1 /* $NetBSD: vfs_wapbl.c,v 1.78 2016/05/19 18:32:29 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 2003, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Wasabi Systems, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * This implements file system independent write ahead filesystem logging. 34 */ 35 36 #define WAPBL_INTERNAL 37 38 #include <sys/cdefs.h> 39 __KERNEL_RCSID(0, "$NetBSD: vfs_wapbl.c,v 1.78 2016/05/19 18:32:29 riastradh Exp $"); 40 41 #include <sys/param.h> 42 #include <sys/bitops.h> 43 #include <sys/time.h> 44 #include <sys/wapbl.h> 45 #include <sys/wapbl_replay.h> 46 47 #ifdef _KERNEL 48 49 #include <sys/atomic.h> 50 #include <sys/conf.h> 51 #include <sys/file.h> 52 #include <sys/kauth.h> 53 #include <sys/kernel.h> 54 #include <sys/module.h> 55 #include <sys/mount.h> 56 #include <sys/mutex.h> 57 #include <sys/namei.h> 58 #include <sys/proc.h> 59 #include <sys/resourcevar.h> 60 #include <sys/sysctl.h> 61 #include <sys/uio.h> 62 #include <sys/vnode.h> 63 64 #include <miscfs/specfs/specdev.h> 65 66 #define wapbl_alloc(s) kmem_alloc((s), KM_SLEEP) 67 #define wapbl_free(a, s) kmem_free((a), (s)) 68 #define wapbl_calloc(n, s) kmem_zalloc((n)*(s), KM_SLEEP) 69 70 static struct sysctllog *wapbl_sysctl; 71 static int wapbl_flush_disk_cache = 1; 72 static int wapbl_verbose_commit = 0; 73 74 static inline size_t wapbl_space_free(size_t, off_t, off_t); 75 76 #else /* !_KERNEL */ 77 78 #include <assert.h> 79 #include <errno.h> 80 #include <stdbool.h> 81 #include <stdio.h> 82 #include <stdlib.h> 83 #include <string.h> 84 85 #define KDASSERT(x) assert(x) 86 #define KASSERT(x) assert(x) 87 #define wapbl_alloc(s) malloc(s) 88 #define wapbl_free(a, s) free(a) 89 #define wapbl_calloc(n, s) calloc((n), (s)) 90 91 #endif /* !_KERNEL */ 92 93 /* 94 * INTERNAL DATA STRUCTURES 95 */ 96 97 /* 98 * This structure holds per-mount log information. 99 * 100 * Legend: a = atomic access only 101 * r = read-only after init 102 * l = rwlock held 103 * m = mutex held 104 * lm = rwlock held writing or mutex held 105 * u = unlocked access ok 106 * b = bufcache_lock held 107 */ 108 LIST_HEAD(wapbl_ino_head, wapbl_ino); 109 struct wapbl { 110 struct vnode *wl_logvp; /* r: log here */ 111 struct vnode *wl_devvp; /* r: log on this device */ 112 struct mount *wl_mount; /* r: mountpoint wl is associated with */ 113 daddr_t wl_logpbn; /* r: Physical block number of start of log */ 114 int wl_log_dev_bshift; /* r: logarithm of device block size of log 115 device */ 116 int wl_fs_dev_bshift; /* r: logarithm of device block size of 117 filesystem device */ 118 119 unsigned wl_lock_count; /* m: Count of transactions in progress */ 120 121 size_t wl_circ_size; /* r: Number of bytes in buffer of log */ 122 size_t wl_circ_off; /* r: Number of bytes reserved at start */ 123 124 size_t wl_bufcount_max; /* r: Number of buffers reserved for log */ 125 size_t wl_bufbytes_max; /* r: Number of buf bytes reserved for log */ 126 127 off_t wl_head; /* l: Byte offset of log head */ 128 off_t wl_tail; /* l: Byte offset of log tail */ 129 /* 130 * WAPBL log layout, stored on wl_devvp at wl_logpbn: 131 * 132 * ___________________ wl_circ_size __________________ 133 * / \ 134 * +---------+---------+-------+--------------+--------+ 135 * [ commit0 | commit1 | CCWCW | EEEEEEEEEEEE | CCCWCW ] 136 * +---------+---------+-------+--------------+--------+ 137 * wl_circ_off --^ ^-- wl_head ^-- wl_tail 138 * 139 * commit0 and commit1 are commit headers. A commit header has 140 * a generation number, indicating which of the two headers is 141 * more recent, and an assignment of head and tail pointers. 142 * The rest is a circular queue of log records, starting at 143 * the byte offset wl_circ_off. 144 * 145 * E marks empty space for records. 146 * W marks records for block writes issued but waiting. 147 * C marks completed records. 148 * 149 * wapbl_flush writes new records to empty `E' spaces after 150 * wl_head from the current transaction in memory. 151 * 152 * wapbl_truncate advances wl_tail past any completed `C' 153 * records, freeing them up for use. 154 * 155 * head == tail == 0 means log is empty. 156 * head == tail != 0 means log is full. 157 * 158 * See assertions in wapbl_advance() for other boundary 159 * conditions. 160 * 161 * Only wapbl_flush moves the head, except when wapbl_truncate 162 * sets it to 0 to indicate that the log is empty. 163 * 164 * Only wapbl_truncate moves the tail, except when wapbl_flush 165 * sets it to wl_circ_off to indicate that the log is full. 166 */ 167 168 struct wapbl_wc_header *wl_wc_header; /* l */ 169 void *wl_wc_scratch; /* l: scratch space (XXX: por que?!?) */ 170 171 kmutex_t wl_mtx; /* u: short-term lock */ 172 krwlock_t wl_rwlock; /* u: File system transaction lock */ 173 174 /* 175 * Must be held while accessing 176 * wl_count or wl_bufs or head or tail 177 */ 178 179 /* 180 * Callback called from within the flush routine to flush any extra 181 * bits. Note that flush may be skipped without calling this if 182 * there are no outstanding buffers in the transaction. 183 */ 184 #if _KERNEL 185 wapbl_flush_fn_t wl_flush; /* r */ 186 wapbl_flush_fn_t wl_flush_abort;/* r */ 187 #endif 188 189 size_t wl_bufbytes; /* m: Byte count of pages in wl_bufs */ 190 size_t wl_bufcount; /* m: Count of buffers in wl_bufs */ 191 size_t wl_bcount; /* m: Total bcount of wl_bufs */ 192 193 LIST_HEAD(, buf) wl_bufs; /* m: Buffers in current transaction */ 194 195 kcondvar_t wl_reclaimable_cv; /* m (obviously) */ 196 size_t wl_reclaimable_bytes; /* m: Amount of space available for 197 reclamation by truncate */ 198 int wl_error_count; /* m: # of wl_entries with errors */ 199 size_t wl_reserved_bytes; /* never truncate log smaller than this */ 200 201 #ifdef WAPBL_DEBUG_BUFBYTES 202 size_t wl_unsynced_bufbytes; /* Byte count of unsynced buffers */ 203 #endif 204 205 daddr_t *wl_deallocblks;/* lm: address of block */ 206 int *wl_dealloclens; /* lm: size of block */ 207 int wl_dealloccnt; /* lm: total count */ 208 int wl_dealloclim; /* l: max count */ 209 210 /* hashtable of inode numbers for allocated but unlinked inodes */ 211 /* synch ??? */ 212 struct wapbl_ino_head *wl_inohash; 213 u_long wl_inohashmask; 214 int wl_inohashcnt; 215 216 SIMPLEQ_HEAD(, wapbl_entry) wl_entries; /* On disk transaction 217 accounting */ 218 219 u_char *wl_buffer; /* l: buffer for wapbl_buffered_write() */ 220 daddr_t wl_buffer_dblk; /* l: buffer disk block address */ 221 size_t wl_buffer_used; /* l: buffer current use */ 222 }; 223 224 #ifdef WAPBL_DEBUG_PRINT 225 int wapbl_debug_print = WAPBL_DEBUG_PRINT; 226 #endif 227 228 /****************************************************************/ 229 #ifdef _KERNEL 230 231 #ifdef WAPBL_DEBUG 232 struct wapbl *wapbl_debug_wl; 233 #endif 234 235 static int wapbl_write_commit(struct wapbl *wl, off_t head, off_t tail); 236 static int wapbl_write_blocks(struct wapbl *wl, off_t *offp); 237 static int wapbl_write_revocations(struct wapbl *wl, off_t *offp); 238 static int wapbl_write_inodes(struct wapbl *wl, off_t *offp); 239 #endif /* _KERNEL */ 240 241 static int wapbl_replay_process(struct wapbl_replay *wr, off_t, off_t); 242 243 static inline size_t wapbl_space_used(size_t avail, off_t head, 244 off_t tail); 245 246 #ifdef _KERNEL 247 248 static struct pool wapbl_entry_pool; 249 250 #define WAPBL_INODETRK_SIZE 83 251 static int wapbl_ino_pool_refcount; 252 static struct pool wapbl_ino_pool; 253 struct wapbl_ino { 254 LIST_ENTRY(wapbl_ino) wi_hash; 255 ino_t wi_ino; 256 mode_t wi_mode; 257 }; 258 259 static void wapbl_inodetrk_init(struct wapbl *wl, u_int size); 260 static void wapbl_inodetrk_free(struct wapbl *wl); 261 static struct wapbl_ino *wapbl_inodetrk_get(struct wapbl *wl, ino_t ino); 262 263 static size_t wapbl_transaction_len(struct wapbl *wl); 264 static inline size_t wapbl_transaction_inodes_len(struct wapbl *wl); 265 266 #if 0 267 int wapbl_replay_verify(struct wapbl_replay *, struct vnode *); 268 #endif 269 270 static int wapbl_replay_isopen1(struct wapbl_replay *); 271 272 struct wapbl_ops wapbl_ops = { 273 .wo_wapbl_discard = wapbl_discard, 274 .wo_wapbl_replay_isopen = wapbl_replay_isopen1, 275 .wo_wapbl_replay_can_read = wapbl_replay_can_read, 276 .wo_wapbl_replay_read = wapbl_replay_read, 277 .wo_wapbl_add_buf = wapbl_add_buf, 278 .wo_wapbl_remove_buf = wapbl_remove_buf, 279 .wo_wapbl_resize_buf = wapbl_resize_buf, 280 .wo_wapbl_begin = wapbl_begin, 281 .wo_wapbl_end = wapbl_end, 282 .wo_wapbl_junlock_assert= wapbl_junlock_assert, 283 284 /* XXX: the following is only used to say "this is a wapbl buf" */ 285 .wo_wapbl_biodone = wapbl_biodone, 286 }; 287 288 static int 289 wapbl_sysctl_init(void) 290 { 291 int rv; 292 const struct sysctlnode *rnode, *cnode; 293 294 wapbl_sysctl = NULL; 295 296 rv = sysctl_createv(&wapbl_sysctl, 0, NULL, &rnode, 297 CTLFLAG_PERMANENT, 298 CTLTYPE_NODE, "wapbl", 299 SYSCTL_DESCR("WAPBL journaling options"), 300 NULL, 0, NULL, 0, 301 CTL_VFS, CTL_CREATE, CTL_EOL); 302 if (rv) 303 return rv; 304 305 rv = sysctl_createv(&wapbl_sysctl, 0, &rnode, &cnode, 306 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 307 CTLTYPE_INT, "flush_disk_cache", 308 SYSCTL_DESCR("flush disk cache"), 309 NULL, 0, &wapbl_flush_disk_cache, 0, 310 CTL_CREATE, CTL_EOL); 311 if (rv) 312 return rv; 313 314 rv = sysctl_createv(&wapbl_sysctl, 0, &rnode, &cnode, 315 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 316 CTLTYPE_INT, "verbose_commit", 317 SYSCTL_DESCR("show time and size of wapbl log commits"), 318 NULL, 0, &wapbl_verbose_commit, 0, 319 CTL_CREATE, CTL_EOL); 320 return rv; 321 } 322 323 static void 324 wapbl_init(void) 325 { 326 327 pool_init(&wapbl_entry_pool, sizeof(struct wapbl_entry), 0, 0, 0, 328 "wapblentrypl", &pool_allocator_kmem, IPL_VM); 329 330 wapbl_sysctl_init(); 331 } 332 333 static int 334 wapbl_fini(void) 335 { 336 337 if (wapbl_sysctl != NULL) 338 sysctl_teardown(&wapbl_sysctl); 339 340 pool_destroy(&wapbl_entry_pool); 341 342 return 0; 343 } 344 345 static int 346 wapbl_start_flush_inodes(struct wapbl *wl, struct wapbl_replay *wr) 347 { 348 int error, i; 349 350 WAPBL_PRINTF(WAPBL_PRINT_REPLAY, 351 ("wapbl_start: reusing log with %d inodes\n", wr->wr_inodescnt)); 352 353 /* 354 * Its only valid to reuse the replay log if its 355 * the same as the new log we just opened. 356 */ 357 KDASSERT(!wapbl_replay_isopen(wr)); 358 KASSERT(wl->wl_devvp->v_type == VBLK); 359 KASSERT(wr->wr_devvp->v_type == VBLK); 360 KASSERT(wl->wl_devvp->v_rdev == wr->wr_devvp->v_rdev); 361 KASSERT(wl->wl_logpbn == wr->wr_logpbn); 362 KASSERT(wl->wl_circ_size == wr->wr_circ_size); 363 KASSERT(wl->wl_circ_off == wr->wr_circ_off); 364 KASSERT(wl->wl_log_dev_bshift == wr->wr_log_dev_bshift); 365 KASSERT(wl->wl_fs_dev_bshift == wr->wr_fs_dev_bshift); 366 367 wl->wl_wc_header->wc_generation = wr->wr_generation + 1; 368 369 for (i = 0; i < wr->wr_inodescnt; i++) 370 wapbl_register_inode(wl, wr->wr_inodes[i].wr_inumber, 371 wr->wr_inodes[i].wr_imode); 372 373 /* Make sure new transaction won't overwrite old inodes list */ 374 KDASSERT(wapbl_transaction_len(wl) <= 375 wapbl_space_free(wl->wl_circ_size, wr->wr_inodeshead, 376 wr->wr_inodestail)); 377 378 wl->wl_head = wl->wl_tail = wr->wr_inodeshead; 379 wl->wl_reclaimable_bytes = wl->wl_reserved_bytes = 380 wapbl_transaction_len(wl); 381 382 error = wapbl_write_inodes(wl, &wl->wl_head); 383 if (error) 384 return error; 385 386 KASSERT(wl->wl_head != wl->wl_tail); 387 KASSERT(wl->wl_head != 0); 388 389 return 0; 390 } 391 392 int 393 wapbl_start(struct wapbl ** wlp, struct mount *mp, struct vnode *vp, 394 daddr_t off, size_t count, size_t blksize, struct wapbl_replay *wr, 395 wapbl_flush_fn_t flushfn, wapbl_flush_fn_t flushabortfn) 396 { 397 struct wapbl *wl; 398 struct vnode *devvp; 399 daddr_t logpbn; 400 int error; 401 int log_dev_bshift = ilog2(blksize); 402 int fs_dev_bshift = log_dev_bshift; 403 int run; 404 405 WAPBL_PRINTF(WAPBL_PRINT_OPEN, ("wapbl_start: vp=%p off=%" PRId64 406 " count=%zu blksize=%zu\n", vp, off, count, blksize)); 407 408 if (log_dev_bshift > fs_dev_bshift) { 409 WAPBL_PRINTF(WAPBL_PRINT_OPEN, 410 ("wapbl: log device's block size cannot be larger " 411 "than filesystem's\n")); 412 /* 413 * Not currently implemented, although it could be if 414 * needed someday. 415 */ 416 return ENOSYS; 417 } 418 419 if (off < 0) 420 return EINVAL; 421 422 if (blksize < DEV_BSIZE) 423 return EINVAL; 424 if (blksize % DEV_BSIZE) 425 return EINVAL; 426 427 /* XXXTODO: verify that the full load is writable */ 428 429 /* 430 * XXX check for minimum log size 431 * minimum is governed by minimum amount of space 432 * to complete a transaction. (probably truncate) 433 */ 434 /* XXX for now pick something minimal */ 435 if ((count * blksize) < MAXPHYS) { 436 return ENOSPC; 437 } 438 439 if ((error = VOP_BMAP(vp, off, &devvp, &logpbn, &run)) != 0) { 440 return error; 441 } 442 443 wl = wapbl_calloc(1, sizeof(*wl)); 444 rw_init(&wl->wl_rwlock); 445 mutex_init(&wl->wl_mtx, MUTEX_DEFAULT, IPL_NONE); 446 cv_init(&wl->wl_reclaimable_cv, "wapblrec"); 447 LIST_INIT(&wl->wl_bufs); 448 SIMPLEQ_INIT(&wl->wl_entries); 449 450 wl->wl_logvp = vp; 451 wl->wl_devvp = devvp; 452 wl->wl_mount = mp; 453 wl->wl_logpbn = logpbn; 454 wl->wl_log_dev_bshift = log_dev_bshift; 455 wl->wl_fs_dev_bshift = fs_dev_bshift; 456 457 wl->wl_flush = flushfn; 458 wl->wl_flush_abort = flushabortfn; 459 460 /* Reserve two log device blocks for the commit headers */ 461 wl->wl_circ_off = 2<<wl->wl_log_dev_bshift; 462 wl->wl_circ_size = ((count * blksize) - wl->wl_circ_off); 463 /* truncate the log usage to a multiple of log_dev_bshift */ 464 wl->wl_circ_size >>= wl->wl_log_dev_bshift; 465 wl->wl_circ_size <<= wl->wl_log_dev_bshift; 466 467 /* 468 * wl_bufbytes_max limits the size of the in memory transaction space. 469 * - Since buffers are allocated and accounted for in units of 470 * PAGE_SIZE it is required to be a multiple of PAGE_SIZE 471 * (i.e. 1<<PAGE_SHIFT) 472 * - Since the log device has to be written in units of 473 * 1<<wl_log_dev_bshift it is required to be a mulitple of 474 * 1<<wl_log_dev_bshift. 475 * - Since filesystem will provide data in units of 1<<wl_fs_dev_bshift, 476 * it is convenient to be a multiple of 1<<wl_fs_dev_bshift. 477 * Therefore it must be multiple of the least common multiple of those 478 * three quantities. Fortunately, all of those quantities are 479 * guaranteed to be a power of two, and the least common multiple of 480 * a set of numbers which are all powers of two is simply the maximum 481 * of those numbers. Finally, the maximum logarithm of a power of two 482 * is the same as the log of the maximum power of two. So we can do 483 * the following operations to size wl_bufbytes_max: 484 */ 485 486 /* XXX fix actual number of pages reserved per filesystem. */ 487 wl->wl_bufbytes_max = MIN(wl->wl_circ_size, buf_memcalc() / 2); 488 489 /* Round wl_bufbytes_max to the largest power of two constraint */ 490 wl->wl_bufbytes_max >>= PAGE_SHIFT; 491 wl->wl_bufbytes_max <<= PAGE_SHIFT; 492 wl->wl_bufbytes_max >>= wl->wl_log_dev_bshift; 493 wl->wl_bufbytes_max <<= wl->wl_log_dev_bshift; 494 wl->wl_bufbytes_max >>= wl->wl_fs_dev_bshift; 495 wl->wl_bufbytes_max <<= wl->wl_fs_dev_bshift; 496 497 /* XXX maybe use filesystem fragment size instead of 1024 */ 498 /* XXX fix actual number of buffers reserved per filesystem. */ 499 wl->wl_bufcount_max = (nbuf / 2) * 1024; 500 501 /* XXX tie this into resource estimation */ 502 wl->wl_dealloclim = wl->wl_bufbytes_max / mp->mnt_stat.f_bsize / 2; 503 504 wl->wl_deallocblks = wapbl_alloc(sizeof(*wl->wl_deallocblks) * 505 wl->wl_dealloclim); 506 wl->wl_dealloclens = wapbl_alloc(sizeof(*wl->wl_dealloclens) * 507 wl->wl_dealloclim); 508 509 wl->wl_buffer = wapbl_alloc(MAXPHYS); 510 wl->wl_buffer_used = 0; 511 512 wapbl_inodetrk_init(wl, WAPBL_INODETRK_SIZE); 513 514 /* Initialize the commit header */ 515 { 516 struct wapbl_wc_header *wc; 517 size_t len = 1 << wl->wl_log_dev_bshift; 518 wc = wapbl_calloc(1, len); 519 wc->wc_type = WAPBL_WC_HEADER; 520 wc->wc_len = len; 521 wc->wc_circ_off = wl->wl_circ_off; 522 wc->wc_circ_size = wl->wl_circ_size; 523 /* XXX wc->wc_fsid */ 524 wc->wc_log_dev_bshift = wl->wl_log_dev_bshift; 525 wc->wc_fs_dev_bshift = wl->wl_fs_dev_bshift; 526 wl->wl_wc_header = wc; 527 wl->wl_wc_scratch = wapbl_alloc(len); 528 } 529 530 /* 531 * if there was an existing set of unlinked but 532 * allocated inodes, preserve it in the new 533 * log. 534 */ 535 if (wr && wr->wr_inodescnt) { 536 error = wapbl_start_flush_inodes(wl, wr); 537 if (error) 538 goto errout; 539 } 540 541 error = wapbl_write_commit(wl, wl->wl_head, wl->wl_tail); 542 if (error) { 543 goto errout; 544 } 545 546 *wlp = wl; 547 #if defined(WAPBL_DEBUG) 548 wapbl_debug_wl = wl; 549 #endif 550 551 return 0; 552 errout: 553 wapbl_discard(wl); 554 wapbl_free(wl->wl_wc_scratch, wl->wl_wc_header->wc_len); 555 wapbl_free(wl->wl_wc_header, wl->wl_wc_header->wc_len); 556 wapbl_free(wl->wl_deallocblks, 557 sizeof(*wl->wl_deallocblks) * wl->wl_dealloclim); 558 wapbl_free(wl->wl_dealloclens, 559 sizeof(*wl->wl_dealloclens) * wl->wl_dealloclim); 560 wapbl_free(wl->wl_buffer, MAXPHYS); 561 wapbl_inodetrk_free(wl); 562 wapbl_free(wl, sizeof(*wl)); 563 564 return error; 565 } 566 567 /* 568 * Like wapbl_flush, only discards the transaction 569 * completely 570 */ 571 572 void 573 wapbl_discard(struct wapbl *wl) 574 { 575 struct wapbl_entry *we; 576 struct buf *bp; 577 int i; 578 579 /* 580 * XXX we may consider using upgrade here 581 * if we want to call flush from inside a transaction 582 */ 583 rw_enter(&wl->wl_rwlock, RW_WRITER); 584 wl->wl_flush(wl->wl_mount, wl->wl_deallocblks, wl->wl_dealloclens, 585 wl->wl_dealloccnt); 586 587 #ifdef WAPBL_DEBUG_PRINT 588 { 589 pid_t pid = -1; 590 lwpid_t lid = -1; 591 if (curproc) 592 pid = curproc->p_pid; 593 if (curlwp) 594 lid = curlwp->l_lid; 595 #ifdef WAPBL_DEBUG_BUFBYTES 596 WAPBL_PRINTF(WAPBL_PRINT_DISCARD, 597 ("wapbl_discard: thread %d.%d discarding " 598 "transaction\n" 599 "\tbufcount=%zu bufbytes=%zu bcount=%zu " 600 "deallocs=%d inodes=%d\n" 601 "\terrcnt = %u, reclaimable=%zu reserved=%zu " 602 "unsynced=%zu\n", 603 pid, lid, wl->wl_bufcount, wl->wl_bufbytes, 604 wl->wl_bcount, wl->wl_dealloccnt, 605 wl->wl_inohashcnt, wl->wl_error_count, 606 wl->wl_reclaimable_bytes, wl->wl_reserved_bytes, 607 wl->wl_unsynced_bufbytes)); 608 SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) { 609 WAPBL_PRINTF(WAPBL_PRINT_DISCARD, 610 ("\tentry: bufcount = %zu, reclaimable = %zu, " 611 "error = %d, unsynced = %zu\n", 612 we->we_bufcount, we->we_reclaimable_bytes, 613 we->we_error, we->we_unsynced_bufbytes)); 614 } 615 #else /* !WAPBL_DEBUG_BUFBYTES */ 616 WAPBL_PRINTF(WAPBL_PRINT_DISCARD, 617 ("wapbl_discard: thread %d.%d discarding transaction\n" 618 "\tbufcount=%zu bufbytes=%zu bcount=%zu " 619 "deallocs=%d inodes=%d\n" 620 "\terrcnt = %u, reclaimable=%zu reserved=%zu\n", 621 pid, lid, wl->wl_bufcount, wl->wl_bufbytes, 622 wl->wl_bcount, wl->wl_dealloccnt, 623 wl->wl_inohashcnt, wl->wl_error_count, 624 wl->wl_reclaimable_bytes, wl->wl_reserved_bytes)); 625 SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) { 626 WAPBL_PRINTF(WAPBL_PRINT_DISCARD, 627 ("\tentry: bufcount = %zu, reclaimable = %zu, " 628 "error = %d\n", 629 we->we_bufcount, we->we_reclaimable_bytes, 630 we->we_error)); 631 } 632 #endif /* !WAPBL_DEBUG_BUFBYTES */ 633 } 634 #endif /* WAPBL_DEBUG_PRINT */ 635 636 for (i = 0; i <= wl->wl_inohashmask; i++) { 637 struct wapbl_ino_head *wih; 638 struct wapbl_ino *wi; 639 640 wih = &wl->wl_inohash[i]; 641 while ((wi = LIST_FIRST(wih)) != NULL) { 642 LIST_REMOVE(wi, wi_hash); 643 pool_put(&wapbl_ino_pool, wi); 644 KASSERT(wl->wl_inohashcnt > 0); 645 wl->wl_inohashcnt--; 646 } 647 } 648 649 /* 650 * clean buffer list 651 */ 652 mutex_enter(&bufcache_lock); 653 mutex_enter(&wl->wl_mtx); 654 while ((bp = LIST_FIRST(&wl->wl_bufs)) != NULL) { 655 if (bbusy(bp, 0, 0, &wl->wl_mtx) == 0) { 656 /* 657 * The buffer will be unlocked and 658 * removed from the transaction in brelse 659 */ 660 mutex_exit(&wl->wl_mtx); 661 brelsel(bp, 0); 662 mutex_enter(&wl->wl_mtx); 663 } 664 } 665 mutex_exit(&wl->wl_mtx); 666 mutex_exit(&bufcache_lock); 667 668 /* 669 * Remove references to this wl from wl_entries, free any which 670 * no longer have buffers, others will be freed in wapbl_biodone 671 * when they no longer have any buffers. 672 */ 673 while ((we = SIMPLEQ_FIRST(&wl->wl_entries)) != NULL) { 674 SIMPLEQ_REMOVE_HEAD(&wl->wl_entries, we_entries); 675 /* XXX should we be accumulating wl_error_count 676 * and increasing reclaimable bytes ? */ 677 we->we_wapbl = NULL; 678 if (we->we_bufcount == 0) { 679 #ifdef WAPBL_DEBUG_BUFBYTES 680 KASSERT(we->we_unsynced_bufbytes == 0); 681 #endif 682 pool_put(&wapbl_entry_pool, we); 683 } 684 } 685 686 /* Discard list of deallocs */ 687 wl->wl_dealloccnt = 0; 688 /* XXX should we clear wl_reserved_bytes? */ 689 690 KASSERT(wl->wl_bufbytes == 0); 691 KASSERT(wl->wl_bcount == 0); 692 KASSERT(wl->wl_bufcount == 0); 693 KASSERT(LIST_EMPTY(&wl->wl_bufs)); 694 KASSERT(SIMPLEQ_EMPTY(&wl->wl_entries)); 695 KASSERT(wl->wl_inohashcnt == 0); 696 697 rw_exit(&wl->wl_rwlock); 698 } 699 700 int 701 wapbl_stop(struct wapbl *wl, int force) 702 { 703 int error; 704 705 WAPBL_PRINTF(WAPBL_PRINT_OPEN, ("wapbl_stop called\n")); 706 error = wapbl_flush(wl, 1); 707 if (error) { 708 if (force) 709 wapbl_discard(wl); 710 else 711 return error; 712 } 713 714 /* Unlinked inodes persist after a flush */ 715 if (wl->wl_inohashcnt) { 716 if (force) { 717 wapbl_discard(wl); 718 } else { 719 return EBUSY; 720 } 721 } 722 723 KASSERT(wl->wl_bufbytes == 0); 724 KASSERT(wl->wl_bcount == 0); 725 KASSERT(wl->wl_bufcount == 0); 726 KASSERT(LIST_EMPTY(&wl->wl_bufs)); 727 KASSERT(wl->wl_dealloccnt == 0); 728 KASSERT(SIMPLEQ_EMPTY(&wl->wl_entries)); 729 KASSERT(wl->wl_inohashcnt == 0); 730 731 wapbl_free(wl->wl_wc_scratch, wl->wl_wc_header->wc_len); 732 wapbl_free(wl->wl_wc_header, wl->wl_wc_header->wc_len); 733 wapbl_free(wl->wl_deallocblks, 734 sizeof(*wl->wl_deallocblks) * wl->wl_dealloclim); 735 wapbl_free(wl->wl_dealloclens, 736 sizeof(*wl->wl_dealloclens) * wl->wl_dealloclim); 737 wapbl_free(wl->wl_buffer, MAXPHYS); 738 wapbl_inodetrk_free(wl); 739 740 cv_destroy(&wl->wl_reclaimable_cv); 741 mutex_destroy(&wl->wl_mtx); 742 rw_destroy(&wl->wl_rwlock); 743 wapbl_free(wl, sizeof(*wl)); 744 745 return 0; 746 } 747 748 /****************************************************************/ 749 /* 750 * Unbuffered disk I/O 751 */ 752 753 static int 754 wapbl_doio(void *data, size_t len, struct vnode *devvp, daddr_t pbn, int flags) 755 { 756 struct pstats *pstats = curlwp->l_proc->p_stats; 757 struct buf *bp; 758 int error; 759 760 KASSERT((flags & ~(B_WRITE | B_READ)) == 0); 761 KASSERT(devvp->v_type == VBLK); 762 763 if ((flags & (B_WRITE | B_READ)) == B_WRITE) { 764 mutex_enter(devvp->v_interlock); 765 devvp->v_numoutput++; 766 mutex_exit(devvp->v_interlock); 767 pstats->p_ru.ru_oublock++; 768 } else { 769 pstats->p_ru.ru_inblock++; 770 } 771 772 bp = getiobuf(devvp, true); 773 bp->b_flags = flags; 774 bp->b_cflags = BC_BUSY; /* silly & dubious */ 775 bp->b_dev = devvp->v_rdev; 776 bp->b_data = data; 777 bp->b_bufsize = bp->b_resid = bp->b_bcount = len; 778 bp->b_blkno = pbn; 779 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 780 781 WAPBL_PRINTF(WAPBL_PRINT_IO, 782 ("wapbl_doio: %s %d bytes at block %"PRId64" on dev 0x%"PRIx64"\n", 783 BUF_ISWRITE(bp) ? "write" : "read", bp->b_bcount, 784 bp->b_blkno, bp->b_dev)); 785 786 VOP_STRATEGY(devvp, bp); 787 788 error = biowait(bp); 789 putiobuf(bp); 790 791 if (error) { 792 WAPBL_PRINTF(WAPBL_PRINT_ERROR, 793 ("wapbl_doio: %s %zu bytes at block %" PRId64 794 " on dev 0x%"PRIx64" failed with error %d\n", 795 (((flags & (B_WRITE | B_READ)) == B_WRITE) ? 796 "write" : "read"), 797 len, pbn, devvp->v_rdev, error)); 798 } 799 800 return error; 801 } 802 803 /* 804 * wapbl_write(data, len, devvp, pbn) 805 * 806 * Synchronously write len bytes from data to physical block pbn 807 * on devvp. 808 */ 809 int 810 wapbl_write(void *data, size_t len, struct vnode *devvp, daddr_t pbn) 811 { 812 813 return wapbl_doio(data, len, devvp, pbn, B_WRITE); 814 } 815 816 /* 817 * wapbl_read(data, len, devvp, pbn) 818 * 819 * Synchronously read len bytes into data from physical block pbn 820 * on devvp. 821 */ 822 int 823 wapbl_read(void *data, size_t len, struct vnode *devvp, daddr_t pbn) 824 { 825 826 return wapbl_doio(data, len, devvp, pbn, B_READ); 827 } 828 829 /****************************************************************/ 830 /* 831 * Buffered disk writes -- try to coalesce writes and emit 832 * MAXPHYS-aligned blocks. 833 */ 834 835 /* 836 * wapbl_buffered_flush(wl) 837 * 838 * Flush any buffered writes from wapbl_buffered_write. 839 */ 840 static int 841 wapbl_buffered_flush(struct wapbl *wl) 842 { 843 int error; 844 845 if (wl->wl_buffer_used == 0) 846 return 0; 847 848 error = wapbl_doio(wl->wl_buffer, wl->wl_buffer_used, 849 wl->wl_devvp, wl->wl_buffer_dblk, B_WRITE); 850 wl->wl_buffer_used = 0; 851 852 return error; 853 } 854 855 /* 856 * wapbl_buffered_write(data, len, wl, pbn) 857 * 858 * Write len bytes from data to physical block pbn on 859 * wl->wl_devvp. The write may not complete until 860 * wapbl_buffered_flush. 861 */ 862 static int 863 wapbl_buffered_write(void *data, size_t len, struct wapbl *wl, daddr_t pbn) 864 { 865 int error; 866 size_t resid; 867 868 /* 869 * If not adjacent to buffered data flush first. Disk block 870 * address is always valid for non-empty buffer. 871 */ 872 if (wl->wl_buffer_used > 0 && 873 pbn != wl->wl_buffer_dblk + btodb(wl->wl_buffer_used)) { 874 error = wapbl_buffered_flush(wl); 875 if (error) 876 return error; 877 } 878 /* 879 * If this write goes to an empty buffer we have to 880 * save the disk block address first. 881 */ 882 if (wl->wl_buffer_used == 0) 883 wl->wl_buffer_dblk = pbn; 884 /* 885 * Remaining space so this buffer ends on a MAXPHYS boundary. 886 * 887 * Cannot become less or equal zero as the buffer would have been 888 * flushed on the last call then. 889 */ 890 resid = MAXPHYS - dbtob(wl->wl_buffer_dblk % btodb(MAXPHYS)) - 891 wl->wl_buffer_used; 892 KASSERT(resid > 0); 893 KASSERT(dbtob(btodb(resid)) == resid); 894 if (len >= resid) { 895 memcpy(wl->wl_buffer + wl->wl_buffer_used, data, resid); 896 wl->wl_buffer_used += resid; 897 error = wapbl_doio(wl->wl_buffer, wl->wl_buffer_used, 898 wl->wl_devvp, wl->wl_buffer_dblk, B_WRITE); 899 data = (uint8_t *)data + resid; 900 len -= resid; 901 wl->wl_buffer_dblk = pbn + btodb(resid); 902 wl->wl_buffer_used = 0; 903 if (error) 904 return error; 905 } 906 KASSERT(len < MAXPHYS); 907 if (len > 0) { 908 memcpy(wl->wl_buffer + wl->wl_buffer_used, data, len); 909 wl->wl_buffer_used += len; 910 } 911 912 return 0; 913 } 914 915 /* 916 * wapbl_circ_write(wl, data, len, offp) 917 * 918 * Write len bytes from data to the circular queue of wl, starting 919 * at linear byte offset *offp, and returning the new linear byte 920 * offset in *offp. 921 * 922 * If the starting linear byte offset precedes wl->wl_circ_off, 923 * the write instead begins at wl->wl_circ_off. XXX WTF? This 924 * should be a KASSERT, not a conditional. 925 * 926 * The write is buffered in wl and must be flushed with 927 * wapbl_buffered_flush before it will be submitted to the disk. 928 */ 929 static int 930 wapbl_circ_write(struct wapbl *wl, void *data, size_t len, off_t *offp) 931 { 932 size_t slen; 933 off_t off = *offp; 934 int error; 935 daddr_t pbn; 936 937 KDASSERT(((len >> wl->wl_log_dev_bshift) << 938 wl->wl_log_dev_bshift) == len); 939 940 if (off < wl->wl_circ_off) 941 off = wl->wl_circ_off; 942 slen = wl->wl_circ_off + wl->wl_circ_size - off; 943 if (slen < len) { 944 pbn = wl->wl_logpbn + (off >> wl->wl_log_dev_bshift); 945 #ifdef _KERNEL 946 pbn = btodb(pbn << wl->wl_log_dev_bshift); 947 #endif 948 error = wapbl_buffered_write(data, slen, wl, pbn); 949 if (error) 950 return error; 951 data = (uint8_t *)data + slen; 952 len -= slen; 953 off = wl->wl_circ_off; 954 } 955 pbn = wl->wl_logpbn + (off >> wl->wl_log_dev_bshift); 956 #ifdef _KERNEL 957 pbn = btodb(pbn << wl->wl_log_dev_bshift); 958 #endif 959 error = wapbl_buffered_write(data, len, wl, pbn); 960 if (error) 961 return error; 962 off += len; 963 if (off >= wl->wl_circ_off + wl->wl_circ_size) 964 off = wl->wl_circ_off; 965 *offp = off; 966 return 0; 967 } 968 969 /****************************************************************/ 970 /* 971 * WAPBL transactions: entering, adding/removing bufs, and exiting 972 */ 973 974 int 975 wapbl_begin(struct wapbl *wl, const char *file, int line) 976 { 977 int doflush; 978 unsigned lockcount; 979 980 KDASSERT(wl); 981 982 /* 983 * XXX this needs to be made much more sophisticated. 984 * perhaps each wapbl_begin could reserve a specified 985 * number of buffers and bytes. 986 */ 987 mutex_enter(&wl->wl_mtx); 988 lockcount = wl->wl_lock_count; 989 doflush = ((wl->wl_bufbytes + (lockcount * MAXPHYS)) > 990 wl->wl_bufbytes_max / 2) || 991 ((wl->wl_bufcount + (lockcount * 10)) > 992 wl->wl_bufcount_max / 2) || 993 (wapbl_transaction_len(wl) > wl->wl_circ_size / 2) || 994 (wl->wl_dealloccnt >= (wl->wl_dealloclim / 2)); 995 mutex_exit(&wl->wl_mtx); 996 997 if (doflush) { 998 WAPBL_PRINTF(WAPBL_PRINT_FLUSH, 999 ("force flush lockcnt=%d bufbytes=%zu " 1000 "(max=%zu) bufcount=%zu (max=%zu) " 1001 "dealloccnt %d (lim=%d)\n", 1002 lockcount, wl->wl_bufbytes, 1003 wl->wl_bufbytes_max, wl->wl_bufcount, 1004 wl->wl_bufcount_max, 1005 wl->wl_dealloccnt, wl->wl_dealloclim)); 1006 } 1007 1008 if (doflush) { 1009 int error = wapbl_flush(wl, 0); 1010 if (error) 1011 return error; 1012 } 1013 1014 rw_enter(&wl->wl_rwlock, RW_READER); 1015 mutex_enter(&wl->wl_mtx); 1016 wl->wl_lock_count++; 1017 mutex_exit(&wl->wl_mtx); 1018 1019 #if defined(WAPBL_DEBUG_PRINT) 1020 WAPBL_PRINTF(WAPBL_PRINT_TRANSACTION, 1021 ("wapbl_begin thread %d.%d with bufcount=%zu " 1022 "bufbytes=%zu bcount=%zu at %s:%d\n", 1023 curproc->p_pid, curlwp->l_lid, wl->wl_bufcount, 1024 wl->wl_bufbytes, wl->wl_bcount, file, line)); 1025 #endif 1026 1027 return 0; 1028 } 1029 1030 void 1031 wapbl_end(struct wapbl *wl) 1032 { 1033 1034 #if defined(WAPBL_DEBUG_PRINT) 1035 WAPBL_PRINTF(WAPBL_PRINT_TRANSACTION, 1036 ("wapbl_end thread %d.%d with bufcount=%zu " 1037 "bufbytes=%zu bcount=%zu\n", 1038 curproc->p_pid, curlwp->l_lid, wl->wl_bufcount, 1039 wl->wl_bufbytes, wl->wl_bcount)); 1040 #endif 1041 1042 /* 1043 * XXX this could be handled more gracefully, perhaps place 1044 * only a partial transaction in the log and allow the 1045 * remaining to flush without the protection of the journal. 1046 */ 1047 KASSERTMSG((wapbl_transaction_len(wl) <= 1048 (wl->wl_circ_size - wl->wl_reserved_bytes)), 1049 "wapbl_end: current transaction too big to flush"); 1050 1051 mutex_enter(&wl->wl_mtx); 1052 KASSERT(wl->wl_lock_count > 0); 1053 wl->wl_lock_count--; 1054 mutex_exit(&wl->wl_mtx); 1055 1056 rw_exit(&wl->wl_rwlock); 1057 } 1058 1059 void 1060 wapbl_add_buf(struct wapbl *wl, struct buf * bp) 1061 { 1062 1063 KASSERT(bp->b_cflags & BC_BUSY); 1064 KASSERT(bp->b_vp); 1065 1066 wapbl_jlock_assert(wl); 1067 1068 #if 0 1069 /* 1070 * XXX this might be an issue for swapfiles. 1071 * see uvm_swap.c:1702 1072 * 1073 * XXX2 why require it then? leap of semantics? 1074 */ 1075 KASSERT((bp->b_cflags & BC_NOCACHE) == 0); 1076 #endif 1077 1078 mutex_enter(&wl->wl_mtx); 1079 if (bp->b_flags & B_LOCKED) { 1080 LIST_REMOVE(bp, b_wapbllist); 1081 WAPBL_PRINTF(WAPBL_PRINT_BUFFER2, 1082 ("wapbl_add_buf thread %d.%d re-adding buf %p " 1083 "with %d bytes %d bcount\n", 1084 curproc->p_pid, curlwp->l_lid, bp, bp->b_bufsize, 1085 bp->b_bcount)); 1086 } else { 1087 /* unlocked by dirty buffers shouldn't exist */ 1088 KASSERT(!(bp->b_oflags & BO_DELWRI)); 1089 wl->wl_bufbytes += bp->b_bufsize; 1090 wl->wl_bcount += bp->b_bcount; 1091 wl->wl_bufcount++; 1092 WAPBL_PRINTF(WAPBL_PRINT_BUFFER, 1093 ("wapbl_add_buf thread %d.%d adding buf %p " 1094 "with %d bytes %d bcount\n", 1095 curproc->p_pid, curlwp->l_lid, bp, bp->b_bufsize, 1096 bp->b_bcount)); 1097 } 1098 LIST_INSERT_HEAD(&wl->wl_bufs, bp, b_wapbllist); 1099 mutex_exit(&wl->wl_mtx); 1100 1101 bp->b_flags |= B_LOCKED; 1102 } 1103 1104 static void 1105 wapbl_remove_buf_locked(struct wapbl * wl, struct buf *bp) 1106 { 1107 1108 KASSERT(mutex_owned(&wl->wl_mtx)); 1109 KASSERT(bp->b_cflags & BC_BUSY); 1110 wapbl_jlock_assert(wl); 1111 1112 #if 0 1113 /* 1114 * XXX this might be an issue for swapfiles. 1115 * see uvm_swap.c:1725 1116 * 1117 * XXXdeux: see above 1118 */ 1119 KASSERT((bp->b_flags & BC_NOCACHE) == 0); 1120 #endif 1121 KASSERT(bp->b_flags & B_LOCKED); 1122 1123 WAPBL_PRINTF(WAPBL_PRINT_BUFFER, 1124 ("wapbl_remove_buf thread %d.%d removing buf %p with " 1125 "%d bytes %d bcount\n", 1126 curproc->p_pid, curlwp->l_lid, bp, bp->b_bufsize, bp->b_bcount)); 1127 1128 KASSERT(wl->wl_bufbytes >= bp->b_bufsize); 1129 wl->wl_bufbytes -= bp->b_bufsize; 1130 KASSERT(wl->wl_bcount >= bp->b_bcount); 1131 wl->wl_bcount -= bp->b_bcount; 1132 KASSERT(wl->wl_bufcount > 0); 1133 wl->wl_bufcount--; 1134 KASSERT((wl->wl_bufcount == 0) == (wl->wl_bufbytes == 0)); 1135 KASSERT((wl->wl_bufcount == 0) == (wl->wl_bcount == 0)); 1136 LIST_REMOVE(bp, b_wapbllist); 1137 1138 bp->b_flags &= ~B_LOCKED; 1139 } 1140 1141 /* called from brelsel() in vfs_bio among other places */ 1142 void 1143 wapbl_remove_buf(struct wapbl * wl, struct buf *bp) 1144 { 1145 1146 mutex_enter(&wl->wl_mtx); 1147 wapbl_remove_buf_locked(wl, bp); 1148 mutex_exit(&wl->wl_mtx); 1149 } 1150 1151 void 1152 wapbl_resize_buf(struct wapbl *wl, struct buf *bp, long oldsz, long oldcnt) 1153 { 1154 1155 KASSERT(bp->b_cflags & BC_BUSY); 1156 1157 /* 1158 * XXX: why does this depend on B_LOCKED? otherwise the buf 1159 * is not for a transaction? if so, why is this called in the 1160 * first place? 1161 */ 1162 if (bp->b_flags & B_LOCKED) { 1163 mutex_enter(&wl->wl_mtx); 1164 wl->wl_bufbytes += bp->b_bufsize - oldsz; 1165 wl->wl_bcount += bp->b_bcount - oldcnt; 1166 mutex_exit(&wl->wl_mtx); 1167 } 1168 } 1169 1170 #endif /* _KERNEL */ 1171 1172 /****************************************************************/ 1173 /* Some utility inlines */ 1174 1175 /* 1176 * wapbl_space_used(avail, head, tail) 1177 * 1178 * Number of bytes used in a circular queue of avail total bytes, 1179 * from tail to head. 1180 */ 1181 static inline size_t 1182 wapbl_space_used(size_t avail, off_t head, off_t tail) 1183 { 1184 1185 if (tail == 0) { 1186 KASSERT(head == 0); 1187 return 0; 1188 } 1189 return ((head + (avail - 1) - tail) % avail) + 1; 1190 } 1191 1192 #ifdef _KERNEL 1193 /* 1194 * wapbl_advance(size, off, oldoff, delta) 1195 * 1196 * Given a byte offset oldoff into a circular queue of size bytes 1197 * starting at off, return a new byte offset oldoff + delta into 1198 * the circular queue. 1199 */ 1200 static inline off_t 1201 wapbl_advance(size_t size, size_t off, off_t oldoff, size_t delta) 1202 { 1203 off_t newoff; 1204 1205 /* Define acceptable ranges for inputs. */ 1206 KASSERT(delta <= (size_t)size); 1207 KASSERT((oldoff == 0) || ((size_t)oldoff >= off)); 1208 KASSERT(oldoff < (off_t)(size + off)); 1209 1210 if ((oldoff == 0) && (delta != 0)) 1211 newoff = off + delta; 1212 else if ((oldoff + delta) < (size + off)) 1213 newoff = oldoff + delta; 1214 else 1215 newoff = (oldoff + delta) - size; 1216 1217 /* Note some interesting axioms */ 1218 KASSERT((delta != 0) || (newoff == oldoff)); 1219 KASSERT((delta == 0) || (newoff != 0)); 1220 KASSERT((delta != (size)) || (newoff == oldoff)); 1221 1222 /* Define acceptable ranges for output. */ 1223 KASSERT((newoff == 0) || ((size_t)newoff >= off)); 1224 KASSERT((size_t)newoff < (size + off)); 1225 return newoff; 1226 } 1227 1228 /* 1229 * wapbl_space_free(avail, head, tail) 1230 * 1231 * Number of bytes free in a circular queue of avail total bytes, 1232 * in which everything from tail to head is used. 1233 */ 1234 static inline size_t 1235 wapbl_space_free(size_t avail, off_t head, off_t tail) 1236 { 1237 1238 return avail - wapbl_space_used(avail, head, tail); 1239 } 1240 1241 /* 1242 * wapbl_advance_head(size, off, delta, headp, tailp) 1243 * 1244 * In a circular queue of size bytes starting at off, given the 1245 * old head and tail offsets *headp and *tailp, store the new head 1246 * and tail offsets in *headp and *tailp resulting from adding 1247 * delta bytes of data to the head. 1248 */ 1249 static inline void 1250 wapbl_advance_head(size_t size, size_t off, size_t delta, off_t *headp, 1251 off_t *tailp) 1252 { 1253 off_t head = *headp; 1254 off_t tail = *tailp; 1255 1256 KASSERT(delta <= wapbl_space_free(size, head, tail)); 1257 head = wapbl_advance(size, off, head, delta); 1258 if ((tail == 0) && (head != 0)) 1259 tail = off; 1260 *headp = head; 1261 *tailp = tail; 1262 } 1263 1264 /* 1265 * wapbl_advance_tail(size, off, delta, headp, tailp) 1266 * 1267 * In a circular queue of size bytes starting at off, given the 1268 * old head and tail offsets *headp and *tailp, store the new head 1269 * and tail offsets in *headp and *tailp resulting from removing 1270 * delta bytes of data from the tail. 1271 */ 1272 static inline void 1273 wapbl_advance_tail(size_t size, size_t off, size_t delta, off_t *headp, 1274 off_t *tailp) 1275 { 1276 off_t head = *headp; 1277 off_t tail = *tailp; 1278 1279 KASSERT(delta <= wapbl_space_used(size, head, tail)); 1280 tail = wapbl_advance(size, off, tail, delta); 1281 if (head == tail) { 1282 head = tail = 0; 1283 } 1284 *headp = head; 1285 *tailp = tail; 1286 } 1287 1288 1289 /****************************************************************/ 1290 1291 /* 1292 * wapbl_truncate(wl, minfree) 1293 * 1294 * Wait until at least minfree bytes are available in the log. 1295 * 1296 * If it was necessary to wait for writes to complete, 1297 * advance the circular queue tail to reflect the new write 1298 * completions and issue a write commit to the log. 1299 * 1300 * => Caller must hold wl->wl_rwlock writer lock. 1301 */ 1302 static int 1303 wapbl_truncate(struct wapbl *wl, size_t minfree) 1304 { 1305 size_t delta; 1306 size_t avail; 1307 off_t head; 1308 off_t tail; 1309 int error = 0; 1310 1311 KASSERT(minfree <= (wl->wl_circ_size - wl->wl_reserved_bytes)); 1312 KASSERT(rw_write_held(&wl->wl_rwlock)); 1313 1314 mutex_enter(&wl->wl_mtx); 1315 1316 /* 1317 * First check to see if we have to do a commit 1318 * at all. 1319 */ 1320 avail = wapbl_space_free(wl->wl_circ_size, wl->wl_head, wl->wl_tail); 1321 if (minfree < avail) { 1322 mutex_exit(&wl->wl_mtx); 1323 return 0; 1324 } 1325 minfree -= avail; 1326 while ((wl->wl_error_count == 0) && 1327 (wl->wl_reclaimable_bytes < minfree)) { 1328 WAPBL_PRINTF(WAPBL_PRINT_TRUNCATE, 1329 ("wapbl_truncate: sleeping on %p wl=%p bytes=%zd " 1330 "minfree=%zd\n", 1331 &wl->wl_reclaimable_bytes, wl, wl->wl_reclaimable_bytes, 1332 minfree)); 1333 1334 cv_wait(&wl->wl_reclaimable_cv, &wl->wl_mtx); 1335 } 1336 if (wl->wl_reclaimable_bytes < minfree) { 1337 KASSERT(wl->wl_error_count); 1338 /* XXX maybe get actual error from buffer instead someday? */ 1339 error = EIO; 1340 } 1341 head = wl->wl_head; 1342 tail = wl->wl_tail; 1343 delta = wl->wl_reclaimable_bytes; 1344 1345 /* If all of of the entries are flushed, then be sure to keep 1346 * the reserved bytes reserved. Watch out for discarded transactions, 1347 * which could leave more bytes reserved than are reclaimable. 1348 */ 1349 if (SIMPLEQ_EMPTY(&wl->wl_entries) && 1350 (delta >= wl->wl_reserved_bytes)) { 1351 delta -= wl->wl_reserved_bytes; 1352 } 1353 wapbl_advance_tail(wl->wl_circ_size, wl->wl_circ_off, delta, &head, 1354 &tail); 1355 KDASSERT(wl->wl_reserved_bytes <= 1356 wapbl_space_used(wl->wl_circ_size, head, tail)); 1357 mutex_exit(&wl->wl_mtx); 1358 1359 if (error) 1360 return error; 1361 1362 /* 1363 * This is where head, tail and delta are unprotected 1364 * from races against itself or flush. This is ok since 1365 * we only call this routine from inside flush itself. 1366 * 1367 * XXX: how can it race against itself when accessed only 1368 * from behind the write-locked rwlock? 1369 */ 1370 error = wapbl_write_commit(wl, head, tail); 1371 if (error) 1372 return error; 1373 1374 wl->wl_head = head; 1375 wl->wl_tail = tail; 1376 1377 mutex_enter(&wl->wl_mtx); 1378 KASSERT(wl->wl_reclaimable_bytes >= delta); 1379 wl->wl_reclaimable_bytes -= delta; 1380 mutex_exit(&wl->wl_mtx); 1381 WAPBL_PRINTF(WAPBL_PRINT_TRUNCATE, 1382 ("wapbl_truncate thread %d.%d truncating %zu bytes\n", 1383 curproc->p_pid, curlwp->l_lid, delta)); 1384 1385 return 0; 1386 } 1387 1388 /****************************************************************/ 1389 1390 void 1391 wapbl_biodone(struct buf *bp) 1392 { 1393 struct wapbl_entry *we = bp->b_private; 1394 struct wapbl *wl = we->we_wapbl; 1395 #ifdef WAPBL_DEBUG_BUFBYTES 1396 const int bufsize = bp->b_bufsize; 1397 #endif 1398 1399 /* 1400 * Handle possible flushing of buffers after log has been 1401 * decomissioned. 1402 */ 1403 if (!wl) { 1404 KASSERT(we->we_bufcount > 0); 1405 we->we_bufcount--; 1406 #ifdef WAPBL_DEBUG_BUFBYTES 1407 KASSERT(we->we_unsynced_bufbytes >= bufsize); 1408 we->we_unsynced_bufbytes -= bufsize; 1409 #endif 1410 1411 if (we->we_bufcount == 0) { 1412 #ifdef WAPBL_DEBUG_BUFBYTES 1413 KASSERT(we->we_unsynced_bufbytes == 0); 1414 #endif 1415 pool_put(&wapbl_entry_pool, we); 1416 } 1417 1418 brelse(bp, 0); 1419 return; 1420 } 1421 1422 #ifdef ohbother 1423 KDASSERT(bp->b_oflags & BO_DONE); 1424 KDASSERT(!(bp->b_oflags & BO_DELWRI)); 1425 KDASSERT(bp->b_flags & B_ASYNC); 1426 KDASSERT(bp->b_cflags & BC_BUSY); 1427 KDASSERT(!(bp->b_flags & B_LOCKED)); 1428 KDASSERT(!(bp->b_flags & B_READ)); 1429 KDASSERT(!(bp->b_cflags & BC_INVAL)); 1430 KDASSERT(!(bp->b_cflags & BC_NOCACHE)); 1431 #endif 1432 1433 if (bp->b_error) { 1434 /* 1435 * If an error occurs, it would be nice to leave the buffer 1436 * as a delayed write on the LRU queue so that we can retry 1437 * it later. But buffercache(9) can't handle dirty buffer 1438 * reuse, so just mark the log permanently errored out. 1439 */ 1440 mutex_enter(&wl->wl_mtx); 1441 if (wl->wl_error_count == 0) { 1442 wl->wl_error_count++; 1443 cv_broadcast(&wl->wl_reclaimable_cv); 1444 } 1445 mutex_exit(&wl->wl_mtx); 1446 } 1447 1448 /* 1449 * Release the buffer here. wapbl_flush() may wait for the 1450 * log to become empty and we better unbusy the buffer before 1451 * wapbl_flush() returns. 1452 */ 1453 brelse(bp, 0); 1454 1455 mutex_enter(&wl->wl_mtx); 1456 1457 KASSERT(we->we_bufcount > 0); 1458 we->we_bufcount--; 1459 #ifdef WAPBL_DEBUG_BUFBYTES 1460 KASSERT(we->we_unsynced_bufbytes >= bufsize); 1461 we->we_unsynced_bufbytes -= bufsize; 1462 KASSERT(wl->wl_unsynced_bufbytes >= bufsize); 1463 wl->wl_unsynced_bufbytes -= bufsize; 1464 #endif 1465 1466 /* 1467 * If the current transaction can be reclaimed, start 1468 * at the beginning and reclaim any consecutive reclaimable 1469 * transactions. If we successfully reclaim anything, 1470 * then wakeup anyone waiting for the reclaim. 1471 */ 1472 if (we->we_bufcount == 0) { 1473 size_t delta = 0; 1474 int errcnt = 0; 1475 #ifdef WAPBL_DEBUG_BUFBYTES 1476 KDASSERT(we->we_unsynced_bufbytes == 0); 1477 #endif 1478 /* 1479 * clear any posted error, since the buffer it came from 1480 * has successfully flushed by now 1481 */ 1482 while ((we = SIMPLEQ_FIRST(&wl->wl_entries)) && 1483 (we->we_bufcount == 0)) { 1484 delta += we->we_reclaimable_bytes; 1485 if (we->we_error) 1486 errcnt++; 1487 SIMPLEQ_REMOVE_HEAD(&wl->wl_entries, we_entries); 1488 pool_put(&wapbl_entry_pool, we); 1489 } 1490 1491 if (delta) { 1492 wl->wl_reclaimable_bytes += delta; 1493 KASSERT(wl->wl_error_count >= errcnt); 1494 wl->wl_error_count -= errcnt; 1495 cv_broadcast(&wl->wl_reclaimable_cv); 1496 } 1497 } 1498 1499 mutex_exit(&wl->wl_mtx); 1500 } 1501 1502 /* 1503 * wapbl_flush(wl, wait) 1504 * 1505 * Flush pending block writes, deallocations, and inodes from 1506 * the current transaction in memory to the log on disk: 1507 * 1508 * 1. Call the file system's wl_flush callback to flush any 1509 * per-file-system pending updates. 1510 * 2. Wait for enough space in the log for the current transaction. 1511 * 3. Synchronously write the new log records, advancing the 1512 * circular queue head. 1513 * 4. Issue the pending block writes asynchronously, now that they 1514 * are recorded in the log and can be replayed after crash. 1515 * 5. If wait is true, wait for all writes to complete and for the 1516 * log to become empty. 1517 * 1518 * On failure, call the file system's wl_flush_abort callback. 1519 */ 1520 int 1521 wapbl_flush(struct wapbl *wl, int waitfor) 1522 { 1523 struct buf *bp; 1524 struct wapbl_entry *we; 1525 off_t off; 1526 off_t head; 1527 off_t tail; 1528 size_t delta = 0; 1529 size_t flushsize; 1530 size_t reserved; 1531 int error = 0; 1532 1533 /* 1534 * Do a quick check to see if a full flush can be skipped 1535 * This assumes that the flush callback does not need to be called 1536 * unless there are other outstanding bufs. 1537 */ 1538 if (!waitfor) { 1539 size_t nbufs; 1540 mutex_enter(&wl->wl_mtx); /* XXX need mutex here to 1541 protect the KASSERTS */ 1542 nbufs = wl->wl_bufcount; 1543 KASSERT((wl->wl_bufcount == 0) == (wl->wl_bufbytes == 0)); 1544 KASSERT((wl->wl_bufcount == 0) == (wl->wl_bcount == 0)); 1545 mutex_exit(&wl->wl_mtx); 1546 if (nbufs == 0) 1547 return 0; 1548 } 1549 1550 /* 1551 * XXX we may consider using LK_UPGRADE here 1552 * if we want to call flush from inside a transaction 1553 */ 1554 rw_enter(&wl->wl_rwlock, RW_WRITER); 1555 wl->wl_flush(wl->wl_mount, wl->wl_deallocblks, wl->wl_dealloclens, 1556 wl->wl_dealloccnt); 1557 1558 /* 1559 * Now that we are exclusively locked and the file system has 1560 * issued any deferred block writes for this transaction, check 1561 * whether there are any blocks to write to the log. If not, 1562 * skip waiting for space or writing any log entries. 1563 * 1564 * XXX Shouldn't this also check wl_dealloccnt and 1565 * wl_inohashcnt? Perhaps wl_dealloccnt doesn't matter if the 1566 * file system didn't produce any blocks as a consequence of 1567 * it, but the same does not seem to be so of wl_inohashcnt. 1568 */ 1569 if (wl->wl_bufcount == 0) { 1570 goto wait_out; 1571 } 1572 1573 #if 0 1574 WAPBL_PRINTF(WAPBL_PRINT_FLUSH, 1575 ("wapbl_flush thread %d.%d flushing entries with " 1576 "bufcount=%zu bufbytes=%zu\n", 1577 curproc->p_pid, curlwp->l_lid, wl->wl_bufcount, 1578 wl->wl_bufbytes)); 1579 #endif 1580 1581 /* Calculate amount of space needed to flush */ 1582 flushsize = wapbl_transaction_len(wl); 1583 if (wapbl_verbose_commit) { 1584 struct timespec ts; 1585 getnanotime(&ts); 1586 printf("%s: %lld.%09ld this transaction = %zu bytes\n", 1587 __func__, (long long)ts.tv_sec, 1588 (long)ts.tv_nsec, flushsize); 1589 } 1590 1591 if (flushsize > (wl->wl_circ_size - wl->wl_reserved_bytes)) { 1592 /* 1593 * XXX this could be handled more gracefully, perhaps place 1594 * only a partial transaction in the log and allow the 1595 * remaining to flush without the protection of the journal. 1596 */ 1597 panic("wapbl_flush: current transaction too big to flush"); 1598 } 1599 1600 error = wapbl_truncate(wl, flushsize); 1601 if (error) 1602 goto out; 1603 1604 off = wl->wl_head; 1605 KASSERT((off == 0) || (off >= wl->wl_circ_off)); 1606 KASSERT((off == 0) || (off < wl->wl_circ_off + wl->wl_circ_size)); 1607 error = wapbl_write_blocks(wl, &off); 1608 if (error) 1609 goto out; 1610 error = wapbl_write_revocations(wl, &off); 1611 if (error) 1612 goto out; 1613 error = wapbl_write_inodes(wl, &off); 1614 if (error) 1615 goto out; 1616 1617 reserved = 0; 1618 if (wl->wl_inohashcnt) 1619 reserved = wapbl_transaction_inodes_len(wl); 1620 1621 head = wl->wl_head; 1622 tail = wl->wl_tail; 1623 1624 wapbl_advance_head(wl->wl_circ_size, wl->wl_circ_off, flushsize, 1625 &head, &tail); 1626 1627 KASSERTMSG(head == off, 1628 "lost head! head=%"PRIdMAX" tail=%" PRIdMAX 1629 " off=%"PRIdMAX" flush=%zu", 1630 (intmax_t)head, (intmax_t)tail, (intmax_t)off, 1631 flushsize); 1632 1633 /* Opportunistically move the tail forward if we can */ 1634 mutex_enter(&wl->wl_mtx); 1635 delta = wl->wl_reclaimable_bytes; 1636 mutex_exit(&wl->wl_mtx); 1637 wapbl_advance_tail(wl->wl_circ_size, wl->wl_circ_off, delta, 1638 &head, &tail); 1639 1640 error = wapbl_write_commit(wl, head, tail); 1641 if (error) 1642 goto out; 1643 1644 we = pool_get(&wapbl_entry_pool, PR_WAITOK); 1645 1646 #ifdef WAPBL_DEBUG_BUFBYTES 1647 WAPBL_PRINTF(WAPBL_PRINT_FLUSH, 1648 ("wapbl_flush: thread %d.%d head+=%zu tail+=%zu used=%zu" 1649 " unsynced=%zu" 1650 "\n\tbufcount=%zu bufbytes=%zu bcount=%zu deallocs=%d " 1651 "inodes=%d\n", 1652 curproc->p_pid, curlwp->l_lid, flushsize, delta, 1653 wapbl_space_used(wl->wl_circ_size, head, tail), 1654 wl->wl_unsynced_bufbytes, wl->wl_bufcount, 1655 wl->wl_bufbytes, wl->wl_bcount, wl->wl_dealloccnt, 1656 wl->wl_inohashcnt)); 1657 #else 1658 WAPBL_PRINTF(WAPBL_PRINT_FLUSH, 1659 ("wapbl_flush: thread %d.%d head+=%zu tail+=%zu used=%zu" 1660 "\n\tbufcount=%zu bufbytes=%zu bcount=%zu deallocs=%d " 1661 "inodes=%d\n", 1662 curproc->p_pid, curlwp->l_lid, flushsize, delta, 1663 wapbl_space_used(wl->wl_circ_size, head, tail), 1664 wl->wl_bufcount, wl->wl_bufbytes, wl->wl_bcount, 1665 wl->wl_dealloccnt, wl->wl_inohashcnt)); 1666 #endif 1667 1668 1669 mutex_enter(&bufcache_lock); 1670 mutex_enter(&wl->wl_mtx); 1671 1672 wl->wl_reserved_bytes = reserved; 1673 wl->wl_head = head; 1674 wl->wl_tail = tail; 1675 KASSERT(wl->wl_reclaimable_bytes >= delta); 1676 wl->wl_reclaimable_bytes -= delta; 1677 wl->wl_dealloccnt = 0; 1678 #ifdef WAPBL_DEBUG_BUFBYTES 1679 wl->wl_unsynced_bufbytes += wl->wl_bufbytes; 1680 #endif 1681 1682 we->we_wapbl = wl; 1683 we->we_bufcount = wl->wl_bufcount; 1684 #ifdef WAPBL_DEBUG_BUFBYTES 1685 we->we_unsynced_bufbytes = wl->wl_bufbytes; 1686 #endif 1687 we->we_reclaimable_bytes = flushsize; 1688 we->we_error = 0; 1689 SIMPLEQ_INSERT_TAIL(&wl->wl_entries, we, we_entries); 1690 1691 /* 1692 * this flushes bufs in reverse order than they were queued 1693 * it shouldn't matter, but if we care we could use TAILQ instead. 1694 * XXX Note they will get put on the lru queue when they flush 1695 * so we might actually want to change this to preserve order. 1696 */ 1697 while ((bp = LIST_FIRST(&wl->wl_bufs)) != NULL) { 1698 if (bbusy(bp, 0, 0, &wl->wl_mtx)) { 1699 continue; 1700 } 1701 bp->b_iodone = wapbl_biodone; 1702 bp->b_private = we; 1703 bremfree(bp); 1704 wapbl_remove_buf_locked(wl, bp); 1705 mutex_exit(&wl->wl_mtx); 1706 mutex_exit(&bufcache_lock); 1707 bawrite(bp); 1708 mutex_enter(&bufcache_lock); 1709 mutex_enter(&wl->wl_mtx); 1710 } 1711 mutex_exit(&wl->wl_mtx); 1712 mutex_exit(&bufcache_lock); 1713 1714 #if 0 1715 WAPBL_PRINTF(WAPBL_PRINT_FLUSH, 1716 ("wapbl_flush thread %d.%d done flushing entries...\n", 1717 curproc->p_pid, curlwp->l_lid)); 1718 #endif 1719 1720 wait_out: 1721 1722 /* 1723 * If the waitfor flag is set, don't return until everything is 1724 * fully flushed and the on disk log is empty. 1725 */ 1726 if (waitfor) { 1727 error = wapbl_truncate(wl, wl->wl_circ_size - 1728 wl->wl_reserved_bytes); 1729 } 1730 1731 out: 1732 if (error) { 1733 wl->wl_flush_abort(wl->wl_mount, wl->wl_deallocblks, 1734 wl->wl_dealloclens, wl->wl_dealloccnt); 1735 } 1736 1737 #ifdef WAPBL_DEBUG_PRINT 1738 if (error) { 1739 pid_t pid = -1; 1740 lwpid_t lid = -1; 1741 if (curproc) 1742 pid = curproc->p_pid; 1743 if (curlwp) 1744 lid = curlwp->l_lid; 1745 mutex_enter(&wl->wl_mtx); 1746 #ifdef WAPBL_DEBUG_BUFBYTES 1747 WAPBL_PRINTF(WAPBL_PRINT_ERROR, 1748 ("wapbl_flush: thread %d.%d aborted flush: " 1749 "error = %d\n" 1750 "\tbufcount=%zu bufbytes=%zu bcount=%zu " 1751 "deallocs=%d inodes=%d\n" 1752 "\terrcnt = %d, reclaimable=%zu reserved=%zu " 1753 "unsynced=%zu\n", 1754 pid, lid, error, wl->wl_bufcount, 1755 wl->wl_bufbytes, wl->wl_bcount, 1756 wl->wl_dealloccnt, wl->wl_inohashcnt, 1757 wl->wl_error_count, wl->wl_reclaimable_bytes, 1758 wl->wl_reserved_bytes, wl->wl_unsynced_bufbytes)); 1759 SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) { 1760 WAPBL_PRINTF(WAPBL_PRINT_ERROR, 1761 ("\tentry: bufcount = %zu, reclaimable = %zu, " 1762 "error = %d, unsynced = %zu\n", 1763 we->we_bufcount, we->we_reclaimable_bytes, 1764 we->we_error, we->we_unsynced_bufbytes)); 1765 } 1766 #else 1767 WAPBL_PRINTF(WAPBL_PRINT_ERROR, 1768 ("wapbl_flush: thread %d.%d aborted flush: " 1769 "error = %d\n" 1770 "\tbufcount=%zu bufbytes=%zu bcount=%zu " 1771 "deallocs=%d inodes=%d\n" 1772 "\terrcnt = %d, reclaimable=%zu reserved=%zu\n", 1773 pid, lid, error, wl->wl_bufcount, 1774 wl->wl_bufbytes, wl->wl_bcount, 1775 wl->wl_dealloccnt, wl->wl_inohashcnt, 1776 wl->wl_error_count, wl->wl_reclaimable_bytes, 1777 wl->wl_reserved_bytes)); 1778 SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) { 1779 WAPBL_PRINTF(WAPBL_PRINT_ERROR, 1780 ("\tentry: bufcount = %zu, reclaimable = %zu, " 1781 "error = %d\n", we->we_bufcount, 1782 we->we_reclaimable_bytes, we->we_error)); 1783 } 1784 #endif 1785 mutex_exit(&wl->wl_mtx); 1786 } 1787 #endif 1788 1789 rw_exit(&wl->wl_rwlock); 1790 return error; 1791 } 1792 1793 /****************************************************************/ 1794 1795 void 1796 wapbl_jlock_assert(struct wapbl *wl) 1797 { 1798 1799 KASSERT(rw_lock_held(&wl->wl_rwlock)); 1800 } 1801 1802 void 1803 wapbl_junlock_assert(struct wapbl *wl) 1804 { 1805 1806 KASSERT(!rw_write_held(&wl->wl_rwlock)); 1807 } 1808 1809 /****************************************************************/ 1810 1811 /* locks missing */ 1812 void 1813 wapbl_print(struct wapbl *wl, 1814 int full, 1815 void (*pr)(const char *, ...)) 1816 { 1817 struct buf *bp; 1818 struct wapbl_entry *we; 1819 (*pr)("wapbl %p", wl); 1820 (*pr)("\nlogvp = %p, devvp = %p, logpbn = %"PRId64"\n", 1821 wl->wl_logvp, wl->wl_devvp, wl->wl_logpbn); 1822 (*pr)("circ = %zu, header = %zu, head = %"PRIdMAX" tail = %"PRIdMAX"\n", 1823 wl->wl_circ_size, wl->wl_circ_off, 1824 (intmax_t)wl->wl_head, (intmax_t)wl->wl_tail); 1825 (*pr)("fs_dev_bshift = %d, log_dev_bshift = %d\n", 1826 wl->wl_log_dev_bshift, wl->wl_fs_dev_bshift); 1827 #ifdef WAPBL_DEBUG_BUFBYTES 1828 (*pr)("bufcount = %zu, bufbytes = %zu bcount = %zu reclaimable = %zu " 1829 "reserved = %zu errcnt = %d unsynced = %zu\n", 1830 wl->wl_bufcount, wl->wl_bufbytes, wl->wl_bcount, 1831 wl->wl_reclaimable_bytes, wl->wl_reserved_bytes, 1832 wl->wl_error_count, wl->wl_unsynced_bufbytes); 1833 #else 1834 (*pr)("bufcount = %zu, bufbytes = %zu bcount = %zu reclaimable = %zu " 1835 "reserved = %zu errcnt = %d\n", wl->wl_bufcount, wl->wl_bufbytes, 1836 wl->wl_bcount, wl->wl_reclaimable_bytes, wl->wl_reserved_bytes, 1837 wl->wl_error_count); 1838 #endif 1839 (*pr)("\tdealloccnt = %d, dealloclim = %d\n", 1840 wl->wl_dealloccnt, wl->wl_dealloclim); 1841 (*pr)("\tinohashcnt = %d, inohashmask = 0x%08x\n", 1842 wl->wl_inohashcnt, wl->wl_inohashmask); 1843 (*pr)("entries:\n"); 1844 SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) { 1845 #ifdef WAPBL_DEBUG_BUFBYTES 1846 (*pr)("\tbufcount = %zu, reclaimable = %zu, error = %d, " 1847 "unsynced = %zu\n", 1848 we->we_bufcount, we->we_reclaimable_bytes, 1849 we->we_error, we->we_unsynced_bufbytes); 1850 #else 1851 (*pr)("\tbufcount = %zu, reclaimable = %zu, error = %d\n", 1852 we->we_bufcount, we->we_reclaimable_bytes, we->we_error); 1853 #endif 1854 } 1855 if (full) { 1856 int cnt = 0; 1857 (*pr)("bufs ="); 1858 LIST_FOREACH(bp, &wl->wl_bufs, b_wapbllist) { 1859 if (!LIST_NEXT(bp, b_wapbllist)) { 1860 (*pr)(" %p", bp); 1861 } else if ((++cnt % 6) == 0) { 1862 (*pr)(" %p,\n\t", bp); 1863 } else { 1864 (*pr)(" %p,", bp); 1865 } 1866 } 1867 (*pr)("\n"); 1868 1869 (*pr)("dealloced blks = "); 1870 { 1871 int i; 1872 cnt = 0; 1873 for (i = 0; i < wl->wl_dealloccnt; i++) { 1874 (*pr)(" %"PRId64":%d,", 1875 wl->wl_deallocblks[i], 1876 wl->wl_dealloclens[i]); 1877 if ((++cnt % 4) == 0) { 1878 (*pr)("\n\t"); 1879 } 1880 } 1881 } 1882 (*pr)("\n"); 1883 1884 (*pr)("registered inodes = "); 1885 { 1886 int i; 1887 cnt = 0; 1888 for (i = 0; i <= wl->wl_inohashmask; i++) { 1889 struct wapbl_ino_head *wih; 1890 struct wapbl_ino *wi; 1891 1892 wih = &wl->wl_inohash[i]; 1893 LIST_FOREACH(wi, wih, wi_hash) { 1894 if (wi->wi_ino == 0) 1895 continue; 1896 (*pr)(" %"PRIu64"/0%06"PRIo32",", 1897 wi->wi_ino, wi->wi_mode); 1898 if ((++cnt % 4) == 0) { 1899 (*pr)("\n\t"); 1900 } 1901 } 1902 } 1903 (*pr)("\n"); 1904 } 1905 } 1906 } 1907 1908 #if defined(WAPBL_DEBUG) || defined(DDB) 1909 void 1910 wapbl_dump(struct wapbl *wl) 1911 { 1912 #if defined(WAPBL_DEBUG) 1913 if (!wl) 1914 wl = wapbl_debug_wl; 1915 #endif 1916 if (!wl) 1917 return; 1918 wapbl_print(wl, 1, printf); 1919 } 1920 #endif 1921 1922 /****************************************************************/ 1923 1924 void 1925 wapbl_register_deallocation(struct wapbl *wl, daddr_t blk, int len) 1926 { 1927 1928 wapbl_jlock_assert(wl); 1929 1930 mutex_enter(&wl->wl_mtx); 1931 /* XXX should eventually instead tie this into resource estimation */ 1932 /* 1933 * XXX this panic needs locking/mutex analysis and the 1934 * ability to cope with the failure. 1935 */ 1936 /* XXX this XXX doesn't have enough XXX */ 1937 if (__predict_false(wl->wl_dealloccnt >= wl->wl_dealloclim)) 1938 panic("wapbl_register_deallocation: out of resources"); 1939 1940 wl->wl_deallocblks[wl->wl_dealloccnt] = blk; 1941 wl->wl_dealloclens[wl->wl_dealloccnt] = len; 1942 wl->wl_dealloccnt++; 1943 WAPBL_PRINTF(WAPBL_PRINT_ALLOC, 1944 ("wapbl_register_deallocation: blk=%"PRId64" len=%d\n", blk, len)); 1945 mutex_exit(&wl->wl_mtx); 1946 } 1947 1948 /****************************************************************/ 1949 1950 static void 1951 wapbl_inodetrk_init(struct wapbl *wl, u_int size) 1952 { 1953 1954 wl->wl_inohash = hashinit(size, HASH_LIST, true, &wl->wl_inohashmask); 1955 if (atomic_inc_uint_nv(&wapbl_ino_pool_refcount) == 1) { 1956 pool_init(&wapbl_ino_pool, sizeof(struct wapbl_ino), 0, 0, 0, 1957 "wapblinopl", &pool_allocator_nointr, IPL_NONE); 1958 } 1959 } 1960 1961 static void 1962 wapbl_inodetrk_free(struct wapbl *wl) 1963 { 1964 1965 /* XXX this KASSERT needs locking/mutex analysis */ 1966 KASSERT(wl->wl_inohashcnt == 0); 1967 hashdone(wl->wl_inohash, HASH_LIST, wl->wl_inohashmask); 1968 if (atomic_dec_uint_nv(&wapbl_ino_pool_refcount) == 0) { 1969 pool_destroy(&wapbl_ino_pool); 1970 } 1971 } 1972 1973 static struct wapbl_ino * 1974 wapbl_inodetrk_get(struct wapbl *wl, ino_t ino) 1975 { 1976 struct wapbl_ino_head *wih; 1977 struct wapbl_ino *wi; 1978 1979 KASSERT(mutex_owned(&wl->wl_mtx)); 1980 1981 wih = &wl->wl_inohash[ino & wl->wl_inohashmask]; 1982 LIST_FOREACH(wi, wih, wi_hash) { 1983 if (ino == wi->wi_ino) 1984 return wi; 1985 } 1986 return 0; 1987 } 1988 1989 void 1990 wapbl_register_inode(struct wapbl *wl, ino_t ino, mode_t mode) 1991 { 1992 struct wapbl_ino_head *wih; 1993 struct wapbl_ino *wi; 1994 1995 wi = pool_get(&wapbl_ino_pool, PR_WAITOK); 1996 1997 mutex_enter(&wl->wl_mtx); 1998 if (wapbl_inodetrk_get(wl, ino) == NULL) { 1999 wi->wi_ino = ino; 2000 wi->wi_mode = mode; 2001 wih = &wl->wl_inohash[ino & wl->wl_inohashmask]; 2002 LIST_INSERT_HEAD(wih, wi, wi_hash); 2003 wl->wl_inohashcnt++; 2004 WAPBL_PRINTF(WAPBL_PRINT_INODE, 2005 ("wapbl_register_inode: ino=%"PRId64"\n", ino)); 2006 mutex_exit(&wl->wl_mtx); 2007 } else { 2008 mutex_exit(&wl->wl_mtx); 2009 pool_put(&wapbl_ino_pool, wi); 2010 } 2011 } 2012 2013 void 2014 wapbl_unregister_inode(struct wapbl *wl, ino_t ino, mode_t mode) 2015 { 2016 struct wapbl_ino *wi; 2017 2018 mutex_enter(&wl->wl_mtx); 2019 wi = wapbl_inodetrk_get(wl, ino); 2020 if (wi) { 2021 WAPBL_PRINTF(WAPBL_PRINT_INODE, 2022 ("wapbl_unregister_inode: ino=%"PRId64"\n", ino)); 2023 KASSERT(wl->wl_inohashcnt > 0); 2024 wl->wl_inohashcnt--; 2025 LIST_REMOVE(wi, wi_hash); 2026 mutex_exit(&wl->wl_mtx); 2027 2028 pool_put(&wapbl_ino_pool, wi); 2029 } else { 2030 mutex_exit(&wl->wl_mtx); 2031 } 2032 } 2033 2034 /****************************************************************/ 2035 2036 /* 2037 * wapbl_transaction_inodes_len(wl) 2038 * 2039 * Calculate the number of bytes required for inode registration 2040 * log records in wl. 2041 */ 2042 static inline size_t 2043 wapbl_transaction_inodes_len(struct wapbl *wl) 2044 { 2045 int blocklen = 1<<wl->wl_log_dev_bshift; 2046 int iph; 2047 2048 /* Calculate number of inodes described in a inodelist header */ 2049 iph = (blocklen - offsetof(struct wapbl_wc_inodelist, wc_inodes)) / 2050 sizeof(((struct wapbl_wc_inodelist *)0)->wc_inodes[0]); 2051 2052 KASSERT(iph > 0); 2053 2054 return MAX(1, howmany(wl->wl_inohashcnt, iph)) * blocklen; 2055 } 2056 2057 2058 /* 2059 * wapbl_transaction_len(wl) 2060 * 2061 * Calculate number of bytes required for all log records in wl. 2062 */ 2063 static size_t 2064 wapbl_transaction_len(struct wapbl *wl) 2065 { 2066 int blocklen = 1<<wl->wl_log_dev_bshift; 2067 size_t len; 2068 int bph; 2069 2070 /* Calculate number of blocks described in a blocklist header */ 2071 bph = (blocklen - offsetof(struct wapbl_wc_blocklist, wc_blocks)) / 2072 sizeof(((struct wapbl_wc_blocklist *)0)->wc_blocks[0]); 2073 2074 KASSERT(bph > 0); 2075 2076 len = wl->wl_bcount; 2077 len += howmany(wl->wl_bufcount, bph) * blocklen; 2078 len += howmany(wl->wl_dealloccnt, bph) * blocklen; 2079 len += wapbl_transaction_inodes_len(wl); 2080 2081 return len; 2082 } 2083 2084 /* 2085 * wapbl_cache_sync(wl, msg) 2086 * 2087 * Issue DIOCCACHESYNC to wl->wl_devvp. 2088 * 2089 * If sysctl(vfs.wapbl.verbose_commit) >= 2, print a message 2090 * including msg about the duration of the cache sync. 2091 */ 2092 static int 2093 wapbl_cache_sync(struct wapbl *wl, const char *msg) 2094 { 2095 const bool verbose = wapbl_verbose_commit >= 2; 2096 struct bintime start_time; 2097 int force = 1; 2098 int error; 2099 2100 if (!wapbl_flush_disk_cache) { 2101 return 0; 2102 } 2103 if (verbose) { 2104 bintime(&start_time); 2105 } 2106 error = VOP_IOCTL(wl->wl_devvp, DIOCCACHESYNC, &force, 2107 FWRITE, FSCRED); 2108 if (error) { 2109 WAPBL_PRINTF(WAPBL_PRINT_ERROR, 2110 ("wapbl_cache_sync: DIOCCACHESYNC on dev 0x%jx " 2111 "returned %d\n", (uintmax_t)wl->wl_devvp->v_rdev, error)); 2112 } 2113 if (verbose) { 2114 struct bintime d; 2115 struct timespec ts; 2116 2117 bintime(&d); 2118 bintime_sub(&d, &start_time); 2119 bintime2timespec(&d, &ts); 2120 printf("wapbl_cache_sync: %s: dev 0x%jx %ju.%09lu\n", 2121 msg, (uintmax_t)wl->wl_devvp->v_rdev, 2122 (uintmax_t)ts.tv_sec, ts.tv_nsec); 2123 } 2124 return error; 2125 } 2126 2127 /* 2128 * wapbl_write_commit(wl, head, tail) 2129 * 2130 * Issue a disk cache sync to wait for all pending writes to the 2131 * log to complete, and then synchronously commit the current 2132 * circular queue head and tail to the log, in the next of two 2133 * locations for commit headers on disk. 2134 * 2135 * Increment the generation number. If the generation number 2136 * rolls over to zero, then a subsequent commit would appear to 2137 * have an older generation than this one -- in that case, issue a 2138 * duplicate commit to avoid this. 2139 * 2140 * => Caller must have exclusive access to wl, either by holding 2141 * wl->wl_rwlock for writer or by being wapbl_start before anyone 2142 * else has seen wl. 2143 */ 2144 static int 2145 wapbl_write_commit(struct wapbl *wl, off_t head, off_t tail) 2146 { 2147 struct wapbl_wc_header *wc = wl->wl_wc_header; 2148 struct timespec ts; 2149 int error; 2150 daddr_t pbn; 2151 2152 error = wapbl_buffered_flush(wl); 2153 if (error) 2154 return error; 2155 /* 2156 * flush disk cache to ensure that blocks we've written are actually 2157 * written to the stable storage before the commit header. 2158 * 2159 * XXX Calc checksum here, instead we do this for now 2160 */ 2161 wapbl_cache_sync(wl, "1"); 2162 2163 wc->wc_head = head; 2164 wc->wc_tail = tail; 2165 wc->wc_checksum = 0; 2166 wc->wc_version = 1; 2167 getnanotime(&ts); 2168 wc->wc_time = ts.tv_sec; 2169 wc->wc_timensec = ts.tv_nsec; 2170 2171 WAPBL_PRINTF(WAPBL_PRINT_WRITE, 2172 ("wapbl_write_commit: head = %"PRIdMAX "tail = %"PRIdMAX"\n", 2173 (intmax_t)head, (intmax_t)tail)); 2174 2175 /* 2176 * write the commit header. 2177 * 2178 * XXX if generation will rollover, then first zero 2179 * over second commit header before trying to write both headers. 2180 */ 2181 2182 pbn = wl->wl_logpbn + (wc->wc_generation % 2); 2183 #ifdef _KERNEL 2184 pbn = btodb(pbn << wc->wc_log_dev_bshift); 2185 #endif 2186 error = wapbl_buffered_write(wc, wc->wc_len, wl, pbn); 2187 if (error) 2188 return error; 2189 error = wapbl_buffered_flush(wl); 2190 if (error) 2191 return error; 2192 2193 /* 2194 * flush disk cache to ensure that the commit header is actually 2195 * written before meta data blocks. 2196 */ 2197 wapbl_cache_sync(wl, "2"); 2198 2199 /* 2200 * If the generation number was zero, write it out a second time. 2201 * This handles initialization and generation number rollover 2202 */ 2203 if (wc->wc_generation++ == 0) { 2204 error = wapbl_write_commit(wl, head, tail); 2205 /* 2206 * This panic should be able to be removed if we do the 2207 * zero'ing mentioned above, and we are certain to roll 2208 * back generation number on failure. 2209 */ 2210 if (error) 2211 panic("wapbl_write_commit: error writing duplicate " 2212 "log header: %d", error); 2213 } 2214 return 0; 2215 } 2216 2217 /* 2218 * wapbl_write_blocks(wl, offp) 2219 * 2220 * Write all pending physical blocks in the current transaction 2221 * from wapbl_add_buf to the log on disk, adding to the circular 2222 * queue head at byte offset *offp, and returning the new head's 2223 * byte offset in *offp. 2224 */ 2225 static int 2226 wapbl_write_blocks(struct wapbl *wl, off_t *offp) 2227 { 2228 struct wapbl_wc_blocklist *wc = 2229 (struct wapbl_wc_blocklist *)wl->wl_wc_scratch; 2230 int blocklen = 1<<wl->wl_log_dev_bshift; 2231 int bph; 2232 struct buf *bp; 2233 off_t off = *offp; 2234 int error; 2235 size_t padding; 2236 2237 KASSERT(rw_write_held(&wl->wl_rwlock)); 2238 2239 bph = (blocklen - offsetof(struct wapbl_wc_blocklist, wc_blocks)) / 2240 sizeof(((struct wapbl_wc_blocklist *)0)->wc_blocks[0]); 2241 2242 bp = LIST_FIRST(&wl->wl_bufs); 2243 2244 while (bp) { 2245 int cnt; 2246 struct buf *obp = bp; 2247 2248 KASSERT(bp->b_flags & B_LOCKED); 2249 2250 wc->wc_type = WAPBL_WC_BLOCKS; 2251 wc->wc_len = blocklen; 2252 wc->wc_blkcount = 0; 2253 while (bp && (wc->wc_blkcount < bph)) { 2254 /* 2255 * Make sure all the physical block numbers are up to 2256 * date. If this is not always true on a given 2257 * filesystem, then VOP_BMAP must be called. We 2258 * could call VOP_BMAP here, or else in the filesystem 2259 * specific flush callback, although neither of those 2260 * solutions allow us to take the vnode lock. If a 2261 * filesystem requires that we must take the vnode lock 2262 * to call VOP_BMAP, then we can probably do it in 2263 * bwrite when the vnode lock should already be held 2264 * by the invoking code. 2265 */ 2266 KASSERT((bp->b_vp->v_type == VBLK) || 2267 (bp->b_blkno != bp->b_lblkno)); 2268 KASSERT(bp->b_blkno > 0); 2269 2270 wc->wc_blocks[wc->wc_blkcount].wc_daddr = bp->b_blkno; 2271 wc->wc_blocks[wc->wc_blkcount].wc_dlen = bp->b_bcount; 2272 wc->wc_len += bp->b_bcount; 2273 wc->wc_blkcount++; 2274 bp = LIST_NEXT(bp, b_wapbllist); 2275 } 2276 if (wc->wc_len % blocklen != 0) { 2277 padding = blocklen - wc->wc_len % blocklen; 2278 wc->wc_len += padding; 2279 } else { 2280 padding = 0; 2281 } 2282 2283 WAPBL_PRINTF(WAPBL_PRINT_WRITE, 2284 ("wapbl_write_blocks: len = %u (padding %zu) off = %"PRIdMAX"\n", 2285 wc->wc_len, padding, (intmax_t)off)); 2286 2287 error = wapbl_circ_write(wl, wc, blocklen, &off); 2288 if (error) 2289 return error; 2290 bp = obp; 2291 cnt = 0; 2292 while (bp && (cnt++ < bph)) { 2293 error = wapbl_circ_write(wl, bp->b_data, 2294 bp->b_bcount, &off); 2295 if (error) 2296 return error; 2297 bp = LIST_NEXT(bp, b_wapbllist); 2298 } 2299 if (padding) { 2300 void *zero; 2301 2302 zero = wapbl_alloc(padding); 2303 memset(zero, 0, padding); 2304 error = wapbl_circ_write(wl, zero, padding, &off); 2305 wapbl_free(zero, padding); 2306 if (error) 2307 return error; 2308 } 2309 } 2310 *offp = off; 2311 return 0; 2312 } 2313 2314 /* 2315 * wapbl_write_revocations(wl, offp) 2316 * 2317 * Write all pending deallocations in the current transaction from 2318 * wapbl_register_deallocation to the log on disk, adding to the 2319 * circular queue's head at byte offset *offp, and returning the 2320 * new head's byte offset in *offp. 2321 */ 2322 static int 2323 wapbl_write_revocations(struct wapbl *wl, off_t *offp) 2324 { 2325 struct wapbl_wc_blocklist *wc = 2326 (struct wapbl_wc_blocklist *)wl->wl_wc_scratch; 2327 int i; 2328 int blocklen = 1<<wl->wl_log_dev_bshift; 2329 int bph; 2330 off_t off = *offp; 2331 int error; 2332 2333 if (wl->wl_dealloccnt == 0) 2334 return 0; 2335 2336 bph = (blocklen - offsetof(struct wapbl_wc_blocklist, wc_blocks)) / 2337 sizeof(((struct wapbl_wc_blocklist *)0)->wc_blocks[0]); 2338 2339 i = 0; 2340 while (i < wl->wl_dealloccnt) { 2341 wc->wc_type = WAPBL_WC_REVOCATIONS; 2342 wc->wc_len = blocklen; 2343 wc->wc_blkcount = 0; 2344 while ((i < wl->wl_dealloccnt) && (wc->wc_blkcount < bph)) { 2345 wc->wc_blocks[wc->wc_blkcount].wc_daddr = 2346 wl->wl_deallocblks[i]; 2347 wc->wc_blocks[wc->wc_blkcount].wc_dlen = 2348 wl->wl_dealloclens[i]; 2349 wc->wc_blkcount++; 2350 i++; 2351 } 2352 WAPBL_PRINTF(WAPBL_PRINT_WRITE, 2353 ("wapbl_write_revocations: len = %u off = %"PRIdMAX"\n", 2354 wc->wc_len, (intmax_t)off)); 2355 error = wapbl_circ_write(wl, wc, blocklen, &off); 2356 if (error) 2357 return error; 2358 } 2359 *offp = off; 2360 return 0; 2361 } 2362 2363 /* 2364 * wapbl_write_inodes(wl, offp) 2365 * 2366 * Write all pending inode allocations in the current transaction 2367 * from wapbl_register_inode to the log on disk, adding to the 2368 * circular queue's head at byte offset *offp and returning the 2369 * new head's byte offset in *offp. 2370 */ 2371 static int 2372 wapbl_write_inodes(struct wapbl *wl, off_t *offp) 2373 { 2374 struct wapbl_wc_inodelist *wc = 2375 (struct wapbl_wc_inodelist *)wl->wl_wc_scratch; 2376 int i; 2377 int blocklen = 1 << wl->wl_log_dev_bshift; 2378 off_t off = *offp; 2379 int error; 2380 2381 struct wapbl_ino_head *wih; 2382 struct wapbl_ino *wi; 2383 int iph; 2384 2385 iph = (blocklen - offsetof(struct wapbl_wc_inodelist, wc_inodes)) / 2386 sizeof(((struct wapbl_wc_inodelist *)0)->wc_inodes[0]); 2387 2388 i = 0; 2389 wih = &wl->wl_inohash[0]; 2390 wi = 0; 2391 do { 2392 wc->wc_type = WAPBL_WC_INODES; 2393 wc->wc_len = blocklen; 2394 wc->wc_inocnt = 0; 2395 wc->wc_clear = (i == 0); 2396 while ((i < wl->wl_inohashcnt) && (wc->wc_inocnt < iph)) { 2397 while (!wi) { 2398 KASSERT((wih - &wl->wl_inohash[0]) 2399 <= wl->wl_inohashmask); 2400 wi = LIST_FIRST(wih++); 2401 } 2402 wc->wc_inodes[wc->wc_inocnt].wc_inumber = wi->wi_ino; 2403 wc->wc_inodes[wc->wc_inocnt].wc_imode = wi->wi_mode; 2404 wc->wc_inocnt++; 2405 i++; 2406 wi = LIST_NEXT(wi, wi_hash); 2407 } 2408 WAPBL_PRINTF(WAPBL_PRINT_WRITE, 2409 ("wapbl_write_inodes: len = %u off = %"PRIdMAX"\n", 2410 wc->wc_len, (intmax_t)off)); 2411 error = wapbl_circ_write(wl, wc, blocklen, &off); 2412 if (error) 2413 return error; 2414 } while (i < wl->wl_inohashcnt); 2415 2416 *offp = off; 2417 return 0; 2418 } 2419 2420 #endif /* _KERNEL */ 2421 2422 /****************************************************************/ 2423 2424 struct wapbl_blk { 2425 LIST_ENTRY(wapbl_blk) wb_hash; 2426 daddr_t wb_blk; 2427 off_t wb_off; /* Offset of this block in the log */ 2428 }; 2429 #define WAPBL_BLKPOOL_MIN 83 2430 2431 static void 2432 wapbl_blkhash_init(struct wapbl_replay *wr, u_int size) 2433 { 2434 if (size < WAPBL_BLKPOOL_MIN) 2435 size = WAPBL_BLKPOOL_MIN; 2436 KASSERT(wr->wr_blkhash == 0); 2437 #ifdef _KERNEL 2438 wr->wr_blkhash = hashinit(size, HASH_LIST, true, &wr->wr_blkhashmask); 2439 #else /* ! _KERNEL */ 2440 /* Manually implement hashinit */ 2441 { 2442 unsigned long i, hashsize; 2443 for (hashsize = 1; hashsize < size; hashsize <<= 1) 2444 continue; 2445 wr->wr_blkhash = wapbl_alloc(hashsize * sizeof(*wr->wr_blkhash)); 2446 for (i = 0; i < hashsize; i++) 2447 LIST_INIT(&wr->wr_blkhash[i]); 2448 wr->wr_blkhashmask = hashsize - 1; 2449 } 2450 #endif /* ! _KERNEL */ 2451 } 2452 2453 static void 2454 wapbl_blkhash_free(struct wapbl_replay *wr) 2455 { 2456 KASSERT(wr->wr_blkhashcnt == 0); 2457 #ifdef _KERNEL 2458 hashdone(wr->wr_blkhash, HASH_LIST, wr->wr_blkhashmask); 2459 #else /* ! _KERNEL */ 2460 wapbl_free(wr->wr_blkhash, 2461 (wr->wr_blkhashmask + 1) * sizeof(*wr->wr_blkhash)); 2462 #endif /* ! _KERNEL */ 2463 } 2464 2465 static struct wapbl_blk * 2466 wapbl_blkhash_get(struct wapbl_replay *wr, daddr_t blk) 2467 { 2468 struct wapbl_blk_head *wbh; 2469 struct wapbl_blk *wb; 2470 wbh = &wr->wr_blkhash[blk & wr->wr_blkhashmask]; 2471 LIST_FOREACH(wb, wbh, wb_hash) { 2472 if (blk == wb->wb_blk) 2473 return wb; 2474 } 2475 return 0; 2476 } 2477 2478 static void 2479 wapbl_blkhash_ins(struct wapbl_replay *wr, daddr_t blk, off_t off) 2480 { 2481 struct wapbl_blk_head *wbh; 2482 struct wapbl_blk *wb; 2483 wb = wapbl_blkhash_get(wr, blk); 2484 if (wb) { 2485 KASSERT(wb->wb_blk == blk); 2486 wb->wb_off = off; 2487 } else { 2488 wb = wapbl_alloc(sizeof(*wb)); 2489 wb->wb_blk = blk; 2490 wb->wb_off = off; 2491 wbh = &wr->wr_blkhash[blk & wr->wr_blkhashmask]; 2492 LIST_INSERT_HEAD(wbh, wb, wb_hash); 2493 wr->wr_blkhashcnt++; 2494 } 2495 } 2496 2497 static void 2498 wapbl_blkhash_rem(struct wapbl_replay *wr, daddr_t blk) 2499 { 2500 struct wapbl_blk *wb = wapbl_blkhash_get(wr, blk); 2501 if (wb) { 2502 KASSERT(wr->wr_blkhashcnt > 0); 2503 wr->wr_blkhashcnt--; 2504 LIST_REMOVE(wb, wb_hash); 2505 wapbl_free(wb, sizeof(*wb)); 2506 } 2507 } 2508 2509 static void 2510 wapbl_blkhash_clear(struct wapbl_replay *wr) 2511 { 2512 unsigned long i; 2513 for (i = 0; i <= wr->wr_blkhashmask; i++) { 2514 struct wapbl_blk *wb; 2515 2516 while ((wb = LIST_FIRST(&wr->wr_blkhash[i]))) { 2517 KASSERT(wr->wr_blkhashcnt > 0); 2518 wr->wr_blkhashcnt--; 2519 LIST_REMOVE(wb, wb_hash); 2520 wapbl_free(wb, sizeof(*wb)); 2521 } 2522 } 2523 KASSERT(wr->wr_blkhashcnt == 0); 2524 } 2525 2526 /****************************************************************/ 2527 2528 /* 2529 * wapbl_circ_read(wr, data, len, offp) 2530 * 2531 * Read len bytes into data from the circular queue of wr, 2532 * starting at the linear byte offset *offp, and returning the new 2533 * linear byte offset in *offp. 2534 * 2535 * If the starting linear byte offset precedes wr->wr_circ_off, 2536 * the read instead begins at wr->wr_circ_off. XXX WTF? This 2537 * should be a KASSERT, not a conditional. 2538 */ 2539 static int 2540 wapbl_circ_read(struct wapbl_replay *wr, void *data, size_t len, off_t *offp) 2541 { 2542 size_t slen; 2543 off_t off = *offp; 2544 int error; 2545 daddr_t pbn; 2546 2547 KASSERT(((len >> wr->wr_log_dev_bshift) << 2548 wr->wr_log_dev_bshift) == len); 2549 2550 if (off < wr->wr_circ_off) 2551 off = wr->wr_circ_off; 2552 slen = wr->wr_circ_off + wr->wr_circ_size - off; 2553 if (slen < len) { 2554 pbn = wr->wr_logpbn + (off >> wr->wr_log_dev_bshift); 2555 #ifdef _KERNEL 2556 pbn = btodb(pbn << wr->wr_log_dev_bshift); 2557 #endif 2558 error = wapbl_read(data, slen, wr->wr_devvp, pbn); 2559 if (error) 2560 return error; 2561 data = (uint8_t *)data + slen; 2562 len -= slen; 2563 off = wr->wr_circ_off; 2564 } 2565 pbn = wr->wr_logpbn + (off >> wr->wr_log_dev_bshift); 2566 #ifdef _KERNEL 2567 pbn = btodb(pbn << wr->wr_log_dev_bshift); 2568 #endif 2569 error = wapbl_read(data, len, wr->wr_devvp, pbn); 2570 if (error) 2571 return error; 2572 off += len; 2573 if (off >= wr->wr_circ_off + wr->wr_circ_size) 2574 off = wr->wr_circ_off; 2575 *offp = off; 2576 return 0; 2577 } 2578 2579 /* 2580 * wapbl_circ_advance(wr, len, offp) 2581 * 2582 * Compute the linear byte offset of the circular queue of wr that 2583 * is len bytes past *offp, and store it in *offp. 2584 * 2585 * This is as if wapbl_circ_read, but without actually reading 2586 * anything. 2587 * 2588 * If the starting linear byte offset precedes wr->wr_circ_off, it 2589 * is taken to be wr->wr_circ_off instead. XXX WTF? This should 2590 * be a KASSERT, not a conditional. 2591 */ 2592 static void 2593 wapbl_circ_advance(struct wapbl_replay *wr, size_t len, off_t *offp) 2594 { 2595 size_t slen; 2596 off_t off = *offp; 2597 2598 KASSERT(((len >> wr->wr_log_dev_bshift) << 2599 wr->wr_log_dev_bshift) == len); 2600 2601 if (off < wr->wr_circ_off) 2602 off = wr->wr_circ_off; 2603 slen = wr->wr_circ_off + wr->wr_circ_size - off; 2604 if (slen < len) { 2605 len -= slen; 2606 off = wr->wr_circ_off; 2607 } 2608 off += len; 2609 if (off >= wr->wr_circ_off + wr->wr_circ_size) 2610 off = wr->wr_circ_off; 2611 *offp = off; 2612 } 2613 2614 /****************************************************************/ 2615 2616 int 2617 wapbl_replay_start(struct wapbl_replay **wrp, struct vnode *vp, 2618 daddr_t off, size_t count, size_t blksize) 2619 { 2620 struct wapbl_replay *wr; 2621 int error; 2622 struct vnode *devvp; 2623 daddr_t logpbn; 2624 uint8_t *scratch; 2625 struct wapbl_wc_header *wch; 2626 struct wapbl_wc_header *wch2; 2627 /* Use this until we read the actual log header */ 2628 int log_dev_bshift = ilog2(blksize); 2629 size_t used; 2630 daddr_t pbn; 2631 2632 WAPBL_PRINTF(WAPBL_PRINT_REPLAY, 2633 ("wapbl_replay_start: vp=%p off=%"PRId64 " count=%zu blksize=%zu\n", 2634 vp, off, count, blksize)); 2635 2636 if (off < 0) 2637 return EINVAL; 2638 2639 if (blksize < DEV_BSIZE) 2640 return EINVAL; 2641 if (blksize % DEV_BSIZE) 2642 return EINVAL; 2643 2644 #ifdef _KERNEL 2645 #if 0 2646 /* XXX vp->v_size isn't reliably set for VBLK devices, 2647 * especially root. However, we might still want to verify 2648 * that the full load is readable */ 2649 if ((off + count) * blksize > vp->v_size) 2650 return EINVAL; 2651 #endif 2652 if ((error = VOP_BMAP(vp, off, &devvp, &logpbn, 0)) != 0) { 2653 return error; 2654 } 2655 #else /* ! _KERNEL */ 2656 devvp = vp; 2657 logpbn = off; 2658 #endif /* ! _KERNEL */ 2659 2660 scratch = wapbl_alloc(MAXBSIZE); 2661 2662 pbn = logpbn; 2663 #ifdef _KERNEL 2664 pbn = btodb(pbn << log_dev_bshift); 2665 #endif 2666 error = wapbl_read(scratch, 2<<log_dev_bshift, devvp, pbn); 2667 if (error) 2668 goto errout; 2669 2670 wch = (struct wapbl_wc_header *)scratch; 2671 wch2 = 2672 (struct wapbl_wc_header *)(scratch + (1<<log_dev_bshift)); 2673 /* XXX verify checksums and magic numbers */ 2674 if (wch->wc_type != WAPBL_WC_HEADER) { 2675 printf("Unrecognized wapbl magic: 0x%08x\n", wch->wc_type); 2676 error = EFTYPE; 2677 goto errout; 2678 } 2679 2680 if (wch2->wc_generation > wch->wc_generation) 2681 wch = wch2; 2682 2683 wr = wapbl_calloc(1, sizeof(*wr)); 2684 2685 wr->wr_logvp = vp; 2686 wr->wr_devvp = devvp; 2687 wr->wr_logpbn = logpbn; 2688 2689 wr->wr_scratch = scratch; 2690 2691 wr->wr_log_dev_bshift = wch->wc_log_dev_bshift; 2692 wr->wr_fs_dev_bshift = wch->wc_fs_dev_bshift; 2693 wr->wr_circ_off = wch->wc_circ_off; 2694 wr->wr_circ_size = wch->wc_circ_size; 2695 wr->wr_generation = wch->wc_generation; 2696 2697 used = wapbl_space_used(wch->wc_circ_size, wch->wc_head, wch->wc_tail); 2698 2699 WAPBL_PRINTF(WAPBL_PRINT_REPLAY, 2700 ("wapbl_replay: head=%"PRId64" tail=%"PRId64" off=%"PRId64 2701 " len=%"PRId64" used=%zu\n", 2702 wch->wc_head, wch->wc_tail, wch->wc_circ_off, 2703 wch->wc_circ_size, used)); 2704 2705 wapbl_blkhash_init(wr, (used >> wch->wc_fs_dev_bshift)); 2706 2707 error = wapbl_replay_process(wr, wch->wc_head, wch->wc_tail); 2708 if (error) { 2709 wapbl_replay_stop(wr); 2710 wapbl_replay_free(wr); 2711 return error; 2712 } 2713 2714 *wrp = wr; 2715 return 0; 2716 2717 errout: 2718 wapbl_free(scratch, MAXBSIZE); 2719 return error; 2720 } 2721 2722 void 2723 wapbl_replay_stop(struct wapbl_replay *wr) 2724 { 2725 2726 if (!wapbl_replay_isopen(wr)) 2727 return; 2728 2729 WAPBL_PRINTF(WAPBL_PRINT_REPLAY, ("wapbl_replay_stop called\n")); 2730 2731 wapbl_free(wr->wr_scratch, MAXBSIZE); 2732 wr->wr_scratch = NULL; 2733 2734 wr->wr_logvp = NULL; 2735 2736 wapbl_blkhash_clear(wr); 2737 wapbl_blkhash_free(wr); 2738 } 2739 2740 void 2741 wapbl_replay_free(struct wapbl_replay *wr) 2742 { 2743 2744 KDASSERT(!wapbl_replay_isopen(wr)); 2745 2746 if (wr->wr_inodes) 2747 wapbl_free(wr->wr_inodes, 2748 wr->wr_inodescnt * sizeof(wr->wr_inodes[0])); 2749 wapbl_free(wr, sizeof(*wr)); 2750 } 2751 2752 #ifdef _KERNEL 2753 int 2754 wapbl_replay_isopen1(struct wapbl_replay *wr) 2755 { 2756 2757 return wapbl_replay_isopen(wr); 2758 } 2759 #endif 2760 2761 /* 2762 * calculate the disk address for the i'th block in the wc_blockblist 2763 * offset by j blocks of size blen. 2764 * 2765 * wc_daddr is always a kernel disk address in DEV_BSIZE units that 2766 * was written to the journal. 2767 * 2768 * The kernel needs that address plus the offset in DEV_BSIZE units. 2769 * 2770 * Userland needs that address plus the offset in blen units. 2771 * 2772 */ 2773 static daddr_t 2774 wapbl_block_daddr(struct wapbl_wc_blocklist *wc, int i, int j, int blen) 2775 { 2776 daddr_t pbn; 2777 2778 #ifdef _KERNEL 2779 pbn = wc->wc_blocks[i].wc_daddr + btodb(j * blen); 2780 #else 2781 pbn = dbtob(wc->wc_blocks[i].wc_daddr) / blen + j; 2782 #endif 2783 2784 return pbn; 2785 } 2786 2787 static void 2788 wapbl_replay_process_blocks(struct wapbl_replay *wr, off_t *offp) 2789 { 2790 struct wapbl_wc_blocklist *wc = 2791 (struct wapbl_wc_blocklist *)wr->wr_scratch; 2792 int fsblklen = 1 << wr->wr_fs_dev_bshift; 2793 int i, j, n; 2794 2795 for (i = 0; i < wc->wc_blkcount; i++) { 2796 /* 2797 * Enter each physical block into the hashtable independently. 2798 */ 2799 n = wc->wc_blocks[i].wc_dlen >> wr->wr_fs_dev_bshift; 2800 for (j = 0; j < n; j++) { 2801 wapbl_blkhash_ins(wr, wapbl_block_daddr(wc, i, j, fsblklen), 2802 *offp); 2803 wapbl_circ_advance(wr, fsblklen, offp); 2804 } 2805 } 2806 } 2807 2808 static void 2809 wapbl_replay_process_revocations(struct wapbl_replay *wr) 2810 { 2811 struct wapbl_wc_blocklist *wc = 2812 (struct wapbl_wc_blocklist *)wr->wr_scratch; 2813 int fsblklen = 1 << wr->wr_fs_dev_bshift; 2814 int i, j, n; 2815 2816 for (i = 0; i < wc->wc_blkcount; i++) { 2817 /* 2818 * Remove any blocks found from the hashtable. 2819 */ 2820 n = wc->wc_blocks[i].wc_dlen >> wr->wr_fs_dev_bshift; 2821 for (j = 0; j < n; j++) 2822 wapbl_blkhash_rem(wr, wapbl_block_daddr(wc, i, j, fsblklen)); 2823 } 2824 } 2825 2826 static void 2827 wapbl_replay_process_inodes(struct wapbl_replay *wr, off_t oldoff, off_t newoff) 2828 { 2829 struct wapbl_wc_inodelist *wc = 2830 (struct wapbl_wc_inodelist *)wr->wr_scratch; 2831 void *new_inodes; 2832 const size_t oldsize = wr->wr_inodescnt * sizeof(wr->wr_inodes[0]); 2833 2834 KASSERT(sizeof(wr->wr_inodes[0]) == sizeof(wc->wc_inodes[0])); 2835 2836 /* 2837 * Keep track of where we found this so location won't be 2838 * overwritten. 2839 */ 2840 if (wc->wc_clear) { 2841 wr->wr_inodestail = oldoff; 2842 wr->wr_inodescnt = 0; 2843 if (wr->wr_inodes != NULL) { 2844 wapbl_free(wr->wr_inodes, oldsize); 2845 wr->wr_inodes = NULL; 2846 } 2847 } 2848 wr->wr_inodeshead = newoff; 2849 if (wc->wc_inocnt == 0) 2850 return; 2851 2852 new_inodes = wapbl_alloc((wr->wr_inodescnt + wc->wc_inocnt) * 2853 sizeof(wr->wr_inodes[0])); 2854 if (wr->wr_inodes != NULL) { 2855 memcpy(new_inodes, wr->wr_inodes, oldsize); 2856 wapbl_free(wr->wr_inodes, oldsize); 2857 } 2858 wr->wr_inodes = new_inodes; 2859 memcpy(&wr->wr_inodes[wr->wr_inodescnt], wc->wc_inodes, 2860 wc->wc_inocnt * sizeof(wr->wr_inodes[0])); 2861 wr->wr_inodescnt += wc->wc_inocnt; 2862 } 2863 2864 static int 2865 wapbl_replay_process(struct wapbl_replay *wr, off_t head, off_t tail) 2866 { 2867 off_t off; 2868 int error; 2869 2870 int logblklen = 1 << wr->wr_log_dev_bshift; 2871 2872 wapbl_blkhash_clear(wr); 2873 2874 off = tail; 2875 while (off != head) { 2876 struct wapbl_wc_null *wcn; 2877 off_t saveoff = off; 2878 error = wapbl_circ_read(wr, wr->wr_scratch, logblklen, &off); 2879 if (error) 2880 goto errout; 2881 wcn = (struct wapbl_wc_null *)wr->wr_scratch; 2882 switch (wcn->wc_type) { 2883 case WAPBL_WC_BLOCKS: 2884 wapbl_replay_process_blocks(wr, &off); 2885 break; 2886 2887 case WAPBL_WC_REVOCATIONS: 2888 wapbl_replay_process_revocations(wr); 2889 break; 2890 2891 case WAPBL_WC_INODES: 2892 wapbl_replay_process_inodes(wr, saveoff, off); 2893 break; 2894 2895 default: 2896 printf("Unrecognized wapbl type: 0x%08x\n", 2897 wcn->wc_type); 2898 error = EFTYPE; 2899 goto errout; 2900 } 2901 wapbl_circ_advance(wr, wcn->wc_len, &saveoff); 2902 if (off != saveoff) { 2903 printf("wapbl_replay: corrupted records\n"); 2904 error = EFTYPE; 2905 goto errout; 2906 } 2907 } 2908 return 0; 2909 2910 errout: 2911 wapbl_blkhash_clear(wr); 2912 return error; 2913 } 2914 2915 #if 0 2916 int 2917 wapbl_replay_verify(struct wapbl_replay *wr, struct vnode *fsdevvp) 2918 { 2919 off_t off; 2920 int mismatchcnt = 0; 2921 int logblklen = 1 << wr->wr_log_dev_bshift; 2922 int fsblklen = 1 << wr->wr_fs_dev_bshift; 2923 void *scratch1 = wapbl_alloc(MAXBSIZE); 2924 void *scratch2 = wapbl_alloc(MAXBSIZE); 2925 int error = 0; 2926 2927 KDASSERT(wapbl_replay_isopen(wr)); 2928 2929 off = wch->wc_tail; 2930 while (off != wch->wc_head) { 2931 struct wapbl_wc_null *wcn; 2932 #ifdef DEBUG 2933 off_t saveoff = off; 2934 #endif 2935 error = wapbl_circ_read(wr, wr->wr_scratch, logblklen, &off); 2936 if (error) 2937 goto out; 2938 wcn = (struct wapbl_wc_null *)wr->wr_scratch; 2939 switch (wcn->wc_type) { 2940 case WAPBL_WC_BLOCKS: 2941 { 2942 struct wapbl_wc_blocklist *wc = 2943 (struct wapbl_wc_blocklist *)wr->wr_scratch; 2944 int i; 2945 for (i = 0; i < wc->wc_blkcount; i++) { 2946 int foundcnt = 0; 2947 int dirtycnt = 0; 2948 int j, n; 2949 /* 2950 * Check each physical block into the 2951 * hashtable independently 2952 */ 2953 n = wc->wc_blocks[i].wc_dlen >> 2954 wch->wc_fs_dev_bshift; 2955 for (j = 0; j < n; j++) { 2956 struct wapbl_blk *wb = 2957 wapbl_blkhash_get(wr, 2958 wapbl_block_daddr(wc, i, j, fsblklen)); 2959 if (wb && (wb->wb_off == off)) { 2960 foundcnt++; 2961 error = 2962 wapbl_circ_read(wr, 2963 scratch1, fsblklen, 2964 &off); 2965 if (error) 2966 goto out; 2967 error = 2968 wapbl_read(scratch2, 2969 fsblklen, fsdevvp, 2970 wb->wb_blk); 2971 if (error) 2972 goto out; 2973 if (memcmp(scratch1, 2974 scratch2, 2975 fsblklen)) { 2976 printf( 2977 "wapbl_verify: mismatch block %"PRId64" at off %"PRIdMAX"\n", 2978 wb->wb_blk, (intmax_t)off); 2979 dirtycnt++; 2980 mismatchcnt++; 2981 } 2982 } else { 2983 wapbl_circ_advance(wr, 2984 fsblklen, &off); 2985 } 2986 } 2987 #if 0 2988 /* 2989 * If all of the blocks in an entry 2990 * are clean, then remove all of its 2991 * blocks from the hashtable since they 2992 * never will need replay. 2993 */ 2994 if ((foundcnt != 0) && 2995 (dirtycnt == 0)) { 2996 off = saveoff; 2997 wapbl_circ_advance(wr, 2998 logblklen, &off); 2999 for (j = 0; j < n; j++) { 3000 struct wapbl_blk *wb = 3001 wapbl_blkhash_get(wr, 3002 wapbl_block_daddr(wc, i, j, fsblklen)); 3003 if (wb && 3004 (wb->wb_off == off)) { 3005 wapbl_blkhash_rem(wr, wb->wb_blk); 3006 } 3007 wapbl_circ_advance(wr, 3008 fsblklen, &off); 3009 } 3010 } 3011 #endif 3012 } 3013 } 3014 break; 3015 case WAPBL_WC_REVOCATIONS: 3016 case WAPBL_WC_INODES: 3017 break; 3018 default: 3019 KASSERT(0); 3020 } 3021 #ifdef DEBUG 3022 wapbl_circ_advance(wr, wcn->wc_len, &saveoff); 3023 KASSERT(off == saveoff); 3024 #endif 3025 } 3026 out: 3027 wapbl_free(scratch1, MAXBSIZE); 3028 wapbl_free(scratch2, MAXBSIZE); 3029 if (!error && mismatchcnt) 3030 error = EFTYPE; 3031 return error; 3032 } 3033 #endif 3034 3035 int 3036 wapbl_replay_write(struct wapbl_replay *wr, struct vnode *fsdevvp) 3037 { 3038 struct wapbl_blk *wb; 3039 size_t i; 3040 off_t off; 3041 void *scratch; 3042 int error = 0; 3043 int fsblklen = 1 << wr->wr_fs_dev_bshift; 3044 3045 KDASSERT(wapbl_replay_isopen(wr)); 3046 3047 scratch = wapbl_alloc(MAXBSIZE); 3048 3049 for (i = 0; i <= wr->wr_blkhashmask; ++i) { 3050 LIST_FOREACH(wb, &wr->wr_blkhash[i], wb_hash) { 3051 off = wb->wb_off; 3052 error = wapbl_circ_read(wr, scratch, fsblklen, &off); 3053 if (error) 3054 break; 3055 error = wapbl_write(scratch, fsblklen, fsdevvp, 3056 wb->wb_blk); 3057 if (error) 3058 break; 3059 } 3060 } 3061 3062 wapbl_free(scratch, MAXBSIZE); 3063 return error; 3064 } 3065 3066 int 3067 wapbl_replay_can_read(struct wapbl_replay *wr, daddr_t blk, long len) 3068 { 3069 int fsblklen = 1 << wr->wr_fs_dev_bshift; 3070 3071 KDASSERT(wapbl_replay_isopen(wr)); 3072 KASSERT((len % fsblklen) == 0); 3073 3074 while (len != 0) { 3075 struct wapbl_blk *wb = wapbl_blkhash_get(wr, blk); 3076 if (wb) 3077 return 1; 3078 len -= fsblklen; 3079 } 3080 return 0; 3081 } 3082 3083 int 3084 wapbl_replay_read(struct wapbl_replay *wr, void *data, daddr_t blk, long len) 3085 { 3086 int fsblklen = 1 << wr->wr_fs_dev_bshift; 3087 3088 KDASSERT(wapbl_replay_isopen(wr)); 3089 3090 KASSERT((len % fsblklen) == 0); 3091 3092 while (len != 0) { 3093 struct wapbl_blk *wb = wapbl_blkhash_get(wr, blk); 3094 if (wb) { 3095 off_t off = wb->wb_off; 3096 int error; 3097 error = wapbl_circ_read(wr, data, fsblklen, &off); 3098 if (error) 3099 return error; 3100 } 3101 data = (uint8_t *)data + fsblklen; 3102 len -= fsblklen; 3103 blk++; 3104 } 3105 return 0; 3106 } 3107 3108 #ifdef _KERNEL 3109 3110 MODULE(MODULE_CLASS_VFS, wapbl, NULL); 3111 3112 static int 3113 wapbl_modcmd(modcmd_t cmd, void *arg) 3114 { 3115 3116 switch (cmd) { 3117 case MODULE_CMD_INIT: 3118 wapbl_init(); 3119 return 0; 3120 case MODULE_CMD_FINI: 3121 return wapbl_fini(); 3122 default: 3123 return ENOTTY; 3124 } 3125 } 3126 #endif /* _KERNEL */ 3127