162 
1163 	/*
1164 	 * if we're cleaning and there was nothing to clean,
1165 	 * take us off the syncer list.  if we started any i/o
1166 	 * and we're doing sync i/o, wait for all writes to finish.
1167 	 */
1168 
1169 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1170 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
1171 #if defined(DEBUG)
1172 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1173 			if ((pg->flags & PG_CLEAN) == 0) {
1174 				printf("%s: %p: !CLEAN\n", __func__, pg);
1175 			}
1176 			if (pmap_is_modified(pg)) {
1177 				printf("%s: %p: modified\n", __func__, pg);
1178 			}
1179 		}
1180 #endif /* defined(DEBUG) */
1181 		vp->v_iflag &= ~VI_WRMAPDIRTY;
1182 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1183 			vn_syncer_remove_from_worklist(vp);
1184 	}
1185 
1186 #if !defined(DEBUG)
1187 skip_scan:
1188 #endif /* !defined(DEBUG) */
1189 
1190 	/* Wait for output to complete. */
1191 	if (!wasclean && !async && vp->v_numoutput != 0) {
1192 		while (vp->v_numoutput != 0)
1193 			cv_wait(&vp->v_cv, slock);
1194 	}
1195 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1196 	mutex_exit(slock);
1197 
1198 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1199 		/*
1200 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1201 		 * retrying is not a big deal because, in many cases,
1202 		 * uobj->uo_npages is already 0 here.
1203 		 */
1204 		mutex_enter(slock);
1205 		goto retry;
1206 	}
1207 
1208 	if (has_trans) {
1209 		if (need_wapbl)
1210 			WAPBL_END(vp->v_mount);
1211 		fstrans_done(vp->v_mount);
1212 	}
1213 
1214 	return (error);
1215 }
1216 
1217 int
1218 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1219 {
1220 	off_t off;
1221 	vaddr_t kva;
1222 	size_t len;
1223 	int error;
1224 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1225 
1226 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1227 	    vp, pgs, npages, flags);
1228 
1229 	off = pgs[0]->offset;
1230 	kva = uvm_pagermapin(pgs, npages,
1231 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1232 	len = npages << PAGE_SHIFT;
1233 
1234 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1235 			    uvm_aio_biodone);
1236 
1237 	return error;
1238 }
1239 
1240 int
1241 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1242 {
1243 	off_t off;
1244 	vaddr_t kva;
1245 	size_t len;
1246 	int error;
1247 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1248 
1249 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1250 	    vp, pgs, npages, flags);
1251 
1252 	off = pgs[0]->offset;
1253 	kva = uvm_pagermapin(pgs, npages,
1254 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1255 	len = npages << PAGE_SHIFT;
1256 
1257 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1258 			    uvm_aio_biodone);
1259 
1260 	return error;
1261 }
1262 
1263 /*
1264  * Backend routine for doing I/O to vnode pages.  Pages are already locked
1265  * and mapped into kernel memory.  Here we just look up the underlying
1266  * device block addresses and call the strategy routine.
1267  */
1268 
1269 static int
1270 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1271     enum uio_rw rw, void (*iodone)(struct buf *))
1272 {
1273 	int s, error, run;
1274 	int fs_bshift, dev_bshift;
1275 	off_t eof, offset, startoffset;
1276 	size_t bytes, iobytes, skipbytes;
1277 	daddr_t lbn, blkno;
1278 	struct buf *mbp, *bp;
1279 	struct vnode *devvp;
1280 	bool async = (flags & PGO_SYNCIO) == 0;
1281 	bool write = rw == UIO_WRITE;
1282 	int brw = write ? B_WRITE : B_READ;
1283 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1284 
1285 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1286 	    vp, kva, len, flags);
1287 
1288 	KASSERT(vp->v_size <= vp->v_writesize);
1289 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1290 	if (vp->v_type != VBLK) {
1291 		fs_bshift = vp->v_mount->mnt_fs_bshift;
1292 		dev_bshift = vp->v_mount->mnt_dev_bshift;
1293 	} else {
1294 		fs_bshift = DEV_BSHIFT;
1295 		dev_bshift = DEV_BSHIFT;
1296 	}
1297 	error = 0;
1298 	startoffset = off;
1299 	bytes = MIN(len, eof - startoffset);
1300 	skipbytes = 0;
1301 	KASSERT(bytes != 0);
1302 
1303 	if (write) {
1304 		mutex_enter(&vp->v_interlock);
1305 		vp->v_numoutput += 2;
1306 		mutex_exit(&vp->v_interlock);
1307 	}
1308 	mbp = getiobuf(vp, true);
1309 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1310 	    vp, mbp, vp->v_numoutput, bytes);
1311 	mbp->b_bufsize = len;
1312 	mbp->b_data = (void *)kva;
1313 	mbp->b_resid = mbp->b_bcount = bytes;
1314 	mbp->b_cflags = BC_BUSY | BC_AGE;
1315 	if (async) {
1316 		mbp->b_flags = brw | B_ASYNC;
1317 		mbp->b_iodone = iodone;
1318 	} else {
1319 		mbp->b_flags = brw;
1320 		mbp->b_iodone = NULL;
1321 	}
1322 	if (curlwp == uvm.pagedaemon_lwp)
1323 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1324 	else if (async)
1325 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1326 	else
1327 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1328 
1329 	bp = NULL;
1330 	for (offset = startoffset;
1331 	    bytes > 0;
1332 	    offset += iobytes, bytes -= iobytes) {
1333 		lbn = offset >> fs_bshift;
1334 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1335 		if (error) {
1336 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1337 			skipbytes += bytes;
1338 			bytes = 0;
1339 			break;
1340 		}
1341 
1342 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1343 		    bytes);
1344 		if (blkno == (daddr_t)-1) {
1345 			if (!write) {
1346 				memset((char *)kva + (offset - startoffset), 0,
1347 				   iobytes);
1348 			}
1349 			skipbytes += iobytes;
1350 			continue;
1351 		}
1352 
1353 		/* if it's really one i/o, don't make a second buf */
1354 		if (offset == startoffset && iobytes == bytes) {
1355 			bp = mbp;
1356 		} else {
1357 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1358 			    vp, bp, vp->v_numoutput, 0);
1359 			bp = getiobuf(vp, true);
1360 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1361 		}
1362 		bp->b_lblkno = 0;
1363 
1364 		/* adjust physical blkno for partial blocks */
1365 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1366 		    dev_bshift);
1367 		UVMHIST_LOG(ubchist,
1368 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1369 		    vp, offset, bp->b_bcount, bp->b_blkno);
1370 
1371 		VOP_STRATEGY(devvp, bp);
1372 	}
1373 	if (skipbytes) {
1374 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1375 	}
1376 	nestiobuf_done(mbp, skipbytes, error);
1377 	if (async) {
1378 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1379 		return (0);
1380 	}
1381 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1382 	error = biowait(mbp);
1383 	s = splbio();
1384 	(*iodone)(mbp);
1385 	splx(s);
1386 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1387 	return (error);
1388 }
1389 
1390 /*
1391  * VOP_PUTPAGES() for vnodes which never have pages.
1392  */
1393 
1394 int
1395 genfs_null_putpages(void *v)
1396 {
1397 	struct vop_putpages_args /* {
1398 		struct vnode *a_vp;
1399 		voff_t a_offlo;
1400 		voff_t a_offhi;
1401 		int a_flags;
1402 	} */ *ap = v;
1403 	struct vnode *vp = ap->a_vp;
1404 
1405 	KASSERT(vp->v_uobj.uo_npages == 0);
1406 	mutex_exit(&vp->v_interlock);
1407 	return (0);
1408 }
1409 
1410 int
1411 genfs_compat_getpages(void *v)
1412 {
1413 	struct vop_getpages_args /* {
1414 		struct vnode *a_vp;
1415 		voff_t a_offset;
1416 		struct vm_page **a_m;
1417 		int *a_count;
1418 		int a_centeridx;
1419 		vm_prot_t a_access_type;
1420 		int a_advice;
1421 		int a_flags;
1422 	} */ *ap = v;
1423 
1424 	off_t origoffset;
1425 	struct vnode *vp = ap->a_vp;
1426 	struct uvm_object *uobj = &vp->v_uobj;
1427 	struct vm_page *pg, **pgs;
1428 	vaddr_t kva;
1429 	int i, error, orignpages, npages;
1430 	struct iovec iov;
1431 	struct uio uio;
1432 	kauth_cred_t cred = curlwp->l_cred;
1433 	bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1434 
1435 	error = 0;
1436 	origoffset = ap->a_offset;
1437 	orignpages = *ap->a_count;
1438 	pgs = ap->a_m;
1439 
1440 	if (write && (vp->v_iflag & VI_ONWORKLST) == 0) {
1441 		vn_syncer_add_to_worklist(vp, filedelay);
1442 	}
1443 	if (ap->a_flags & PGO_LOCKED) {
1444 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1445 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1446 
1447 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1448 	}
1449 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1450 		mutex_exit(&uobj->vmobjlock);
1451 		return (EINVAL);
1452 	}
1453 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
1454 		mutex_exit(&uobj->vmobjlock);
1455 		return 0;
1456 	}
1457 	npages = orignpages;
1458 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1459 	mutex_exit(&uobj->vmobjlock);
1460 	kva = uvm_pagermapin(pgs, npages,
1461 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1462 	for (i = 0; i < npages; i++) {
1463 		pg = pgs[i];
1464 		if ((pg->flags & PG_FAKE) == 0) {
1465 			continue;
1466 		}
1467 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1468 		iov.iov_len = PAGE_SIZE;
1469 		uio.uio_iov = &iov;
1470 		uio.uio_iovcnt = 1;
1471 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1472 		uio.uio_rw = UIO_READ;
1473 		uio.uio_resid = PAGE_SIZE;
1474 		UIO_SETUP_SYSSPACE(&uio);
1475 		/* XXX vn_lock */
1476 		error = VOP_READ(vp, &uio, 0, cred);
1477 		if (error) {
1478 			break;
1479 		}
1480 		if (uio.uio_resid) {
1481 			memset(iov.iov_base, 0, uio.uio_resid);
1482 		}
1483 	}
1484 	uvm_pagermapout(kva, npages);
1485 	mutex_enter(&uobj->vmobjlock);
1486 	mutex_enter(&uvm_pageqlock);
1487 	for (i = 0; i < npages; i++) {
1488 		pg = pgs[i];
1489 		if (error && (pg->flags & PG_FAKE) != 0) {
1490 			pg->flags |= PG_RELEASED;
1491 		} else {
1492 			pmap_clear_modify(pg);
1493 			uvm_pageactivate(pg);
1494 		}
1495 	}
1496 	if (error) {
1497 		uvm_page_unbusy(pgs, npages);
1498 	}
1499 	mutex_exit(&uvm_pageqlock);
1500 	mutex_exit(&uobj->vmobjlock);
1501 	return (error);
1502 }
1503 
1504 int
1505 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1506     int flags)
1507 {
1508 	off_t offset;
1509 	struct iovec iov;
1510 	struct uio uio;
1511 	kauth_cred_t cred = curlwp->l_cred;
1512 	struct buf *bp;
1513 	vaddr_t kva;
1514 	int error;
1515 
1516 	offset = pgs[0]->offset;
1517 	kva = uvm_pagermapin(pgs, npages,
1518 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1519 
1520 	iov.iov_base = (void *)kva;
1521 	iov.iov_len = npages << PAGE_SHIFT;
1522 	uio.uio_iov = &iov;
1523 	uio.uio_iovcnt = 1;
1524 	uio.uio_offset = offset;
1525 	uio.uio_rw = UIO_WRITE;
1526 	uio.uio_resid = npages << PAGE_SHIFT;
1527 	UIO_SETUP_SYSSPACE(&uio);
1528 	/* XXX vn_lock */
1529 	error = VOP_WRITE(vp, &uio, 0, cred);
1530 
1531 	mutex_enter(&vp->v_interlock);
1532 	vp->v_numoutput++;
1533 	mutex_exit(&vp->v_interlock);
1534 
1535 	bp = getiobuf(vp, true);
1536 	bp->b_cflags = BC_BUSY | BC_AGE;
1537 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1538 	bp->b_data = (char *)kva;
1539 	bp->b_bcount = npages << PAGE_SHIFT;
1540 	bp->b_bufsize = npages << PAGE_SHIFT;
1541 	bp->b_resid = 0;
1542 	bp->b_error = error;
1543 	uvm_aio_aiodone(bp);
1544 	return (error);
1545 }
1546 
1547 /*
1548  * Process a uio using direct I/O.  If we reach a part of the request
1549  * which cannot be processed in this fashion for some reason, just return.
1550  * The caller must handle some additional part of the request using
1551  * buffered I/O before trying direct I/O again.
1552  */
1553 
1554 void
1555 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1556 {
1557 	struct vmspace *vs;
1558 	struct iovec *iov;
1559 	vaddr_t va;
1560 	size_t len;
1561 	const int mask = DEV_BSIZE - 1;
1562 	int error;
1563 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1564 	    (ioflag & IO_JOURNALLOCKED) == 0);
1565 
1566 	/*
1567 	 * We only support direct I/O to user space for now.
1568 	 */
1569 
1570 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1571 		return;
1572 	}
1573 
1574 	/*
1575 	 * If the vnode is mapped, we would need to get the getpages lock
1576 	 * to stabilize the bmap, but then we would get into trouble whil e
1577 	 * locking the pages if the pages belong to this same vnode (or a
1578 	 * multi-vnode cascade to the same effect).  Just fall back to
1579 	 * buffered I/O if the vnode is mapped to avoid this mess.
1580 	 */
1581 
1582 	if (vp->v_vflag & VV_MAPPED) {
1583 		return;
1584 	}
1585 
1586 	if (need_wapbl) {
1587 		error = WAPBL_BEGIN(vp->v_mount);
1588 		if (error)
1589 			return;
1590 	}
1591 
1592 	/*
1593 	 * Do as much of the uio as possible with direct I/O.
1594 	 */
1595 
1596 	vs = uio->uio_vmspace;
1597 	while (uio->uio_resid) {
1598 		iov = uio->uio_iov;
1599 		if (iov->iov_len == 0) {
1600 			uio->uio_iov++;
1601 			uio->uio_iovcnt--;
1602 			continue;
1603 		}
1604 		va = (vaddr_t)iov->iov_base;
1605 		len = MIN(iov->iov_len, genfs_maxdio);
1606 		len &= ~mask;
1607 
1608 		/*
1609 		 * If the next chunk is smaller than DEV_BSIZE or extends past
1610 		 * the current EOF, then fall back to buffered I/O.
1611 		 */
1612 
1613 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
1614 			break;
1615 		}
1616 
1617 		/*
1618 		 * Check alignment.  The file offset must be at least
1619 		 * sector-aligned.  The exact constraint on memory alignment
1620 		 * is very hardware-dependent, but requiring sector-aligned
1621 		 * addresses there too is safe.
1622 		 */
1623 
1624 		if (uio->uio_offset & mask || va & mask) {
1625 			break;
1626 		}
1627 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1628 					  uio->uio_rw);
1629 		if (error) {
1630 			break;
1631 		}
1632 		iov->iov_base = (char *)iov->iov_base + len;
1633 		iov->iov_len -= len;
1634 		uio->uio_offset += len;
1635 		uio->uio_resid -= len;
1636 	}
1637 
1638 	if (need_wapbl)
1639 		WAPBL_END(vp->v_mount);
1640 }
1641 
1642 /*
1643  * Iodone routine for direct I/O.  We don't do much here since the request is
1644  * always synchronous, so the caller will do most of the work after biowait().
1645  */
1646 
1647 static void
1648 genfs_dio_iodone(struct buf *bp)
1649 {
1650 
1651 	KASSERT((bp->b_flags & B_ASYNC) == 0);
1652 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1653 		mutex_enter(bp->b_objlock);
1654 		vwakeup(bp);
1655 		mutex_exit(bp->b_objlock);
1656 	}
1657 	putiobuf(bp);
1658 }
1659 
1660 /*
1661  * Process one chunk of a direct I/O request.
1662  */
1663 
1664 static int
1665 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1666     off_t off, enum uio_rw rw)
1667 {
1668 	struct vm_map *map;
1669 	struct pmap *upm, *kpm;
1670 	size_t klen = round_page(uva + len) - trunc_page(uva);
1671 	off_t spoff, epoff;
1672 	vaddr_t kva, puva;
1673 	paddr_t pa;
1674 	vm_prot_t prot;
1675 	int error, rv, poff, koff;
1676 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1677 		(rw == UIO_WRITE ? PGO_FREE : 0);
1678 
1679 	/*
1680 	 * For writes, verify that this range of the file already has fully
1681 	 * allocated backing store.  If there are any holes, just punt and
1682 	 * make the caller take the buffered write path.
1683 	 */
1684 
1685 	if (rw == UIO_WRITE) {
1686 		daddr_t lbn, elbn, blkno;
1687 		int bsize, bshift, run;
1688 
1689 		bshift = vp->v_mount->mnt_fs_bshift;
1690 		bsize = 1 << bshift;
1691 		lbn = off >> bshift;
1692 		elbn = (off + len + bsize - 1) >> bshift;
1693 		while (lbn < elbn) {
1694 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1695 			if (error) {
1696 				return error;
1697 			}
1698 			if (blkno == (daddr_t)-1) {
1699 				return ENOSPC;
1700 			}
1701 			lbn += 1 + run;
1702 		}
1703 	}
1704 
1705 	/*
1706 	 * Flush any cached pages for parts of the file that we're about to
1707 	 * access.  If we're writing, invalidate pages as well.
1708 	 */
1709 
1710 	spoff = trunc_page(off);
1711 	epoff = round_page(off + len);
1712 	mutex_enter(&vp->v_interlock);
1713 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1714 	if (error) {
1715 		return error;
1716 	}
1717 
1718 	/*
1719 	 * Wire the user pages and remap them into kernel memory.
1720 	 */
1721 
1722 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1723 	error = uvm_vslock(vs, (void *)uva, len, prot);
1724 	if (error) {
1725 		return error;
1726 	}
1727 
1728 	map = &vs->vm_map;
1729 	upm = vm_map_pmap(map);
1730 	kpm = vm_map_pmap(kernel_map);
1731 	kva = uvm_km_alloc(kernel_map, klen, 0,
1732 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
1733 	puva = trunc_page(uva);
1734 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1735 		rv = pmap_extract(upm, puva + poff, &pa);
1736 		KASSERT(rv);
1737 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
1738 	}
1739 	pmap_update(kpm);
1740 
1741 	/*
1742 	 * Do the I/O.
1743 	 */
1744 
1745 	koff = uva - trunc_page(uva);
1746 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1747 			    genfs_dio_iodone);
1748 
1749 	/*
1750 	 * Tear down the kernel mapping.
1751 	 */
1752 
1753 	pmap_remove(kpm, kva, kva + klen);
1754 	pmap_update(kpm);
1755 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1756 
1757 	/*
1758 	 * Unwire the user pages.
1759 	 */
1760 
1761 	uvm_vsunlock(vs, (void *)uva, len);
1762 	return error;
1763 }
1764 
1765