1 /* $NetBSD: vfs_wapbl.c,v 1.101 2017/12/02 17:29:55 jdolecek Exp $ */ 2 3 /*- 4 * Copyright (c) 2003, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Wasabi Systems, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * This implements file system independent write ahead filesystem logging. 34 */ 35 36 #define WAPBL_INTERNAL 37 38 #include <sys/cdefs.h> 39 __KERNEL_RCSID(0, "$NetBSD: vfs_wapbl.c,v 1.101 2017/12/02 17:29:55 jdolecek Exp $"); 40 41 #include <sys/param.h> 42 #include <sys/bitops.h> 43 #include <sys/time.h> 44 #include <sys/wapbl.h> 45 #include <sys/wapbl_replay.h> 46 47 #ifdef _KERNEL 48 49 #include <sys/atomic.h> 50 #include <sys/conf.h> 51 #include <sys/evcnt.h> 52 #include <sys/file.h> 53 #include <sys/kauth.h> 54 #include <sys/kernel.h> 55 #include <sys/module.h> 56 #include <sys/mount.h> 57 #include <sys/mutex.h> 58 #include <sys/namei.h> 59 #include <sys/proc.h> 60 #include <sys/resourcevar.h> 61 #include <sys/sysctl.h> 62 #include <sys/uio.h> 63 #include <sys/vnode.h> 64 65 #include <miscfs/specfs/specdev.h> 66 67 #define wapbl_alloc(s) kmem_alloc((s), KM_SLEEP) 68 #define wapbl_free(a, s) kmem_free((a), (s)) 69 #define wapbl_calloc(n, s) kmem_zalloc((n)*(s), KM_SLEEP) 70 71 static struct sysctllog *wapbl_sysctl; 72 static int wapbl_flush_disk_cache = 1; 73 static int wapbl_verbose_commit = 0; 74 static int wapbl_allow_dpofua = 0; /* switched off by default for now */ 75 static int wapbl_journal_iobufs = 4; 76 77 static inline size_t wapbl_space_free(size_t, off_t, off_t); 78 79 #else /* !_KERNEL */ 80 81 #include <assert.h> 82 #include <errno.h> 83 #include <stdbool.h> 84 #include <stdio.h> 85 #include <stdlib.h> 86 #include <string.h> 87 88 #define KDASSERT(x) assert(x) 89 #define KASSERT(x) assert(x) 90 #define wapbl_alloc(s) malloc(s) 91 #define wapbl_free(a, s) free(a) 92 #define wapbl_calloc(n, s) calloc((n), (s)) 93 94 #endif /* !_KERNEL */ 95 96 /* 97 * INTERNAL DATA STRUCTURES 98 */ 99 100 /* 101 * This structure holds per-mount log information. 102 * 103 * Legend: a = atomic access only 104 * r = read-only after init 105 * l = rwlock held 106 * m = mutex held 107 * lm = rwlock held writing or mutex held 108 * u = unlocked access ok 109 * b = bufcache_lock held 110 */ 111 LIST_HEAD(wapbl_ino_head, wapbl_ino); 112 struct wapbl { 113 struct vnode *wl_logvp; /* r: log here */ 114 struct vnode *wl_devvp; /* r: log on this device */ 115 struct mount *wl_mount; /* r: mountpoint wl is associated with */ 116 daddr_t wl_logpbn; /* r: Physical block number of start of log */ 117 int wl_log_dev_bshift; /* r: logarithm of device block size of log 118 device */ 119 int wl_fs_dev_bshift; /* r: logarithm of device block size of 120 filesystem device */ 121 122 unsigned wl_lock_count; /* m: Count of transactions in progress */ 123 124 size_t wl_circ_size; /* r: Number of bytes in buffer of log */ 125 size_t wl_circ_off; /* r: Number of bytes reserved at start */ 126 127 size_t wl_bufcount_max; /* r: Number of buffers reserved for log */ 128 size_t wl_bufbytes_max; /* r: Number of buf bytes reserved for log */ 129 130 off_t wl_head; /* l: Byte offset of log head */ 131 off_t wl_tail; /* l: Byte offset of log tail */ 132 /* 133 * WAPBL log layout, stored on wl_devvp at wl_logpbn: 134 * 135 * ___________________ wl_circ_size __________________ 136 * / \ 137 * +---------+---------+-------+--------------+--------+ 138 * [ commit0 | commit1 | CCWCW | EEEEEEEEEEEE | CCCWCW ] 139 * +---------+---------+-------+--------------+--------+ 140 * wl_circ_off --^ ^-- wl_head ^-- wl_tail 141 * 142 * commit0 and commit1 are commit headers. A commit header has 143 * a generation number, indicating which of the two headers is 144 * more recent, and an assignment of head and tail pointers. 145 * The rest is a circular queue of log records, starting at 146 * the byte offset wl_circ_off. 147 * 148 * E marks empty space for records. 149 * W marks records for block writes issued but waiting. 150 * C marks completed records. 151 * 152 * wapbl_flush writes new records to empty `E' spaces after 153 * wl_head from the current transaction in memory. 154 * 155 * wapbl_truncate advances wl_tail past any completed `C' 156 * records, freeing them up for use. 157 * 158 * head == tail == 0 means log is empty. 159 * head == tail != 0 means log is full. 160 * 161 * See assertions in wapbl_advance() for other boundary 162 * conditions. 163 * 164 * Only wapbl_flush moves the head, except when wapbl_truncate 165 * sets it to 0 to indicate that the log is empty. 166 * 167 * Only wapbl_truncate moves the tail, except when wapbl_flush 168 * sets it to wl_circ_off to indicate that the log is full. 169 */ 170 171 struct wapbl_wc_header *wl_wc_header; /* l */ 172 void *wl_wc_scratch; /* l: scratch space (XXX: por que?!?) */ 173 174 kmutex_t wl_mtx; /* u: short-term lock */ 175 krwlock_t wl_rwlock; /* u: File system transaction lock */ 176 177 /* 178 * Must be held while accessing 179 * wl_count or wl_bufs or head or tail 180 */ 181 182 #if _KERNEL 183 /* 184 * Callback called from within the flush routine to flush any extra 185 * bits. Note that flush may be skipped without calling this if 186 * there are no outstanding buffers in the transaction. 187 */ 188 wapbl_flush_fn_t wl_flush; /* r */ 189 wapbl_flush_fn_t wl_flush_abort;/* r */ 190 191 /* Event counters */ 192 char wl_ev_group[EVCNT_STRING_MAX]; /* r */ 193 struct evcnt wl_ev_commit; /* l */ 194 struct evcnt wl_ev_journalwrite; /* l */ 195 struct evcnt wl_ev_jbufs_bio_nowait; /* l */ 196 struct evcnt wl_ev_metawrite; /* lm */ 197 struct evcnt wl_ev_cacheflush; /* l */ 198 #endif 199 200 size_t wl_bufbytes; /* m: Byte count of pages in wl_bufs */ 201 size_t wl_bufcount; /* m: Count of buffers in wl_bufs */ 202 size_t wl_bcount; /* m: Total bcount of wl_bufs */ 203 204 TAILQ_HEAD(, buf) wl_bufs; /* m: Buffers in current transaction */ 205 206 kcondvar_t wl_reclaimable_cv; /* m (obviously) */ 207 size_t wl_reclaimable_bytes; /* m: Amount of space available for 208 reclamation by truncate */ 209 int wl_error_count; /* m: # of wl_entries with errors */ 210 size_t wl_reserved_bytes; /* never truncate log smaller than this */ 211 212 #ifdef WAPBL_DEBUG_BUFBYTES 213 size_t wl_unsynced_bufbytes; /* Byte count of unsynced buffers */ 214 #endif 215 216 #if _KERNEL 217 int wl_brperjblock; /* r Block records per journal block */ 218 #endif 219 220 TAILQ_HEAD(, wapbl_dealloc) wl_dealloclist; /* lm: list head */ 221 int wl_dealloccnt; /* lm: total count */ 222 int wl_dealloclim; /* r: max count */ 223 224 /* hashtable of inode numbers for allocated but unlinked inodes */ 225 /* synch ??? */ 226 struct wapbl_ino_head *wl_inohash; 227 u_long wl_inohashmask; 228 int wl_inohashcnt; 229 230 SIMPLEQ_HEAD(, wapbl_entry) wl_entries; /* On disk transaction 231 accounting */ 232 233 /* buffers for wapbl_buffered_write() */ 234 TAILQ_HEAD(, buf) wl_iobufs; /* l: Free or filling bufs */ 235 TAILQ_HEAD(, buf) wl_iobufs_busy; /* l: In-transit bufs */ 236 237 int wl_dkcache; /* r: disk cache flags */ 238 #define WAPBL_USE_FUA(wl) \ 239 (wapbl_allow_dpofua && ISSET((wl)->wl_dkcache, DKCACHE_FUA)) 240 #define WAPBL_JFLAGS(wl) \ 241 (WAPBL_USE_FUA(wl) ? (wl)->wl_jwrite_flags : 0) 242 #define WAPBL_JDATA_FLAGS(wl) \ 243 (WAPBL_JFLAGS(wl) & B_MEDIA_DPO) /* only DPO */ 244 int wl_jwrite_flags; /* r: journal write flags */ 245 }; 246 247 #ifdef WAPBL_DEBUG_PRINT 248 int wapbl_debug_print = WAPBL_DEBUG_PRINT; 249 #endif 250 251 /****************************************************************/ 252 #ifdef _KERNEL 253 254 #ifdef WAPBL_DEBUG 255 struct wapbl *wapbl_debug_wl; 256 #endif 257 258 static int wapbl_write_commit(struct wapbl *wl, off_t head, off_t tail); 259 static int wapbl_write_blocks(struct wapbl *wl, off_t *offp); 260 static int wapbl_write_revocations(struct wapbl *wl, off_t *offp); 261 static int wapbl_write_inodes(struct wapbl *wl, off_t *offp); 262 #endif /* _KERNEL */ 263 264 static int wapbl_replay_process(struct wapbl_replay *wr, off_t, off_t); 265 266 static inline size_t wapbl_space_used(size_t avail, off_t head, 267 off_t tail); 268 269 #ifdef _KERNEL 270 271 static struct pool wapbl_entry_pool; 272 static struct pool wapbl_dealloc_pool; 273 274 #define WAPBL_INODETRK_SIZE 83 275 static int wapbl_ino_pool_refcount; 276 static struct pool wapbl_ino_pool; 277 struct wapbl_ino { 278 LIST_ENTRY(wapbl_ino) wi_hash; 279 ino_t wi_ino; 280 mode_t wi_mode; 281 }; 282 283 static void wapbl_inodetrk_init(struct wapbl *wl, u_int size); 284 static void wapbl_inodetrk_free(struct wapbl *wl); 285 static struct wapbl_ino *wapbl_inodetrk_get(struct wapbl *wl, ino_t ino); 286 287 static size_t wapbl_transaction_len(struct wapbl *wl); 288 static inline size_t wapbl_transaction_inodes_len(struct wapbl *wl); 289 290 static void wapbl_deallocation_free(struct wapbl *, struct wapbl_dealloc *, 291 bool); 292 293 static void wapbl_evcnt_init(struct wapbl *); 294 static void wapbl_evcnt_free(struct wapbl *); 295 296 static void wapbl_dkcache_init(struct wapbl *); 297 298 #if 0 299 int wapbl_replay_verify(struct wapbl_replay *, struct vnode *); 300 #endif 301 302 static int wapbl_replay_isopen1(struct wapbl_replay *); 303 304 struct wapbl_ops wapbl_ops = { 305 .wo_wapbl_discard = wapbl_discard, 306 .wo_wapbl_replay_isopen = wapbl_replay_isopen1, 307 .wo_wapbl_replay_can_read = wapbl_replay_can_read, 308 .wo_wapbl_replay_read = wapbl_replay_read, 309 .wo_wapbl_add_buf = wapbl_add_buf, 310 .wo_wapbl_remove_buf = wapbl_remove_buf, 311 .wo_wapbl_resize_buf = wapbl_resize_buf, 312 .wo_wapbl_begin = wapbl_begin, 313 .wo_wapbl_end = wapbl_end, 314 .wo_wapbl_junlock_assert= wapbl_junlock_assert, 315 316 /* XXX: the following is only used to say "this is a wapbl buf" */ 317 .wo_wapbl_biodone = wapbl_biodone, 318 }; 319 320 static int 321 wapbl_sysctl_init(void) 322 { 323 int rv; 324 const struct sysctlnode *rnode, *cnode; 325 326 wapbl_sysctl = NULL; 327 328 rv = sysctl_createv(&wapbl_sysctl, 0, NULL, &rnode, 329 CTLFLAG_PERMANENT, 330 CTLTYPE_NODE, "wapbl", 331 SYSCTL_DESCR("WAPBL journaling options"), 332 NULL, 0, NULL, 0, 333 CTL_VFS, CTL_CREATE, CTL_EOL); 334 if (rv) 335 return rv; 336 337 rv = sysctl_createv(&wapbl_sysctl, 0, &rnode, &cnode, 338 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 339 CTLTYPE_INT, "flush_disk_cache", 340 SYSCTL_DESCR("flush disk cache"), 341 NULL, 0, &wapbl_flush_disk_cache, 0, 342 CTL_CREATE, CTL_EOL); 343 if (rv) 344 return rv; 345 346 rv = sysctl_createv(&wapbl_sysctl, 0, &rnode, &cnode, 347 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 348 CTLTYPE_INT, "verbose_commit", 349 SYSCTL_DESCR("show time and size of wapbl log commits"), 350 NULL, 0, &wapbl_verbose_commit, 0, 351 CTL_CREATE, CTL_EOL); 352 if (rv) 353 return rv; 354 355 rv = sysctl_createv(&wapbl_sysctl, 0, &rnode, &cnode, 356 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 357 CTLTYPE_INT, "allow_dpofua", 358 SYSCTL_DESCR("allow use of FUA/DPO instead of cash flush if available"), 359 NULL, 0, &wapbl_allow_dpofua, 0, 360 CTL_CREATE, CTL_EOL); 361 if (rv) 362 return rv; 363 364 rv = sysctl_createv(&wapbl_sysctl, 0, &rnode, &cnode, 365 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 366 CTLTYPE_INT, "journal_iobufs", 367 SYSCTL_DESCR("count of bufs used for journal I/O (max async count)"), 368 NULL, 0, &wapbl_journal_iobufs, 0, 369 CTL_CREATE, CTL_EOL); 370 if (rv) 371 return rv; 372 373 return rv; 374 } 375 376 static void 377 wapbl_init(void) 378 { 379 380 pool_init(&wapbl_entry_pool, sizeof(struct wapbl_entry), 0, 0, 0, 381 "wapblentrypl", &pool_allocator_kmem, IPL_VM); 382 pool_init(&wapbl_dealloc_pool, sizeof(struct wapbl_dealloc), 0, 0, 0, 383 "wapbldealloc", &pool_allocator_nointr, IPL_NONE); 384 385 wapbl_sysctl_init(); 386 } 387 388 static int 389 wapbl_fini(void) 390 { 391 392 if (wapbl_sysctl != NULL) 393 sysctl_teardown(&wapbl_sysctl); 394 395 pool_destroy(&wapbl_dealloc_pool); 396 pool_destroy(&wapbl_entry_pool); 397 398 return 0; 399 } 400 401 static void 402 wapbl_evcnt_init(struct wapbl *wl) 403 { 404 snprintf(wl->wl_ev_group, sizeof(wl->wl_ev_group), 405 "wapbl fsid 0x%x/0x%x", 406 wl->wl_mount->mnt_stat.f_fsidx.__fsid_val[0], 407 wl->wl_mount->mnt_stat.f_fsidx.__fsid_val[1] 408 ); 409 410 evcnt_attach_dynamic(&wl->wl_ev_commit, EVCNT_TYPE_MISC, 411 NULL, wl->wl_ev_group, "commit"); 412 evcnt_attach_dynamic(&wl->wl_ev_journalwrite, EVCNT_TYPE_MISC, 413 NULL, wl->wl_ev_group, "journal write total"); 414 evcnt_attach_dynamic(&wl->wl_ev_jbufs_bio_nowait, EVCNT_TYPE_MISC, 415 NULL, wl->wl_ev_group, "journal write finished async"); 416 evcnt_attach_dynamic(&wl->wl_ev_metawrite, EVCNT_TYPE_MISC, 417 NULL, wl->wl_ev_group, "metadata async write"); 418 evcnt_attach_dynamic(&wl->wl_ev_cacheflush, EVCNT_TYPE_MISC, 419 NULL, wl->wl_ev_group, "cache flush"); 420 } 421 422 static void 423 wapbl_evcnt_free(struct wapbl *wl) 424 { 425 evcnt_detach(&wl->wl_ev_commit); 426 evcnt_detach(&wl->wl_ev_journalwrite); 427 evcnt_detach(&wl->wl_ev_jbufs_bio_nowait); 428 evcnt_detach(&wl->wl_ev_metawrite); 429 evcnt_detach(&wl->wl_ev_cacheflush); 430 } 431 432 static void 433 wapbl_dkcache_init(struct wapbl *wl) 434 { 435 int error; 436 437 /* Get disk cache flags */ 438 error = VOP_IOCTL(wl->wl_devvp, DIOCGCACHE, &wl->wl_dkcache, 439 FWRITE, FSCRED); 440 if (error) { 441 /* behave as if there was a write cache */ 442 wl->wl_dkcache = DKCACHE_WRITE; 443 } 444 445 /* Use FUA instead of cache flush if available */ 446 if (ISSET(wl->wl_dkcache, DKCACHE_FUA)) 447 wl->wl_jwrite_flags |= B_MEDIA_FUA; 448 449 /* Use DPO for journal writes if available */ 450 if (ISSET(wl->wl_dkcache, DKCACHE_DPO)) 451 wl->wl_jwrite_flags |= B_MEDIA_DPO; 452 } 453 454 static int 455 wapbl_start_flush_inodes(struct wapbl *wl, struct wapbl_replay *wr) 456 { 457 int error, i; 458 459 WAPBL_PRINTF(WAPBL_PRINT_REPLAY, 460 ("wapbl_start: reusing log with %d inodes\n", wr->wr_inodescnt)); 461 462 /* 463 * Its only valid to reuse the replay log if its 464 * the same as the new log we just opened. 465 */ 466 KDASSERT(!wapbl_replay_isopen(wr)); 467 KASSERT(wl->wl_devvp->v_type == VBLK); 468 KASSERT(wr->wr_devvp->v_type == VBLK); 469 KASSERT(wl->wl_devvp->v_rdev == wr->wr_devvp->v_rdev); 470 KASSERT(wl->wl_logpbn == wr->wr_logpbn); 471 KASSERT(wl->wl_circ_size == wr->wr_circ_size); 472 KASSERT(wl->wl_circ_off == wr->wr_circ_off); 473 KASSERT(wl->wl_log_dev_bshift == wr->wr_log_dev_bshift); 474 KASSERT(wl->wl_fs_dev_bshift == wr->wr_fs_dev_bshift); 475 476 wl->wl_wc_header->wc_generation = wr->wr_generation + 1; 477 478 for (i = 0; i < wr->wr_inodescnt; i++) 479 wapbl_register_inode(wl, wr->wr_inodes[i].wr_inumber, 480 wr->wr_inodes[i].wr_imode); 481 482 /* Make sure new transaction won't overwrite old inodes list */ 483 KDASSERT(wapbl_transaction_len(wl) <= 484 wapbl_space_free(wl->wl_circ_size, wr->wr_inodeshead, 485 wr->wr_inodestail)); 486 487 wl->wl_head = wl->wl_tail = wr->wr_inodeshead; 488 wl->wl_reclaimable_bytes = wl->wl_reserved_bytes = 489 wapbl_transaction_len(wl); 490 491 error = wapbl_write_inodes(wl, &wl->wl_head); 492 if (error) 493 return error; 494 495 KASSERT(wl->wl_head != wl->wl_tail); 496 KASSERT(wl->wl_head != 0); 497 498 return 0; 499 } 500 501 int 502 wapbl_start(struct wapbl ** wlp, struct mount *mp, struct vnode *vp, 503 daddr_t off, size_t count, size_t blksize, struct wapbl_replay *wr, 504 wapbl_flush_fn_t flushfn, wapbl_flush_fn_t flushabortfn) 505 { 506 struct wapbl *wl; 507 struct vnode *devvp; 508 daddr_t logpbn; 509 int error; 510 int log_dev_bshift = ilog2(blksize); 511 int fs_dev_bshift = log_dev_bshift; 512 int run; 513 514 WAPBL_PRINTF(WAPBL_PRINT_OPEN, ("wapbl_start: vp=%p off=%" PRId64 515 " count=%zu blksize=%zu\n", vp, off, count, blksize)); 516 517 if (log_dev_bshift > fs_dev_bshift) { 518 WAPBL_PRINTF(WAPBL_PRINT_OPEN, 519 ("wapbl: log device's block size cannot be larger " 520 "than filesystem's\n")); 521 /* 522 * Not currently implemented, although it could be if 523 * needed someday. 524 */ 525 return ENOSYS; 526 } 527 528 if (off < 0) 529 return EINVAL; 530 531 if (blksize < DEV_BSIZE) 532 return EINVAL; 533 if (blksize % DEV_BSIZE) 534 return EINVAL; 535 536 /* XXXTODO: verify that the full load is writable */ 537 538 /* 539 * XXX check for minimum log size 540 * minimum is governed by minimum amount of space 541 * to complete a transaction. (probably truncate) 542 */ 543 /* XXX for now pick something minimal */ 544 if ((count * blksize) < MAXPHYS) { 545 return ENOSPC; 546 } 547 548 if ((error = VOP_BMAP(vp, off, &devvp, &logpbn, &run)) != 0) { 549 return error; 550 } 551 552 wl = wapbl_calloc(1, sizeof(*wl)); 553 rw_init(&wl->wl_rwlock); 554 mutex_init(&wl->wl_mtx, MUTEX_DEFAULT, IPL_NONE); 555 cv_init(&wl->wl_reclaimable_cv, "wapblrec"); 556 TAILQ_INIT(&wl->wl_bufs); 557 SIMPLEQ_INIT(&wl->wl_entries); 558 559 wl->wl_logvp = vp; 560 wl->wl_devvp = devvp; 561 wl->wl_mount = mp; 562 wl->wl_logpbn = logpbn; 563 wl->wl_log_dev_bshift = log_dev_bshift; 564 wl->wl_fs_dev_bshift = fs_dev_bshift; 565 566 wl->wl_flush = flushfn; 567 wl->wl_flush_abort = flushabortfn; 568 569 /* Reserve two log device blocks for the commit headers */ 570 wl->wl_circ_off = 2<<wl->wl_log_dev_bshift; 571 wl->wl_circ_size = ((count * blksize) - wl->wl_circ_off); 572 /* truncate the log usage to a multiple of log_dev_bshift */ 573 wl->wl_circ_size >>= wl->wl_log_dev_bshift; 574 wl->wl_circ_size <<= wl->wl_log_dev_bshift; 575 576 /* 577 * wl_bufbytes_max limits the size of the in memory transaction space. 578 * - Since buffers are allocated and accounted for in units of 579 * PAGE_SIZE it is required to be a multiple of PAGE_SIZE 580 * (i.e. 1<<PAGE_SHIFT) 581 * - Since the log device has to be written in units of 582 * 1<<wl_log_dev_bshift it is required to be a mulitple of 583 * 1<<wl_log_dev_bshift. 584 * - Since filesystem will provide data in units of 1<<wl_fs_dev_bshift, 585 * it is convenient to be a multiple of 1<<wl_fs_dev_bshift. 586 * Therefore it must be multiple of the least common multiple of those 587 * three quantities. Fortunately, all of those quantities are 588 * guaranteed to be a power of two, and the least common multiple of 589 * a set of numbers which are all powers of two is simply the maximum 590 * of those numbers. Finally, the maximum logarithm of a power of two 591 * is the same as the log of the maximum power of two. So we can do 592 * the following operations to size wl_bufbytes_max: 593 */ 594 595 /* XXX fix actual number of pages reserved per filesystem. */ 596 wl->wl_bufbytes_max = MIN(wl->wl_circ_size, buf_memcalc() / 2); 597 598 /* Round wl_bufbytes_max to the largest power of two constraint */ 599 wl->wl_bufbytes_max >>= PAGE_SHIFT; 600 wl->wl_bufbytes_max <<= PAGE_SHIFT; 601 wl->wl_bufbytes_max >>= wl->wl_log_dev_bshift; 602 wl->wl_bufbytes_max <<= wl->wl_log_dev_bshift; 603 wl->wl_bufbytes_max >>= wl->wl_fs_dev_bshift; 604 wl->wl_bufbytes_max <<= wl->wl_fs_dev_bshift; 605 606 /* XXX maybe use filesystem fragment size instead of 1024 */ 607 /* XXX fix actual number of buffers reserved per filesystem. */ 608 wl->wl_bufcount_max = (buf_nbuf() / 2) * 1024; 609 610 wl->wl_brperjblock = ((1<<wl->wl_log_dev_bshift) 611 - offsetof(struct wapbl_wc_blocklist, wc_blocks)) / 612 sizeof(((struct wapbl_wc_blocklist *)0)->wc_blocks[0]); 613 KASSERT(wl->wl_brperjblock > 0); 614 615 /* XXX tie this into resource estimation */ 616 wl->wl_dealloclim = wl->wl_bufbytes_max / mp->mnt_stat.f_bsize / 2; 617 TAILQ_INIT(&wl->wl_dealloclist); 618 619 wapbl_inodetrk_init(wl, WAPBL_INODETRK_SIZE); 620 621 wapbl_evcnt_init(wl); 622 623 wapbl_dkcache_init(wl); 624 625 /* Initialize the commit header */ 626 { 627 struct wapbl_wc_header *wc; 628 size_t len = 1 << wl->wl_log_dev_bshift; 629 wc = wapbl_calloc(1, len); 630 wc->wc_type = WAPBL_WC_HEADER; 631 wc->wc_len = len; 632 wc->wc_circ_off = wl->wl_circ_off; 633 wc->wc_circ_size = wl->wl_circ_size; 634 /* XXX wc->wc_fsid */ 635 wc->wc_log_dev_bshift = wl->wl_log_dev_bshift; 636 wc->wc_fs_dev_bshift = wl->wl_fs_dev_bshift; 637 wl->wl_wc_header = wc; 638 wl->wl_wc_scratch = wapbl_alloc(len); 639 } 640 641 TAILQ_INIT(&wl->wl_iobufs); 642 TAILQ_INIT(&wl->wl_iobufs_busy); 643 for (int i = 0; i < wapbl_journal_iobufs; i++) { 644 struct buf *bp; 645 646 if ((bp = geteblk(MAXPHYS)) == NULL) 647 goto errout; 648 649 mutex_enter(&bufcache_lock); 650 mutex_enter(devvp->v_interlock); 651 bgetvp(devvp, bp); 652 mutex_exit(devvp->v_interlock); 653 mutex_exit(&bufcache_lock); 654 655 bp->b_dev = devvp->v_rdev; 656 657 TAILQ_INSERT_TAIL(&wl->wl_iobufs, bp, b_wapbllist); 658 } 659 660 /* 661 * if there was an existing set of unlinked but 662 * allocated inodes, preserve it in the new 663 * log. 664 */ 665 if (wr && wr->wr_inodescnt) { 666 error = wapbl_start_flush_inodes(wl, wr); 667 if (error) 668 goto errout; 669 } 670 671 error = wapbl_write_commit(wl, wl->wl_head, wl->wl_tail); 672 if (error) { 673 goto errout; 674 } 675 676 *wlp = wl; 677 #if defined(WAPBL_DEBUG) 678 wapbl_debug_wl = wl; 679 #endif 680 681 return 0; 682 errout: 683 wapbl_discard(wl); 684 wapbl_free(wl->wl_wc_scratch, wl->wl_wc_header->wc_len); 685 wapbl_free(wl->wl_wc_header, wl->wl_wc_header->wc_len); 686 while (!TAILQ_EMPTY(&wl->wl_iobufs)) { 687 struct buf *bp; 688 689 bp = TAILQ_FIRST(&wl->wl_iobufs); 690 TAILQ_REMOVE(&wl->wl_iobufs, bp, b_wapbllist); 691 brelse(bp, BC_INVAL); 692 } 693 wapbl_inodetrk_free(wl); 694 wapbl_free(wl, sizeof(*wl)); 695 696 return error; 697 } 698 699 /* 700 * Like wapbl_flush, only discards the transaction 701 * completely 702 */ 703 704 void 705 wapbl_discard(struct wapbl *wl) 706 { 707 struct wapbl_entry *we; 708 struct wapbl_dealloc *wd; 709 struct buf *bp; 710 int i; 711 712 /* 713 * XXX we may consider using upgrade here 714 * if we want to call flush from inside a transaction 715 */ 716 rw_enter(&wl->wl_rwlock, RW_WRITER); 717 wl->wl_flush(wl->wl_mount, TAILQ_FIRST(&wl->wl_dealloclist)); 718 719 #ifdef WAPBL_DEBUG_PRINT 720 { 721 pid_t pid = -1; 722 lwpid_t lid = -1; 723 if (curproc) 724 pid = curproc->p_pid; 725 if (curlwp) 726 lid = curlwp->l_lid; 727 #ifdef WAPBL_DEBUG_BUFBYTES 728 WAPBL_PRINTF(WAPBL_PRINT_DISCARD, 729 ("wapbl_discard: thread %d.%d discarding " 730 "transaction\n" 731 "\tbufcount=%zu bufbytes=%zu bcount=%zu " 732 "deallocs=%d inodes=%d\n" 733 "\terrcnt = %u, reclaimable=%zu reserved=%zu " 734 "unsynced=%zu\n", 735 pid, lid, wl->wl_bufcount, wl->wl_bufbytes, 736 wl->wl_bcount, wl->wl_dealloccnt, 737 wl->wl_inohashcnt, wl->wl_error_count, 738 wl->wl_reclaimable_bytes, wl->wl_reserved_bytes, 739 wl->wl_unsynced_bufbytes)); 740 SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) { 741 WAPBL_PRINTF(WAPBL_PRINT_DISCARD, 742 ("\tentry: bufcount = %zu, reclaimable = %zu, " 743 "error = %d, unsynced = %zu\n", 744 we->we_bufcount, we->we_reclaimable_bytes, 745 we->we_error, we->we_unsynced_bufbytes)); 746 } 747 #else /* !WAPBL_DEBUG_BUFBYTES */ 748 WAPBL_PRINTF(WAPBL_PRINT_DISCARD, 749 ("wapbl_discard: thread %d.%d discarding transaction\n" 750 "\tbufcount=%zu bufbytes=%zu bcount=%zu " 751 "deallocs=%d inodes=%d\n" 752 "\terrcnt = %u, reclaimable=%zu reserved=%zu\n", 753 pid, lid, wl->wl_bufcount, wl->wl_bufbytes, 754 wl->wl_bcount, wl->wl_dealloccnt, 755 wl->wl_inohashcnt, wl->wl_error_count, 756 wl->wl_reclaimable_bytes, wl->wl_reserved_bytes)); 757 SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) { 758 WAPBL_PRINTF(WAPBL_PRINT_DISCARD, 759 ("\tentry: bufcount = %zu, reclaimable = %zu, " 760 "error = %d\n", 761 we->we_bufcount, we->we_reclaimable_bytes, 762 we->we_error)); 763 } 764 #endif /* !WAPBL_DEBUG_BUFBYTES */ 765 } 766 #endif /* WAPBL_DEBUG_PRINT */ 767 768 for (i = 0; i <= wl->wl_inohashmask; i++) { 769 struct wapbl_ino_head *wih; 770 struct wapbl_ino *wi; 771 772 wih = &wl->wl_inohash[i]; 773 while ((wi = LIST_FIRST(wih)) != NULL) { 774 LIST_REMOVE(wi, wi_hash); 775 pool_put(&wapbl_ino_pool, wi); 776 KASSERT(wl->wl_inohashcnt > 0); 777 wl->wl_inohashcnt--; 778 } 779 } 780 781 /* 782 * clean buffer list 783 */ 784 mutex_enter(&bufcache_lock); 785 mutex_enter(&wl->wl_mtx); 786 while ((bp = TAILQ_FIRST(&wl->wl_bufs)) != NULL) { 787 if (bbusy(bp, 0, 0, &wl->wl_mtx) == 0) { 788 /* 789 * The buffer will be unlocked and 790 * removed from the transaction in brelse 791 */ 792 mutex_exit(&wl->wl_mtx); 793 brelsel(bp, 0); 794 mutex_enter(&wl->wl_mtx); 795 } 796 } 797 mutex_exit(&wl->wl_mtx); 798 mutex_exit(&bufcache_lock); 799 800 /* 801 * Remove references to this wl from wl_entries, free any which 802 * no longer have buffers, others will be freed in wapbl_biodone 803 * when they no longer have any buffers. 804 */ 805 while ((we = SIMPLEQ_FIRST(&wl->wl_entries)) != NULL) { 806 SIMPLEQ_REMOVE_HEAD(&wl->wl_entries, we_entries); 807 /* XXX should we be accumulating wl_error_count 808 * and increasing reclaimable bytes ? */ 809 we->we_wapbl = NULL; 810 if (we->we_bufcount == 0) { 811 #ifdef WAPBL_DEBUG_BUFBYTES 812 KASSERT(we->we_unsynced_bufbytes == 0); 813 #endif 814 pool_put(&wapbl_entry_pool, we); 815 } 816 } 817 818 /* Discard list of deallocs */ 819 while ((wd = TAILQ_FIRST(&wl->wl_dealloclist)) != NULL) 820 wapbl_deallocation_free(wl, wd, true); 821 822 /* XXX should we clear wl_reserved_bytes? */ 823 824 KASSERT(wl->wl_bufbytes == 0); 825 KASSERT(wl->wl_bcount == 0); 826 KASSERT(wl->wl_bufcount == 0); 827 KASSERT(TAILQ_EMPTY(&wl->wl_bufs)); 828 KASSERT(SIMPLEQ_EMPTY(&wl->wl_entries)); 829 KASSERT(wl->wl_inohashcnt == 0); 830 KASSERT(TAILQ_EMPTY(&wl->wl_dealloclist)); 831 KASSERT(wl->wl_dealloccnt == 0); 832 833 rw_exit(&wl->wl_rwlock); 834 } 835 836 int 837 wapbl_stop(struct wapbl *wl, int force) 838 { 839 int error; 840 841 WAPBL_PRINTF(WAPBL_PRINT_OPEN, ("wapbl_stop called\n")); 842 error = wapbl_flush(wl, 1); 843 if (error) { 844 if (force) 845 wapbl_discard(wl); 846 else 847 return error; 848 } 849 850 /* Unlinked inodes persist after a flush */ 851 if (wl->wl_inohashcnt) { 852 if (force) { 853 wapbl_discard(wl); 854 } else { 855 return EBUSY; 856 } 857 } 858 859 KASSERT(wl->wl_bufbytes == 0); 860 KASSERT(wl->wl_bcount == 0); 861 KASSERT(wl->wl_bufcount == 0); 862 KASSERT(TAILQ_EMPTY(&wl->wl_bufs)); 863 KASSERT(wl->wl_dealloccnt == 0); 864 KASSERT(SIMPLEQ_EMPTY(&wl->wl_entries)); 865 KASSERT(wl->wl_inohashcnt == 0); 866 KASSERT(TAILQ_EMPTY(&wl->wl_dealloclist)); 867 KASSERT(wl->wl_dealloccnt == 0); 868 KASSERT(TAILQ_EMPTY(&wl->wl_iobufs_busy)); 869 870 wapbl_free(wl->wl_wc_scratch, wl->wl_wc_header->wc_len); 871 wapbl_free(wl->wl_wc_header, wl->wl_wc_header->wc_len); 872 while (!TAILQ_EMPTY(&wl->wl_iobufs)) { 873 struct buf *bp; 874 875 bp = TAILQ_FIRST(&wl->wl_iobufs); 876 TAILQ_REMOVE(&wl->wl_iobufs, bp, b_wapbllist); 877 brelse(bp, BC_INVAL); 878 } 879 wapbl_inodetrk_free(wl); 880 881 wapbl_evcnt_free(wl); 882 883 cv_destroy(&wl->wl_reclaimable_cv); 884 mutex_destroy(&wl->wl_mtx); 885 rw_destroy(&wl->wl_rwlock); 886 wapbl_free(wl, sizeof(*wl)); 887 888 return 0; 889 } 890 891 /****************************************************************/ 892 /* 893 * Unbuffered disk I/O 894 */ 895 896 static void 897 wapbl_doio_accounting(struct vnode *devvp, int flags) 898 { 899 struct pstats *pstats = curlwp->l_proc->p_stats; 900 901 if ((flags & (B_WRITE | B_READ)) == B_WRITE) { 902 mutex_enter(devvp->v_interlock); 903 devvp->v_numoutput++; 904 mutex_exit(devvp->v_interlock); 905 pstats->p_ru.ru_oublock++; 906 } else { 907 pstats->p_ru.ru_inblock++; 908 } 909 910 } 911 912 static int 913 wapbl_doio(void *data, size_t len, struct vnode *devvp, daddr_t pbn, int flags) 914 { 915 struct buf *bp; 916 int error; 917 918 KASSERT(devvp->v_type == VBLK); 919 920 wapbl_doio_accounting(devvp, flags); 921 922 bp = getiobuf(devvp, true); 923 bp->b_flags = flags; 924 bp->b_cflags = BC_BUSY; /* mandatory, asserted by biowait() */ 925 bp->b_dev = devvp->v_rdev; 926 bp->b_data = data; 927 bp->b_bufsize = bp->b_resid = bp->b_bcount = len; 928 bp->b_blkno = pbn; 929 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 930 931 WAPBL_PRINTF(WAPBL_PRINT_IO, 932 ("wapbl_doio: %s %d bytes at block %"PRId64" on dev 0x%"PRIx64"\n", 933 BUF_ISWRITE(bp) ? "write" : "read", bp->b_bcount, 934 bp->b_blkno, bp->b_dev)); 935 936 VOP_STRATEGY(devvp, bp); 937 938 error = biowait(bp); 939 putiobuf(bp); 940 941 if (error) { 942 WAPBL_PRINTF(WAPBL_PRINT_ERROR, 943 ("wapbl_doio: %s %zu bytes at block %" PRId64 944 " on dev 0x%"PRIx64" failed with error %d\n", 945 (((flags & (B_WRITE | B_READ)) == B_WRITE) ? 946 "write" : "read"), 947 len, pbn, devvp->v_rdev, error)); 948 } 949 950 return error; 951 } 952 953 /* 954 * wapbl_write(data, len, devvp, pbn) 955 * 956 * Synchronously write len bytes from data to physical block pbn 957 * on devvp. 958 */ 959 int 960 wapbl_write(void *data, size_t len, struct vnode *devvp, daddr_t pbn) 961 { 962 963 return wapbl_doio(data, len, devvp, pbn, B_WRITE); 964 } 965 966 /* 967 * wapbl_read(data, len, devvp, pbn) 968 * 969 * Synchronously read len bytes into data from physical block pbn 970 * on devvp. 971 */ 972 int 973 wapbl_read(void *data, size_t len, struct vnode *devvp, daddr_t pbn) 974 { 975 976 return wapbl_doio(data, len, devvp, pbn, B_READ); 977 } 978 979 /****************************************************************/ 980 /* 981 * Buffered disk writes -- try to coalesce writes and emit 982 * MAXPHYS-aligned blocks. 983 */ 984 985 /* 986 * wapbl_buffered_write_async(wl, bp) 987 * 988 * Send buffer for asynchronous write. 989 */ 990 static void 991 wapbl_buffered_write_async(struct wapbl *wl, struct buf *bp) 992 { 993 wapbl_doio_accounting(wl->wl_devvp, bp->b_flags); 994 995 KASSERT(TAILQ_FIRST(&wl->wl_iobufs) == bp); 996 TAILQ_REMOVE(&wl->wl_iobufs, bp, b_wapbllist); 997 998 bp->b_flags |= B_WRITE; 999 bp->b_cflags = BC_BUSY; /* mandatory, asserted by biowait() */ 1000 bp->b_oflags = 0; 1001 bp->b_bcount = bp->b_resid; 1002 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 1003 1004 VOP_STRATEGY(wl->wl_devvp, bp); 1005 1006 wl->wl_ev_journalwrite.ev_count++; 1007 1008 TAILQ_INSERT_TAIL(&wl->wl_iobufs_busy, bp, b_wapbllist); 1009 } 1010 1011 /* 1012 * wapbl_buffered_flush(wl) 1013 * 1014 * Flush any buffered writes from wapbl_buffered_write. 1015 */ 1016 static int 1017 wapbl_buffered_flush(struct wapbl *wl, bool full) 1018 { 1019 int error = 0; 1020 struct buf *bp, *bnext; 1021 bool only_done = true, found = false; 1022 1023 /* if there is outstanding buffered write, send it now */ 1024 if ((bp = TAILQ_FIRST(&wl->wl_iobufs)) && bp->b_resid > 0) 1025 wapbl_buffered_write_async(wl, bp); 1026 1027 /* wait for I/O to complete */ 1028 again: 1029 TAILQ_FOREACH_SAFE(bp, &wl->wl_iobufs_busy, b_wapbllist, bnext) { 1030 if (!full && only_done) { 1031 /* skip unfinished */ 1032 if (!ISSET(bp->b_oflags, BO_DONE)) 1033 continue; 1034 } 1035 1036 if (ISSET(bp->b_oflags, BO_DONE)) 1037 wl->wl_ev_jbufs_bio_nowait.ev_count++; 1038 1039 TAILQ_REMOVE(&wl->wl_iobufs_busy, bp, b_wapbllist); 1040 error = biowait(bp); 1041 1042 /* reset for reuse */ 1043 bp->b_blkno = bp->b_resid = bp->b_flags = 0; 1044 TAILQ_INSERT_TAIL(&wl->wl_iobufs, bp, b_wapbllist); 1045 found = true; 1046 1047 if (!full) 1048 break; 1049 } 1050 1051 if (!found && only_done && !TAILQ_EMPTY(&wl->wl_iobufs_busy)) { 1052 only_done = false; 1053 goto again; 1054 } 1055 1056 return error; 1057 } 1058 1059 /* 1060 * wapbl_buffered_write(data, len, wl, pbn) 1061 * 1062 * Write len bytes from data to physical block pbn on 1063 * wl->wl_devvp. The write may not complete until 1064 * wapbl_buffered_flush. 1065 */ 1066 static int 1067 wapbl_buffered_write(void *data, size_t len, struct wapbl *wl, daddr_t pbn, 1068 int bflags) 1069 { 1070 size_t resid; 1071 struct buf *bp; 1072 1073 again: 1074 bp = TAILQ_FIRST(&wl->wl_iobufs); 1075 1076 if (bp == NULL) { 1077 /* No more buffers, wait for any previous I/O to finish. */ 1078 wapbl_buffered_flush(wl, false); 1079 1080 bp = TAILQ_FIRST(&wl->wl_iobufs); 1081 KASSERT(bp != NULL); 1082 } 1083 1084 /* 1085 * If not adjacent to buffered data flush first. Disk block 1086 * address is always valid for non-empty buffer. 1087 */ 1088 if ((bp->b_resid > 0 && pbn != bp->b_blkno + btodb(bp->b_resid))) { 1089 wapbl_buffered_write_async(wl, bp); 1090 goto again; 1091 } 1092 1093 /* 1094 * If this write goes to an empty buffer we have to 1095 * save the disk block address first. 1096 */ 1097 if (bp->b_blkno == 0) { 1098 bp->b_blkno = pbn; 1099 bp->b_flags |= bflags; 1100 } 1101 1102 /* 1103 * Remaining space so this buffer ends on a buffer size boundary. 1104 * 1105 * Cannot become less or equal zero as the buffer would have been 1106 * flushed on the last call then. 1107 */ 1108 resid = bp->b_bufsize - dbtob(bp->b_blkno % btodb(bp->b_bufsize)) - 1109 bp->b_resid; 1110 KASSERT(resid > 0); 1111 KASSERT(dbtob(btodb(resid)) == resid); 1112 1113 if (len < resid) 1114 resid = len; 1115 1116 memcpy((uint8_t *)bp->b_data + bp->b_resid, data, resid); 1117 bp->b_resid += resid; 1118 1119 if (len >= resid) { 1120 /* Just filled the buf, or data did not fit */ 1121 wapbl_buffered_write_async(wl, bp); 1122 1123 data = (uint8_t *)data + resid; 1124 len -= resid; 1125 pbn += btodb(resid); 1126 1127 if (len > 0) 1128 goto again; 1129 } 1130 1131 return 0; 1132 } 1133 1134 /* 1135 * wapbl_circ_write(wl, data, len, offp) 1136 * 1137 * Write len bytes from data to the circular queue of wl, starting 1138 * at linear byte offset *offp, and returning the new linear byte 1139 * offset in *offp. 1140 * 1141 * If the starting linear byte offset precedes wl->wl_circ_off, 1142 * the write instead begins at wl->wl_circ_off. XXX WTF? This 1143 * should be a KASSERT, not a conditional. 1144 * 1145 * The write is buffered in wl and must be flushed with 1146 * wapbl_buffered_flush before it will be submitted to the disk. 1147 */ 1148 static int 1149 wapbl_circ_write(struct wapbl *wl, void *data, size_t len, off_t *offp) 1150 { 1151 size_t slen; 1152 off_t off = *offp; 1153 int error; 1154 daddr_t pbn; 1155 1156 KDASSERT(((len >> wl->wl_log_dev_bshift) << 1157 wl->wl_log_dev_bshift) == len); 1158 1159 if (off < wl->wl_circ_off) 1160 off = wl->wl_circ_off; 1161 slen = wl->wl_circ_off + wl->wl_circ_size - off; 1162 if (slen < len) { 1163 pbn = wl->wl_logpbn + (off >> wl->wl_log_dev_bshift); 1164 #ifdef _KERNEL 1165 pbn = btodb(pbn << wl->wl_log_dev_bshift); 1166 #endif 1167 error = wapbl_buffered_write(data, slen, wl, pbn, 1168 WAPBL_JDATA_FLAGS(wl)); 1169 if (error) 1170 return error; 1171 data = (uint8_t *)data + slen; 1172 len -= slen; 1173 off = wl->wl_circ_off; 1174 } 1175 pbn = wl->wl_logpbn + (off >> wl->wl_log_dev_bshift); 1176 #ifdef _KERNEL 1177 pbn = btodb(pbn << wl->wl_log_dev_bshift); 1178 #endif 1179 error = wapbl_buffered_write(data, len, wl, pbn, 1180 WAPBL_JDATA_FLAGS(wl)); 1181 if (error) 1182 return error; 1183 off += len; 1184 if (off >= wl->wl_circ_off + wl->wl_circ_size) 1185 off = wl->wl_circ_off; 1186 *offp = off; 1187 return 0; 1188 } 1189 1190 /****************************************************************/ 1191 /* 1192 * WAPBL transactions: entering, adding/removing bufs, and exiting 1193 */ 1194 1195 int 1196 wapbl_begin(struct wapbl *wl, const char *file, int line) 1197 { 1198 int doflush; 1199 unsigned lockcount; 1200 1201 KDASSERT(wl); 1202 1203 /* 1204 * XXX this needs to be made much more sophisticated. 1205 * perhaps each wapbl_begin could reserve a specified 1206 * number of buffers and bytes. 1207 */ 1208 mutex_enter(&wl->wl_mtx); 1209 lockcount = wl->wl_lock_count; 1210 doflush = ((wl->wl_bufbytes + (lockcount * MAXPHYS)) > 1211 wl->wl_bufbytes_max / 2) || 1212 ((wl->wl_bufcount + (lockcount * 10)) > 1213 wl->wl_bufcount_max / 2) || 1214 (wapbl_transaction_len(wl) > wl->wl_circ_size / 2) || 1215 (wl->wl_dealloccnt >= (wl->wl_dealloclim / 2)); 1216 mutex_exit(&wl->wl_mtx); 1217 1218 if (doflush) { 1219 WAPBL_PRINTF(WAPBL_PRINT_FLUSH, 1220 ("force flush lockcnt=%d bufbytes=%zu " 1221 "(max=%zu) bufcount=%zu (max=%zu) " 1222 "dealloccnt %d (lim=%d)\n", 1223 lockcount, wl->wl_bufbytes, 1224 wl->wl_bufbytes_max, wl->wl_bufcount, 1225 wl->wl_bufcount_max, 1226 wl->wl_dealloccnt, wl->wl_dealloclim)); 1227 } 1228 1229 if (doflush) { 1230 int error = wapbl_flush(wl, 0); 1231 if (error) 1232 return error; 1233 } 1234 1235 rw_enter(&wl->wl_rwlock, RW_READER); 1236 mutex_enter(&wl->wl_mtx); 1237 wl->wl_lock_count++; 1238 mutex_exit(&wl->wl_mtx); 1239 1240 #if defined(WAPBL_DEBUG_PRINT) 1241 WAPBL_PRINTF(WAPBL_PRINT_TRANSACTION, 1242 ("wapbl_begin thread %d.%d with bufcount=%zu " 1243 "bufbytes=%zu bcount=%zu at %s:%d\n", 1244 curproc->p_pid, curlwp->l_lid, wl->wl_bufcount, 1245 wl->wl_bufbytes, wl->wl_bcount, file, line)); 1246 #endif 1247 1248 return 0; 1249 } 1250 1251 void 1252 wapbl_end(struct wapbl *wl) 1253 { 1254 1255 #if defined(WAPBL_DEBUG_PRINT) 1256 WAPBL_PRINTF(WAPBL_PRINT_TRANSACTION, 1257 ("wapbl_end thread %d.%d with bufcount=%zu " 1258 "bufbytes=%zu bcount=%zu\n", 1259 curproc->p_pid, curlwp->l_lid, wl->wl_bufcount, 1260 wl->wl_bufbytes, wl->wl_bcount)); 1261 #endif 1262 1263 /* 1264 * XXX this could be handled more gracefully, perhaps place 1265 * only a partial transaction in the log and allow the 1266 * remaining to flush without the protection of the journal. 1267 */ 1268 KASSERTMSG((wapbl_transaction_len(wl) <= 1269 (wl->wl_circ_size - wl->wl_reserved_bytes)), 1270 "wapbl_end: current transaction too big to flush"); 1271 1272 mutex_enter(&wl->wl_mtx); 1273 KASSERT(wl->wl_lock_count > 0); 1274 wl->wl_lock_count--; 1275 mutex_exit(&wl->wl_mtx); 1276 1277 rw_exit(&wl->wl_rwlock); 1278 } 1279 1280 void 1281 wapbl_add_buf(struct wapbl *wl, struct buf * bp) 1282 { 1283 1284 KASSERT(bp->b_cflags & BC_BUSY); 1285 KASSERT(bp->b_vp); 1286 1287 wapbl_jlock_assert(wl); 1288 1289 #if 0 1290 /* 1291 * XXX this might be an issue for swapfiles. 1292 * see uvm_swap.c:1702 1293 * 1294 * XXX2 why require it then? leap of semantics? 1295 */ 1296 KASSERT((bp->b_cflags & BC_NOCACHE) == 0); 1297 #endif 1298 1299 mutex_enter(&wl->wl_mtx); 1300 if (bp->b_flags & B_LOCKED) { 1301 TAILQ_REMOVE(&wl->wl_bufs, bp, b_wapbllist); 1302 WAPBL_PRINTF(WAPBL_PRINT_BUFFER2, 1303 ("wapbl_add_buf thread %d.%d re-adding buf %p " 1304 "with %d bytes %d bcount\n", 1305 curproc->p_pid, curlwp->l_lid, bp, bp->b_bufsize, 1306 bp->b_bcount)); 1307 } else { 1308 /* unlocked by dirty buffers shouldn't exist */ 1309 KASSERT(!(bp->b_oflags & BO_DELWRI)); 1310 wl->wl_bufbytes += bp->b_bufsize; 1311 wl->wl_bcount += bp->b_bcount; 1312 wl->wl_bufcount++; 1313 WAPBL_PRINTF(WAPBL_PRINT_BUFFER, 1314 ("wapbl_add_buf thread %d.%d adding buf %p " 1315 "with %d bytes %d bcount\n", 1316 curproc->p_pid, curlwp->l_lid, bp, bp->b_bufsize, 1317 bp->b_bcount)); 1318 } 1319 TAILQ_INSERT_TAIL(&wl->wl_bufs, bp, b_wapbllist); 1320 mutex_exit(&wl->wl_mtx); 1321 1322 bp->b_flags |= B_LOCKED; 1323 } 1324 1325 static void 1326 wapbl_remove_buf_locked(struct wapbl * wl, struct buf *bp) 1327 { 1328 1329 KASSERT(mutex_owned(&wl->wl_mtx)); 1330 KASSERT(bp->b_cflags & BC_BUSY); 1331 wapbl_jlock_assert(wl); 1332 1333 #if 0 1334 /* 1335 * XXX this might be an issue for swapfiles. 1336 * see uvm_swap.c:1725 1337 * 1338 * XXXdeux: see above 1339 */ 1340 KASSERT((bp->b_flags & BC_NOCACHE) == 0); 1341 #endif 1342 KASSERT(bp->b_flags & B_LOCKED); 1343 1344 WAPBL_PRINTF(WAPBL_PRINT_BUFFER, 1345 ("wapbl_remove_buf thread %d.%d removing buf %p with " 1346 "%d bytes %d bcount\n", 1347 curproc->p_pid, curlwp->l_lid, bp, bp->b_bufsize, bp->b_bcount)); 1348 1349 KASSERT(wl->wl_bufbytes >= bp->b_bufsize); 1350 wl->wl_bufbytes -= bp->b_bufsize; 1351 KASSERT(wl->wl_bcount >= bp->b_bcount); 1352 wl->wl_bcount -= bp->b_bcount; 1353 KASSERT(wl->wl_bufcount > 0); 1354 wl->wl_bufcount--; 1355 KASSERT((wl->wl_bufcount == 0) == (wl->wl_bufbytes == 0)); 1356 KASSERT((wl->wl_bufcount == 0) == (wl->wl_bcount == 0)); 1357 TAILQ_REMOVE(&wl->wl_bufs, bp, b_wapbllist); 1358 1359 bp->b_flags &= ~B_LOCKED; 1360 } 1361 1362 /* called from brelsel() in vfs_bio among other places */ 1363 void 1364 wapbl_remove_buf(struct wapbl * wl, struct buf *bp) 1365 { 1366 1367 mutex_enter(&wl->wl_mtx); 1368 wapbl_remove_buf_locked(wl, bp); 1369 mutex_exit(&wl->wl_mtx); 1370 } 1371 1372 void 1373 wapbl_resize_buf(struct wapbl *wl, struct buf *bp, long oldsz, long oldcnt) 1374 { 1375 1376 KASSERT(bp->b_cflags & BC_BUSY); 1377 1378 /* 1379 * XXX: why does this depend on B_LOCKED? otherwise the buf 1380 * is not for a transaction? if so, why is this called in the 1381 * first place? 1382 */ 1383 if (bp->b_flags & B_LOCKED) { 1384 mutex_enter(&wl->wl_mtx); 1385 wl->wl_bufbytes += bp->b_bufsize - oldsz; 1386 wl->wl_bcount += bp->b_bcount - oldcnt; 1387 mutex_exit(&wl->wl_mtx); 1388 } 1389 } 1390 1391 #endif /* _KERNEL */ 1392 1393 /****************************************************************/ 1394 /* Some utility inlines */ 1395 1396 /* 1397 * wapbl_space_used(avail, head, tail) 1398 * 1399 * Number of bytes used in a circular queue of avail total bytes, 1400 * from tail to head. 1401 */ 1402 static inline size_t 1403 wapbl_space_used(size_t avail, off_t head, off_t tail) 1404 { 1405 1406 if (tail == 0) { 1407 KASSERT(head == 0); 1408 return 0; 1409 } 1410 return ((head + (avail - 1) - tail) % avail) + 1; 1411 } 1412 1413 #ifdef _KERNEL 1414 /* 1415 * wapbl_advance(size, off, oldoff, delta) 1416 * 1417 * Given a byte offset oldoff into a circular queue of size bytes 1418 * starting at off, return a new byte offset oldoff + delta into 1419 * the circular queue. 1420 */ 1421 static inline off_t 1422 wapbl_advance(size_t size, size_t off, off_t oldoff, size_t delta) 1423 { 1424 off_t newoff; 1425 1426 /* Define acceptable ranges for inputs. */ 1427 KASSERT(delta <= (size_t)size); 1428 KASSERT((oldoff == 0) || ((size_t)oldoff >= off)); 1429 KASSERT(oldoff < (off_t)(size + off)); 1430 1431 if ((oldoff == 0) && (delta != 0)) 1432 newoff = off + delta; 1433 else if ((oldoff + delta) < (size + off)) 1434 newoff = oldoff + delta; 1435 else 1436 newoff = (oldoff + delta) - size; 1437 1438 /* Note some interesting axioms */ 1439 KASSERT((delta != 0) || (newoff == oldoff)); 1440 KASSERT((delta == 0) || (newoff != 0)); 1441 KASSERT((delta != (size)) || (newoff == oldoff)); 1442 1443 /* Define acceptable ranges for output. */ 1444 KASSERT((newoff == 0) || ((size_t)newoff >= off)); 1445 KASSERT((size_t)newoff < (size + off)); 1446 return newoff; 1447 } 1448 1449 /* 1450 * wapbl_space_free(avail, head, tail) 1451 * 1452 * Number of bytes free in a circular queue of avail total bytes, 1453 * in which everything from tail to head is used. 1454 */ 1455 static inline size_t 1456 wapbl_space_free(size_t avail, off_t head, off_t tail) 1457 { 1458 1459 return avail - wapbl_space_used(avail, head, tail); 1460 } 1461 1462 /* 1463 * wapbl_advance_head(size, off, delta, headp, tailp) 1464 * 1465 * In a circular queue of size bytes starting at off, given the 1466 * old head and tail offsets *headp and *tailp, store the new head 1467 * and tail offsets in *headp and *tailp resulting from adding 1468 * delta bytes of data to the head. 1469 */ 1470 static inline void 1471 wapbl_advance_head(size_t size, size_t off, size_t delta, off_t *headp, 1472 off_t *tailp) 1473 { 1474 off_t head = *headp; 1475 off_t tail = *tailp; 1476 1477 KASSERT(delta <= wapbl_space_free(size, head, tail)); 1478 head = wapbl_advance(size, off, head, delta); 1479 if ((tail == 0) && (head != 0)) 1480 tail = off; 1481 *headp = head; 1482 *tailp = tail; 1483 } 1484 1485 /* 1486 * wapbl_advance_tail(size, off, delta, headp, tailp) 1487 * 1488 * In a circular queue of size bytes starting at off, given the 1489 * old head and tail offsets *headp and *tailp, store the new head 1490 * and tail offsets in *headp and *tailp resulting from removing 1491 * delta bytes of data from the tail. 1492 */ 1493 static inline void 1494 wapbl_advance_tail(size_t size, size_t off, size_t delta, off_t *headp, 1495 off_t *tailp) 1496 { 1497 off_t head = *headp; 1498 off_t tail = *tailp; 1499 1500 KASSERT(delta <= wapbl_space_used(size, head, tail)); 1501 tail = wapbl_advance(size, off, tail, delta); 1502 if (head == tail) { 1503 head = tail = 0; 1504 } 1505 *headp = head; 1506 *tailp = tail; 1507 } 1508 1509 1510 /****************************************************************/ 1511 1512 /* 1513 * wapbl_truncate(wl, minfree) 1514 * 1515 * Wait until at least minfree bytes are available in the log. 1516 * 1517 * If it was necessary to wait for writes to complete, 1518 * advance the circular queue tail to reflect the new write 1519 * completions and issue a write commit to the log. 1520 * 1521 * => Caller must hold wl->wl_rwlock writer lock. 1522 */ 1523 static int 1524 wapbl_truncate(struct wapbl *wl, size_t minfree) 1525 { 1526 size_t delta; 1527 size_t avail; 1528 off_t head; 1529 off_t tail; 1530 int error = 0; 1531 1532 KASSERT(minfree <= (wl->wl_circ_size - wl->wl_reserved_bytes)); 1533 KASSERT(rw_write_held(&wl->wl_rwlock)); 1534 1535 mutex_enter(&wl->wl_mtx); 1536 1537 /* 1538 * First check to see if we have to do a commit 1539 * at all. 1540 */ 1541 avail = wapbl_space_free(wl->wl_circ_size, wl->wl_head, wl->wl_tail); 1542 if (minfree < avail) { 1543 mutex_exit(&wl->wl_mtx); 1544 return 0; 1545 } 1546 minfree -= avail; 1547 while ((wl->wl_error_count == 0) && 1548 (wl->wl_reclaimable_bytes < minfree)) { 1549 WAPBL_PRINTF(WAPBL_PRINT_TRUNCATE, 1550 ("wapbl_truncate: sleeping on %p wl=%p bytes=%zd " 1551 "minfree=%zd\n", 1552 &wl->wl_reclaimable_bytes, wl, wl->wl_reclaimable_bytes, 1553 minfree)); 1554 1555 cv_wait(&wl->wl_reclaimable_cv, &wl->wl_mtx); 1556 } 1557 if (wl->wl_reclaimable_bytes < minfree) { 1558 KASSERT(wl->wl_error_count); 1559 /* XXX maybe get actual error from buffer instead someday? */ 1560 error = EIO; 1561 } 1562 head = wl->wl_head; 1563 tail = wl->wl_tail; 1564 delta = wl->wl_reclaimable_bytes; 1565 1566 /* If all of of the entries are flushed, then be sure to keep 1567 * the reserved bytes reserved. Watch out for discarded transactions, 1568 * which could leave more bytes reserved than are reclaimable. 1569 */ 1570 if (SIMPLEQ_EMPTY(&wl->wl_entries) && 1571 (delta >= wl->wl_reserved_bytes)) { 1572 delta -= wl->wl_reserved_bytes; 1573 } 1574 wapbl_advance_tail(wl->wl_circ_size, wl->wl_circ_off, delta, &head, 1575 &tail); 1576 KDASSERT(wl->wl_reserved_bytes <= 1577 wapbl_space_used(wl->wl_circ_size, head, tail)); 1578 mutex_exit(&wl->wl_mtx); 1579 1580 if (error) 1581 return error; 1582 1583 /* 1584 * This is where head, tail and delta are unprotected 1585 * from races against itself or flush. This is ok since 1586 * we only call this routine from inside flush itself. 1587 * 1588 * XXX: how can it race against itself when accessed only 1589 * from behind the write-locked rwlock? 1590 */ 1591 error = wapbl_write_commit(wl, head, tail); 1592 if (error) 1593 return error; 1594 1595 wl->wl_head = head; 1596 wl->wl_tail = tail; 1597 1598 mutex_enter(&wl->wl_mtx); 1599 KASSERT(wl->wl_reclaimable_bytes >= delta); 1600 wl->wl_reclaimable_bytes -= delta; 1601 mutex_exit(&wl->wl_mtx); 1602 WAPBL_PRINTF(WAPBL_PRINT_TRUNCATE, 1603 ("wapbl_truncate thread %d.%d truncating %zu bytes\n", 1604 curproc->p_pid, curlwp->l_lid, delta)); 1605 1606 return 0; 1607 } 1608 1609 /****************************************************************/ 1610 1611 void 1612 wapbl_biodone(struct buf *bp) 1613 { 1614 struct wapbl_entry *we = bp->b_private; 1615 struct wapbl *wl = we->we_wapbl; 1616 #ifdef WAPBL_DEBUG_BUFBYTES 1617 const int bufsize = bp->b_bufsize; 1618 #endif 1619 1620 /* 1621 * Handle possible flushing of buffers after log has been 1622 * decomissioned. 1623 */ 1624 if (!wl) { 1625 KASSERT(we->we_bufcount > 0); 1626 we->we_bufcount--; 1627 #ifdef WAPBL_DEBUG_BUFBYTES 1628 KASSERT(we->we_unsynced_bufbytes >= bufsize); 1629 we->we_unsynced_bufbytes -= bufsize; 1630 #endif 1631 1632 if (we->we_bufcount == 0) { 1633 #ifdef WAPBL_DEBUG_BUFBYTES 1634 KASSERT(we->we_unsynced_bufbytes == 0); 1635 #endif 1636 pool_put(&wapbl_entry_pool, we); 1637 } 1638 1639 brelse(bp, 0); 1640 return; 1641 } 1642 1643 #ifdef ohbother 1644 KDASSERT(bp->b_oflags & BO_DONE); 1645 KDASSERT(!(bp->b_oflags & BO_DELWRI)); 1646 KDASSERT(bp->b_flags & B_ASYNC); 1647 KDASSERT(bp->b_cflags & BC_BUSY); 1648 KDASSERT(!(bp->b_flags & B_LOCKED)); 1649 KDASSERT(!(bp->b_flags & B_READ)); 1650 KDASSERT(!(bp->b_cflags & BC_INVAL)); 1651 KDASSERT(!(bp->b_cflags & BC_NOCACHE)); 1652 #endif 1653 1654 if (bp->b_error) { 1655 /* 1656 * If an error occurs, it would be nice to leave the buffer 1657 * as a delayed write on the LRU queue so that we can retry 1658 * it later. But buffercache(9) can't handle dirty buffer 1659 * reuse, so just mark the log permanently errored out. 1660 */ 1661 mutex_enter(&wl->wl_mtx); 1662 if (wl->wl_error_count == 0) { 1663 wl->wl_error_count++; 1664 cv_broadcast(&wl->wl_reclaimable_cv); 1665 } 1666 mutex_exit(&wl->wl_mtx); 1667 } 1668 1669 /* 1670 * Make sure that the buf doesn't retain the media flags, so that 1671 * e.g. wapbl_allow_fuadpo has immediate effect on any following I/O. 1672 * The flags will be set again if needed by another I/O. 1673 */ 1674 bp->b_flags &= ~B_MEDIA_FLAGS; 1675 1676 /* 1677 * Release the buffer here. wapbl_flush() may wait for the 1678 * log to become empty and we better unbusy the buffer before 1679 * wapbl_flush() returns. 1680 */ 1681 brelse(bp, 0); 1682 1683 mutex_enter(&wl->wl_mtx); 1684 1685 KASSERT(we->we_bufcount > 0); 1686 we->we_bufcount--; 1687 #ifdef WAPBL_DEBUG_BUFBYTES 1688 KASSERT(we->we_unsynced_bufbytes >= bufsize); 1689 we->we_unsynced_bufbytes -= bufsize; 1690 KASSERT(wl->wl_unsynced_bufbytes >= bufsize); 1691 wl->wl_unsynced_bufbytes -= bufsize; 1692 #endif 1693 wl->wl_ev_metawrite.ev_count++; 1694 1695 /* 1696 * If the current transaction can be reclaimed, start 1697 * at the beginning and reclaim any consecutive reclaimable 1698 * transactions. If we successfully reclaim anything, 1699 * then wakeup anyone waiting for the reclaim. 1700 */ 1701 if (we->we_bufcount == 0) { 1702 size_t delta = 0; 1703 int errcnt = 0; 1704 #ifdef WAPBL_DEBUG_BUFBYTES 1705 KDASSERT(we->we_unsynced_bufbytes == 0); 1706 #endif 1707 /* 1708 * clear any posted error, since the buffer it came from 1709 * has successfully flushed by now 1710 */ 1711 while ((we = SIMPLEQ_FIRST(&wl->wl_entries)) && 1712 (we->we_bufcount == 0)) { 1713 delta += we->we_reclaimable_bytes; 1714 if (we->we_error) 1715 errcnt++; 1716 SIMPLEQ_REMOVE_HEAD(&wl->wl_entries, we_entries); 1717 pool_put(&wapbl_entry_pool, we); 1718 } 1719 1720 if (delta) { 1721 wl->wl_reclaimable_bytes += delta; 1722 KASSERT(wl->wl_error_count >= errcnt); 1723 wl->wl_error_count -= errcnt; 1724 cv_broadcast(&wl->wl_reclaimable_cv); 1725 } 1726 } 1727 1728 mutex_exit(&wl->wl_mtx); 1729 } 1730 1731 /* 1732 * wapbl_flush(wl, wait) 1733 * 1734 * Flush pending block writes, deallocations, and inodes from 1735 * the current transaction in memory to the log on disk: 1736 * 1737 * 1. Call the file system's wl_flush callback to flush any 1738 * per-file-system pending updates. 1739 * 2. Wait for enough space in the log for the current transaction. 1740 * 3. Synchronously write the new log records, advancing the 1741 * circular queue head. 1742 * 4. Issue the pending block writes asynchronously, now that they 1743 * are recorded in the log and can be replayed after crash. 1744 * 5. If wait is true, wait for all writes to complete and for the 1745 * log to become empty. 1746 * 1747 * On failure, call the file system's wl_flush_abort callback. 1748 */ 1749 int 1750 wapbl_flush(struct wapbl *wl, int waitfor) 1751 { 1752 struct buf *bp; 1753 struct wapbl_entry *we; 1754 off_t off; 1755 off_t head; 1756 off_t tail; 1757 size_t delta = 0; 1758 size_t flushsize; 1759 size_t reserved; 1760 int error = 0; 1761 1762 /* 1763 * Do a quick check to see if a full flush can be skipped 1764 * This assumes that the flush callback does not need to be called 1765 * unless there are other outstanding bufs. 1766 */ 1767 if (!waitfor) { 1768 size_t nbufs; 1769 mutex_enter(&wl->wl_mtx); /* XXX need mutex here to 1770 protect the KASSERTS */ 1771 nbufs = wl->wl_bufcount; 1772 KASSERT((wl->wl_bufcount == 0) == (wl->wl_bufbytes == 0)); 1773 KASSERT((wl->wl_bufcount == 0) == (wl->wl_bcount == 0)); 1774 mutex_exit(&wl->wl_mtx); 1775 if (nbufs == 0) 1776 return 0; 1777 } 1778 1779 /* 1780 * XXX we may consider using LK_UPGRADE here 1781 * if we want to call flush from inside a transaction 1782 */ 1783 rw_enter(&wl->wl_rwlock, RW_WRITER); 1784 wl->wl_flush(wl->wl_mount, TAILQ_FIRST(&wl->wl_dealloclist)); 1785 1786 /* 1787 * Now that we are exclusively locked and the file system has 1788 * issued any deferred block writes for this transaction, check 1789 * whether there are any blocks to write to the log. If not, 1790 * skip waiting for space or writing any log entries. 1791 * 1792 * XXX Shouldn't this also check wl_dealloccnt and 1793 * wl_inohashcnt? Perhaps wl_dealloccnt doesn't matter if the 1794 * file system didn't produce any blocks as a consequence of 1795 * it, but the same does not seem to be so of wl_inohashcnt. 1796 */ 1797 if (wl->wl_bufcount == 0) { 1798 goto wait_out; 1799 } 1800 1801 #if 0 1802 WAPBL_PRINTF(WAPBL_PRINT_FLUSH, 1803 ("wapbl_flush thread %d.%d flushing entries with " 1804 "bufcount=%zu bufbytes=%zu\n", 1805 curproc->p_pid, curlwp->l_lid, wl->wl_bufcount, 1806 wl->wl_bufbytes)); 1807 #endif 1808 1809 /* Calculate amount of space needed to flush */ 1810 flushsize = wapbl_transaction_len(wl); 1811 if (wapbl_verbose_commit) { 1812 struct timespec ts; 1813 getnanotime(&ts); 1814 printf("%s: %lld.%09ld this transaction = %zu bytes\n", 1815 __func__, (long long)ts.tv_sec, 1816 (long)ts.tv_nsec, flushsize); 1817 } 1818 1819 if (flushsize > (wl->wl_circ_size - wl->wl_reserved_bytes)) { 1820 /* 1821 * XXX this could be handled more gracefully, perhaps place 1822 * only a partial transaction in the log and allow the 1823 * remaining to flush without the protection of the journal. 1824 */ 1825 panic("wapbl_flush: current transaction too big to flush"); 1826 } 1827 1828 error = wapbl_truncate(wl, flushsize); 1829 if (error) 1830 goto out; 1831 1832 off = wl->wl_head; 1833 KASSERT((off == 0) || (off >= wl->wl_circ_off)); 1834 KASSERT((off == 0) || (off < wl->wl_circ_off + wl->wl_circ_size)); 1835 error = wapbl_write_blocks(wl, &off); 1836 if (error) 1837 goto out; 1838 error = wapbl_write_revocations(wl, &off); 1839 if (error) 1840 goto out; 1841 error = wapbl_write_inodes(wl, &off); 1842 if (error) 1843 goto out; 1844 1845 reserved = 0; 1846 if (wl->wl_inohashcnt) 1847 reserved = wapbl_transaction_inodes_len(wl); 1848 1849 head = wl->wl_head; 1850 tail = wl->wl_tail; 1851 1852 wapbl_advance_head(wl->wl_circ_size, wl->wl_circ_off, flushsize, 1853 &head, &tail); 1854 1855 KASSERTMSG(head == off, 1856 "lost head! head=%"PRIdMAX" tail=%" PRIdMAX 1857 " off=%"PRIdMAX" flush=%zu", 1858 (intmax_t)head, (intmax_t)tail, (intmax_t)off, 1859 flushsize); 1860 1861 /* Opportunistically move the tail forward if we can */ 1862 mutex_enter(&wl->wl_mtx); 1863 delta = wl->wl_reclaimable_bytes; 1864 mutex_exit(&wl->wl_mtx); 1865 wapbl_advance_tail(wl->wl_circ_size, wl->wl_circ_off, delta, 1866 &head, &tail); 1867 1868 error = wapbl_write_commit(wl, head, tail); 1869 if (error) 1870 goto out; 1871 1872 we = pool_get(&wapbl_entry_pool, PR_WAITOK); 1873 1874 #ifdef WAPBL_DEBUG_BUFBYTES 1875 WAPBL_PRINTF(WAPBL_PRINT_FLUSH, 1876 ("wapbl_flush: thread %d.%d head+=%zu tail+=%zu used=%zu" 1877 " unsynced=%zu" 1878 "\n\tbufcount=%zu bufbytes=%zu bcount=%zu deallocs=%d " 1879 "inodes=%d\n", 1880 curproc->p_pid, curlwp->l_lid, flushsize, delta, 1881 wapbl_space_used(wl->wl_circ_size, head, tail), 1882 wl->wl_unsynced_bufbytes, wl->wl_bufcount, 1883 wl->wl_bufbytes, wl->wl_bcount, wl->wl_dealloccnt, 1884 wl->wl_inohashcnt)); 1885 #else 1886 WAPBL_PRINTF(WAPBL_PRINT_FLUSH, 1887 ("wapbl_flush: thread %d.%d head+=%zu tail+=%zu used=%zu" 1888 "\n\tbufcount=%zu bufbytes=%zu bcount=%zu deallocs=%d " 1889 "inodes=%d\n", 1890 curproc->p_pid, curlwp->l_lid, flushsize, delta, 1891 wapbl_space_used(wl->wl_circ_size, head, tail), 1892 wl->wl_bufcount, wl->wl_bufbytes, wl->wl_bcount, 1893 wl->wl_dealloccnt, wl->wl_inohashcnt)); 1894 #endif 1895 1896 1897 mutex_enter(&bufcache_lock); 1898 mutex_enter(&wl->wl_mtx); 1899 1900 wl->wl_reserved_bytes = reserved; 1901 wl->wl_head = head; 1902 wl->wl_tail = tail; 1903 KASSERT(wl->wl_reclaimable_bytes >= delta); 1904 wl->wl_reclaimable_bytes -= delta; 1905 KDASSERT(wl->wl_dealloccnt == 0); 1906 #ifdef WAPBL_DEBUG_BUFBYTES 1907 wl->wl_unsynced_bufbytes += wl->wl_bufbytes; 1908 #endif 1909 1910 we->we_wapbl = wl; 1911 we->we_bufcount = wl->wl_bufcount; 1912 #ifdef WAPBL_DEBUG_BUFBYTES 1913 we->we_unsynced_bufbytes = wl->wl_bufbytes; 1914 #endif 1915 we->we_reclaimable_bytes = flushsize; 1916 we->we_error = 0; 1917 SIMPLEQ_INSERT_TAIL(&wl->wl_entries, we, we_entries); 1918 1919 /* 1920 * This flushes bufs in order than they were queued, so the LRU 1921 * order is preserved. 1922 */ 1923 while ((bp = TAILQ_FIRST(&wl->wl_bufs)) != NULL) { 1924 if (bbusy(bp, 0, 0, &wl->wl_mtx)) { 1925 continue; 1926 } 1927 bp->b_iodone = wapbl_biodone; 1928 bp->b_private = we; 1929 1930 bremfree(bp); 1931 wapbl_remove_buf_locked(wl, bp); 1932 mutex_exit(&wl->wl_mtx); 1933 mutex_exit(&bufcache_lock); 1934 bawrite(bp); 1935 mutex_enter(&bufcache_lock); 1936 mutex_enter(&wl->wl_mtx); 1937 } 1938 mutex_exit(&wl->wl_mtx); 1939 mutex_exit(&bufcache_lock); 1940 1941 #if 0 1942 WAPBL_PRINTF(WAPBL_PRINT_FLUSH, 1943 ("wapbl_flush thread %d.%d done flushing entries...\n", 1944 curproc->p_pid, curlwp->l_lid)); 1945 #endif 1946 1947 wait_out: 1948 1949 /* 1950 * If the waitfor flag is set, don't return until everything is 1951 * fully flushed and the on disk log is empty. 1952 */ 1953 if (waitfor) { 1954 error = wapbl_truncate(wl, wl->wl_circ_size - 1955 wl->wl_reserved_bytes); 1956 } 1957 1958 out: 1959 if (error) { 1960 wl->wl_flush_abort(wl->wl_mount, 1961 TAILQ_FIRST(&wl->wl_dealloclist)); 1962 } 1963 1964 #ifdef WAPBL_DEBUG_PRINT 1965 if (error) { 1966 pid_t pid = -1; 1967 lwpid_t lid = -1; 1968 if (curproc) 1969 pid = curproc->p_pid; 1970 if (curlwp) 1971 lid = curlwp->l_lid; 1972 mutex_enter(&wl->wl_mtx); 1973 #ifdef WAPBL_DEBUG_BUFBYTES 1974 WAPBL_PRINTF(WAPBL_PRINT_ERROR, 1975 ("wapbl_flush: thread %d.%d aborted flush: " 1976 "error = %d\n" 1977 "\tbufcount=%zu bufbytes=%zu bcount=%zu " 1978 "deallocs=%d inodes=%d\n" 1979 "\terrcnt = %d, reclaimable=%zu reserved=%zu " 1980 "unsynced=%zu\n", 1981 pid, lid, error, wl->wl_bufcount, 1982 wl->wl_bufbytes, wl->wl_bcount, 1983 wl->wl_dealloccnt, wl->wl_inohashcnt, 1984 wl->wl_error_count, wl->wl_reclaimable_bytes, 1985 wl->wl_reserved_bytes, wl->wl_unsynced_bufbytes)); 1986 SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) { 1987 WAPBL_PRINTF(WAPBL_PRINT_ERROR, 1988 ("\tentry: bufcount = %zu, reclaimable = %zu, " 1989 "error = %d, unsynced = %zu\n", 1990 we->we_bufcount, we->we_reclaimable_bytes, 1991 we->we_error, we->we_unsynced_bufbytes)); 1992 } 1993 #else 1994 WAPBL_PRINTF(WAPBL_PRINT_ERROR, 1995 ("wapbl_flush: thread %d.%d aborted flush: " 1996 "error = %d\n" 1997 "\tbufcount=%zu bufbytes=%zu bcount=%zu " 1998 "deallocs=%d inodes=%d\n" 1999 "\terrcnt = %d, reclaimable=%zu reserved=%zu\n", 2000 pid, lid, error, wl->wl_bufcount, 2001 wl->wl_bufbytes, wl->wl_bcount, 2002 wl->wl_dealloccnt, wl->wl_inohashcnt, 2003 wl->wl_error_count, wl->wl_reclaimable_bytes, 2004 wl->wl_reserved_bytes)); 2005 SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) { 2006 WAPBL_PRINTF(WAPBL_PRINT_ERROR, 2007 ("\tentry: bufcount = %zu, reclaimable = %zu, " 2008 "error = %d\n", we->we_bufcount, 2009 we->we_reclaimable_bytes, we->we_error)); 2010 } 2011 #endif 2012 mutex_exit(&wl->wl_mtx); 2013 } 2014 #endif 2015 2016 rw_exit(&wl->wl_rwlock); 2017 return error; 2018 } 2019 2020 /****************************************************************/ 2021 2022 void 2023 wapbl_jlock_assert(struct wapbl *wl) 2024 { 2025 2026 KASSERT(rw_lock_held(&wl->wl_rwlock)); 2027 } 2028 2029 void 2030 wapbl_junlock_assert(struct wapbl *wl) 2031 { 2032 2033 KASSERT(!rw_write_held(&wl->wl_rwlock)); 2034 } 2035 2036 /****************************************************************/ 2037 2038 /* locks missing */ 2039 void 2040 wapbl_print(struct wapbl *wl, 2041 int full, 2042 void (*pr)(const char *, ...)) 2043 { 2044 struct buf *bp; 2045 struct wapbl_entry *we; 2046 (*pr)("wapbl %p", wl); 2047 (*pr)("\nlogvp = %p, devvp = %p, logpbn = %"PRId64"\n", 2048 wl->wl_logvp, wl->wl_devvp, wl->wl_logpbn); 2049 (*pr)("circ = %zu, header = %zu, head = %"PRIdMAX" tail = %"PRIdMAX"\n", 2050 wl->wl_circ_size, wl->wl_circ_off, 2051 (intmax_t)wl->wl_head, (intmax_t)wl->wl_tail); 2052 (*pr)("fs_dev_bshift = %d, log_dev_bshift = %d\n", 2053 wl->wl_log_dev_bshift, wl->wl_fs_dev_bshift); 2054 #ifdef WAPBL_DEBUG_BUFBYTES 2055 (*pr)("bufcount = %zu, bufbytes = %zu bcount = %zu reclaimable = %zu " 2056 "reserved = %zu errcnt = %d unsynced = %zu\n", 2057 wl->wl_bufcount, wl->wl_bufbytes, wl->wl_bcount, 2058 wl->wl_reclaimable_bytes, wl->wl_reserved_bytes, 2059 wl->wl_error_count, wl->wl_unsynced_bufbytes); 2060 #else 2061 (*pr)("bufcount = %zu, bufbytes = %zu bcount = %zu reclaimable = %zu " 2062 "reserved = %zu errcnt = %d\n", wl->wl_bufcount, wl->wl_bufbytes, 2063 wl->wl_bcount, wl->wl_reclaimable_bytes, wl->wl_reserved_bytes, 2064 wl->wl_error_count); 2065 #endif 2066 (*pr)("\tdealloccnt = %d, dealloclim = %d\n", 2067 wl->wl_dealloccnt, wl->wl_dealloclim); 2068 (*pr)("\tinohashcnt = %d, inohashmask = 0x%08x\n", 2069 wl->wl_inohashcnt, wl->wl_inohashmask); 2070 (*pr)("entries:\n"); 2071 SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) { 2072 #ifdef WAPBL_DEBUG_BUFBYTES 2073 (*pr)("\tbufcount = %zu, reclaimable = %zu, error = %d, " 2074 "unsynced = %zu\n", 2075 we->we_bufcount, we->we_reclaimable_bytes, 2076 we->we_error, we->we_unsynced_bufbytes); 2077 #else 2078 (*pr)("\tbufcount = %zu, reclaimable = %zu, error = %d\n", 2079 we->we_bufcount, we->we_reclaimable_bytes, we->we_error); 2080 #endif 2081 } 2082 if (full) { 2083 int cnt = 0; 2084 (*pr)("bufs ="); 2085 TAILQ_FOREACH(bp, &wl->wl_bufs, b_wapbllist) { 2086 if (!TAILQ_NEXT(bp, b_wapbllist)) { 2087 (*pr)(" %p", bp); 2088 } else if ((++cnt % 6) == 0) { 2089 (*pr)(" %p,\n\t", bp); 2090 } else { 2091 (*pr)(" %p,", bp); 2092 } 2093 } 2094 (*pr)("\n"); 2095 2096 (*pr)("dealloced blks = "); 2097 { 2098 struct wapbl_dealloc *wd; 2099 cnt = 0; 2100 TAILQ_FOREACH(wd, &wl->wl_dealloclist, wd_entries) { 2101 (*pr)(" %"PRId64":%d,", 2102 wd->wd_blkno, 2103 wd->wd_len); 2104 if ((++cnt % 4) == 0) { 2105 (*pr)("\n\t"); 2106 } 2107 } 2108 } 2109 (*pr)("\n"); 2110 2111 (*pr)("registered inodes = "); 2112 { 2113 int i; 2114 cnt = 0; 2115 for (i = 0; i <= wl->wl_inohashmask; i++) { 2116 struct wapbl_ino_head *wih; 2117 struct wapbl_ino *wi; 2118 2119 wih = &wl->wl_inohash[i]; 2120 LIST_FOREACH(wi, wih, wi_hash) { 2121 if (wi->wi_ino == 0) 2122 continue; 2123 (*pr)(" %"PRIu64"/0%06"PRIo32",", 2124 wi->wi_ino, wi->wi_mode); 2125 if ((++cnt % 4) == 0) { 2126 (*pr)("\n\t"); 2127 } 2128 } 2129 } 2130 (*pr)("\n"); 2131 } 2132 2133 (*pr)("iobufs free ="); 2134 TAILQ_FOREACH(bp, &wl->wl_iobufs, b_wapbllist) { 2135 if (!TAILQ_NEXT(bp, b_wapbllist)) { 2136 (*pr)(" %p", bp); 2137 } else if ((++cnt % 6) == 0) { 2138 (*pr)(" %p,\n\t", bp); 2139 } else { 2140 (*pr)(" %p,", bp); 2141 } 2142 } 2143 (*pr)("\n"); 2144 2145 (*pr)("iobufs busy ="); 2146 TAILQ_FOREACH(bp, &wl->wl_iobufs_busy, b_wapbllist) { 2147 if (!TAILQ_NEXT(bp, b_wapbllist)) { 2148 (*pr)(" %p", bp); 2149 } else if ((++cnt % 6) == 0) { 2150 (*pr)(" %p,\n\t", bp); 2151 } else { 2152 (*pr)(" %p,", bp); 2153 } 2154 } 2155 (*pr)("\n"); 2156 } 2157 } 2158 2159 #if defined(WAPBL_DEBUG) || defined(DDB) 2160 void 2161 wapbl_dump(struct wapbl *wl) 2162 { 2163 #if defined(WAPBL_DEBUG) 2164 if (!wl) 2165 wl = wapbl_debug_wl; 2166 #endif 2167 if (!wl) 2168 return; 2169 wapbl_print(wl, 1, printf); 2170 } 2171 #endif 2172 2173 /****************************************************************/ 2174 2175 int 2176 wapbl_register_deallocation(struct wapbl *wl, daddr_t blk, int len, bool force, 2177 void **cookiep) 2178 { 2179 struct wapbl_dealloc *wd; 2180 int error = 0; 2181 2182 wapbl_jlock_assert(wl); 2183 2184 mutex_enter(&wl->wl_mtx); 2185 2186 if (__predict_false(wl->wl_dealloccnt >= wl->wl_dealloclim)) { 2187 if (!force) { 2188 error = EAGAIN; 2189 goto out; 2190 } 2191 2192 /* 2193 * Forced registration can only be used when: 2194 * 1) the caller can't cope with failure 2195 * 2) the path can be triggered only bounded, small 2196 * times per transaction 2197 * If this is not fullfilled, and the path would be triggered 2198 * many times, this could overflow maximum transaction size 2199 * and panic later. 2200 */ 2201 printf("%s: forced dealloc registration over limit: %d >= %d\n", 2202 wl->wl_mount->mnt_stat.f_mntonname, 2203 wl->wl_dealloccnt, wl->wl_dealloclim); 2204 } 2205 2206 wl->wl_dealloccnt++; 2207 mutex_exit(&wl->wl_mtx); 2208 2209 wd = pool_get(&wapbl_dealloc_pool, PR_WAITOK); 2210 wd->wd_blkno = blk; 2211 wd->wd_len = len; 2212 2213 mutex_enter(&wl->wl_mtx); 2214 TAILQ_INSERT_TAIL(&wl->wl_dealloclist, wd, wd_entries); 2215 2216 if (cookiep) 2217 *cookiep = wd; 2218 2219 out: 2220 mutex_exit(&wl->wl_mtx); 2221 2222 WAPBL_PRINTF(WAPBL_PRINT_ALLOC, 2223 ("wapbl_register_deallocation: blk=%"PRId64" len=%d error=%d\n", 2224 blk, len, error)); 2225 2226 return error; 2227 } 2228 2229 static void 2230 wapbl_deallocation_free(struct wapbl *wl, struct wapbl_dealloc *wd, 2231 bool locked) 2232 { 2233 KASSERT(!locked 2234 || rw_lock_held(&wl->wl_rwlock) || mutex_owned(&wl->wl_mtx)); 2235 2236 if (!locked) 2237 mutex_enter(&wl->wl_mtx); 2238 2239 TAILQ_REMOVE(&wl->wl_dealloclist, wd, wd_entries); 2240 wl->wl_dealloccnt--; 2241 2242 if (!locked) 2243 mutex_exit(&wl->wl_mtx); 2244 2245 pool_put(&wapbl_dealloc_pool, wd); 2246 } 2247 2248 void 2249 wapbl_unregister_deallocation(struct wapbl *wl, void *cookie) 2250 { 2251 KASSERT(cookie != NULL); 2252 wapbl_deallocation_free(wl, cookie, false); 2253 } 2254 2255 /****************************************************************/ 2256 2257 static void 2258 wapbl_inodetrk_init(struct wapbl *wl, u_int size) 2259 { 2260 2261 wl->wl_inohash = hashinit(size, HASH_LIST, true, &wl->wl_inohashmask); 2262 if (atomic_inc_uint_nv(&wapbl_ino_pool_refcount) == 1) { 2263 pool_init(&wapbl_ino_pool, sizeof(struct wapbl_ino), 0, 0, 0, 2264 "wapblinopl", &pool_allocator_nointr, IPL_NONE); 2265 } 2266 } 2267 2268 static void 2269 wapbl_inodetrk_free(struct wapbl *wl) 2270 { 2271 2272 /* XXX this KASSERT needs locking/mutex analysis */ 2273 KASSERT(wl->wl_inohashcnt == 0); 2274 hashdone(wl->wl_inohash, HASH_LIST, wl->wl_inohashmask); 2275 if (atomic_dec_uint_nv(&wapbl_ino_pool_refcount) == 0) { 2276 pool_destroy(&wapbl_ino_pool); 2277 } 2278 } 2279 2280 static struct wapbl_ino * 2281 wapbl_inodetrk_get(struct wapbl *wl, ino_t ino) 2282 { 2283 struct wapbl_ino_head *wih; 2284 struct wapbl_ino *wi; 2285 2286 KASSERT(mutex_owned(&wl->wl_mtx)); 2287 2288 wih = &wl->wl_inohash[ino & wl->wl_inohashmask]; 2289 LIST_FOREACH(wi, wih, wi_hash) { 2290 if (ino == wi->wi_ino) 2291 return wi; 2292 } 2293 return 0; 2294 } 2295 2296 void 2297 wapbl_register_inode(struct wapbl *wl, ino_t ino, mode_t mode) 2298 { 2299 struct wapbl_ino_head *wih; 2300 struct wapbl_ino *wi; 2301 2302 wi = pool_get(&wapbl_ino_pool, PR_WAITOK); 2303 2304 mutex_enter(&wl->wl_mtx); 2305 if (wapbl_inodetrk_get(wl, ino) == NULL) { 2306 wi->wi_ino = ino; 2307 wi->wi_mode = mode; 2308 wih = &wl->wl_inohash[ino & wl->wl_inohashmask]; 2309 LIST_INSERT_HEAD(wih, wi, wi_hash); 2310 wl->wl_inohashcnt++; 2311 WAPBL_PRINTF(WAPBL_PRINT_INODE, 2312 ("wapbl_register_inode: ino=%"PRId64"\n", ino)); 2313 mutex_exit(&wl->wl_mtx); 2314 } else { 2315 mutex_exit(&wl->wl_mtx); 2316 pool_put(&wapbl_ino_pool, wi); 2317 } 2318 } 2319 2320 void 2321 wapbl_unregister_inode(struct wapbl *wl, ino_t ino, mode_t mode) 2322 { 2323 struct wapbl_ino *wi; 2324 2325 mutex_enter(&wl->wl_mtx); 2326 wi = wapbl_inodetrk_get(wl, ino); 2327 if (wi) { 2328 WAPBL_PRINTF(WAPBL_PRINT_INODE, 2329 ("wapbl_unregister_inode: ino=%"PRId64"\n", ino)); 2330 KASSERT(wl->wl_inohashcnt > 0); 2331 wl->wl_inohashcnt--; 2332 LIST_REMOVE(wi, wi_hash); 2333 mutex_exit(&wl->wl_mtx); 2334 2335 pool_put(&wapbl_ino_pool, wi); 2336 } else { 2337 mutex_exit(&wl->wl_mtx); 2338 } 2339 } 2340 2341 /****************************************************************/ 2342 2343 /* 2344 * wapbl_transaction_inodes_len(wl) 2345 * 2346 * Calculate the number of bytes required for inode registration 2347 * log records in wl. 2348 */ 2349 static inline size_t 2350 wapbl_transaction_inodes_len(struct wapbl *wl) 2351 { 2352 int blocklen = 1<<wl->wl_log_dev_bshift; 2353 int iph; 2354 2355 /* Calculate number of inodes described in a inodelist header */ 2356 iph = (blocklen - offsetof(struct wapbl_wc_inodelist, wc_inodes)) / 2357 sizeof(((struct wapbl_wc_inodelist *)0)->wc_inodes[0]); 2358 2359 KASSERT(iph > 0); 2360 2361 return MAX(1, howmany(wl->wl_inohashcnt, iph)) * blocklen; 2362 } 2363 2364 2365 /* 2366 * wapbl_transaction_len(wl) 2367 * 2368 * Calculate number of bytes required for all log records in wl. 2369 */ 2370 static size_t 2371 wapbl_transaction_len(struct wapbl *wl) 2372 { 2373 int blocklen = 1<<wl->wl_log_dev_bshift; 2374 size_t len; 2375 2376 /* Calculate number of blocks described in a blocklist header */ 2377 len = wl->wl_bcount; 2378 len += howmany(wl->wl_bufcount, wl->wl_brperjblock) * blocklen; 2379 len += howmany(wl->wl_dealloccnt, wl->wl_brperjblock) * blocklen; 2380 len += wapbl_transaction_inodes_len(wl); 2381 2382 return len; 2383 } 2384 2385 /* 2386 * wapbl_cache_sync(wl, msg) 2387 * 2388 * Issue DIOCCACHESYNC to wl->wl_devvp. 2389 * 2390 * If sysctl(vfs.wapbl.verbose_commit) >= 2, print a message 2391 * including msg about the duration of the cache sync. 2392 */ 2393 static int 2394 wapbl_cache_sync(struct wapbl *wl, const char *msg) 2395 { 2396 const bool verbose = wapbl_verbose_commit >= 2; 2397 struct bintime start_time; 2398 int force = 1; 2399 int error; 2400 2401 /* Skip full cache sync if disabled */ 2402 if (!wapbl_flush_disk_cache) { 2403 return 0; 2404 } 2405 if (verbose) { 2406 bintime(&start_time); 2407 } 2408 error = VOP_IOCTL(wl->wl_devvp, DIOCCACHESYNC, &force, 2409 FWRITE, FSCRED); 2410 if (error) { 2411 WAPBL_PRINTF(WAPBL_PRINT_ERROR, 2412 ("wapbl_cache_sync: DIOCCACHESYNC on dev 0x%jx " 2413 "returned %d\n", (uintmax_t)wl->wl_devvp->v_rdev, error)); 2414 } 2415 if (verbose) { 2416 struct bintime d; 2417 struct timespec ts; 2418 2419 bintime(&d); 2420 bintime_sub(&d, &start_time); 2421 bintime2timespec(&d, &ts); 2422 printf("wapbl_cache_sync: %s: dev 0x%jx %ju.%09lu\n", 2423 msg, (uintmax_t)wl->wl_devvp->v_rdev, 2424 (uintmax_t)ts.tv_sec, ts.tv_nsec); 2425 } 2426 2427 wl->wl_ev_cacheflush.ev_count++; 2428 2429 return error; 2430 } 2431 2432 /* 2433 * wapbl_write_commit(wl, head, tail) 2434 * 2435 * Issue a disk cache sync to wait for all pending writes to the 2436 * log to complete, and then synchronously commit the current 2437 * circular queue head and tail to the log, in the next of two 2438 * locations for commit headers on disk. 2439 * 2440 * Increment the generation number. If the generation number 2441 * rolls over to zero, then a subsequent commit would appear to 2442 * have an older generation than this one -- in that case, issue a 2443 * duplicate commit to avoid this. 2444 * 2445 * => Caller must have exclusive access to wl, either by holding 2446 * wl->wl_rwlock for writer or by being wapbl_start before anyone 2447 * else has seen wl. 2448 */ 2449 static int 2450 wapbl_write_commit(struct wapbl *wl, off_t head, off_t tail) 2451 { 2452 struct wapbl_wc_header *wc = wl->wl_wc_header; 2453 struct timespec ts; 2454 int error; 2455 daddr_t pbn; 2456 2457 error = wapbl_buffered_flush(wl, true); 2458 if (error) 2459 return error; 2460 /* 2461 * Flush disk cache to ensure that blocks we've written are actually 2462 * written to the stable storage before the commit header. 2463 * This flushes to disk not only journal blocks, but also all 2464 * metadata blocks, written asynchronously since previous commit. 2465 * 2466 * XXX Calc checksum here, instead we do this for now 2467 */ 2468 wapbl_cache_sync(wl, "1"); 2469 2470 wc->wc_head = head; 2471 wc->wc_tail = tail; 2472 wc->wc_checksum = 0; 2473 wc->wc_version = 1; 2474 getnanotime(&ts); 2475 wc->wc_time = ts.tv_sec; 2476 wc->wc_timensec = ts.tv_nsec; 2477 2478 WAPBL_PRINTF(WAPBL_PRINT_WRITE, 2479 ("wapbl_write_commit: head = %"PRIdMAX "tail = %"PRIdMAX"\n", 2480 (intmax_t)head, (intmax_t)tail)); 2481 2482 /* 2483 * write the commit header. 2484 * 2485 * XXX if generation will rollover, then first zero 2486 * over second commit header before trying to write both headers. 2487 */ 2488 2489 pbn = wl->wl_logpbn + (wc->wc_generation % 2); 2490 #ifdef _KERNEL 2491 pbn = btodb(pbn << wc->wc_log_dev_bshift); 2492 #endif 2493 error = wapbl_buffered_write(wc, wc->wc_len, wl, pbn, WAPBL_JFLAGS(wl)); 2494 if (error) 2495 return error; 2496 error = wapbl_buffered_flush(wl, true); 2497 if (error) 2498 return error; 2499 2500 /* 2501 * Flush disk cache to ensure that the commit header is actually 2502 * written before meta data blocks. Commit block is written using 2503 * FUA when enabled, in that case this flush is not needed. 2504 */ 2505 if (!WAPBL_USE_FUA(wl)) 2506 wapbl_cache_sync(wl, "2"); 2507 2508 /* 2509 * If the generation number was zero, write it out a second time. 2510 * This handles initialization and generation number rollover 2511 */ 2512 if (wc->wc_generation++ == 0) { 2513 error = wapbl_write_commit(wl, head, tail); 2514 /* 2515 * This panic should be able to be removed if we do the 2516 * zero'ing mentioned above, and we are certain to roll 2517 * back generation number on failure. 2518 */ 2519 if (error) 2520 panic("wapbl_write_commit: error writing duplicate " 2521 "log header: %d", error); 2522 } 2523 2524 wl->wl_ev_commit.ev_count++; 2525 2526 return 0; 2527 } 2528 2529 /* 2530 * wapbl_write_blocks(wl, offp) 2531 * 2532 * Write all pending physical blocks in the current transaction 2533 * from wapbl_add_buf to the log on disk, adding to the circular 2534 * queue head at byte offset *offp, and returning the new head's 2535 * byte offset in *offp. 2536 */ 2537 static int 2538 wapbl_write_blocks(struct wapbl *wl, off_t *offp) 2539 { 2540 struct wapbl_wc_blocklist *wc = 2541 (struct wapbl_wc_blocklist *)wl->wl_wc_scratch; 2542 int blocklen = 1<<wl->wl_log_dev_bshift; 2543 struct buf *bp; 2544 off_t off = *offp; 2545 int error; 2546 size_t padding; 2547 2548 KASSERT(rw_write_held(&wl->wl_rwlock)); 2549 2550 bp = TAILQ_FIRST(&wl->wl_bufs); 2551 2552 while (bp) { 2553 int cnt; 2554 struct buf *obp = bp; 2555 2556 KASSERT(bp->b_flags & B_LOCKED); 2557 2558 wc->wc_type = WAPBL_WC_BLOCKS; 2559 wc->wc_len = blocklen; 2560 wc->wc_blkcount = 0; 2561 while (bp && (wc->wc_blkcount < wl->wl_brperjblock)) { 2562 /* 2563 * Make sure all the physical block numbers are up to 2564 * date. If this is not always true on a given 2565 * filesystem, then VOP_BMAP must be called. We 2566 * could call VOP_BMAP here, or else in the filesystem 2567 * specific flush callback, although neither of those 2568 * solutions allow us to take the vnode lock. If a 2569 * filesystem requires that we must take the vnode lock 2570 * to call VOP_BMAP, then we can probably do it in 2571 * bwrite when the vnode lock should already be held 2572 * by the invoking code. 2573 */ 2574 KASSERT((bp->b_vp->v_type == VBLK) || 2575 (bp->b_blkno != bp->b_lblkno)); 2576 KASSERT(bp->b_blkno > 0); 2577 2578 wc->wc_blocks[wc->wc_blkcount].wc_daddr = bp->b_blkno; 2579 wc->wc_blocks[wc->wc_blkcount].wc_dlen = bp->b_bcount; 2580 wc->wc_len += bp->b_bcount; 2581 wc->wc_blkcount++; 2582 bp = TAILQ_NEXT(bp, b_wapbllist); 2583 } 2584 if (wc->wc_len % blocklen != 0) { 2585 padding = blocklen - wc->wc_len % blocklen; 2586 wc->wc_len += padding; 2587 } else { 2588 padding = 0; 2589 } 2590 2591 WAPBL_PRINTF(WAPBL_PRINT_WRITE, 2592 ("wapbl_write_blocks: len = %u (padding %zu) off = %"PRIdMAX"\n", 2593 wc->wc_len, padding, (intmax_t)off)); 2594 2595 error = wapbl_circ_write(wl, wc, blocklen, &off); 2596 if (error) 2597 return error; 2598 bp = obp; 2599 cnt = 0; 2600 while (bp && (cnt++ < wl->wl_brperjblock)) { 2601 error = wapbl_circ_write(wl, bp->b_data, 2602 bp->b_bcount, &off); 2603 if (error) 2604 return error; 2605 bp = TAILQ_NEXT(bp, b_wapbllist); 2606 } 2607 if (padding) { 2608 void *zero; 2609 2610 zero = wapbl_alloc(padding); 2611 memset(zero, 0, padding); 2612 error = wapbl_circ_write(wl, zero, padding, &off); 2613 wapbl_free(zero, padding); 2614 if (error) 2615 return error; 2616 } 2617 } 2618 *offp = off; 2619 return 0; 2620 } 2621 2622 /* 2623 * wapbl_write_revocations(wl, offp) 2624 * 2625 * Write all pending deallocations in the current transaction from 2626 * wapbl_register_deallocation to the log on disk, adding to the 2627 * circular queue's head at byte offset *offp, and returning the 2628 * new head's byte offset in *offp. 2629 */ 2630 static int 2631 wapbl_write_revocations(struct wapbl *wl, off_t *offp) 2632 { 2633 struct wapbl_wc_blocklist *wc = 2634 (struct wapbl_wc_blocklist *)wl->wl_wc_scratch; 2635 struct wapbl_dealloc *wd, *lwd; 2636 int blocklen = 1<<wl->wl_log_dev_bshift; 2637 off_t off = *offp; 2638 int error; 2639 2640 KASSERT(rw_write_held(&wl->wl_rwlock)); 2641 2642 if (wl->wl_dealloccnt == 0) 2643 return 0; 2644 2645 while ((wd = TAILQ_FIRST(&wl->wl_dealloclist)) != NULL) { 2646 wc->wc_type = WAPBL_WC_REVOCATIONS; 2647 wc->wc_len = blocklen; 2648 wc->wc_blkcount = 0; 2649 while (wd && (wc->wc_blkcount < wl->wl_brperjblock)) { 2650 wc->wc_blocks[wc->wc_blkcount].wc_daddr = 2651 wd->wd_blkno; 2652 wc->wc_blocks[wc->wc_blkcount].wc_dlen = 2653 wd->wd_len; 2654 wc->wc_blkcount++; 2655 2656 wd = TAILQ_NEXT(wd, wd_entries); 2657 } 2658 WAPBL_PRINTF(WAPBL_PRINT_WRITE, 2659 ("wapbl_write_revocations: len = %u off = %"PRIdMAX"\n", 2660 wc->wc_len, (intmax_t)off)); 2661 error = wapbl_circ_write(wl, wc, blocklen, &off); 2662 if (error) 2663 return error; 2664 2665 /* free all successfully written deallocs */ 2666 lwd = wd; 2667 while ((wd = TAILQ_FIRST(&wl->wl_dealloclist)) != NULL) { 2668 if (wd == lwd) 2669 break; 2670 wapbl_deallocation_free(wl, wd, true); 2671 } 2672 } 2673 *offp = off; 2674 return 0; 2675 } 2676 2677 /* 2678 * wapbl_write_inodes(wl, offp) 2679 * 2680 * Write all pending inode allocations in the current transaction 2681 * from wapbl_register_inode to the log on disk, adding to the 2682 * circular queue's head at byte offset *offp and returning the 2683 * new head's byte offset in *offp. 2684 */ 2685 static int 2686 wapbl_write_inodes(struct wapbl *wl, off_t *offp) 2687 { 2688 struct wapbl_wc_inodelist *wc = 2689 (struct wapbl_wc_inodelist *)wl->wl_wc_scratch; 2690 int i; 2691 int blocklen = 1 << wl->wl_log_dev_bshift; 2692 off_t off = *offp; 2693 int error; 2694 2695 struct wapbl_ino_head *wih; 2696 struct wapbl_ino *wi; 2697 int iph; 2698 2699 iph = (blocklen - offsetof(struct wapbl_wc_inodelist, wc_inodes)) / 2700 sizeof(((struct wapbl_wc_inodelist *)0)->wc_inodes[0]); 2701 2702 i = 0; 2703 wih = &wl->wl_inohash[0]; 2704 wi = 0; 2705 do { 2706 wc->wc_type = WAPBL_WC_INODES; 2707 wc->wc_len = blocklen; 2708 wc->wc_inocnt = 0; 2709 wc->wc_clear = (i == 0); 2710 while ((i < wl->wl_inohashcnt) && (wc->wc_inocnt < iph)) { 2711 while (!wi) { 2712 KASSERT((wih - &wl->wl_inohash[0]) 2713 <= wl->wl_inohashmask); 2714 wi = LIST_FIRST(wih++); 2715 } 2716 wc->wc_inodes[wc->wc_inocnt].wc_inumber = wi->wi_ino; 2717 wc->wc_inodes[wc->wc_inocnt].wc_imode = wi->wi_mode; 2718 wc->wc_inocnt++; 2719 i++; 2720 wi = LIST_NEXT(wi, wi_hash); 2721 } 2722 WAPBL_PRINTF(WAPBL_PRINT_WRITE, 2723 ("wapbl_write_inodes: len = %u off = %"PRIdMAX"\n", 2724 wc->wc_len, (intmax_t)off)); 2725 error = wapbl_circ_write(wl, wc, blocklen, &off); 2726 if (error) 2727 return error; 2728 } while (i < wl->wl_inohashcnt); 2729 2730 *offp = off; 2731 return 0; 2732 } 2733 2734 #endif /* _KERNEL */ 2735 2736 /****************************************************************/ 2737 2738 struct wapbl_blk { 2739 LIST_ENTRY(wapbl_blk) wb_hash; 2740 daddr_t wb_blk; 2741 off_t wb_off; /* Offset of this block in the log */ 2742 }; 2743 #define WAPBL_BLKPOOL_MIN 83 2744 2745 static void 2746 wapbl_blkhash_init(struct wapbl_replay *wr, u_int size) 2747 { 2748 if (size < WAPBL_BLKPOOL_MIN) 2749 size = WAPBL_BLKPOOL_MIN; 2750 KASSERT(wr->wr_blkhash == 0); 2751 #ifdef _KERNEL 2752 wr->wr_blkhash = hashinit(size, HASH_LIST, true, &wr->wr_blkhashmask); 2753 #else /* ! _KERNEL */ 2754 /* Manually implement hashinit */ 2755 { 2756 unsigned long i, hashsize; 2757 for (hashsize = 1; hashsize < size; hashsize <<= 1) 2758 continue; 2759 wr->wr_blkhash = wapbl_alloc(hashsize * sizeof(*wr->wr_blkhash)); 2760 for (i = 0; i < hashsize; i++) 2761 LIST_INIT(&wr->wr_blkhash[i]); 2762 wr->wr_blkhashmask = hashsize - 1; 2763 } 2764 #endif /* ! _KERNEL */ 2765 } 2766 2767 static void 2768 wapbl_blkhash_free(struct wapbl_replay *wr) 2769 { 2770 KASSERT(wr->wr_blkhashcnt == 0); 2771 #ifdef _KERNEL 2772 hashdone(wr->wr_blkhash, HASH_LIST, wr->wr_blkhashmask); 2773 #else /* ! _KERNEL */ 2774 wapbl_free(wr->wr_blkhash, 2775 (wr->wr_blkhashmask + 1) * sizeof(*wr->wr_blkhash)); 2776 #endif /* ! _KERNEL */ 2777 } 2778 2779 static struct wapbl_blk * 2780 wapbl_blkhash_get(struct wapbl_replay *wr, daddr_t blk) 2781 { 2782 struct wapbl_blk_head *wbh; 2783 struct wapbl_blk *wb; 2784 wbh = &wr->wr_blkhash[blk & wr->wr_blkhashmask]; 2785 LIST_FOREACH(wb, wbh, wb_hash) { 2786 if (blk == wb->wb_blk) 2787 return wb; 2788 } 2789 return 0; 2790 } 2791 2792 static void 2793 wapbl_blkhash_ins(struct wapbl_replay *wr, daddr_t blk, off_t off) 2794 { 2795 struct wapbl_blk_head *wbh; 2796 struct wapbl_blk *wb; 2797 wb = wapbl_blkhash_get(wr, blk); 2798 if (wb) { 2799 KASSERT(wb->wb_blk == blk); 2800 wb->wb_off = off; 2801 } else { 2802 wb = wapbl_alloc(sizeof(*wb)); 2803 wb->wb_blk = blk; 2804 wb->wb_off = off; 2805 wbh = &wr->wr_blkhash[blk & wr->wr_blkhashmask]; 2806 LIST_INSERT_HEAD(wbh, wb, wb_hash); 2807 wr->wr_blkhashcnt++; 2808 } 2809 } 2810 2811 static void 2812 wapbl_blkhash_rem(struct wapbl_replay *wr, daddr_t blk) 2813 { 2814 struct wapbl_blk *wb = wapbl_blkhash_get(wr, blk); 2815 if (wb) { 2816 KASSERT(wr->wr_blkhashcnt > 0); 2817 wr->wr_blkhashcnt--; 2818 LIST_REMOVE(wb, wb_hash); 2819 wapbl_free(wb, sizeof(*wb)); 2820 } 2821 } 2822 2823 static void 2824 wapbl_blkhash_clear(struct wapbl_replay *wr) 2825 { 2826 unsigned long i; 2827 for (i = 0; i <= wr->wr_blkhashmask; i++) { 2828 struct wapbl_blk *wb; 2829 2830 while ((wb = LIST_FIRST(&wr->wr_blkhash[i]))) { 2831 KASSERT(wr->wr_blkhashcnt > 0); 2832 wr->wr_blkhashcnt--; 2833 LIST_REMOVE(wb, wb_hash); 2834 wapbl_free(wb, sizeof(*wb)); 2835 } 2836 } 2837 KASSERT(wr->wr_blkhashcnt == 0); 2838 } 2839 2840 /****************************************************************/ 2841 2842 /* 2843 * wapbl_circ_read(wr, data, len, offp) 2844 * 2845 * Read len bytes into data from the circular queue of wr, 2846 * starting at the linear byte offset *offp, and returning the new 2847 * linear byte offset in *offp. 2848 * 2849 * If the starting linear byte offset precedes wr->wr_circ_off, 2850 * the read instead begins at wr->wr_circ_off. XXX WTF? This 2851 * should be a KASSERT, not a conditional. 2852 */ 2853 static int 2854 wapbl_circ_read(struct wapbl_replay *wr, void *data, size_t len, off_t *offp) 2855 { 2856 size_t slen; 2857 off_t off = *offp; 2858 int error; 2859 daddr_t pbn; 2860 2861 KASSERT(((len >> wr->wr_log_dev_bshift) << 2862 wr->wr_log_dev_bshift) == len); 2863 2864 if (off < wr->wr_circ_off) 2865 off = wr->wr_circ_off; 2866 slen = wr->wr_circ_off + wr->wr_circ_size - off; 2867 if (slen < len) { 2868 pbn = wr->wr_logpbn + (off >> wr->wr_log_dev_bshift); 2869 #ifdef _KERNEL 2870 pbn = btodb(pbn << wr->wr_log_dev_bshift); 2871 #endif 2872 error = wapbl_read(data, slen, wr->wr_devvp, pbn); 2873 if (error) 2874 return error; 2875 data = (uint8_t *)data + slen; 2876 len -= slen; 2877 off = wr->wr_circ_off; 2878 } 2879 pbn = wr->wr_logpbn + (off >> wr->wr_log_dev_bshift); 2880 #ifdef _KERNEL 2881 pbn = btodb(pbn << wr->wr_log_dev_bshift); 2882 #endif 2883 error = wapbl_read(data, len, wr->wr_devvp, pbn); 2884 if (error) 2885 return error; 2886 off += len; 2887 if (off >= wr->wr_circ_off + wr->wr_circ_size) 2888 off = wr->wr_circ_off; 2889 *offp = off; 2890 return 0; 2891 } 2892 2893 /* 2894 * wapbl_circ_advance(wr, len, offp) 2895 * 2896 * Compute the linear byte offset of the circular queue of wr that 2897 * is len bytes past *offp, and store it in *offp. 2898 * 2899 * This is as if wapbl_circ_read, but without actually reading 2900 * anything. 2901 * 2902 * If the starting linear byte offset precedes wr->wr_circ_off, it 2903 * is taken to be wr->wr_circ_off instead. XXX WTF? This should 2904 * be a KASSERT, not a conditional. 2905 */ 2906 static void 2907 wapbl_circ_advance(struct wapbl_replay *wr, size_t len, off_t *offp) 2908 { 2909 size_t slen; 2910 off_t off = *offp; 2911 2912 KASSERT(((len >> wr->wr_log_dev_bshift) << 2913 wr->wr_log_dev_bshift) == len); 2914 2915 if (off < wr->wr_circ_off) 2916 off = wr->wr_circ_off; 2917 slen = wr->wr_circ_off + wr->wr_circ_size - off; 2918 if (slen < len) { 2919 len -= slen; 2920 off = wr->wr_circ_off; 2921 } 2922 off += len; 2923 if (off >= wr->wr_circ_off + wr->wr_circ_size) 2924 off = wr->wr_circ_off; 2925 *offp = off; 2926 } 2927 2928 /****************************************************************/ 2929 2930 int 2931 wapbl_replay_start(struct wapbl_replay **wrp, struct vnode *vp, 2932 daddr_t off, size_t count, size_t blksize) 2933 { 2934 struct wapbl_replay *wr; 2935 int error; 2936 struct vnode *devvp; 2937 daddr_t logpbn; 2938 uint8_t *scratch; 2939 struct wapbl_wc_header *wch; 2940 struct wapbl_wc_header *wch2; 2941 /* Use this until we read the actual log header */ 2942 int log_dev_bshift = ilog2(blksize); 2943 size_t used; 2944 daddr_t pbn; 2945 2946 WAPBL_PRINTF(WAPBL_PRINT_REPLAY, 2947 ("wapbl_replay_start: vp=%p off=%"PRId64 " count=%zu blksize=%zu\n", 2948 vp, off, count, blksize)); 2949 2950 if (off < 0) 2951 return EINVAL; 2952 2953 if (blksize < DEV_BSIZE) 2954 return EINVAL; 2955 if (blksize % DEV_BSIZE) 2956 return EINVAL; 2957 2958 #ifdef _KERNEL 2959 #if 0 2960 /* XXX vp->v_size isn't reliably set for VBLK devices, 2961 * especially root. However, we might still want to verify 2962 * that the full load is readable */ 2963 if ((off + count) * blksize > vp->v_size) 2964 return EINVAL; 2965 #endif 2966 if ((error = VOP_BMAP(vp, off, &devvp, &logpbn, 0)) != 0) { 2967 return error; 2968 } 2969 #else /* ! _KERNEL */ 2970 devvp = vp; 2971 logpbn = off; 2972 #endif /* ! _KERNEL */ 2973 2974 scratch = wapbl_alloc(MAXBSIZE); 2975 2976 pbn = logpbn; 2977 #ifdef _KERNEL 2978 pbn = btodb(pbn << log_dev_bshift); 2979 #endif 2980 error = wapbl_read(scratch, 2<<log_dev_bshift, devvp, pbn); 2981 if (error) 2982 goto errout; 2983 2984 wch = (struct wapbl_wc_header *)scratch; 2985 wch2 = 2986 (struct wapbl_wc_header *)(scratch + (1<<log_dev_bshift)); 2987 /* XXX verify checksums and magic numbers */ 2988 if (wch->wc_type != WAPBL_WC_HEADER) { 2989 printf("Unrecognized wapbl magic: 0x%08x\n", wch->wc_type); 2990 error = EFTYPE; 2991 goto errout; 2992 } 2993 2994 if (wch2->wc_generation > wch->wc_generation) 2995 wch = wch2; 2996 2997 wr = wapbl_calloc(1, sizeof(*wr)); 2998 2999 wr->wr_logvp = vp; 3000 wr->wr_devvp = devvp; 3001 wr->wr_logpbn = logpbn; 3002 3003 wr->wr_scratch = scratch; 3004 3005 wr->wr_log_dev_bshift = wch->wc_log_dev_bshift; 3006 wr->wr_fs_dev_bshift = wch->wc_fs_dev_bshift; 3007 wr->wr_circ_off = wch->wc_circ_off; 3008 wr->wr_circ_size = wch->wc_circ_size; 3009 wr->wr_generation = wch->wc_generation; 3010 3011 used = wapbl_space_used(wch->wc_circ_size, wch->wc_head, wch->wc_tail); 3012 3013 WAPBL_PRINTF(WAPBL_PRINT_REPLAY, 3014 ("wapbl_replay: head=%"PRId64" tail=%"PRId64" off=%"PRId64 3015 " len=%"PRId64" used=%zu\n", 3016 wch->wc_head, wch->wc_tail, wch->wc_circ_off, 3017 wch->wc_circ_size, used)); 3018 3019 wapbl_blkhash_init(wr, (used >> wch->wc_fs_dev_bshift)); 3020 3021 error = wapbl_replay_process(wr, wch->wc_head, wch->wc_tail); 3022 if (error) { 3023 wapbl_replay_stop(wr); 3024 wapbl_replay_free(wr); 3025 return error; 3026 } 3027 3028 *wrp = wr; 3029 return 0; 3030 3031 errout: 3032 wapbl_free(scratch, MAXBSIZE); 3033 return error; 3034 } 3035 3036 void 3037 wapbl_replay_stop(struct wapbl_replay *wr) 3038 { 3039 3040 if (!wapbl_replay_isopen(wr)) 3041 return; 3042 3043 WAPBL_PRINTF(WAPBL_PRINT_REPLAY, ("wapbl_replay_stop called\n")); 3044 3045 wapbl_free(wr->wr_scratch, MAXBSIZE); 3046 wr->wr_scratch = NULL; 3047 3048 wr->wr_logvp = NULL; 3049 3050 wapbl_blkhash_clear(wr); 3051 wapbl_blkhash_free(wr); 3052 } 3053 3054 void 3055 wapbl_replay_free(struct wapbl_replay *wr) 3056 { 3057 3058 KDASSERT(!wapbl_replay_isopen(wr)); 3059 3060 if (wr->wr_inodes) 3061 wapbl_free(wr->wr_inodes, 3062 wr->wr_inodescnt * sizeof(wr->wr_inodes[0])); 3063 wapbl_free(wr, sizeof(*wr)); 3064 } 3065 3066 #ifdef _KERNEL 3067 int 3068 wapbl_replay_isopen1(struct wapbl_replay *wr) 3069 { 3070 3071 return wapbl_replay_isopen(wr); 3072 } 3073 #endif 3074 3075 /* 3076 * calculate the disk address for the i'th block in the wc_blockblist 3077 * offset by j blocks of size blen. 3078 * 3079 * wc_daddr is always a kernel disk address in DEV_BSIZE units that 3080 * was written to the journal. 3081 * 3082 * The kernel needs that address plus the offset in DEV_BSIZE units. 3083 * 3084 * Userland needs that address plus the offset in blen units. 3085 * 3086 */ 3087 static daddr_t 3088 wapbl_block_daddr(struct wapbl_wc_blocklist *wc, int i, int j, int blen) 3089 { 3090 daddr_t pbn; 3091 3092 #ifdef _KERNEL 3093 pbn = wc->wc_blocks[i].wc_daddr + btodb(j * blen); 3094 #else 3095 pbn = dbtob(wc->wc_blocks[i].wc_daddr) / blen + j; 3096 #endif 3097 3098 return pbn; 3099 } 3100 3101 static void 3102 wapbl_replay_process_blocks(struct wapbl_replay *wr, off_t *offp) 3103 { 3104 struct wapbl_wc_blocklist *wc = 3105 (struct wapbl_wc_blocklist *)wr->wr_scratch; 3106 int fsblklen = 1 << wr->wr_fs_dev_bshift; 3107 int i, j, n; 3108 3109 for (i = 0; i < wc->wc_blkcount; i++) { 3110 /* 3111 * Enter each physical block into the hashtable independently. 3112 */ 3113 n = wc->wc_blocks[i].wc_dlen >> wr->wr_fs_dev_bshift; 3114 for (j = 0; j < n; j++) { 3115 wapbl_blkhash_ins(wr, wapbl_block_daddr(wc, i, j, fsblklen), 3116 *offp); 3117 wapbl_circ_advance(wr, fsblklen, offp); 3118 } 3119 } 3120 } 3121 3122 static void 3123 wapbl_replay_process_revocations(struct wapbl_replay *wr) 3124 { 3125 struct wapbl_wc_blocklist *wc = 3126 (struct wapbl_wc_blocklist *)wr->wr_scratch; 3127 int fsblklen = 1 << wr->wr_fs_dev_bshift; 3128 int i, j, n; 3129 3130 for (i = 0; i < wc->wc_blkcount; i++) { 3131 /* 3132 * Remove any blocks found from the hashtable. 3133 */ 3134 n = wc->wc_blocks[i].wc_dlen >> wr->wr_fs_dev_bshift; 3135 for (j = 0; j < n; j++) 3136 wapbl_blkhash_rem(wr, wapbl_block_daddr(wc, i, j, fsblklen)); 3137 } 3138 } 3139 3140 static void 3141 wapbl_replay_process_inodes(struct wapbl_replay *wr, off_t oldoff, off_t newoff) 3142 { 3143 struct wapbl_wc_inodelist *wc = 3144 (struct wapbl_wc_inodelist *)wr->wr_scratch; 3145 void *new_inodes; 3146 const size_t oldsize = wr->wr_inodescnt * sizeof(wr->wr_inodes[0]); 3147 3148 KASSERT(sizeof(wr->wr_inodes[0]) == sizeof(wc->wc_inodes[0])); 3149 3150 /* 3151 * Keep track of where we found this so location won't be 3152 * overwritten. 3153 */ 3154 if (wc->wc_clear) { 3155 wr->wr_inodestail = oldoff; 3156 wr->wr_inodescnt = 0; 3157 if (wr->wr_inodes != NULL) { 3158 wapbl_free(wr->wr_inodes, oldsize); 3159 wr->wr_inodes = NULL; 3160 } 3161 } 3162 wr->wr_inodeshead = newoff; 3163 if (wc->wc_inocnt == 0) 3164 return; 3165 3166 new_inodes = wapbl_alloc((wr->wr_inodescnt + wc->wc_inocnt) * 3167 sizeof(wr->wr_inodes[0])); 3168 if (wr->wr_inodes != NULL) { 3169 memcpy(new_inodes, wr->wr_inodes, oldsize); 3170 wapbl_free(wr->wr_inodes, oldsize); 3171 } 3172 wr->wr_inodes = new_inodes; 3173 memcpy(&wr->wr_inodes[wr->wr_inodescnt], wc->wc_inodes, 3174 wc->wc_inocnt * sizeof(wr->wr_inodes[0])); 3175 wr->wr_inodescnt += wc->wc_inocnt; 3176 } 3177 3178 static int 3179 wapbl_replay_process(struct wapbl_replay *wr, off_t head, off_t tail) 3180 { 3181 off_t off; 3182 int error; 3183 3184 int logblklen = 1 << wr->wr_log_dev_bshift; 3185 3186 wapbl_blkhash_clear(wr); 3187 3188 off = tail; 3189 while (off != head) { 3190 struct wapbl_wc_null *wcn; 3191 off_t saveoff = off; 3192 error = wapbl_circ_read(wr, wr->wr_scratch, logblklen, &off); 3193 if (error) 3194 goto errout; 3195 wcn = (struct wapbl_wc_null *)wr->wr_scratch; 3196 switch (wcn->wc_type) { 3197 case WAPBL_WC_BLOCKS: 3198 wapbl_replay_process_blocks(wr, &off); 3199 break; 3200 3201 case WAPBL_WC_REVOCATIONS: 3202 wapbl_replay_process_revocations(wr); 3203 break; 3204 3205 case WAPBL_WC_INODES: 3206 wapbl_replay_process_inodes(wr, saveoff, off); 3207 break; 3208 3209 default: 3210 printf("Unrecognized wapbl type: 0x%08x\n", 3211 wcn->wc_type); 3212 error = EFTYPE; 3213 goto errout; 3214 } 3215 wapbl_circ_advance(wr, wcn->wc_len, &saveoff); 3216 if (off != saveoff) { 3217 printf("wapbl_replay: corrupted records\n"); 3218 error = EFTYPE; 3219 goto errout; 3220 } 3221 } 3222 return 0; 3223 3224 errout: 3225 wapbl_blkhash_clear(wr); 3226 return error; 3227 } 3228 3229 #if 0 3230 int 3231 wapbl_replay_verify(struct wapbl_replay *wr, struct vnode *fsdevvp) 3232 { 3233 off_t off; 3234 int mismatchcnt = 0; 3235 int logblklen = 1 << wr->wr_log_dev_bshift; 3236 int fsblklen = 1 << wr->wr_fs_dev_bshift; 3237 void *scratch1 = wapbl_alloc(MAXBSIZE); 3238 void *scratch2 = wapbl_alloc(MAXBSIZE); 3239 int error = 0; 3240 3241 KDASSERT(wapbl_replay_isopen(wr)); 3242 3243 off = wch->wc_tail; 3244 while (off != wch->wc_head) { 3245 struct wapbl_wc_null *wcn; 3246 #ifdef DEBUG 3247 off_t saveoff = off; 3248 #endif 3249 error = wapbl_circ_read(wr, wr->wr_scratch, logblklen, &off); 3250 if (error) 3251 goto out; 3252 wcn = (struct wapbl_wc_null *)wr->wr_scratch; 3253 switch (wcn->wc_type) { 3254 case WAPBL_WC_BLOCKS: 3255 { 3256 struct wapbl_wc_blocklist *wc = 3257 (struct wapbl_wc_blocklist *)wr->wr_scratch; 3258 int i; 3259 for (i = 0; i < wc->wc_blkcount; i++) { 3260 int foundcnt = 0; 3261 int dirtycnt = 0; 3262 int j, n; 3263 /* 3264 * Check each physical block into the 3265 * hashtable independently 3266 */ 3267 n = wc->wc_blocks[i].wc_dlen >> 3268 wch->wc_fs_dev_bshift; 3269 for (j = 0; j < n; j++) { 3270 struct wapbl_blk *wb = 3271 wapbl_blkhash_get(wr, 3272 wapbl_block_daddr(wc, i, j, fsblklen)); 3273 if (wb && (wb->wb_off == off)) { 3274 foundcnt++; 3275 error = 3276 wapbl_circ_read(wr, 3277 scratch1, fsblklen, 3278 &off); 3279 if (error) 3280 goto out; 3281 error = 3282 wapbl_read(scratch2, 3283 fsblklen, fsdevvp, 3284 wb->wb_blk); 3285 if (error) 3286 goto out; 3287 if (memcmp(scratch1, 3288 scratch2, 3289 fsblklen)) { 3290 printf( 3291 "wapbl_verify: mismatch block %"PRId64" at off %"PRIdMAX"\n", 3292 wb->wb_blk, (intmax_t)off); 3293 dirtycnt++; 3294 mismatchcnt++; 3295 } 3296 } else { 3297 wapbl_circ_advance(wr, 3298 fsblklen, &off); 3299 } 3300 } 3301 #if 0 3302 /* 3303 * If all of the blocks in an entry 3304 * are clean, then remove all of its 3305 * blocks from the hashtable since they 3306 * never will need replay. 3307 */ 3308 if ((foundcnt != 0) && 3309 (dirtycnt == 0)) { 3310 off = saveoff; 3311 wapbl_circ_advance(wr, 3312 logblklen, &off); 3313 for (j = 0; j < n; j++) { 3314 struct wapbl_blk *wb = 3315 wapbl_blkhash_get(wr, 3316 wapbl_block_daddr(wc, i, j, fsblklen)); 3317 if (wb && 3318 (wb->wb_off == off)) { 3319 wapbl_blkhash_rem(wr, wb->wb_blk); 3320 } 3321 wapbl_circ_advance(wr, 3322 fsblklen, &off); 3323 } 3324 } 3325 #endif 3326 } 3327 } 3328 break; 3329 case WAPBL_WC_REVOCATIONS: 3330 case WAPBL_WC_INODES: 3331 break; 3332 default: 3333 KASSERT(0); 3334 } 3335 #ifdef DEBUG 3336 wapbl_circ_advance(wr, wcn->wc_len, &saveoff); 3337 KASSERT(off == saveoff); 3338 #endif 3339 } 3340 out: 3341 wapbl_free(scratch1, MAXBSIZE); 3342 wapbl_free(scratch2, MAXBSIZE); 3343 if (!error && mismatchcnt) 3344 error = EFTYPE; 3345 return error; 3346 } 3347 #endif 3348 3349 int 3350 wapbl_replay_write(struct wapbl_replay *wr, struct vnode *fsdevvp) 3351 { 3352 struct wapbl_blk *wb; 3353 size_t i; 3354 off_t off; 3355 void *scratch; 3356 int error = 0; 3357 int fsblklen = 1 << wr->wr_fs_dev_bshift; 3358 3359 KDASSERT(wapbl_replay_isopen(wr)); 3360 3361 scratch = wapbl_alloc(MAXBSIZE); 3362 3363 for (i = 0; i <= wr->wr_blkhashmask; ++i) { 3364 LIST_FOREACH(wb, &wr->wr_blkhash[i], wb_hash) { 3365 off = wb->wb_off; 3366 error = wapbl_circ_read(wr, scratch, fsblklen, &off); 3367 if (error) 3368 break; 3369 error = wapbl_write(scratch, fsblklen, fsdevvp, 3370 wb->wb_blk); 3371 if (error) 3372 break; 3373 } 3374 } 3375 3376 wapbl_free(scratch, MAXBSIZE); 3377 return error; 3378 } 3379 3380 int 3381 wapbl_replay_can_read(struct wapbl_replay *wr, daddr_t blk, long len) 3382 { 3383 int fsblklen = 1 << wr->wr_fs_dev_bshift; 3384 3385 KDASSERT(wapbl_replay_isopen(wr)); 3386 KASSERT((len % fsblklen) == 0); 3387 3388 while (len != 0) { 3389 struct wapbl_blk *wb = wapbl_blkhash_get(wr, blk); 3390 if (wb) 3391 return 1; 3392 len -= fsblklen; 3393 } 3394 return 0; 3395 } 3396 3397 int 3398 wapbl_replay_read(struct wapbl_replay *wr, void *data, daddr_t blk, long len) 3399 { 3400 int fsblklen = 1 << wr->wr_fs_dev_bshift; 3401 3402 KDASSERT(wapbl_replay_isopen(wr)); 3403 3404 KASSERT((len % fsblklen) == 0); 3405 3406 while (len != 0) { 3407 struct wapbl_blk *wb = wapbl_blkhash_get(wr, blk); 3408 if (wb) { 3409 off_t off = wb->wb_off; 3410 int error; 3411 error = wapbl_circ_read(wr, data, fsblklen, &off); 3412 if (error) 3413 return error; 3414 } 3415 data = (uint8_t *)data + fsblklen; 3416 len -= fsblklen; 3417 blk++; 3418 } 3419 return 0; 3420 } 3421 3422 #ifdef _KERNEL 3423 3424 MODULE(MODULE_CLASS_VFS, wapbl, NULL); 3425 3426 static int 3427 wapbl_modcmd(modcmd_t cmd, void *arg) 3428 { 3429 3430 switch (cmd) { 3431 case MODULE_CMD_INIT: 3432 wapbl_init(); 3433 return 0; 3434 case MODULE_CMD_FINI: 3435 return wapbl_fini(); 3436 default: 3437 return ENOTTY; 3438 } 3439 } 3440 #endif /* _KERNEL */ 3441