xref: /netbsd-src/sys/miscfs/genfs/genfs_io.c (revision 267197ec1eebfcb9810ea27a89625b6ddf68e3e7)
1 /*	$NetBSD: genfs_io.c,v 1.5 2008/01/18 11:01:23 yamt Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.5 2008/01/18 11:01:23 yamt Exp $");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/namei.h>
42 #include <sys/vnode.h>
43 #include <sys/fcntl.h>
44 #include <sys/kmem.h>
45 #include <sys/poll.h>
46 #include <sys/mman.h>
47 #include <sys/file.h>
48 #include <sys/kauth.h>
49 #include <sys/fstrans.h>
50 
51 #include <miscfs/genfs/genfs.h>
52 #include <miscfs/genfs/genfs_node.h>
53 #include <miscfs/specfs/specdev.h>
54 
55 #include <uvm/uvm.h>
56 #include <uvm/uvm_pager.h>
57 
58 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
59     off_t, enum uio_rw);
60 static void genfs_dio_iodone(struct buf *);
61 
62 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
63     void (*)(struct buf *));
64 static inline void genfs_rel_pages(struct vm_page **, int);
65 
66 #define MAX_READ_PAGES	16 	/* XXXUBC 16 */
67 
68 int genfs_maxdio = MAXPHYS;
69 
70 static inline void
71 genfs_rel_pages(struct vm_page **pgs, int npages)
72 {
73 	int i;
74 
75 	for (i = 0; i < npages; i++) {
76 		struct vm_page *pg = pgs[i];
77 
78 		if (pg == NULL || pg == PGO_DONTCARE)
79 			continue;
80 		if (pg->flags & PG_FAKE) {
81 			pg->flags |= PG_RELEASED;
82 		}
83 	}
84 	mutex_enter(&uvm_pageqlock);
85 	uvm_page_unbusy(pgs, npages);
86 	mutex_exit(&uvm_pageqlock);
87 }
88 
89 /*
90  * generic VM getpages routine.
91  * Return PG_BUSY pages for the given range,
92  * reading from backing store if necessary.
93  */
94 
95 int
96 genfs_getpages(void *v)
97 {
98 	struct vop_getpages_args /* {
99 		struct vnode *a_vp;
100 		voff_t a_offset;
101 		struct vm_page **a_m;
102 		int *a_count;
103 		int a_centeridx;
104 		vm_prot_t a_access_type;
105 		int a_advice;
106 		int a_flags;
107 	} */ *ap = v;
108 
109 	off_t newsize, diskeof, memeof;
110 	off_t offset, origoffset, startoffset, endoffset;
111 	daddr_t lbn, blkno;
112 	int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
113 	int fs_bshift, fs_bsize, dev_bshift;
114 	int flags = ap->a_flags;
115 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
116 	vaddr_t kva;
117 	struct buf *bp, *mbp;
118 	struct vnode *vp = ap->a_vp;
119 	struct vnode *devvp;
120 	struct genfs_node *gp = VTOG(vp);
121 	struct uvm_object *uobj = &vp->v_uobj;
122 	struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES];
123 	int pgs_size;
124 	kauth_cred_t cred = curlwp->l_cred;		/* XXXUBC curlwp */
125 	bool async = (flags & PGO_SYNCIO) == 0;
126 	bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
127 	bool sawhole = false;
128 	bool has_trans = false;
129 	bool overwrite = (flags & PGO_OVERWRITE) != 0;
130 	bool blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
131 	voff_t origvsize;
132 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
133 
134 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
135 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
136 
137 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
138 	    vp->v_type == VLNK || vp->v_type == VBLK);
139 
140 	/* XXXUBC temp limit */
141 	if (*ap->a_count > MAX_READ_PAGES) {
142 		panic("genfs_getpages: too many pages");
143 	}
144 
145 	pgs = pgs_onstack;
146 	pgs_size = sizeof(pgs_onstack);
147 
148 startover:
149 	error = 0;
150 	origvsize = vp->v_size;
151 	origoffset = ap->a_offset;
152 	orignpages = *ap->a_count;
153 	GOP_SIZE(vp, origvsize, &diskeof, 0);
154 	if (flags & PGO_PASTEOF) {
155 #if defined(DIAGNOSTIC)
156 		off_t writeeof;
157 #endif /* defined(DIAGNOSTIC) */
158 
159 		newsize = MAX(origvsize,
160 		    origoffset + (orignpages << PAGE_SHIFT));
161 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
162 #if defined(DIAGNOSTIC)
163 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
164 		if (newsize > round_page(writeeof)) {
165 			panic("%s: past eof", __func__);
166 		}
167 #endif /* defined(DIAGNOSTIC) */
168 	} else {
169 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
170 	}
171 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
172 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
173 	KASSERT(orignpages > 0);
174 
175 	/*
176 	 * Bounds-check the request.
177 	 */
178 
179 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
180 		if ((flags & PGO_LOCKED) == 0) {
181 			mutex_exit(&uobj->vmobjlock);
182 		}
183 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
184 		    origoffset, *ap->a_count, memeof,0);
185 		error = EINVAL;
186 		goto out_err;
187 	}
188 
189 	/* uobj is locked */
190 
191 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
192 	    (vp->v_type != VBLK ||
193 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
194 		int updflags = 0;
195 
196 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
197 			updflags = GOP_UPDATE_ACCESSED;
198 		}
199 		if (write) {
200 			updflags |= GOP_UPDATE_MODIFIED;
201 		}
202 		if (updflags != 0) {
203 			GOP_MARKUPDATE(vp, updflags);
204 		}
205 	}
206 
207 	if (write) {
208 		gp->g_dirtygen++;
209 		if ((vp->v_iflag & VI_ONWORKLST) == 0) {
210 			vn_syncer_add_to_worklist(vp, filedelay);
211 		}
212 		if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
213 			vp->v_iflag |= VI_WRMAPDIRTY;
214 		}
215 	}
216 
217 	/*
218 	 * For PGO_LOCKED requests, just return whatever's in memory.
219 	 */
220 
221 	if (flags & PGO_LOCKED) {
222 		int nfound;
223 
224 		npages = *ap->a_count;
225 #if defined(DEBUG)
226 		for (i = 0; i < npages; i++) {
227 			pg = ap->a_m[i];
228 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
229 		}
230 #endif /* defined(DEBUG) */
231 		nfound = uvn_findpages(uobj, origoffset, &npages,
232 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
233 		KASSERT(npages == *ap->a_count);
234 		if (nfound == 0) {
235 			error = EBUSY;
236 			goto out_err;
237 		}
238 		if (!rw_tryenter(&gp->g_glock, RW_READER)) {
239 			genfs_rel_pages(ap->a_m, npages);
240 
241 			/*
242 			 * restore the array.
243 			 */
244 
245 			for (i = 0; i < npages; i++) {
246 				pg = ap->a_m[i];
247 
248 				if (pg != NULL || pg != PGO_DONTCARE) {
249 					ap->a_m[i] = NULL;
250 				}
251 			}
252 		} else {
253 			rw_exit(&gp->g_glock);
254 		}
255 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
256 		goto out_err;
257 	}
258 	mutex_exit(&uobj->vmobjlock);
259 
260 	/*
261 	 * find the requested pages and make some simple checks.
262 	 * leave space in the page array for a whole block.
263 	 */
264 
265 	if (vp->v_type != VBLK) {
266 		fs_bshift = vp->v_mount->mnt_fs_bshift;
267 		dev_bshift = vp->v_mount->mnt_dev_bshift;
268 	} else {
269 		fs_bshift = DEV_BSHIFT;
270 		dev_bshift = DEV_BSHIFT;
271 	}
272 	fs_bsize = 1 << fs_bshift;
273 
274 	orignpages = MIN(orignpages,
275 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
276 	npages = orignpages;
277 	startoffset = origoffset & ~(fs_bsize - 1);
278 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
279 	    fs_bsize - 1) & ~(fs_bsize - 1));
280 	endoffset = MIN(endoffset, round_page(memeof));
281 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
282 
283 	pgs_size = sizeof(struct vm_page *) *
284 	    ((endoffset - startoffset) >> PAGE_SHIFT);
285 	if (pgs_size > sizeof(pgs_onstack)) {
286 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
287 		if (pgs == NULL) {
288 			pgs = pgs_onstack;
289 			error = ENOMEM;
290 			goto out_err;
291 		}
292 	} else {
293 		/* pgs == pgs_onstack */
294 		memset(pgs, 0, pgs_size);
295 	}
296 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
297 	    ridx, npages, startoffset, endoffset);
298 
299 	if (!has_trans) {
300 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
301 		has_trans = true;
302 	}
303 
304 	/*
305 	 * hold g_glock to prevent a race with truncate.
306 	 *
307 	 * check if our idea of v_size is still valid.
308 	 */
309 
310 	if (blockalloc) {
311 		rw_enter(&gp->g_glock, RW_WRITER);
312 	} else {
313 		rw_enter(&gp->g_glock, RW_READER);
314 	}
315 	mutex_enter(&uobj->vmobjlock);
316 	if (vp->v_size < origvsize) {
317 		rw_exit(&gp->g_glock);
318 		if (pgs != pgs_onstack)
319 			kmem_free(pgs, pgs_size);
320 		goto startover;
321 	}
322 
323 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
324 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
325 		rw_exit(&gp->g_glock);
326 		KASSERT(async != 0);
327 		genfs_rel_pages(&pgs[ridx], orignpages);
328 		mutex_exit(&uobj->vmobjlock);
329 		error = EBUSY;
330 		goto out_err;
331 	}
332 
333 	/*
334 	 * if the pages are already resident, just return them.
335 	 */
336 
337 	for (i = 0; i < npages; i++) {
338 		struct vm_page *pg1 = pgs[ridx + i];
339 
340 		if ((pg1->flags & PG_FAKE) ||
341 		    (blockalloc && (pg1->flags & PG_RDONLY))) {
342 			break;
343 		}
344 	}
345 	if (i == npages) {
346 		rw_exit(&gp->g_glock);
347 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
348 		npages += ridx;
349 		goto out;
350 	}
351 
352 	/*
353 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
354 	 */
355 
356 	if (overwrite) {
357 		rw_exit(&gp->g_glock);
358 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
359 
360 		for (i = 0; i < npages; i++) {
361 			struct vm_page *pg1 = pgs[ridx + i];
362 
363 			pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
364 		}
365 		npages += ridx;
366 		goto out;
367 	}
368 
369 	/*
370 	 * the page wasn't resident and we're not overwriting,
371 	 * so we're going to have to do some i/o.
372 	 * find any additional pages needed to cover the expanded range.
373 	 */
374 
375 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
376 	if (startoffset != origoffset || npages != orignpages) {
377 
378 		/*
379 		 * we need to avoid deadlocks caused by locking
380 		 * additional pages at lower offsets than pages we
381 		 * already have locked.  unlock them all and start over.
382 		 */
383 
384 		genfs_rel_pages(&pgs[ridx], orignpages);
385 		memset(pgs, 0, pgs_size);
386 
387 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
388 		    startoffset, endoffset, 0,0);
389 		npgs = npages;
390 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
391 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
392 			rw_exit(&gp->g_glock);
393 			KASSERT(async != 0);
394 			genfs_rel_pages(pgs, npages);
395 			mutex_exit(&uobj->vmobjlock);
396 			error = EBUSY;
397 			goto out_err;
398 		}
399 	}
400 	mutex_exit(&uobj->vmobjlock);
401 
402 	/*
403 	 * read the desired page(s).
404 	 */
405 
406 	totalbytes = npages << PAGE_SHIFT;
407 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
408 	tailbytes = totalbytes - bytes;
409 	skipbytes = 0;
410 
411 	kva = uvm_pagermapin(pgs, npages,
412 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
413 
414 	mbp = getiobuf(vp, true);
415 	mbp->b_bufsize = totalbytes;
416 	mbp->b_data = (void *)kva;
417 	mbp->b_resid = mbp->b_bcount = bytes;
418 	mbp->b_cflags = BC_BUSY;
419 	if (async) {
420 		mbp->b_flags = B_READ | B_ASYNC;
421 		mbp->b_iodone = uvm_aio_biodone;
422 	} else {
423 		mbp->b_flags = B_READ;
424 		mbp->b_iodone = NULL;
425 	}
426 	if (async)
427 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
428 	else
429 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
430 
431 	/*
432 	 * if EOF is in the middle of the range, zero the part past EOF.
433 	 * skip over pages which are not PG_FAKE since in that case they have
434 	 * valid data that we need to preserve.
435 	 */
436 
437 	tailstart = bytes;
438 	while (tailbytes > 0) {
439 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
440 
441 		KASSERT(len <= tailbytes);
442 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
443 			memset((void *)(kva + tailstart), 0, len);
444 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
445 			    kva, tailstart, len, 0);
446 		}
447 		tailstart += len;
448 		tailbytes -= len;
449 	}
450 
451 	/*
452 	 * now loop over the pages, reading as needed.
453 	 */
454 
455 	bp = NULL;
456 	for (offset = startoffset;
457 	    bytes > 0;
458 	    offset += iobytes, bytes -= iobytes) {
459 
460 		/*
461 		 * skip pages which don't need to be read.
462 		 */
463 
464 		pidx = (offset - startoffset) >> PAGE_SHIFT;
465 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
466 			size_t b;
467 
468 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
469 			if ((pgs[pidx]->flags & PG_RDONLY)) {
470 				sawhole = true;
471 			}
472 			b = MIN(PAGE_SIZE, bytes);
473 			offset += b;
474 			bytes -= b;
475 			skipbytes += b;
476 			pidx++;
477 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
478 			    offset, 0,0,0);
479 			if (bytes == 0) {
480 				goto loopdone;
481 			}
482 		}
483 
484 		/*
485 		 * bmap the file to find out the blkno to read from and
486 		 * how much we can read in one i/o.  if bmap returns an error,
487 		 * skip the rest of the top-level i/o.
488 		 */
489 
490 		lbn = offset >> fs_bshift;
491 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
492 		if (error) {
493 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
494 			    lbn, error,0,0);
495 			skipbytes += bytes;
496 			goto loopdone;
497 		}
498 
499 		/*
500 		 * see how many pages can be read with this i/o.
501 		 * reduce the i/o size if necessary to avoid
502 		 * overwriting pages with valid data.
503 		 */
504 
505 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
506 		    bytes);
507 		if (offset + iobytes > round_page(offset)) {
508 			pcount = 1;
509 			while (pidx + pcount < npages &&
510 			    pgs[pidx + pcount]->flags & PG_FAKE) {
511 				pcount++;
512 			}
513 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
514 			    (offset - trunc_page(offset)));
515 		}
516 
517 		/*
518 		 * if this block isn't allocated, zero it instead of
519 		 * reading it.  unless we are going to allocate blocks,
520 		 * mark the pages we zeroed PG_RDONLY.
521 		 */
522 
523 		if (blkno < 0) {
524 			int holepages = (round_page(offset + iobytes) -
525 			    trunc_page(offset)) >> PAGE_SHIFT;
526 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
527 
528 			sawhole = true;
529 			memset((char *)kva + (offset - startoffset), 0,
530 			    iobytes);
531 			skipbytes += iobytes;
532 
533 			for (i = 0; i < holepages; i++) {
534 				if (write) {
535 					pgs[pidx + i]->flags &= ~PG_CLEAN;
536 				}
537 				if (!blockalloc) {
538 					pgs[pidx + i]->flags |= PG_RDONLY;
539 				}
540 			}
541 			continue;
542 		}
543 
544 		/*
545 		 * allocate a sub-buf for this piece of the i/o
546 		 * (or just use mbp if there's only 1 piece),
547 		 * and start it going.
548 		 */
549 
550 		if (offset == startoffset && iobytes == bytes) {
551 			bp = mbp;
552 		} else {
553 			bp = getiobuf(vp, true);
554 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
555 		}
556 		bp->b_lblkno = 0;
557 
558 		/* adjust physical blkno for partial blocks */
559 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
560 		    dev_bshift);
561 
562 		UVMHIST_LOG(ubchist,
563 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
564 		    bp, offset, iobytes, bp->b_blkno);
565 
566 		VOP_STRATEGY(devvp, bp);
567 	}
568 
569 loopdone:
570 	nestiobuf_done(mbp, skipbytes, error);
571 	if (async) {
572 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
573 		rw_exit(&gp->g_glock);
574 		error = 0;
575 		goto out_err;
576 	}
577 	if (bp != NULL) {
578 		error = biowait(mbp);
579 	}
580 	putiobuf(mbp);
581 	uvm_pagermapout(kva, npages);
582 
583 	/*
584 	 * if this we encountered a hole then we have to do a little more work.
585 	 * for read faults, we marked the page PG_RDONLY so that future
586 	 * write accesses to the page will fault again.
587 	 * for write faults, we must make sure that the backing store for
588 	 * the page is completely allocated while the pages are locked.
589 	 */
590 
591 	if (!error && sawhole && blockalloc) {
592 		error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
593 		    cred);
594 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
595 		    startoffset, npages << PAGE_SHIFT, error,0);
596 		if (!error) {
597 			for (i = 0; i < npages; i++) {
598 				if (pgs[i] == NULL) {
599 					continue;
600 				}
601 				pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
602 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
603 				    pgs[i],0,0,0);
604 			}
605 		}
606 	}
607 	rw_exit(&gp->g_glock);
608 	mutex_enter(&uobj->vmobjlock);
609 
610 	/*
611 	 * we're almost done!  release the pages...
612 	 * for errors, we free the pages.
613 	 * otherwise we activate them and mark them as valid and clean.
614 	 * also, unbusy pages that were not actually requested.
615 	 */
616 
617 	if (error) {
618 		for (i = 0; i < npages; i++) {
619 			if (pgs[i] == NULL) {
620 				continue;
621 			}
622 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
623 			    pgs[i], pgs[i]->flags, 0,0);
624 			if (pgs[i]->flags & PG_FAKE) {
625 				pgs[i]->flags |= PG_RELEASED;
626 			}
627 		}
628 		mutex_enter(&uvm_pageqlock);
629 		uvm_page_unbusy(pgs, npages);
630 		mutex_exit(&uvm_pageqlock);
631 		mutex_exit(&uobj->vmobjlock);
632 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
633 		goto out_err;
634 	}
635 
636 out:
637 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
638 	error = 0;
639 	mutex_enter(&uvm_pageqlock);
640 	for (i = 0; i < npages; i++) {
641 		pg = pgs[i];
642 		if (pg == NULL) {
643 			continue;
644 		}
645 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
646 		    pg, pg->flags, 0,0);
647 		if (pg->flags & PG_FAKE && !overwrite) {
648 			pg->flags &= ~(PG_FAKE);
649 			pmap_clear_modify(pgs[i]);
650 		}
651 		KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
652 		if (i < ridx || i >= ridx + orignpages || async) {
653 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
654 			    pg, pg->offset,0,0);
655 			if (pg->flags & PG_WANTED) {
656 				wakeup(pg);
657 			}
658 			if (pg->flags & PG_FAKE) {
659 				KASSERT(overwrite);
660 				uvm_pagezero(pg);
661 			}
662 			if (pg->flags & PG_RELEASED) {
663 				uvm_pagefree(pg);
664 				continue;
665 			}
666 			uvm_pageenqueue(pg);
667 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
668 			UVM_PAGE_OWN(pg, NULL);
669 		}
670 	}
671 	mutex_exit(&uvm_pageqlock);
672 	mutex_exit(&uobj->vmobjlock);
673 	if (ap->a_m != NULL) {
674 		memcpy(ap->a_m, &pgs[ridx],
675 		    orignpages * sizeof(struct vm_page *));
676 	}
677 
678 out_err:
679 	if (pgs != pgs_onstack)
680 		kmem_free(pgs, pgs_size);
681 	if (has_trans)
682 		fstrans_done(vp->v_mount);
683 	return (error);
684 }
685 
686 /*
687  * generic VM putpages routine.
688  * Write the given range of pages to backing store.
689  *
690  * => "offhi == 0" means flush all pages at or after "offlo".
691  * => object should be locked by caller.  we return with the
692  *      object unlocked.
693  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
694  *	thus, a caller might want to unlock higher level resources
695  *	(e.g. vm_map) before calling flush.
696  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
697  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
698  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
699  *	that new pages are inserted on the tail end of the list.   thus,
700  *	we can make a complete pass through the object in one go by starting
701  *	at the head and working towards the tail (new pages are put in
702  *	front of us).
703  * => NOTE: we are allowed to lock the page queues, so the caller
704  *	must not be holding the page queue lock.
705  *
706  * note on "cleaning" object and PG_BUSY pages:
707  *	this routine is holding the lock on the object.   the only time
708  *	that it can run into a PG_BUSY page that it does not own is if
709  *	some other process has started I/O on the page (e.g. either
710  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
711  *	in, then it can not be dirty (!PG_CLEAN) because no one has
712  *	had a chance to modify it yet.    if the PG_BUSY page is being
713  *	paged out then it means that someone else has already started
714  *	cleaning the page for us (how nice!).    in this case, if we
715  *	have syncio specified, then after we make our pass through the
716  *	object we need to wait for the other PG_BUSY pages to clear
717  *	off (i.e. we need to do an iosync).   also note that once a
718  *	page is PG_BUSY it must stay in its object until it is un-busyed.
719  *
720  * note on page traversal:
721  *	we can traverse the pages in an object either by going down the
722  *	linked list in "uobj->memq", or we can go over the address range
723  *	by page doing hash table lookups for each address.    depending
724  *	on how many pages are in the object it may be cheaper to do one
725  *	or the other.   we set "by_list" to true if we are using memq.
726  *	if the cost of a hash lookup was equal to the cost of the list
727  *	traversal we could compare the number of pages in the start->stop
728  *	range to the total number of pages in the object.   however, it
729  *	seems that a hash table lookup is more expensive than the linked
730  *	list traversal, so we multiply the number of pages in the
731  *	range by an estimate of the relatively higher cost of the hash lookup.
732  */
733 
734 int
735 genfs_putpages(void *v)
736 {
737 	struct vop_putpages_args /* {
738 		struct vnode *a_vp;
739 		voff_t a_offlo;
740 		voff_t a_offhi;
741 		int a_flags;
742 	} */ *ap = v;
743 
744 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
745 	    ap->a_flags, NULL);
746 }
747 
748 int
749 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
750     int origflags, struct vm_page **busypg)
751 {
752 	struct uvm_object *uobj = &vp->v_uobj;
753 	kmutex_t *slock = &uobj->vmobjlock;
754 	off_t off;
755 	/* Even for strange MAXPHYS, the shift rounds down to a page */
756 #define maxpages (MAXPHYS >> PAGE_SHIFT)
757 	int i, error, npages, nback;
758 	int freeflag;
759 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
760 	bool wasclean, by_list, needs_clean, yld;
761 	bool async = (origflags & PGO_SYNCIO) == 0;
762 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
763 	struct lwp *l = curlwp ? curlwp : &lwp0;
764 	struct genfs_node *gp = VTOG(vp);
765 	int flags;
766 	int dirtygen;
767 	bool modified;
768 	bool has_trans;
769 	bool cleanall;
770 	bool onworklst;
771 
772 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
773 
774 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
775 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
776 	KASSERT(startoff < endoff || endoff == 0);
777 
778 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
779 	    vp, uobj->uo_npages, startoff, endoff - startoff);
780 
781 retry:
782 	modified = false;
783 	has_trans = false;
784 	flags = origflags;
785 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
786 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
787 	if (uobj->uo_npages == 0) {
788 		if (vp->v_iflag & VI_ONWORKLST) {
789 			vp->v_iflag &= ~VI_WRMAPDIRTY;
790 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
791 				vn_syncer_remove_from_worklist(vp);
792 		}
793 		mutex_exit(slock);
794 		return (0);
795 	}
796 
797 	/*
798 	 * the vnode has pages, set up to process the request.
799 	 */
800 
801 	if ((flags & PGO_CLEANIT) != 0) {
802 		mutex_exit(slock);
803 		if (pagedaemon) {
804 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
805 			if (error)
806 				return error;
807 		} else
808 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
809 		has_trans = true;
810 		mutex_enter(slock);
811 	}
812 
813 	error = 0;
814 	wasclean = (vp->v_numoutput == 0);
815 	off = startoff;
816 	if (endoff == 0 || flags & PGO_ALLPAGES) {
817 		endoff = trunc_page(LLONG_MAX);
818 	}
819 	by_list = (uobj->uo_npages <=
820 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
821 
822 #if !defined(DEBUG)
823 	/*
824 	 * if this vnode is known not to have dirty pages,
825 	 * don't bother to clean it out.
826 	 */
827 
828 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
829 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
830 			goto skip_scan;
831 		}
832 		flags &= ~PGO_CLEANIT;
833 	}
834 #endif /* !defined(DEBUG) */
835 
836 	/*
837 	 * start the loop.  when scanning by list, hold the last page
838 	 * in the list before we start.  pages allocated after we start
839 	 * will be added to the end of the list, so we can stop at the
840 	 * current last page.
841 	 */
842 
843 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
844 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
845 	    (vp->v_iflag & VI_ONWORKLST) != 0;
846 	dirtygen = gp->g_dirtygen;
847 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
848 	if (by_list) {
849 		curmp.uobject = uobj;
850 		curmp.offset = (voff_t)-1;
851 		curmp.flags = PG_BUSY;
852 		endmp.uobject = uobj;
853 		endmp.offset = (voff_t)-1;
854 		endmp.flags = PG_BUSY;
855 		pg = TAILQ_FIRST(&uobj->memq);
856 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
857 		uvm_lwp_hold(l);
858 	} else {
859 		pg = uvm_pagelookup(uobj, off);
860 	}
861 	nextpg = NULL;
862 	while (by_list || off < endoff) {
863 
864 		/*
865 		 * if the current page is not interesting, move on to the next.
866 		 */
867 
868 		KASSERT(pg == NULL || pg->uobject == uobj);
869 		KASSERT(pg == NULL ||
870 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
871 		    (pg->flags & PG_BUSY) != 0);
872 		if (by_list) {
873 			if (pg == &endmp) {
874 				break;
875 			}
876 			if (pg->offset < startoff || pg->offset >= endoff ||
877 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
878 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
879 					wasclean = false;
880 				}
881 				pg = TAILQ_NEXT(pg, listq);
882 				continue;
883 			}
884 			off = pg->offset;
885 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
886 			if (pg != NULL) {
887 				wasclean = false;
888 			}
889 			off += PAGE_SIZE;
890 			if (off < endoff) {
891 				pg = uvm_pagelookup(uobj, off);
892 			}
893 			continue;
894 		}
895 
896 		/*
897 		 * if the current page needs to be cleaned and it's busy,
898 		 * wait for it to become unbusy.
899 		 */
900 
901 		yld = (l->l_cpu->ci_schedstate.spc_flags &
902 		    SPCF_SHOULDYIELD) && !pagedaemon;
903 		if (pg->flags & PG_BUSY || yld) {
904 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
905 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
906 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
907 				error = EDEADLK;
908 				if (busypg != NULL)
909 					*busypg = pg;
910 				break;
911 			}
912 			if (pagedaemon) {
913 				/*
914 				 * someone has taken the page while we
915 				 * dropped the lock for fstrans_start.
916 				 */
917 				break;
918 			}
919 			if (by_list) {
920 				TAILQ_INSERT_BEFORE(pg, &curmp, listq);
921 				UVMHIST_LOG(ubchist, "curmp next %p",
922 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
923 			}
924 			if (yld) {
925 				mutex_exit(slock);
926 				preempt();
927 				mutex_enter(slock);
928 			} else {
929 				pg->flags |= PG_WANTED;
930 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
931 				mutex_enter(slock);
932 			}
933 			if (by_list) {
934 				UVMHIST_LOG(ubchist, "after next %p",
935 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
936 				pg = TAILQ_NEXT(&curmp, listq);
937 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
938 			} else {
939 				pg = uvm_pagelookup(uobj, off);
940 			}
941 			continue;
942 		}
943 
944 		/*
945 		 * if we're freeing, remove all mappings of the page now.
946 		 * if we're cleaning, check if the page is needs to be cleaned.
947 		 */
948 
949 		if (flags & PGO_FREE) {
950 			pmap_page_protect(pg, VM_PROT_NONE);
951 		} else if (flags & PGO_CLEANIT) {
952 
953 			/*
954 			 * if we still have some hope to pull this vnode off
955 			 * from the syncer queue, write-protect the page.
956 			 */
957 
958 			if (cleanall && wasclean &&
959 			    gp->g_dirtygen == dirtygen) {
960 
961 				/*
962 				 * uobj pages get wired only by uvm_fault
963 				 * where uobj is locked.
964 				 */
965 
966 				if (pg->wire_count == 0) {
967 					pmap_page_protect(pg,
968 					    VM_PROT_READ|VM_PROT_EXECUTE);
969 				} else {
970 					cleanall = false;
971 				}
972 			}
973 		}
974 
975 		if (flags & PGO_CLEANIT) {
976 			needs_clean = pmap_clear_modify(pg) ||
977 			    (pg->flags & PG_CLEAN) == 0;
978 			pg->flags |= PG_CLEAN;
979 		} else {
980 			needs_clean = false;
981 		}
982 
983 		/*
984 		 * if we're cleaning, build a cluster.
985 		 * the cluster will consist of pages which are currently dirty,
986 		 * but they will be returned to us marked clean.
987 		 * if not cleaning, just operate on the one page.
988 		 */
989 
990 		if (needs_clean) {
991 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
992 			wasclean = false;
993 			memset(pgs, 0, sizeof(pgs));
994 			pg->flags |= PG_BUSY;
995 			UVM_PAGE_OWN(pg, "genfs_putpages");
996 
997 			/*
998 			 * first look backward.
999 			 */
1000 
1001 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1002 			nback = npages;
1003 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1004 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1005 			if (nback) {
1006 				memmove(&pgs[0], &pgs[npages - nback],
1007 				    nback * sizeof(pgs[0]));
1008 				if (npages - nback < nback)
1009 					memset(&pgs[nback], 0,
1010 					    (npages - nback) * sizeof(pgs[0]));
1011 				else
1012 					memset(&pgs[npages - nback], 0,
1013 					    nback * sizeof(pgs[0]));
1014 			}
1015 
1016 			/*
1017 			 * then plug in our page of interest.
1018 			 */
1019 
1020 			pgs[nback] = pg;
1021 
1022 			/*
1023 			 * then look forward to fill in the remaining space in
1024 			 * the array of pages.
1025 			 */
1026 
1027 			npages = maxpages - nback - 1;
1028 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1029 			    &pgs[nback + 1],
1030 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1031 			npages += nback + 1;
1032 		} else {
1033 			pgs[0] = pg;
1034 			npages = 1;
1035 			nback = 0;
1036 		}
1037 
1038 		/*
1039 		 * apply FREE or DEACTIVATE options if requested.
1040 		 */
1041 
1042 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1043 			mutex_enter(&uvm_pageqlock);
1044 		}
1045 		for (i = 0; i < npages; i++) {
1046 			tpg = pgs[i];
1047 			KASSERT(tpg->uobject == uobj);
1048 			if (by_list && tpg == TAILQ_NEXT(pg, listq))
1049 				pg = tpg;
1050 			if (tpg->offset < startoff || tpg->offset >= endoff)
1051 				continue;
1052 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1053 				uvm_pagedeactivate(tpg);
1054 			} else if (flags & PGO_FREE) {
1055 				pmap_page_protect(tpg, VM_PROT_NONE);
1056 				if (tpg->flags & PG_BUSY) {
1057 					tpg->flags |= freeflag;
1058 					if (pagedaemon) {
1059 						uvm_pageout_start(1);
1060 						uvm_pagedequeue(tpg);
1061 					}
1062 				} else {
1063 
1064 					/*
1065 					 * ``page is not busy''
1066 					 * implies that npages is 1
1067 					 * and needs_clean is false.
1068 					 */
1069 
1070 					nextpg = TAILQ_NEXT(tpg, listq);
1071 					uvm_pagefree(tpg);
1072 					if (pagedaemon)
1073 						uvmexp.pdfreed++;
1074 				}
1075 			}
1076 		}
1077 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1078 			mutex_exit(&uvm_pageqlock);
1079 		}
1080 		if (needs_clean) {
1081 			modified = true;
1082 
1083 			/*
1084 			 * start the i/o.  if we're traversing by list,
1085 			 * keep our place in the list with a marker page.
1086 			 */
1087 
1088 			if (by_list) {
1089 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1090 				    listq);
1091 			}
1092 			mutex_exit(slock);
1093 			error = GOP_WRITE(vp, pgs, npages, flags);
1094 			mutex_enter(slock);
1095 			if (by_list) {
1096 				pg = TAILQ_NEXT(&curmp, listq);
1097 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1098 			}
1099 			if (error) {
1100 				break;
1101 			}
1102 			if (by_list) {
1103 				continue;
1104 			}
1105 		}
1106 
1107 		/*
1108 		 * find the next page and continue if there was no error.
1109 		 */
1110 
1111 		if (by_list) {
1112 			if (nextpg) {
1113 				pg = nextpg;
1114 				nextpg = NULL;
1115 			} else {
1116 				pg = TAILQ_NEXT(pg, listq);
1117 			}
1118 		} else {
1119 			off += (npages - nback) << PAGE_SHIFT;
1120 			if (off < endoff) {
1121 				pg = uvm_pagelookup(uobj, off);
1122 			}
1123 		}
1124 	}
1125 	if (by_list) {
1126 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1127 		uvm_lwp_rele(l);
1128 	}
1129 
1130 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1131 	    (vp->v_type != VBLK ||
1132 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1133 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1134 	}
1135 
1136 	/*
1137 	 * if we're cleaning and there was nothing to clean,
1138 	 * take us off the syncer list.  if we started any i/o
1139 	 * and we're doing sync i/o, wait for all writes to finish.
1140 	 */
1141 
1142 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1143 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
1144 #if defined(DEBUG)
1145 		TAILQ_FOREACH(pg, &uobj->memq, listq) {
1146 			if ((pg->flags & PG_CLEAN) == 0) {
1147 				printf("%s: %p: !CLEAN\n", __func__, pg);
1148 			}
1149 			if (pmap_is_modified(pg)) {
1150 				printf("%s: %p: modified\n", __func__, pg);
1151 			}
1152 		}
1153 #endif /* defined(DEBUG) */
1154 		vp->v_iflag &= ~VI_WRMAPDIRTY;
1155 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1156 			vn_syncer_remove_from_worklist(vp);
1157 	}
1158 
1159 #if !defined(DEBUG)
1160 skip_scan:
1161 #endif /* !defined(DEBUG) */
1162 
1163 	/* Wait for output to complete. */
1164 	if (!wasclean && !async && vp->v_numoutput != 0) {
1165 		while (vp->v_numoutput != 0)
1166 			cv_wait(&vp->v_cv, slock);
1167 	}
1168 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1169 	mutex_exit(slock);
1170 
1171 	if (has_trans)
1172 		fstrans_done(vp->v_mount);
1173 
1174 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1175 		/*
1176 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1177 		 * retrying is not a big deal because, in many cases,
1178 		 * uobj->uo_npages is already 0 here.
1179 		 */
1180 		mutex_enter(slock);
1181 		goto retry;
1182 	}
1183 
1184 	return (error);
1185 }
1186 
1187 int
1188 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1189 {
1190 	off_t off;
1191 	vaddr_t kva;
1192 	size_t len;
1193 	int error;
1194 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1195 
1196 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1197 	    vp, pgs, npages, flags);
1198 
1199 	off = pgs[0]->offset;
1200 	kva = uvm_pagermapin(pgs, npages,
1201 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1202 	len = npages << PAGE_SHIFT;
1203 
1204 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1205 			    uvm_aio_biodone);
1206 
1207 	return error;
1208 }
1209 
1210 /*
1211  * Backend routine for doing I/O to vnode pages.  Pages are already locked
1212  * and mapped into kernel memory.  Here we just look up the underlying
1213  * device block addresses and call the strategy routine.
1214  */
1215 
1216 static int
1217 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1218     enum uio_rw rw, void (*iodone)(struct buf *))
1219 {
1220 	int s, error, run;
1221 	int fs_bshift, dev_bshift;
1222 	off_t eof, offset, startoffset;
1223 	size_t bytes, iobytes, skipbytes;
1224 	daddr_t lbn, blkno;
1225 	struct buf *mbp, *bp;
1226 	struct vnode *devvp;
1227 	bool async = (flags & PGO_SYNCIO) == 0;
1228 	bool write = rw == UIO_WRITE;
1229 	int brw = write ? B_WRITE : B_READ;
1230 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1231 
1232 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1233 	    vp, kva, len, flags);
1234 
1235 	KASSERT(vp->v_size <= vp->v_writesize);
1236 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1237 	if (vp->v_type != VBLK) {
1238 		fs_bshift = vp->v_mount->mnt_fs_bshift;
1239 		dev_bshift = vp->v_mount->mnt_dev_bshift;
1240 	} else {
1241 		fs_bshift = DEV_BSHIFT;
1242 		dev_bshift = DEV_BSHIFT;
1243 	}
1244 	error = 0;
1245 	startoffset = off;
1246 	bytes = MIN(len, eof - startoffset);
1247 	skipbytes = 0;
1248 	KASSERT(bytes != 0);
1249 
1250 	if (write) {
1251 		mutex_enter(&vp->v_interlock);
1252 		vp->v_numoutput += 2;
1253 		mutex_exit(&vp->v_interlock);
1254 	}
1255 	mbp = getiobuf(vp, true);
1256 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1257 	    vp, mbp, vp->v_numoutput, bytes);
1258 	mbp->b_bufsize = len;
1259 	mbp->b_data = (void *)kva;
1260 	mbp->b_resid = mbp->b_bcount = bytes;
1261 	mbp->b_cflags = BC_BUSY | BC_AGE;
1262 	if (async) {
1263 		mbp->b_flags = brw | B_ASYNC;
1264 		mbp->b_iodone = iodone;
1265 	} else {
1266 		mbp->b_flags = brw;
1267 		mbp->b_iodone = NULL;
1268 	}
1269 	if (curlwp == uvm.pagedaemon_lwp)
1270 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1271 	else if (async)
1272 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1273 	else
1274 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1275 
1276 	bp = NULL;
1277 	for (offset = startoffset;
1278 	    bytes > 0;
1279 	    offset += iobytes, bytes -= iobytes) {
1280 		lbn = offset >> fs_bshift;
1281 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1282 		if (error) {
1283 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1284 			skipbytes += bytes;
1285 			bytes = 0;
1286 			break;
1287 		}
1288 
1289 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1290 		    bytes);
1291 		if (blkno == (daddr_t)-1) {
1292 			if (!write) {
1293 				memset((char *)kva + (offset - startoffset), 0,
1294 				   iobytes);
1295 			}
1296 			skipbytes += iobytes;
1297 			continue;
1298 		}
1299 
1300 		/* if it's really one i/o, don't make a second buf */
1301 		if (offset == startoffset && iobytes == bytes) {
1302 			bp = mbp;
1303 		} else {
1304 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1305 			    vp, bp, vp->v_numoutput, 0);
1306 			bp = getiobuf(vp, true);
1307 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1308 		}
1309 		bp->b_lblkno = 0;
1310 
1311 		/* adjust physical blkno for partial blocks */
1312 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1313 		    dev_bshift);
1314 		UVMHIST_LOG(ubchist,
1315 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1316 		    vp, offset, bp->b_bcount, bp->b_blkno);
1317 
1318 		VOP_STRATEGY(devvp, bp);
1319 	}
1320 	if (skipbytes) {
1321 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1322 	}
1323 	nestiobuf_done(mbp, skipbytes, error);
1324 	if (async) {
1325 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1326 		return (0);
1327 	}
1328 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1329 	error = biowait(mbp);
1330 	s = splbio();
1331 	(*iodone)(mbp);
1332 	splx(s);
1333 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1334 	return (error);
1335 }
1336 
1337 /*
1338  * VOP_PUTPAGES() for vnodes which never have pages.
1339  */
1340 
1341 int
1342 genfs_null_putpages(void *v)
1343 {
1344 	struct vop_putpages_args /* {
1345 		struct vnode *a_vp;
1346 		voff_t a_offlo;
1347 		voff_t a_offhi;
1348 		int a_flags;
1349 	} */ *ap = v;
1350 	struct vnode *vp = ap->a_vp;
1351 
1352 	KASSERT(vp->v_uobj.uo_npages == 0);
1353 	mutex_exit(&vp->v_interlock);
1354 	return (0);
1355 }
1356 
1357 int
1358 genfs_compat_getpages(void *v)
1359 {
1360 	struct vop_getpages_args /* {
1361 		struct vnode *a_vp;
1362 		voff_t a_offset;
1363 		struct vm_page **a_m;
1364 		int *a_count;
1365 		int a_centeridx;
1366 		vm_prot_t a_access_type;
1367 		int a_advice;
1368 		int a_flags;
1369 	} */ *ap = v;
1370 
1371 	off_t origoffset;
1372 	struct vnode *vp = ap->a_vp;
1373 	struct uvm_object *uobj = &vp->v_uobj;
1374 	struct vm_page *pg, **pgs;
1375 	vaddr_t kva;
1376 	int i, error, orignpages, npages;
1377 	struct iovec iov;
1378 	struct uio uio;
1379 	kauth_cred_t cred = curlwp->l_cred;
1380 	bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1381 
1382 	error = 0;
1383 	origoffset = ap->a_offset;
1384 	orignpages = *ap->a_count;
1385 	pgs = ap->a_m;
1386 
1387 	if (write && (vp->v_iflag & VI_ONWORKLST) == 0) {
1388 		vn_syncer_add_to_worklist(vp, filedelay);
1389 	}
1390 	if (ap->a_flags & PGO_LOCKED) {
1391 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1392 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1393 
1394 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1395 	}
1396 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1397 		mutex_exit(&uobj->vmobjlock);
1398 		return (EINVAL);
1399 	}
1400 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
1401 		mutex_exit(&uobj->vmobjlock);
1402 		return 0;
1403 	}
1404 	npages = orignpages;
1405 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1406 	mutex_exit(&uobj->vmobjlock);
1407 	kva = uvm_pagermapin(pgs, npages,
1408 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1409 	for (i = 0; i < npages; i++) {
1410 		pg = pgs[i];
1411 		if ((pg->flags & PG_FAKE) == 0) {
1412 			continue;
1413 		}
1414 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1415 		iov.iov_len = PAGE_SIZE;
1416 		uio.uio_iov = &iov;
1417 		uio.uio_iovcnt = 1;
1418 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1419 		uio.uio_rw = UIO_READ;
1420 		uio.uio_resid = PAGE_SIZE;
1421 		UIO_SETUP_SYSSPACE(&uio);
1422 		/* XXX vn_lock */
1423 		error = VOP_READ(vp, &uio, 0, cred);
1424 		if (error) {
1425 			break;
1426 		}
1427 		if (uio.uio_resid) {
1428 			memset(iov.iov_base, 0, uio.uio_resid);
1429 		}
1430 	}
1431 	uvm_pagermapout(kva, npages);
1432 	mutex_enter(&uobj->vmobjlock);
1433 	mutex_enter(&uvm_pageqlock);
1434 	for (i = 0; i < npages; i++) {
1435 		pg = pgs[i];
1436 		if (error && (pg->flags & PG_FAKE) != 0) {
1437 			pg->flags |= PG_RELEASED;
1438 		} else {
1439 			pmap_clear_modify(pg);
1440 			uvm_pageactivate(pg);
1441 		}
1442 	}
1443 	if (error) {
1444 		uvm_page_unbusy(pgs, npages);
1445 	}
1446 	mutex_exit(&uvm_pageqlock);
1447 	mutex_exit(&uobj->vmobjlock);
1448 	return (error);
1449 }
1450 
1451 int
1452 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1453     int flags)
1454 {
1455 	off_t offset;
1456 	struct iovec iov;
1457 	struct uio uio;
1458 	kauth_cred_t cred = curlwp->l_cred;
1459 	struct buf *bp;
1460 	vaddr_t kva;
1461 	int error;
1462 
1463 	offset = pgs[0]->offset;
1464 	kva = uvm_pagermapin(pgs, npages,
1465 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1466 
1467 	iov.iov_base = (void *)kva;
1468 	iov.iov_len = npages << PAGE_SHIFT;
1469 	uio.uio_iov = &iov;
1470 	uio.uio_iovcnt = 1;
1471 	uio.uio_offset = offset;
1472 	uio.uio_rw = UIO_WRITE;
1473 	uio.uio_resid = npages << PAGE_SHIFT;
1474 	UIO_SETUP_SYSSPACE(&uio);
1475 	/* XXX vn_lock */
1476 	error = VOP_WRITE(vp, &uio, 0, cred);
1477 
1478 	mutex_enter(&vp->v_interlock);
1479 	vp->v_numoutput++;
1480 	mutex_exit(&vp->v_interlock);
1481 
1482 	bp = getiobuf(vp, true);
1483 	bp->b_cflags = BC_BUSY | BC_AGE;
1484 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1485 	bp->b_data = (char *)kva;
1486 	bp->b_bcount = npages << PAGE_SHIFT;
1487 	bp->b_bufsize = npages << PAGE_SHIFT;
1488 	bp->b_resid = 0;
1489 	bp->b_error = error;
1490 	uvm_aio_aiodone(bp);
1491 	return (error);
1492 }
1493 
1494 /*
1495  * Process a uio using direct I/O.  If we reach a part of the request
1496  * which cannot be processed in this fashion for some reason, just return.
1497  * The caller must handle some additional part of the request using
1498  * buffered I/O before trying direct I/O again.
1499  */
1500 
1501 void
1502 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1503 {
1504 	struct vmspace *vs;
1505 	struct iovec *iov;
1506 	vaddr_t va;
1507 	size_t len;
1508 	const int mask = DEV_BSIZE - 1;
1509 	int error;
1510 
1511 	/*
1512 	 * We only support direct I/O to user space for now.
1513 	 */
1514 
1515 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1516 		return;
1517 	}
1518 
1519 	/*
1520 	 * If the vnode is mapped, we would need to get the getpages lock
1521 	 * to stabilize the bmap, but then we would get into trouble whil e
1522 	 * locking the pages if the pages belong to this same vnode (or a
1523 	 * multi-vnode cascade to the same effect).  Just fall back to
1524 	 * buffered I/O if the vnode is mapped to avoid this mess.
1525 	 */
1526 
1527 	if (vp->v_vflag & VV_MAPPED) {
1528 		return;
1529 	}
1530 
1531 	/*
1532 	 * Do as much of the uio as possible with direct I/O.
1533 	 */
1534 
1535 	vs = uio->uio_vmspace;
1536 	while (uio->uio_resid) {
1537 		iov = uio->uio_iov;
1538 		if (iov->iov_len == 0) {
1539 			uio->uio_iov++;
1540 			uio->uio_iovcnt--;
1541 			continue;
1542 		}
1543 		va = (vaddr_t)iov->iov_base;
1544 		len = MIN(iov->iov_len, genfs_maxdio);
1545 		len &= ~mask;
1546 
1547 		/*
1548 		 * If the next chunk is smaller than DEV_BSIZE or extends past
1549 		 * the current EOF, then fall back to buffered I/O.
1550 		 */
1551 
1552 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
1553 			return;
1554 		}
1555 
1556 		/*
1557 		 * Check alignment.  The file offset must be at least
1558 		 * sector-aligned.  The exact constraint on memory alignment
1559 		 * is very hardware-dependent, but requiring sector-aligned
1560 		 * addresses there too is safe.
1561 		 */
1562 
1563 		if (uio->uio_offset & mask || va & mask) {
1564 			return;
1565 		}
1566 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1567 					  uio->uio_rw);
1568 		if (error) {
1569 			break;
1570 		}
1571 		iov->iov_base = (char *)iov->iov_base + len;
1572 		iov->iov_len -= len;
1573 		uio->uio_offset += len;
1574 		uio->uio_resid -= len;
1575 	}
1576 }
1577 
1578 /*
1579  * Iodone routine for direct I/O.  We don't do much here since the request is
1580  * always synchronous, so the caller will do most of the work after biowait().
1581  */
1582 
1583 static void
1584 genfs_dio_iodone(struct buf *bp)
1585 {
1586 
1587 	KASSERT((bp->b_flags & B_ASYNC) == 0);
1588 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1589 		mutex_enter(bp->b_objlock);
1590 		vwakeup(bp);
1591 		mutex_exit(bp->b_objlock);
1592 	}
1593 	putiobuf(bp);
1594 }
1595 
1596 /*
1597  * Process one chunk of a direct I/O request.
1598  */
1599 
1600 static int
1601 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1602     off_t off, enum uio_rw rw)
1603 {
1604 	struct vm_map *map;
1605 	struct pmap *upm, *kpm;
1606 	size_t klen = round_page(uva + len) - trunc_page(uva);
1607 	off_t spoff, epoff;
1608 	vaddr_t kva, puva;
1609 	paddr_t pa;
1610 	vm_prot_t prot;
1611 	int error, rv, poff, koff;
1612 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO |
1613 		(rw == UIO_WRITE ? PGO_FREE : 0);
1614 
1615 	/*
1616 	 * For writes, verify that this range of the file already has fully
1617 	 * allocated backing store.  If there are any holes, just punt and
1618 	 * make the caller take the buffered write path.
1619 	 */
1620 
1621 	if (rw == UIO_WRITE) {
1622 		daddr_t lbn, elbn, blkno;
1623 		int bsize, bshift, run;
1624 
1625 		bshift = vp->v_mount->mnt_fs_bshift;
1626 		bsize = 1 << bshift;
1627 		lbn = off >> bshift;
1628 		elbn = (off + len + bsize - 1) >> bshift;
1629 		while (lbn < elbn) {
1630 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1631 			if (error) {
1632 				return error;
1633 			}
1634 			if (blkno == (daddr_t)-1) {
1635 				return ENOSPC;
1636 			}
1637 			lbn += 1 + run;
1638 		}
1639 	}
1640 
1641 	/*
1642 	 * Flush any cached pages for parts of the file that we're about to
1643 	 * access.  If we're writing, invalidate pages as well.
1644 	 */
1645 
1646 	spoff = trunc_page(off);
1647 	epoff = round_page(off + len);
1648 	mutex_enter(&vp->v_interlock);
1649 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1650 	if (error) {
1651 		return error;
1652 	}
1653 
1654 	/*
1655 	 * Wire the user pages and remap them into kernel memory.
1656 	 */
1657 
1658 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1659 	error = uvm_vslock(vs, (void *)uva, len, prot);
1660 	if (error) {
1661 		return error;
1662 	}
1663 
1664 	map = &vs->vm_map;
1665 	upm = vm_map_pmap(map);
1666 	kpm = vm_map_pmap(kernel_map);
1667 	kva = uvm_km_alloc(kernel_map, klen, 0,
1668 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
1669 	puva = trunc_page(uva);
1670 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1671 		rv = pmap_extract(upm, puva + poff, &pa);
1672 		KASSERT(rv);
1673 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
1674 	}
1675 	pmap_update(kpm);
1676 
1677 	/*
1678 	 * Do the I/O.
1679 	 */
1680 
1681 	koff = uva - trunc_page(uva);
1682 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1683 			    genfs_dio_iodone);
1684 
1685 	/*
1686 	 * Tear down the kernel mapping.
1687 	 */
1688 
1689 	pmap_remove(kpm, kva, kva + klen);
1690 	pmap_update(kpm);
1691 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1692 
1693 	/*
1694 	 * Unwire the user pages.
1695 	 */
1696 
1697 	uvm_vsunlock(vs, (void *)uva, len);
1698 	return error;
1699 }
1700 
1701