xref: /netbsd-src/sys/kern/vfs_wapbl.c (revision 2f62cc9c12bc202c40224f32c879f81443fee079)
1 /*	$NetBSD: vfs_wapbl.c,v 1.113 2024/05/13 00:01:53 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Wasabi Systems, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * This implements file system independent write ahead filesystem logging.
34  */
35 
36 #define WAPBL_INTERNAL
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: vfs_wapbl.c,v 1.113 2024/05/13 00:01:53 msaitoh Exp $");
40 
41 #include <sys/param.h>
42 #include <sys/bitops.h>
43 #include <sys/time.h>
44 #include <sys/wapbl.h>
45 #include <sys/wapbl_replay.h>
46 
47 #ifdef _KERNEL
48 
49 #include <sys/atomic.h>
50 #include <sys/conf.h>
51 #include <sys/evcnt.h>
52 #include <sys/file.h>
53 #include <sys/kauth.h>
54 #include <sys/kernel.h>
55 #include <sys/module.h>
56 #include <sys/mount.h>
57 #include <sys/mutex.h>
58 #include <sys/namei.h>
59 #include <sys/proc.h>
60 #include <sys/resourcevar.h>
61 #include <sys/sysctl.h>
62 #include <sys/uio.h>
63 #include <sys/vnode.h>
64 
65 #include <miscfs/specfs/specdev.h>
66 
67 #define	wapbl_alloc(s) kmem_alloc((s), KM_SLEEP)
68 #define	wapbl_free(a, s) kmem_free((a), (s))
69 #define	wapbl_calloc(n, s) kmem_zalloc((n)*(s), KM_SLEEP)
70 
71 static int wapbl_flush_disk_cache = 1;
72 static int wapbl_verbose_commit = 0;
73 static int wapbl_allow_dpofua = 0; 	/* switched off by default for now */
74 static int wapbl_journal_iobufs = 4;
75 
76 static inline size_t wapbl_space_free(size_t, off_t, off_t);
77 
78 #else /* !_KERNEL */
79 
80 #include <assert.h>
81 #include <errno.h>
82 #include <stdbool.h>
83 #include <stdio.h>
84 #include <stdlib.h>
85 #include <string.h>
86 
87 #define	KDASSERT(x) assert(x)
88 #define	KASSERT(x) assert(x)
89 #define	wapbl_alloc(s) malloc(s)
90 #define	wapbl_free(a, s) free(a)
91 #define	wapbl_calloc(n, s) calloc((n), (s))
92 
93 #endif /* !_KERNEL */
94 
95 /*
96  * INTERNAL DATA STRUCTURES
97  */
98 
99 /*
100  * This structure holds per-mount log information.
101  *
102  * Legend:	a = atomic access only
103  *		r = read-only after init
104  *		l = rwlock held
105  *		m = mutex held
106  *		lm = rwlock held writing or mutex held
107  *		u = unlocked access ok
108  *		b = bufcache_lock held
109  */
110 LIST_HEAD(wapbl_ino_head, wapbl_ino);
111 struct wapbl {
112 	struct vnode *wl_logvp;	/* r:	log here */
113 	struct vnode *wl_devvp;	/* r:	log on this device */
114 	struct mount *wl_mount;	/* r:	mountpoint wl is associated with */
115 	daddr_t wl_logpbn;	/* r:	Physical block number of start of log */
116 	int wl_log_dev_bshift;	/* r:	logarithm of device block size of log
117 					device */
118 	int wl_fs_dev_bshift;	/* r:	logarithm of device block size of
119 					filesystem device */
120 
121 	unsigned wl_lock_count;	/* m:	Count of transactions in progress */
122 
123 	size_t wl_circ_size; 	/* r:	Number of bytes in buffer of log */
124 	size_t wl_circ_off;	/* r:	Number of bytes reserved at start */
125 
126 	size_t wl_bufcount_max;	/* r:	Number of buffers reserved for log */
127 	size_t wl_bufbytes_max;	/* r:	Number of buf bytes reserved for log */
128 
129 	off_t wl_head;		/* l:	Byte offset of log head */
130 	off_t wl_tail;		/* l:	Byte offset of log tail */
131 	/*
132 	 * WAPBL log layout, stored on wl_devvp at wl_logpbn:
133 	 *
134 	 *  ___________________ wl_circ_size __________________
135 	 * /                                                   \
136 	 * +---------+---------+-------+--------------+--------+
137 	 * [ commit0 | commit1 | CCWCW | EEEEEEEEEEEE | CCCWCW ]
138 	 * +---------+---------+-------+--------------+--------+
139 	 *       wl_circ_off --^       ^-- wl_head    ^-- wl_tail
140 	 *
141 	 * commit0 and commit1 are commit headers.  A commit header has
142 	 * a generation number, indicating which of the two headers is
143 	 * more recent, and an assignment of head and tail pointers.
144 	 * The rest is a circular queue of log records, starting at
145 	 * the byte offset wl_circ_off.
146 	 *
147 	 * E marks empty space for records.
148 	 * W marks records for block writes issued but waiting.
149 	 * C marks completed records.
150 	 *
151 	 * wapbl_flush writes new records to empty `E' spaces after
152 	 * wl_head from the current transaction in memory.
153 	 *
154 	 * wapbl_truncate advances wl_tail past any completed `C'
155 	 * records, freeing them up for use.
156 	 *
157 	 * head == tail == 0 means log is empty.
158 	 * head == tail != 0 means log is full.
159 	 *
160 	 * See assertions in wapbl_advance() for other boundary
161 	 * conditions.
162 	 *
163 	 * Only wapbl_flush moves the head, except when wapbl_truncate
164 	 * sets it to 0 to indicate that the log is empty.
165 	 *
166 	 * Only wapbl_truncate moves the tail, except when wapbl_flush
167 	 * sets it to wl_circ_off to indicate that the log is full.
168 	 */
169 
170 	struct wapbl_wc_header *wl_wc_header;	/* l	*/
171 	void *wl_wc_scratch;	/* l:	scratch space (XXX: por que?!?) */
172 
173 	kmutex_t wl_mtx;	/* u:	short-term lock */
174 	krwlock_t wl_rwlock;	/* u:	File system transaction lock */
175 
176 	/*
177 	 * Must be held while accessing
178 	 * wl_count or wl_bufs or head or tail
179 	 */
180 
181 #if _KERNEL
182 	/*
183 	 * Callback called from within the flush routine to flush any extra
184 	 * bits.  Note that flush may be skipped without calling this if
185 	 * there are no outstanding buffers in the transaction.
186 	 */
187 	wapbl_flush_fn_t wl_flush;	/* r	*/
188 	wapbl_flush_fn_t wl_flush_abort;/* r	*/
189 
190 	/* Event counters */
191 	char wl_ev_group[EVCNT_STRING_MAX];	/* r	*/
192 	struct evcnt wl_ev_commit;		/* l	*/
193 	struct evcnt wl_ev_journalwrite;	/* l	*/
194 	struct evcnt wl_ev_jbufs_bio_nowait;	/* l	*/
195 	struct evcnt wl_ev_metawrite;		/* lm	*/
196 	struct evcnt wl_ev_cacheflush;		/* l	*/
197 #endif
198 
199 	size_t wl_bufbytes;	/* m:	Byte count of pages in wl_bufs */
200 	size_t wl_bufcount;	/* m:	Count of buffers in wl_bufs */
201 	size_t wl_bcount;	/* m:	Total bcount of wl_bufs */
202 
203 	TAILQ_HEAD(, buf) wl_bufs; /* m: Buffers in current transaction */
204 
205 	kcondvar_t wl_reclaimable_cv;	/* m (obviously) */
206 	size_t wl_reclaimable_bytes; /* m:	Amount of space available for
207 						reclamation by truncate */
208 	int wl_error_count;	/* m:	# of wl_entries with errors */
209 	size_t wl_reserved_bytes; /* never truncate log smaller than this */
210 
211 #ifdef WAPBL_DEBUG_BUFBYTES
212 	size_t wl_unsynced_bufbytes; /* Byte count of unsynced buffers */
213 #endif
214 
215 #if _KERNEL
216 	int wl_brperjblock;	/* r Block records per journal block */
217 #endif
218 
219 	TAILQ_HEAD(, wapbl_dealloc) wl_dealloclist;	/* lm:	list head */
220 	int wl_dealloccnt;				/* lm:	total count */
221 	int wl_dealloclim;				/* r:	max count */
222 
223 	/* hashtable of inode numbers for allocated but unlinked inodes */
224 	/* synch ??? */
225 	struct wapbl_ino_head *wl_inohash;
226 	u_long wl_inohashmask;
227 	int wl_inohashcnt;
228 
229 	SIMPLEQ_HEAD(, wapbl_entry) wl_entries; /* m: On disk transaction
230 						   accounting */
231 
232 	/* buffers for wapbl_buffered_write() */
233 	TAILQ_HEAD(, buf) wl_iobufs;		/* l: Free or filling bufs */
234 	TAILQ_HEAD(, buf) wl_iobufs_busy;	/* l: In-transit bufs */
235 
236 	int wl_dkcache;		/* r: 	disk cache flags */
237 #define WAPBL_USE_FUA(wl)	\
238 		(wapbl_allow_dpofua && ISSET((wl)->wl_dkcache, DKCACHE_FUA))
239 #define WAPBL_JFLAGS(wl)	\
240 		(WAPBL_USE_FUA(wl) ? (wl)->wl_jwrite_flags : 0)
241 #define WAPBL_JDATA_FLAGS(wl)	\
242 		(WAPBL_JFLAGS(wl) & B_MEDIA_DPO)	/* only DPO */
243 	int wl_jwrite_flags;	/* r: 	journal write flags */
244 };
245 
246 #ifdef WAPBL_DEBUG_PRINT
247 int wapbl_debug_print = WAPBL_DEBUG_PRINT;
248 #endif
249 
250 /****************************************************************/
251 #ifdef _KERNEL
252 
253 #ifdef WAPBL_DEBUG
254 struct wapbl *wapbl_debug_wl;
255 #endif
256 
257 static int wapbl_write_commit(struct wapbl *wl, off_t head, off_t tail);
258 static int wapbl_write_blocks(struct wapbl *wl, off_t *offp);
259 static int wapbl_write_revocations(struct wapbl *wl, off_t *offp);
260 static int wapbl_write_inodes(struct wapbl *wl, off_t *offp);
261 #endif /* _KERNEL */
262 
263 static int wapbl_replay_process(struct wapbl_replay *wr, off_t, off_t);
264 
265 static inline size_t wapbl_space_used(size_t avail, off_t head,
266 	off_t tail);
267 
268 #ifdef _KERNEL
269 
270 static struct pool wapbl_entry_pool;
271 static struct pool wapbl_dealloc_pool;
272 
273 #define	WAPBL_INODETRK_SIZE 83
274 static int wapbl_ino_pool_refcount;
275 static struct pool wapbl_ino_pool;
276 struct wapbl_ino {
277 	LIST_ENTRY(wapbl_ino) wi_hash;
278 	ino_t wi_ino;
279 	mode_t wi_mode;
280 };
281 
282 static void wapbl_inodetrk_init(struct wapbl *wl, u_int size);
283 static void wapbl_inodetrk_free(struct wapbl *wl);
284 static struct wapbl_ino *wapbl_inodetrk_get(struct wapbl *wl, ino_t ino);
285 
286 static size_t wapbl_transaction_len(struct wapbl *wl);
287 static inline size_t wapbl_transaction_inodes_len(struct wapbl *wl);
288 
289 static void wapbl_deallocation_free(struct wapbl *, struct wapbl_dealloc *,
290 	bool);
291 
292 static void wapbl_evcnt_init(struct wapbl *);
293 static void wapbl_evcnt_free(struct wapbl *);
294 
295 static void wapbl_dkcache_init(struct wapbl *);
296 
297 #if 0
298 int wapbl_replay_verify(struct wapbl_replay *, struct vnode *);
299 #endif
300 
301 static int wapbl_replay_isopen1(struct wapbl_replay *);
302 
303 const struct wapbl_ops wapbl_ops = {
304 	.wo_wapbl_discard	= wapbl_discard,
305 	.wo_wapbl_replay_isopen	= wapbl_replay_isopen1,
306 	.wo_wapbl_replay_can_read = wapbl_replay_can_read,
307 	.wo_wapbl_replay_read	= wapbl_replay_read,
308 	.wo_wapbl_add_buf	= wapbl_add_buf,
309 	.wo_wapbl_remove_buf	= wapbl_remove_buf,
310 	.wo_wapbl_resize_buf	= wapbl_resize_buf,
311 	.wo_wapbl_begin		= wapbl_begin,
312 	.wo_wapbl_end		= wapbl_end,
313 	.wo_wapbl_junlock_assert= wapbl_junlock_assert,
314 	.wo_wapbl_jlock_assert	= wapbl_jlock_assert,
315 
316 	/* XXX: the following is only used to say "this is a wapbl buf" */
317 	.wo_wapbl_biodone	= wapbl_biodone,
318 };
319 
320 SYSCTL_SETUP(wapbl_sysctl_init, "wapbl sysctl")
321 {
322 	int rv;
323 	const struct sysctlnode *rnode, *cnode;
324 
325 	rv = sysctl_createv(clog, 0, NULL, &rnode,
326 		       CTLFLAG_PERMANENT,
327 		       CTLTYPE_NODE, "wapbl",
328 		       SYSCTL_DESCR("WAPBL journaling options"),
329 		       NULL, 0, NULL, 0,
330 		       CTL_VFS, CTL_CREATE, CTL_EOL);
331 	if (rv)
332 		return;
333 
334 	rv = sysctl_createv(clog, 0, &rnode, &cnode,
335 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
336 		       CTLTYPE_INT, "flush_disk_cache",
337 		       SYSCTL_DESCR("flush disk cache"),
338 		       NULL, 0, &wapbl_flush_disk_cache, 0,
339 		       CTL_CREATE, CTL_EOL);
340 	if (rv)
341 		return;
342 
343 	rv = sysctl_createv(clog, 0, &rnode, &cnode,
344 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
345 		       CTLTYPE_INT, "verbose_commit",
346 		       SYSCTL_DESCR("show time and size of wapbl log commits"),
347 		       NULL, 0, &wapbl_verbose_commit, 0,
348 		       CTL_CREATE, CTL_EOL);
349 	if (rv)
350 		return;
351 
352 	rv = sysctl_createv(clog, 0, &rnode, &cnode,
353 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
354 		       CTLTYPE_INT, "allow_dpofua",
355 		       SYSCTL_DESCR("allow use of FUA/DPO instead of cache flush if available"),
356 		       NULL, 0, &wapbl_allow_dpofua, 0,
357 		       CTL_CREATE, CTL_EOL);
358 	if (rv)
359 		return;
360 
361 	rv = sysctl_createv(clog, 0, &rnode, &cnode,
362 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
363 		       CTLTYPE_INT, "journal_iobufs",
364 		       SYSCTL_DESCR("count of bufs used for journal I/O (max async count)"),
365 		       NULL, 0, &wapbl_journal_iobufs, 0,
366 		       CTL_CREATE, CTL_EOL);
367 	if (rv)
368 		return;
369 
370 	return;
371 }
372 
373 static void
374 wapbl_init(void)
375 {
376 
377 	pool_init(&wapbl_entry_pool, sizeof(struct wapbl_entry), 0, 0, 0,
378 	    "wapblentrypl", &pool_allocator_kmem, IPL_VM);
379 	pool_init(&wapbl_dealloc_pool, sizeof(struct wapbl_dealloc), 0, 0, 0,
380 	    "wapbldealloc", &pool_allocator_nointr, IPL_NONE);
381 }
382 
383 static int
384 wapbl_fini(void)
385 {
386 
387 	pool_destroy(&wapbl_dealloc_pool);
388 	pool_destroy(&wapbl_entry_pool);
389 
390 	return 0;
391 }
392 
393 static void
394 wapbl_evcnt_init(struct wapbl *wl)
395 {
396 	snprintf(wl->wl_ev_group, sizeof(wl->wl_ev_group),
397 	    "wapbl fsid 0x%x/0x%x",
398 	    wl->wl_mount->mnt_stat.f_fsidx.__fsid_val[0],
399 	    wl->wl_mount->mnt_stat.f_fsidx.__fsid_val[1]
400 	);
401 
402 	evcnt_attach_dynamic(&wl->wl_ev_commit, EVCNT_TYPE_MISC,
403 	    NULL, wl->wl_ev_group, "commit");
404 	evcnt_attach_dynamic(&wl->wl_ev_journalwrite, EVCNT_TYPE_MISC,
405 	    NULL, wl->wl_ev_group, "journal write total");
406 	evcnt_attach_dynamic(&wl->wl_ev_jbufs_bio_nowait, EVCNT_TYPE_MISC,
407 	    NULL, wl->wl_ev_group, "journal write finished async");
408 	evcnt_attach_dynamic(&wl->wl_ev_metawrite, EVCNT_TYPE_MISC,
409 	    NULL, wl->wl_ev_group, "metadata async write");
410 	evcnt_attach_dynamic(&wl->wl_ev_cacheflush, EVCNT_TYPE_MISC,
411 	    NULL, wl->wl_ev_group, "cache flush");
412 }
413 
414 static void
415 wapbl_evcnt_free(struct wapbl *wl)
416 {
417 	evcnt_detach(&wl->wl_ev_commit);
418 	evcnt_detach(&wl->wl_ev_journalwrite);
419 	evcnt_detach(&wl->wl_ev_jbufs_bio_nowait);
420 	evcnt_detach(&wl->wl_ev_metawrite);
421 	evcnt_detach(&wl->wl_ev_cacheflush);
422 }
423 
424 static void
425 wapbl_dkcache_init(struct wapbl *wl)
426 {
427 	int error;
428 
429 	/* Get disk cache flags */
430 	error = VOP_IOCTL(wl->wl_devvp, DIOCGCACHE, &wl->wl_dkcache,
431 	    FWRITE, FSCRED);
432 	if (error) {
433 		/* behave as if there was a write cache */
434 		wl->wl_dkcache = DKCACHE_WRITE;
435 	}
436 
437 	/* Use FUA instead of cache flush if available */
438 	if (ISSET(wl->wl_dkcache, DKCACHE_FUA))
439 		wl->wl_jwrite_flags |= B_MEDIA_FUA;
440 
441 	/* Use DPO for journal writes if available */
442 	if (ISSET(wl->wl_dkcache, DKCACHE_DPO))
443 		wl->wl_jwrite_flags |= B_MEDIA_DPO;
444 }
445 
446 static int
447 wapbl_start_flush_inodes(struct wapbl *wl, struct wapbl_replay *wr)
448 {
449 	int error, i;
450 
451 	WAPBL_PRINTF(WAPBL_PRINT_REPLAY,
452 	    ("wapbl_start: reusing log with %d inodes\n", wr->wr_inodescnt));
453 
454 	/*
455 	 * Its only valid to reuse the replay log if its
456 	 * the same as the new log we just opened.
457 	 */
458 	KDASSERT(!wapbl_replay_isopen(wr));
459 	KASSERT(wl->wl_devvp->v_type == VBLK);
460 	KASSERT(wr->wr_devvp->v_type == VBLK);
461 	KASSERT(wl->wl_devvp->v_rdev == wr->wr_devvp->v_rdev);
462 	KASSERT(wl->wl_logpbn == wr->wr_logpbn);
463 	KASSERT(wl->wl_circ_size == wr->wr_circ_size);
464 	KASSERT(wl->wl_circ_off == wr->wr_circ_off);
465 	KASSERT(wl->wl_log_dev_bshift == wr->wr_log_dev_bshift);
466 	KASSERT(wl->wl_fs_dev_bshift == wr->wr_fs_dev_bshift);
467 
468 	wl->wl_wc_header->wc_generation = wr->wr_generation + 1;
469 
470 	for (i = 0; i < wr->wr_inodescnt; i++)
471 		wapbl_register_inode(wl, wr->wr_inodes[i].wr_inumber,
472 		    wr->wr_inodes[i].wr_imode);
473 
474 	/* Make sure new transaction won't overwrite old inodes list */
475 	KDASSERT(wapbl_transaction_len(wl) <=
476 	    wapbl_space_free(wl->wl_circ_size, wr->wr_inodeshead,
477 	    wr->wr_inodestail));
478 
479 	wl->wl_head = wl->wl_tail = wr->wr_inodeshead;
480 	wl->wl_reclaimable_bytes = wl->wl_reserved_bytes =
481 	    wapbl_transaction_len(wl);
482 
483 	error = wapbl_write_inodes(wl, &wl->wl_head);
484 	if (error)
485 		return error;
486 
487 	KASSERT(wl->wl_head != wl->wl_tail);
488 	KASSERT(wl->wl_head != 0);
489 
490 	return 0;
491 }
492 
493 int
494 wapbl_start(struct wapbl ** wlp, struct mount *mp, struct vnode *vp,
495 	daddr_t off, size_t count, size_t blksize, struct wapbl_replay *wr,
496 	wapbl_flush_fn_t flushfn, wapbl_flush_fn_t flushabortfn)
497 {
498 	struct wapbl *wl;
499 	struct vnode *devvp;
500 	daddr_t logpbn;
501 	int error;
502 	int log_dev_bshift = ilog2(blksize);
503 	int fs_dev_bshift = log_dev_bshift;
504 	int run;
505 
506 	WAPBL_PRINTF(WAPBL_PRINT_OPEN, ("wapbl_start: vp=%p off=%" PRId64
507 	    " count=%zu blksize=%zu\n", vp, off, count, blksize));
508 
509 	if (log_dev_bshift > fs_dev_bshift) {
510 		WAPBL_PRINTF(WAPBL_PRINT_OPEN,
511 			("wapbl: log device's block size cannot be larger "
512 			 "than filesystem's\n"));
513 		/*
514 		 * Not currently implemented, although it could be if
515 		 * needed someday.
516 		 */
517 		return ENOSYS;
518 	}
519 
520 	if (off < 0)
521 		return EINVAL;
522 
523 	if (blksize < DEV_BSIZE)
524 		return EINVAL;
525 	if (blksize % DEV_BSIZE)
526 		return EINVAL;
527 
528 	/* XXXTODO: verify that the full load is writable */
529 
530 	/*
531 	 * XXX check for minimum log size
532 	 * minimum is governed by minimum amount of space
533 	 * to complete a transaction. (probably truncate)
534 	 */
535 	/* XXX for now pick something minimal */
536 	if ((count * blksize) < MAXPHYS) {
537 		return ENOSPC;
538 	}
539 
540 	if ((error = VOP_BMAP(vp, off, &devvp, &logpbn, &run)) != 0) {
541 		return error;
542 	}
543 
544 	wl = wapbl_calloc(1, sizeof(*wl));
545 	rw_init(&wl->wl_rwlock);
546 	mutex_init(&wl->wl_mtx, MUTEX_DEFAULT, IPL_NONE);
547 	cv_init(&wl->wl_reclaimable_cv, "wapblrec");
548 	TAILQ_INIT(&wl->wl_bufs);
549 	SIMPLEQ_INIT(&wl->wl_entries);
550 
551 	wl->wl_logvp = vp;
552 	wl->wl_devvp = devvp;
553 	wl->wl_mount = mp;
554 	wl->wl_logpbn = logpbn;
555 	wl->wl_log_dev_bshift = log_dev_bshift;
556 	wl->wl_fs_dev_bshift = fs_dev_bshift;
557 
558 	wl->wl_flush = flushfn;
559 	wl->wl_flush_abort = flushabortfn;
560 
561 	/* Reserve two log device blocks for the commit headers */
562 	wl->wl_circ_off = 2<<wl->wl_log_dev_bshift;
563 	wl->wl_circ_size = ((count * blksize) - wl->wl_circ_off);
564 	/* truncate the log usage to a multiple of log_dev_bshift */
565 	wl->wl_circ_size >>= wl->wl_log_dev_bshift;
566 	wl->wl_circ_size <<= wl->wl_log_dev_bshift;
567 
568 	/*
569 	 * wl_bufbytes_max limits the size of the in memory transaction space.
570 	 * - Since buffers are allocated and accounted for in units of
571 	 *   PAGE_SIZE it is required to be a multiple of PAGE_SIZE
572 	 *   (i.e. 1<<PAGE_SHIFT)
573 	 * - Since the log device has to be written in units of
574 	 *   1<<wl_log_dev_bshift it is required to be a multiple of
575 	 *   1<<wl_log_dev_bshift.
576 	 * - Since filesystem will provide data in units of 1<<wl_fs_dev_bshift,
577 	 *   it is convenient to be a multiple of 1<<wl_fs_dev_bshift.
578 	 * Therefore it must be multiple of the least common multiple of those
579 	 * three quantities.  Fortunately, all of those quantities are
580 	 * guaranteed to be a power of two, and the least common multiple of
581 	 * a set of numbers which are all powers of two is simply the maximum
582 	 * of those numbers.  Finally, the maximum logarithm of a power of two
583 	 * is the same as the log of the maximum power of two.  So we can do
584 	 * the following operations to size wl_bufbytes_max:
585 	 */
586 
587 	/* XXX fix actual number of pages reserved per filesystem. */
588 	wl->wl_bufbytes_max = MIN(wl->wl_circ_size, buf_memcalc() / 2);
589 
590 	/* Round wl_bufbytes_max to the largest power of two constraint */
591 	wl->wl_bufbytes_max >>= PAGE_SHIFT;
592 	wl->wl_bufbytes_max <<= PAGE_SHIFT;
593 	wl->wl_bufbytes_max >>= wl->wl_log_dev_bshift;
594 	wl->wl_bufbytes_max <<= wl->wl_log_dev_bshift;
595 	wl->wl_bufbytes_max >>= wl->wl_fs_dev_bshift;
596 	wl->wl_bufbytes_max <<= wl->wl_fs_dev_bshift;
597 
598 	/* XXX maybe use filesystem fragment size instead of 1024 */
599 	/* XXX fix actual number of buffers reserved per filesystem. */
600 	wl->wl_bufcount_max = (buf_nbuf() / 2) * 1024;
601 
602 	wl->wl_brperjblock = ((1<<wl->wl_log_dev_bshift)
603 	    - offsetof(struct wapbl_wc_blocklist, wc_blocks)) /
604 	    sizeof(((struct wapbl_wc_blocklist *)0)->wc_blocks[0]);
605 	KASSERT(wl->wl_brperjblock > 0);
606 
607 	/* XXX tie this into resource estimation */
608 	wl->wl_dealloclim = wl->wl_bufbytes_max / mp->mnt_stat.f_bsize / 2;
609 	TAILQ_INIT(&wl->wl_dealloclist);
610 
611 	wapbl_inodetrk_init(wl, WAPBL_INODETRK_SIZE);
612 
613 	wapbl_evcnt_init(wl);
614 
615 	wapbl_dkcache_init(wl);
616 
617 	/* Initialize the commit header */
618 	{
619 		struct wapbl_wc_header *wc;
620 		size_t len = 1 << wl->wl_log_dev_bshift;
621 		wc = wapbl_calloc(1, len);
622 		wc->wc_type = WAPBL_WC_HEADER;
623 		wc->wc_len = len;
624 		wc->wc_circ_off = wl->wl_circ_off;
625 		wc->wc_circ_size = wl->wl_circ_size;
626 		/* XXX wc->wc_fsid */
627 		wc->wc_log_dev_bshift = wl->wl_log_dev_bshift;
628 		wc->wc_fs_dev_bshift = wl->wl_fs_dev_bshift;
629 		wl->wl_wc_header = wc;
630 		wl->wl_wc_scratch = wapbl_alloc(len);
631 	}
632 
633 	TAILQ_INIT(&wl->wl_iobufs);
634 	TAILQ_INIT(&wl->wl_iobufs_busy);
635 	for (int i = 0; i < wapbl_journal_iobufs; i++) {
636 		struct buf *bp;
637 
638 		if ((bp = geteblk(MAXPHYS)) == NULL)
639 			goto errout;
640 
641 		mutex_enter(&bufcache_lock);
642 		mutex_enter(devvp->v_interlock);
643 		bgetvp(devvp, bp);
644 		mutex_exit(devvp->v_interlock);
645 		mutex_exit(&bufcache_lock);
646 
647 		bp->b_dev = devvp->v_rdev;
648 
649 		TAILQ_INSERT_TAIL(&wl->wl_iobufs, bp, b_wapbllist);
650 	}
651 
652 	/*
653 	 * if there was an existing set of unlinked but
654 	 * allocated inodes, preserve it in the new
655 	 * log.
656 	 */
657 	if (wr && wr->wr_inodescnt) {
658 		error = wapbl_start_flush_inodes(wl, wr);
659 		if (error)
660 			goto errout;
661 	}
662 
663 	error = wapbl_write_commit(wl, wl->wl_head, wl->wl_tail);
664 	if (error) {
665 		goto errout;
666 	}
667 
668 	*wlp = wl;
669 #if defined(WAPBL_DEBUG)
670 	wapbl_debug_wl = wl;
671 #endif
672 
673 	return 0;
674  errout:
675 	wapbl_discard(wl);
676 	wapbl_free(wl->wl_wc_scratch, wl->wl_wc_header->wc_len);
677 	wapbl_free(wl->wl_wc_header, wl->wl_wc_header->wc_len);
678 	while (!TAILQ_EMPTY(&wl->wl_iobufs)) {
679 		struct buf *bp;
680 
681 		bp = TAILQ_FIRST(&wl->wl_iobufs);
682 		TAILQ_REMOVE(&wl->wl_iobufs, bp, b_wapbllist);
683 		brelse(bp, BC_INVAL);
684 	}
685 	wapbl_inodetrk_free(wl);
686 	wapbl_free(wl, sizeof(*wl));
687 
688 	return error;
689 }
690 
691 /*
692  * Like wapbl_flush, only discards the transaction
693  * completely
694  */
695 
696 void
697 wapbl_discard(struct wapbl *wl)
698 {
699 	struct wapbl_entry *we;
700 	struct wapbl_dealloc *wd;
701 	struct buf *bp;
702 	int i;
703 
704 	/*
705 	 * XXX we may consider using upgrade here
706 	 * if we want to call flush from inside a transaction
707 	 */
708 	rw_enter(&wl->wl_rwlock, RW_WRITER);
709 	wl->wl_flush(wl->wl_mount, TAILQ_FIRST(&wl->wl_dealloclist));
710 
711 #ifdef WAPBL_DEBUG_PRINT
712 	{
713 		pid_t pid = -1;
714 		lwpid_t lid = -1;
715 		if (curproc)
716 			pid = curproc->p_pid;
717 		if (curlwp)
718 			lid = curlwp->l_lid;
719 #ifdef WAPBL_DEBUG_BUFBYTES
720 		WAPBL_PRINTF(WAPBL_PRINT_DISCARD,
721 		    ("wapbl_discard: thread %d.%d discarding "
722 		    "transaction\n"
723 		    "\tbufcount=%zu bufbytes=%zu bcount=%zu "
724 		    "deallocs=%d inodes=%d\n"
725 		    "\terrcnt = %u, reclaimable=%zu reserved=%zu "
726 		    "unsynced=%zu\n",
727 		    pid, lid, wl->wl_bufcount, wl->wl_bufbytes,
728 		    wl->wl_bcount, wl->wl_dealloccnt,
729 		    wl->wl_inohashcnt, wl->wl_error_count,
730 		    wl->wl_reclaimable_bytes, wl->wl_reserved_bytes,
731 		    wl->wl_unsynced_bufbytes));
732 		SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
733 			WAPBL_PRINTF(WAPBL_PRINT_DISCARD,
734 			    ("\tentry: bufcount = %zu, reclaimable = %zu, "
735 			     "error = %d, unsynced = %zu\n",
736 			     we->we_bufcount, we->we_reclaimable_bytes,
737 			     we->we_error, we->we_unsynced_bufbytes));
738 		}
739 #else /* !WAPBL_DEBUG_BUFBYTES */
740 		WAPBL_PRINTF(WAPBL_PRINT_DISCARD,
741 		    ("wapbl_discard: thread %d.%d discarding transaction\n"
742 		    "\tbufcount=%zu bufbytes=%zu bcount=%zu "
743 		    "deallocs=%d inodes=%d\n"
744 		    "\terrcnt = %u, reclaimable=%zu reserved=%zu\n",
745 		    pid, lid, wl->wl_bufcount, wl->wl_bufbytes,
746 		    wl->wl_bcount, wl->wl_dealloccnt,
747 		    wl->wl_inohashcnt, wl->wl_error_count,
748 		    wl->wl_reclaimable_bytes, wl->wl_reserved_bytes));
749 		SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
750 			WAPBL_PRINTF(WAPBL_PRINT_DISCARD,
751 			    ("\tentry: bufcount = %zu, reclaimable = %zu, "
752 			     "error = %d\n",
753 			     we->we_bufcount, we->we_reclaimable_bytes,
754 			     we->we_error));
755 		}
756 #endif /* !WAPBL_DEBUG_BUFBYTES */
757 	}
758 #endif /* WAPBL_DEBUG_PRINT */
759 
760 	for (i = 0; i <= wl->wl_inohashmask; i++) {
761 		struct wapbl_ino_head *wih;
762 		struct wapbl_ino *wi;
763 
764 		wih = &wl->wl_inohash[i];
765 		while ((wi = LIST_FIRST(wih)) != NULL) {
766 			LIST_REMOVE(wi, wi_hash);
767 			pool_put(&wapbl_ino_pool, wi);
768 			KASSERT(wl->wl_inohashcnt > 0);
769 			wl->wl_inohashcnt--;
770 		}
771 	}
772 
773 	/*
774 	 * clean buffer list
775 	 */
776 	mutex_enter(&bufcache_lock);
777 	mutex_enter(&wl->wl_mtx);
778 	while ((bp = TAILQ_FIRST(&wl->wl_bufs)) != NULL) {
779 		if (bbusy(bp, 0, 0, &wl->wl_mtx) == 0) {
780 			KASSERT(bp->b_flags & B_LOCKED);
781 			KASSERT(bp->b_oflags & BO_DELWRI);
782 			/*
783 			 * Buffer is already on BQ_LOCKED queue.
784 			 * The buffer will be unlocked and
785 			 * removed from the transaction in brelsel()
786 			 */
787 			mutex_exit(&wl->wl_mtx);
788 			bremfree(bp);
789 			brelsel(bp, BC_INVAL);
790 			mutex_enter(&wl->wl_mtx);
791 		}
792 	}
793 
794 	/*
795 	 * Remove references to this wl from wl_entries, free any which
796 	 * no longer have buffers, others will be freed in wapbl_biodone()
797 	 * when they no longer have any buffers.
798 	 */
799 	while ((we = SIMPLEQ_FIRST(&wl->wl_entries)) != NULL) {
800 		SIMPLEQ_REMOVE_HEAD(&wl->wl_entries, we_entries);
801 		/* XXX should we be accumulating wl_error_count
802 		 * and increasing reclaimable bytes ? */
803 		we->we_wapbl = NULL;
804 		if (we->we_bufcount == 0) {
805 #ifdef WAPBL_DEBUG_BUFBYTES
806 			KASSERT(we->we_unsynced_bufbytes == 0);
807 #endif
808 			pool_put(&wapbl_entry_pool, we);
809 		}
810 	}
811 
812 	mutex_exit(&wl->wl_mtx);
813 	mutex_exit(&bufcache_lock);
814 
815 	/* Discard list of deallocs */
816 	while ((wd = TAILQ_FIRST(&wl->wl_dealloclist)) != NULL)
817 		wapbl_deallocation_free(wl, wd, true);
818 
819 	/* XXX should we clear wl_reserved_bytes? */
820 
821 	KASSERT(wl->wl_bufbytes == 0);
822 	KASSERT(wl->wl_bcount == 0);
823 	KASSERT(wl->wl_bufcount == 0);
824 	KASSERT(TAILQ_EMPTY(&wl->wl_bufs));
825 	KASSERT(SIMPLEQ_EMPTY(&wl->wl_entries));
826 	KASSERT(wl->wl_inohashcnt == 0);
827 	KASSERT(TAILQ_EMPTY(&wl->wl_dealloclist));
828 	KASSERT(wl->wl_dealloccnt == 0);
829 
830 	rw_exit(&wl->wl_rwlock);
831 }
832 
833 int
834 wapbl_stop(struct wapbl *wl, int force)
835 {
836 	int error;
837 
838 	WAPBL_PRINTF(WAPBL_PRINT_OPEN, ("wapbl_stop called\n"));
839 	error = wapbl_flush(wl, 1);
840 	if (error) {
841 		if (force)
842 			wapbl_discard(wl);
843 		else
844 			return error;
845 	}
846 
847 	/* Unlinked inodes persist after a flush */
848 	if (wl->wl_inohashcnt) {
849 		if (force) {
850 			wapbl_discard(wl);
851 		} else {
852 			return EBUSY;
853 		}
854 	}
855 
856 	KASSERT(wl->wl_bufbytes == 0);
857 	KASSERT(wl->wl_bcount == 0);
858 	KASSERT(wl->wl_bufcount == 0);
859 	KASSERT(TAILQ_EMPTY(&wl->wl_bufs));
860 	KASSERT(wl->wl_dealloccnt == 0);
861 	KASSERT(SIMPLEQ_EMPTY(&wl->wl_entries));
862 	KASSERT(wl->wl_inohashcnt == 0);
863 	KASSERT(TAILQ_EMPTY(&wl->wl_dealloclist));
864 	KASSERT(wl->wl_dealloccnt == 0);
865 	KASSERT(TAILQ_EMPTY(&wl->wl_iobufs_busy));
866 
867 	wapbl_free(wl->wl_wc_scratch, wl->wl_wc_header->wc_len);
868 	wapbl_free(wl->wl_wc_header, wl->wl_wc_header->wc_len);
869 	while (!TAILQ_EMPTY(&wl->wl_iobufs)) {
870 		struct buf *bp;
871 
872 		bp = TAILQ_FIRST(&wl->wl_iobufs);
873 		TAILQ_REMOVE(&wl->wl_iobufs, bp, b_wapbllist);
874 		brelse(bp, BC_INVAL);
875 	}
876 	wapbl_inodetrk_free(wl);
877 
878 	wapbl_evcnt_free(wl);
879 
880 	cv_destroy(&wl->wl_reclaimable_cv);
881 	mutex_destroy(&wl->wl_mtx);
882 	rw_destroy(&wl->wl_rwlock);
883 	wapbl_free(wl, sizeof(*wl));
884 
885 	return 0;
886 }
887 
888 /****************************************************************/
889 /*
890  * Unbuffered disk I/O
891  */
892 
893 static void
894 wapbl_doio_accounting(struct vnode *devvp, int flags)
895 {
896 	struct pstats *pstats = curlwp->l_proc->p_stats;
897 
898 	if ((flags & (B_WRITE | B_READ)) == B_WRITE) {
899 		mutex_enter(devvp->v_interlock);
900 		devvp->v_numoutput++;
901 		mutex_exit(devvp->v_interlock);
902 		pstats->p_ru.ru_oublock++;
903 	} else {
904 		pstats->p_ru.ru_inblock++;
905 	}
906 
907 }
908 
909 static int
910 wapbl_doio(void *data, size_t len, struct vnode *devvp, daddr_t pbn, int flags)
911 {
912 	struct buf *bp;
913 	int error;
914 
915 	KASSERT(devvp->v_type == VBLK);
916 
917 	wapbl_doio_accounting(devvp, flags);
918 
919 	bp = getiobuf(devvp, true);
920 	bp->b_flags = flags;
921 	bp->b_cflags |= BC_BUSY;	/* mandatory, asserted by biowait() */
922 	bp->b_dev = devvp->v_rdev;
923 	bp->b_data = data;
924 	bp->b_bufsize = bp->b_resid = bp->b_bcount = len;
925 	bp->b_blkno = pbn;
926 	BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
927 
928 	WAPBL_PRINTF(WAPBL_PRINT_IO,
929 	    ("wapbl_doio: %s %d bytes at block %"PRId64" on dev 0x%"PRIx64"\n",
930 	    BUF_ISWRITE(bp) ? "write" : "read", bp->b_bcount,
931 	    bp->b_blkno, bp->b_dev));
932 
933 	VOP_STRATEGY(devvp, bp);
934 
935 	error = biowait(bp);
936 	putiobuf(bp);
937 
938 	if (error) {
939 		WAPBL_PRINTF(WAPBL_PRINT_ERROR,
940 		    ("wapbl_doio: %s %zu bytes at block %" PRId64
941 		    " on dev 0x%"PRIx64" failed with error %d\n",
942 		    (((flags & (B_WRITE | B_READ)) == B_WRITE) ?
943 		     "write" : "read"),
944 		    len, pbn, devvp->v_rdev, error));
945 	}
946 
947 	return error;
948 }
949 
950 /*
951  * wapbl_write(data, len, devvp, pbn)
952  *
953  *	Synchronously write len bytes from data to physical block pbn
954  *	on devvp.
955  */
956 int
957 wapbl_write(void *data, size_t len, struct vnode *devvp, daddr_t pbn)
958 {
959 
960 	return wapbl_doio(data, len, devvp, pbn, B_WRITE);
961 }
962 
963 /*
964  * wapbl_read(data, len, devvp, pbn)
965  *
966  *	Synchronously read len bytes into data from physical block pbn
967  *	on devvp.
968  */
969 int
970 wapbl_read(void *data, size_t len, struct vnode *devvp, daddr_t pbn)
971 {
972 
973 	return wapbl_doio(data, len, devvp, pbn, B_READ);
974 }
975 
976 /****************************************************************/
977 /*
978  * Buffered disk writes -- try to coalesce writes and emit
979  * MAXPHYS-aligned blocks.
980  */
981 
982 /*
983  * wapbl_buffered_write_async(wl, bp)
984  *
985  *	Send buffer for asynchronous write.
986  */
987 static void
988 wapbl_buffered_write_async(struct wapbl *wl, struct buf *bp)
989 {
990 	wapbl_doio_accounting(wl->wl_devvp, bp->b_flags);
991 
992 	KASSERT(TAILQ_FIRST(&wl->wl_iobufs) == bp);
993 	TAILQ_REMOVE(&wl->wl_iobufs, bp, b_wapbllist);
994 
995 	bp->b_flags |= B_WRITE;
996 	bp->b_cflags |= BC_BUSY;	/* mandatory, asserted by biowait() */
997 	bp->b_oflags = 0;
998 	bp->b_bcount = bp->b_resid;
999 	BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1000 
1001 	VOP_STRATEGY(wl->wl_devvp, bp);
1002 
1003 	wl->wl_ev_journalwrite.ev_count++;
1004 
1005 	TAILQ_INSERT_TAIL(&wl->wl_iobufs_busy, bp, b_wapbllist);
1006 }
1007 
1008 /*
1009  * wapbl_buffered_flush(wl)
1010  *
1011  *	Flush any buffered writes from wapbl_buffered_write.
1012  */
1013 static int
1014 wapbl_buffered_flush(struct wapbl *wl, bool full)
1015 {
1016 	int error = 0;
1017 	struct buf *bp, *bnext;
1018 	bool only_done = true, found = false;
1019 
1020 	/* if there is outstanding buffered write, send it now */
1021 	if ((bp = TAILQ_FIRST(&wl->wl_iobufs)) && bp->b_resid > 0)
1022 		wapbl_buffered_write_async(wl, bp);
1023 
1024 	/* wait for I/O to complete */
1025 again:
1026 	TAILQ_FOREACH_SAFE(bp, &wl->wl_iobufs_busy, b_wapbllist, bnext) {
1027 		if (!full && only_done) {
1028 			/* skip unfinished */
1029 			if (!ISSET(bp->b_oflags, BO_DONE))
1030 				continue;
1031 		}
1032 
1033 		if (ISSET(bp->b_oflags, BO_DONE))
1034 			wl->wl_ev_jbufs_bio_nowait.ev_count++;
1035 
1036 		TAILQ_REMOVE(&wl->wl_iobufs_busy, bp, b_wapbllist);
1037 		error = biowait(bp);
1038 
1039 		/* reset for reuse */
1040 		bp->b_blkno = bp->b_resid = bp->b_flags = 0;
1041 		TAILQ_INSERT_TAIL(&wl->wl_iobufs, bp, b_wapbllist);
1042 		found = true;
1043 
1044 		if (!full)
1045 			break;
1046 	}
1047 
1048 	if (!found && only_done && !TAILQ_EMPTY(&wl->wl_iobufs_busy)) {
1049 		only_done = false;
1050 		goto again;
1051 	}
1052 
1053 	return error;
1054 }
1055 
1056 /*
1057  * wapbl_buffered_write(data, len, wl, pbn)
1058  *
1059  *	Write len bytes from data to physical block pbn on
1060  *	wl->wl_devvp.  The write may not complete until
1061  *	wapbl_buffered_flush.
1062  */
1063 static int
1064 wapbl_buffered_write(void *data, size_t len, struct wapbl *wl, daddr_t pbn,
1065     int bflags)
1066 {
1067 	size_t resid;
1068 	struct buf *bp;
1069 
1070 again:
1071 	bp = TAILQ_FIRST(&wl->wl_iobufs);
1072 
1073 	if (bp == NULL) {
1074 		/* No more buffers, wait for any previous I/O to finish. */
1075 		wapbl_buffered_flush(wl, false);
1076 
1077 		bp = TAILQ_FIRST(&wl->wl_iobufs);
1078 		KASSERT(bp != NULL);
1079 	}
1080 
1081 	/*
1082 	 * If not adjacent to buffered data flush first.  Disk block
1083 	 * address is always valid for non-empty buffer.
1084 	 */
1085 	if ((bp->b_resid > 0 && pbn != bp->b_blkno + btodb(bp->b_resid))) {
1086 		wapbl_buffered_write_async(wl, bp);
1087 		goto again;
1088 	}
1089 
1090 	/*
1091 	 * If this write goes to an empty buffer we have to
1092 	 * save the disk block address first.
1093 	 */
1094 	if (bp->b_blkno == 0) {
1095 		bp->b_blkno = pbn;
1096 		bp->b_flags |= bflags;
1097 	}
1098 
1099 	/*
1100 	 * Remaining space so this buffer ends on a buffer size boundary.
1101 	 *
1102 	 * Cannot become less or equal zero as the buffer would have been
1103 	 * flushed on the last call then.
1104 	 */
1105 	resid = bp->b_bufsize - dbtob(bp->b_blkno % btodb(bp->b_bufsize)) -
1106 	    bp->b_resid;
1107 	KASSERT(resid > 0);
1108 	KASSERT(dbtob(btodb(resid)) == resid);
1109 
1110 	if (len < resid)
1111 		resid = len;
1112 
1113 	memcpy((uint8_t *)bp->b_data + bp->b_resid, data, resid);
1114 	bp->b_resid += resid;
1115 
1116 	if (len >= resid) {
1117 		/* Just filled the buf, or data did not fit */
1118 		wapbl_buffered_write_async(wl, bp);
1119 
1120 		data = (uint8_t *)data + resid;
1121 		len -= resid;
1122 		pbn += btodb(resid);
1123 
1124 		if (len > 0)
1125 			goto again;
1126 	}
1127 
1128 	return 0;
1129 }
1130 
1131 /*
1132  * wapbl_circ_write(wl, data, len, offp)
1133  *
1134  *	Write len bytes from data to the circular queue of wl, starting
1135  *	at linear byte offset *offp, and returning the new linear byte
1136  *	offset in *offp.
1137  *
1138  *	If the starting linear byte offset precedes wl->wl_circ_off,
1139  *	the write instead begins at wl->wl_circ_off.  XXX WTF?  This
1140  *	should be a KASSERT, not a conditional.
1141  *
1142  *	The write is buffered in wl and must be flushed with
1143  *	wapbl_buffered_flush before it will be submitted to the disk.
1144  */
1145 static int
1146 wapbl_circ_write(struct wapbl *wl, void *data, size_t len, off_t *offp)
1147 {
1148 	size_t slen;
1149 	off_t off = *offp;
1150 	int error;
1151 	daddr_t pbn;
1152 
1153 	KDASSERT(((len >> wl->wl_log_dev_bshift) <<
1154 	    wl->wl_log_dev_bshift) == len);
1155 
1156 	if (off < wl->wl_circ_off)
1157 		off = wl->wl_circ_off;
1158 	slen = wl->wl_circ_off + wl->wl_circ_size - off;
1159 	if (slen < len) {
1160 		pbn = wl->wl_logpbn + (off >> wl->wl_log_dev_bshift);
1161 #ifdef _KERNEL
1162 		pbn = btodb(pbn << wl->wl_log_dev_bshift);
1163 #endif
1164 		error = wapbl_buffered_write(data, slen, wl, pbn,
1165 		    WAPBL_JDATA_FLAGS(wl));
1166 		if (error)
1167 			return error;
1168 		data = (uint8_t *)data + slen;
1169 		len -= slen;
1170 		off = wl->wl_circ_off;
1171 	}
1172 	pbn = wl->wl_logpbn + (off >> wl->wl_log_dev_bshift);
1173 #ifdef _KERNEL
1174 	pbn = btodb(pbn << wl->wl_log_dev_bshift);
1175 #endif
1176 	error = wapbl_buffered_write(data, len, wl, pbn,
1177 	    WAPBL_JDATA_FLAGS(wl));
1178 	if (error)
1179 		return error;
1180 	off += len;
1181 	if (off >= wl->wl_circ_off + wl->wl_circ_size)
1182 		off = wl->wl_circ_off;
1183 	*offp = off;
1184 	return 0;
1185 }
1186 
1187 /****************************************************************/
1188 /*
1189  * WAPBL transactions: entering, adding/removing bufs, and exiting
1190  */
1191 
1192 int
1193 wapbl_begin(struct wapbl *wl, const char *file, int line)
1194 {
1195 	int doflush;
1196 	unsigned lockcount;
1197 
1198 	KDASSERT(wl);
1199 
1200 	/*
1201 	 * XXX this needs to be made much more sophisticated.
1202 	 * perhaps each wapbl_begin could reserve a specified
1203 	 * number of buffers and bytes.
1204 	 */
1205 	mutex_enter(&wl->wl_mtx);
1206 	lockcount = wl->wl_lock_count;
1207 	doflush = ((wl->wl_bufbytes + (lockcount * MAXPHYS)) >
1208 		   wl->wl_bufbytes_max / 2) ||
1209 		  ((wl->wl_bufcount + (lockcount * 10)) >
1210 		   wl->wl_bufcount_max / 2) ||
1211 		  (wapbl_transaction_len(wl) > wl->wl_circ_size / 2) ||
1212 		  (wl->wl_dealloccnt >= (wl->wl_dealloclim / 2));
1213 	mutex_exit(&wl->wl_mtx);
1214 
1215 	if (doflush) {
1216 		WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
1217 		    ("force flush lockcnt=%d bufbytes=%zu "
1218 		    "(max=%zu) bufcount=%zu (max=%zu) "
1219 		    "dealloccnt %d (lim=%d)\n",
1220 		    lockcount, wl->wl_bufbytes,
1221 		    wl->wl_bufbytes_max, wl->wl_bufcount,
1222 		    wl->wl_bufcount_max,
1223 		    wl->wl_dealloccnt, wl->wl_dealloclim));
1224 	}
1225 
1226 	if (doflush) {
1227 		int error = wapbl_flush(wl, 0);
1228 		if (error)
1229 			return error;
1230 	}
1231 
1232 	rw_enter(&wl->wl_rwlock, RW_READER);
1233 	mutex_enter(&wl->wl_mtx);
1234 	wl->wl_lock_count++;
1235 	mutex_exit(&wl->wl_mtx);
1236 
1237 #if defined(WAPBL_DEBUG_PRINT)
1238 	WAPBL_PRINTF(WAPBL_PRINT_TRANSACTION,
1239 	    ("wapbl_begin thread %d.%d with bufcount=%zu "
1240 	    "bufbytes=%zu bcount=%zu at %s:%d\n",
1241 	    curproc->p_pid, curlwp->l_lid, wl->wl_bufcount,
1242 	    wl->wl_bufbytes, wl->wl_bcount, file, line));
1243 #endif
1244 
1245 	return 0;
1246 }
1247 
1248 void
1249 wapbl_end(struct wapbl *wl)
1250 {
1251 
1252 #if defined(WAPBL_DEBUG_PRINT)
1253 	WAPBL_PRINTF(WAPBL_PRINT_TRANSACTION,
1254 	     ("wapbl_end thread %d.%d with bufcount=%zu "
1255 	      "bufbytes=%zu bcount=%zu\n",
1256 	      curproc->p_pid, curlwp->l_lid, wl->wl_bufcount,
1257 	      wl->wl_bufbytes, wl->wl_bcount));
1258 #endif
1259 
1260 	/*
1261 	 * XXX this could be handled more gracefully, perhaps place
1262 	 * only a partial transaction in the log and allow the
1263 	 * remaining to flush without the protection of the journal.
1264 	 */
1265 	KASSERTMSG((wapbl_transaction_len(wl) <=
1266 		(wl->wl_circ_size - wl->wl_reserved_bytes)),
1267 	    "wapbl_end: current transaction too big to flush");
1268 
1269 	mutex_enter(&wl->wl_mtx);
1270 	KASSERT(wl->wl_lock_count > 0);
1271 	wl->wl_lock_count--;
1272 	mutex_exit(&wl->wl_mtx);
1273 
1274 	rw_exit(&wl->wl_rwlock);
1275 }
1276 
1277 void
1278 wapbl_add_buf(struct wapbl *wl, struct buf * bp)
1279 {
1280 
1281 	KASSERT(bp->b_cflags & BC_BUSY);
1282 	KASSERT(bp->b_vp);
1283 
1284 	wapbl_jlock_assert(wl);
1285 
1286 #if 0
1287 	/*
1288 	 * XXX this might be an issue for swapfiles.
1289 	 * see uvm_swap.c:1702
1290 	 *
1291 	 * XXX2 why require it then?  leap of semantics?
1292 	 */
1293 	KASSERT((bp->b_cflags & BC_NOCACHE) == 0);
1294 #endif
1295 
1296 	mutex_enter(&wl->wl_mtx);
1297 	if (bp->b_flags & B_LOCKED) {
1298 		TAILQ_REMOVE(&wl->wl_bufs, bp, b_wapbllist);
1299 		WAPBL_PRINTF(WAPBL_PRINT_BUFFER2,
1300 		   ("wapbl_add_buf thread %d.%d re-adding buf %p "
1301 		    "with %d bytes %d bcount\n",
1302 		    curproc->p_pid, curlwp->l_lid, bp, bp->b_bufsize,
1303 		    bp->b_bcount));
1304 	} else {
1305 		/* unlocked by dirty buffers shouldn't exist */
1306 		KASSERT(!(bp->b_oflags & BO_DELWRI));
1307 		wl->wl_bufbytes += bp->b_bufsize;
1308 		wl->wl_bcount += bp->b_bcount;
1309 		wl->wl_bufcount++;
1310 		WAPBL_PRINTF(WAPBL_PRINT_BUFFER,
1311 		   ("wapbl_add_buf thread %d.%d adding buf %p "
1312 		    "with %d bytes %d bcount\n",
1313 		    curproc->p_pid, curlwp->l_lid, bp, bp->b_bufsize,
1314 		    bp->b_bcount));
1315 	}
1316 	TAILQ_INSERT_TAIL(&wl->wl_bufs, bp, b_wapbllist);
1317 	mutex_exit(&wl->wl_mtx);
1318 
1319 	bp->b_flags |= B_LOCKED;
1320 }
1321 
1322 static void
1323 wapbl_remove_buf_locked(struct wapbl * wl, struct buf *bp)
1324 {
1325 
1326 	KASSERT(mutex_owned(&wl->wl_mtx));
1327 	KASSERT(bp->b_cflags & BC_BUSY);
1328 	wapbl_jlock_assert(wl);
1329 
1330 #if 0
1331 	/*
1332 	 * XXX this might be an issue for swapfiles.
1333 	 * see uvm_swap.c:1725
1334 	 *
1335 	 * XXXdeux: see above
1336 	 */
1337 	KASSERT((bp->b_flags & BC_NOCACHE) == 0);
1338 #endif
1339 	KASSERT(bp->b_flags & B_LOCKED);
1340 
1341 	WAPBL_PRINTF(WAPBL_PRINT_BUFFER,
1342 	   ("wapbl_remove_buf thread %d.%d removing buf %p with "
1343 	    "%d bytes %d bcount\n",
1344 	    curproc->p_pid, curlwp->l_lid, bp, bp->b_bufsize, bp->b_bcount));
1345 
1346 	KASSERT(wl->wl_bufbytes >= bp->b_bufsize);
1347 	wl->wl_bufbytes -= bp->b_bufsize;
1348 	KASSERT(wl->wl_bcount >= bp->b_bcount);
1349 	wl->wl_bcount -= bp->b_bcount;
1350 	KASSERT(wl->wl_bufcount > 0);
1351 	wl->wl_bufcount--;
1352 	KASSERT((wl->wl_bufcount == 0) == (wl->wl_bufbytes == 0));
1353 	KASSERT((wl->wl_bufcount == 0) == (wl->wl_bcount == 0));
1354 	TAILQ_REMOVE(&wl->wl_bufs, bp, b_wapbllist);
1355 
1356 	bp->b_flags &= ~B_LOCKED;
1357 }
1358 
1359 /* called from brelsel() in vfs_bio among other places */
1360 void
1361 wapbl_remove_buf(struct wapbl * wl, struct buf *bp)
1362 {
1363 
1364 	mutex_enter(&wl->wl_mtx);
1365 	wapbl_remove_buf_locked(wl, bp);
1366 	mutex_exit(&wl->wl_mtx);
1367 }
1368 
1369 void
1370 wapbl_resize_buf(struct wapbl *wl, struct buf *bp, long oldsz, long oldcnt)
1371 {
1372 
1373 	KASSERT(bp->b_cflags & BC_BUSY);
1374 
1375 	/*
1376 	 * XXX: why does this depend on B_LOCKED?  otherwise the buf
1377 	 * is not for a transaction?  if so, why is this called in the
1378 	 * first place?
1379 	 */
1380 	if (bp->b_flags & B_LOCKED) {
1381 		mutex_enter(&wl->wl_mtx);
1382 		wl->wl_bufbytes += bp->b_bufsize - oldsz;
1383 		wl->wl_bcount += bp->b_bcount - oldcnt;
1384 		mutex_exit(&wl->wl_mtx);
1385 	}
1386 }
1387 
1388 #endif /* _KERNEL */
1389 
1390 /****************************************************************/
1391 /* Some utility inlines */
1392 
1393 /*
1394  * wapbl_space_used(avail, head, tail)
1395  *
1396  *	Number of bytes used in a circular queue of avail total bytes,
1397  *	from tail to head.
1398  */
1399 static inline size_t
1400 wapbl_space_used(size_t avail, off_t head, off_t tail)
1401 {
1402 
1403 	if (tail == 0) {
1404 		KASSERT(head == 0);
1405 		return 0;
1406 	}
1407 	return ((head + (avail - 1) - tail) % avail) + 1;
1408 }
1409 
1410 #ifdef _KERNEL
1411 /*
1412  * wapbl_advance(size, off, oldoff, delta)
1413  *
1414  *	Given a byte offset oldoff into a circular queue of size bytes
1415  *	starting at off, return a new byte offset oldoff + delta into
1416  *	the circular queue.
1417  */
1418 static inline off_t
1419 wapbl_advance(size_t size, size_t off, off_t oldoff, size_t delta)
1420 {
1421 	off_t newoff;
1422 
1423 	/* Define acceptable ranges for inputs. */
1424 	KASSERT(delta <= (size_t)size);
1425 	KASSERT((oldoff == 0) || ((size_t)oldoff >= off));
1426 	KASSERT(oldoff < (off_t)(size + off));
1427 
1428 	if ((oldoff == 0) && (delta != 0))
1429 		newoff = off + delta;
1430 	else if ((oldoff + delta) < (size + off))
1431 		newoff = oldoff + delta;
1432 	else
1433 		newoff = (oldoff + delta) - size;
1434 
1435 	/* Note some interesting axioms */
1436 	KASSERT((delta != 0) || (newoff == oldoff));
1437 	KASSERT((delta == 0) || (newoff != 0));
1438 	KASSERT((delta != (size)) || (newoff == oldoff));
1439 
1440 	/* Define acceptable ranges for output. */
1441 	KASSERT((newoff == 0) || ((size_t)newoff >= off));
1442 	KASSERT((size_t)newoff < (size + off));
1443 	return newoff;
1444 }
1445 
1446 /*
1447  * wapbl_space_free(avail, head, tail)
1448  *
1449  *	Number of bytes free in a circular queue of avail total bytes,
1450  *	in which everything from tail to head is used.
1451  */
1452 static inline size_t
1453 wapbl_space_free(size_t avail, off_t head, off_t tail)
1454 {
1455 
1456 	return avail - wapbl_space_used(avail, head, tail);
1457 }
1458 
1459 /*
1460  * wapbl_advance_head(size, off, delta, headp, tailp)
1461  *
1462  *	In a circular queue of size bytes starting at off, given the
1463  *	old head and tail offsets *headp and *tailp, store the new head
1464  *	and tail offsets in *headp and *tailp resulting from adding
1465  *	delta bytes of data to the head.
1466  */
1467 static inline void
1468 wapbl_advance_head(size_t size, size_t off, size_t delta, off_t *headp,
1469 		   off_t *tailp)
1470 {
1471 	off_t head = *headp;
1472 	off_t tail = *tailp;
1473 
1474 	KASSERT(delta <= wapbl_space_free(size, head, tail));
1475 	head = wapbl_advance(size, off, head, delta);
1476 	if ((tail == 0) && (head != 0))
1477 		tail = off;
1478 	*headp = head;
1479 	*tailp = tail;
1480 }
1481 
1482 /*
1483  * wapbl_advance_tail(size, off, delta, headp, tailp)
1484  *
1485  *	In a circular queue of size bytes starting at off, given the
1486  *	old head and tail offsets *headp and *tailp, store the new head
1487  *	and tail offsets in *headp and *tailp resulting from removing
1488  *	delta bytes of data from the tail.
1489  */
1490 static inline void
1491 wapbl_advance_tail(size_t size, size_t off, size_t delta, off_t *headp,
1492 		   off_t *tailp)
1493 {
1494 	off_t head = *headp;
1495 	off_t tail = *tailp;
1496 
1497 	KASSERT(delta <= wapbl_space_used(size, head, tail));
1498 	tail = wapbl_advance(size, off, tail, delta);
1499 	if (head == tail) {
1500 		head = tail = 0;
1501 	}
1502 	*headp = head;
1503 	*tailp = tail;
1504 }
1505 
1506 
1507 /****************************************************************/
1508 
1509 /*
1510  * wapbl_truncate(wl, minfree)
1511  *
1512  *	Wait until at least minfree bytes are available in the log.
1513  *
1514  *	If it was necessary to wait for writes to complete,
1515  *	advance the circular queue tail to reflect the new write
1516  *	completions and issue a write commit to the log.
1517  *
1518  *	=> Caller must hold wl->wl_rwlock writer lock.
1519  */
1520 static int
1521 wapbl_truncate(struct wapbl *wl, size_t minfree)
1522 {
1523 	size_t delta;
1524 	size_t avail;
1525 	off_t head;
1526 	off_t tail;
1527 	int error = 0;
1528 
1529 	KASSERT(minfree <= (wl->wl_circ_size - wl->wl_reserved_bytes));
1530 	KASSERT(rw_write_held(&wl->wl_rwlock));
1531 
1532 	mutex_enter(&wl->wl_mtx);
1533 
1534 	/*
1535 	 * First check to see if we have to do a commit
1536 	 * at all.
1537 	 */
1538 	avail = wapbl_space_free(wl->wl_circ_size, wl->wl_head, wl->wl_tail);
1539 	if (minfree < avail) {
1540 		mutex_exit(&wl->wl_mtx);
1541 		return 0;
1542 	}
1543 	minfree -= avail;
1544 	while ((wl->wl_error_count == 0) &&
1545 	    (wl->wl_reclaimable_bytes < minfree)) {
1546         	WAPBL_PRINTF(WAPBL_PRINT_TRUNCATE,
1547                    ("wapbl_truncate: sleeping on %p wl=%p bytes=%zd "
1548 		    "minfree=%zd\n",
1549                     &wl->wl_reclaimable_bytes, wl, wl->wl_reclaimable_bytes,
1550 		    minfree));
1551 
1552 		cv_wait(&wl->wl_reclaimable_cv, &wl->wl_mtx);
1553 	}
1554 	if (wl->wl_reclaimable_bytes < minfree) {
1555 		KASSERT(wl->wl_error_count);
1556 		/* XXX maybe get actual error from buffer instead someday? */
1557 		error = EIO;
1558 	}
1559 	head = wl->wl_head;
1560 	tail = wl->wl_tail;
1561 	delta = wl->wl_reclaimable_bytes;
1562 
1563 	/* If all of the entries are flushed, then be sure to keep
1564 	 * the reserved bytes reserved.  Watch out for discarded transactions,
1565 	 * which could leave more bytes reserved than are reclaimable.
1566 	 */
1567 	if (SIMPLEQ_EMPTY(&wl->wl_entries) &&
1568 	    (delta >= wl->wl_reserved_bytes)) {
1569 		delta -= wl->wl_reserved_bytes;
1570 	}
1571 	wapbl_advance_tail(wl->wl_circ_size, wl->wl_circ_off, delta, &head,
1572 			   &tail);
1573 	KDASSERT(wl->wl_reserved_bytes <=
1574 		wapbl_space_used(wl->wl_circ_size, head, tail));
1575 	mutex_exit(&wl->wl_mtx);
1576 
1577 	if (error)
1578 		return error;
1579 
1580 	/*
1581 	 * This is where head, tail and delta are unprotected
1582 	 * from races against itself or flush.  This is ok since
1583 	 * we only call this routine from inside flush itself.
1584 	 *
1585 	 * XXX: how can it race against itself when accessed only
1586 	 * from behind the write-locked rwlock?
1587 	 */
1588 	error = wapbl_write_commit(wl, head, tail);
1589 	if (error)
1590 		return error;
1591 
1592 	wl->wl_head = head;
1593 	wl->wl_tail = tail;
1594 
1595 	mutex_enter(&wl->wl_mtx);
1596 	KASSERT(wl->wl_reclaimable_bytes >= delta);
1597 	wl->wl_reclaimable_bytes -= delta;
1598 	mutex_exit(&wl->wl_mtx);
1599 	WAPBL_PRINTF(WAPBL_PRINT_TRUNCATE,
1600 	    ("wapbl_truncate thread %d.%d truncating %zu bytes\n",
1601 	    curproc->p_pid, curlwp->l_lid, delta));
1602 
1603 	return 0;
1604 }
1605 
1606 /****************************************************************/
1607 
1608 void
1609 wapbl_biodone(struct buf *bp)
1610 {
1611 	struct wapbl_entry *we = bp->b_private;
1612 	struct wapbl *wl;
1613 #ifdef WAPBL_DEBUG_BUFBYTES
1614 	const int bufsize = bp->b_bufsize;
1615 #endif
1616 
1617 	mutex_enter(&bufcache_lock);
1618 	wl = we->we_wapbl;
1619 	mutex_exit(&bufcache_lock);
1620 
1621 	/*
1622 	 * Handle possible flushing of buffers after log has been
1623 	 * decomissioned.
1624 	 */
1625 	if (!wl) {
1626 		KASSERT(we->we_bufcount > 0);
1627 		we->we_bufcount--;
1628 #ifdef WAPBL_DEBUG_BUFBYTES
1629 		KASSERT(we->we_unsynced_bufbytes >= bufsize);
1630 		we->we_unsynced_bufbytes -= bufsize;
1631 #endif
1632 
1633 		if (we->we_bufcount == 0) {
1634 #ifdef WAPBL_DEBUG_BUFBYTES
1635 			KASSERT(we->we_unsynced_bufbytes == 0);
1636 #endif
1637 			pool_put(&wapbl_entry_pool, we);
1638 		}
1639 
1640 		brelse(bp, 0);
1641 		return;
1642 	}
1643 
1644 #ifdef ohbother
1645 	KDASSERT(bp->b_oflags & BO_DONE);
1646 	KDASSERT(!(bp->b_oflags & BO_DELWRI));
1647 	KDASSERT(bp->b_flags & B_ASYNC);
1648 	KDASSERT(bp->b_cflags & BC_BUSY);
1649 	KDASSERT(!(bp->b_flags & B_LOCKED));
1650 	KDASSERT(!(bp->b_flags & B_READ));
1651 	KDASSERT(!(bp->b_cflags & BC_INVAL));
1652 	KDASSERT(!(bp->b_cflags & BC_NOCACHE));
1653 #endif
1654 
1655 	if (bp->b_error) {
1656 		/*
1657 		 * If an error occurs, it would be nice to leave the buffer
1658 		 * as a delayed write on the LRU queue so that we can retry
1659 		 * it later. But buffercache(9) can't handle dirty buffer
1660 		 * reuse, so just mark the log permanently errored out.
1661 		 */
1662 		mutex_enter(&wl->wl_mtx);
1663 		if (wl->wl_error_count == 0) {
1664 			wl->wl_error_count++;
1665 			cv_broadcast(&wl->wl_reclaimable_cv);
1666 		}
1667 		mutex_exit(&wl->wl_mtx);
1668 	}
1669 
1670 	/*
1671 	 * Make sure that the buf doesn't retain the media flags, so that
1672 	 * e.g. wapbl_allow_fuadpo has immediate effect on any following I/O.
1673 	 * The flags will be set again if needed by another I/O.
1674 	 */
1675 	bp->b_flags &= ~B_MEDIA_FLAGS;
1676 
1677 	/*
1678 	 * Release the buffer here. wapbl_flush() may wait for the
1679 	 * log to become empty and we better unbusy the buffer before
1680 	 * wapbl_flush() returns.
1681 	 */
1682 	brelse(bp, 0);
1683 
1684 	mutex_enter(&wl->wl_mtx);
1685 
1686 	KASSERT(we->we_bufcount > 0);
1687 	we->we_bufcount--;
1688 #ifdef WAPBL_DEBUG_BUFBYTES
1689 	KASSERT(we->we_unsynced_bufbytes >= bufsize);
1690 	we->we_unsynced_bufbytes -= bufsize;
1691 	KASSERT(wl->wl_unsynced_bufbytes >= bufsize);
1692 	wl->wl_unsynced_bufbytes -= bufsize;
1693 #endif
1694 	wl->wl_ev_metawrite.ev_count++;
1695 
1696 	/*
1697 	 * If the current transaction can be reclaimed, start
1698 	 * at the beginning and reclaim any consecutive reclaimable
1699 	 * transactions.  If we successfully reclaim anything,
1700 	 * then wakeup anyone waiting for the reclaim.
1701 	 */
1702 	if (we->we_bufcount == 0) {
1703 		size_t delta = 0;
1704 		int errcnt = 0;
1705 #ifdef WAPBL_DEBUG_BUFBYTES
1706 		KDASSERT(we->we_unsynced_bufbytes == 0);
1707 #endif
1708 		/*
1709 		 * clear any posted error, since the buffer it came from
1710 		 * has successfully flushed by now
1711 		 */
1712 		while ((we = SIMPLEQ_FIRST(&wl->wl_entries)) &&
1713 		       (we->we_bufcount == 0)) {
1714 			delta += we->we_reclaimable_bytes;
1715 			if (we->we_error)
1716 				errcnt++;
1717 			SIMPLEQ_REMOVE_HEAD(&wl->wl_entries, we_entries);
1718 			pool_put(&wapbl_entry_pool, we);
1719 		}
1720 
1721 		if (delta) {
1722 			wl->wl_reclaimable_bytes += delta;
1723 			KASSERT(wl->wl_error_count >= errcnt);
1724 			wl->wl_error_count -= errcnt;
1725 			cv_broadcast(&wl->wl_reclaimable_cv);
1726 		}
1727 	}
1728 
1729 	mutex_exit(&wl->wl_mtx);
1730 }
1731 
1732 /*
1733  * wapbl_flush(wl, wait)
1734  *
1735  *	Flush pending block writes, deallocations, and inodes from
1736  *	the current transaction in memory to the log on disk:
1737  *
1738  *	1. Call the file system's wl_flush callback to flush any
1739  *	   per-file-system pending updates.
1740  *	2. Wait for enough space in the log for the current transaction.
1741  *	3. Synchronously write the new log records, advancing the
1742  *	   circular queue head.
1743  *	4. Issue the pending block writes asynchronously, now that they
1744  *	   are recorded in the log and can be replayed after crash.
1745  *	5. If wait is true, wait for all writes to complete and for the
1746  *	   log to become empty.
1747  *
1748  *	On failure, call the file system's wl_flush_abort callback.
1749  */
1750 int
1751 wapbl_flush(struct wapbl *wl, int waitfor)
1752 {
1753 	struct buf *bp;
1754 	struct wapbl_entry *we;
1755 	off_t off;
1756 	off_t head;
1757 	off_t tail;
1758 	size_t delta = 0;
1759 	size_t flushsize;
1760 	size_t reserved;
1761 	int error = 0;
1762 
1763 	/*
1764 	 * Do a quick check to see if a full flush can be skipped
1765 	 * This assumes that the flush callback does not need to be called
1766 	 * unless there are other outstanding bufs.
1767 	 */
1768 	if (!waitfor) {
1769 		size_t nbufs;
1770 		mutex_enter(&wl->wl_mtx);	/* XXX need mutex here to
1771 						   protect the KASSERTS */
1772 		nbufs = wl->wl_bufcount;
1773 		KASSERT((wl->wl_bufcount == 0) == (wl->wl_bufbytes == 0));
1774 		KASSERT((wl->wl_bufcount == 0) == (wl->wl_bcount == 0));
1775 		mutex_exit(&wl->wl_mtx);
1776 		if (nbufs == 0)
1777 			return 0;
1778 	}
1779 
1780 	/*
1781 	 * XXX we may consider using LK_UPGRADE here
1782 	 * if we want to call flush from inside a transaction
1783 	 */
1784 	rw_enter(&wl->wl_rwlock, RW_WRITER);
1785 	wl->wl_flush(wl->wl_mount, TAILQ_FIRST(&wl->wl_dealloclist));
1786 
1787 	/*
1788 	 * Now that we are exclusively locked and the file system has
1789 	 * issued any deferred block writes for this transaction, check
1790 	 * whether there are any blocks to write to the log.  If not,
1791 	 * skip waiting for space or writing any log entries.
1792 	 *
1793 	 * XXX Shouldn't this also check wl_dealloccnt and
1794 	 * wl_inohashcnt?  Perhaps wl_dealloccnt doesn't matter if the
1795 	 * file system didn't produce any blocks as a consequence of
1796 	 * it, but the same does not seem to be so of wl_inohashcnt.
1797 	 */
1798 	if (wl->wl_bufcount == 0) {
1799 		goto wait_out;
1800 	}
1801 
1802 #if 0
1803 	WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
1804 		     ("wapbl_flush thread %d.%d flushing entries with "
1805 		      "bufcount=%zu bufbytes=%zu\n",
1806 		      curproc->p_pid, curlwp->l_lid, wl->wl_bufcount,
1807 		      wl->wl_bufbytes));
1808 #endif
1809 
1810 	/* Calculate amount of space needed to flush */
1811 	flushsize = wapbl_transaction_len(wl);
1812 	if (wapbl_verbose_commit) {
1813 		struct timespec ts;
1814 		getnanotime(&ts);
1815 		printf("%s: %lld.%09ld this transaction = %zu bytes\n",
1816 		    __func__, (long long)ts.tv_sec,
1817 		    (long)ts.tv_nsec, flushsize);
1818 	}
1819 
1820 	if (flushsize > (wl->wl_circ_size - wl->wl_reserved_bytes)) {
1821 		/*
1822 		 * XXX this could be handled more gracefully, perhaps place
1823 		 * only a partial transaction in the log and allow the
1824 		 * remaining to flush without the protection of the journal.
1825 		 */
1826 		panic("wapbl_flush: current transaction too big to flush");
1827 	}
1828 
1829 	error = wapbl_truncate(wl, flushsize);
1830 	if (error)
1831 		goto out;
1832 
1833 	off = wl->wl_head;
1834 	KASSERT((off == 0) || (off >= wl->wl_circ_off));
1835 	KASSERT((off == 0) || (off < wl->wl_circ_off + wl->wl_circ_size));
1836 	error = wapbl_write_blocks(wl, &off);
1837 	if (error)
1838 		goto out;
1839 	error = wapbl_write_revocations(wl, &off);
1840 	if (error)
1841 		goto out;
1842 	error = wapbl_write_inodes(wl, &off);
1843 	if (error)
1844 		goto out;
1845 
1846 	reserved = 0;
1847 	if (wl->wl_inohashcnt)
1848 		reserved = wapbl_transaction_inodes_len(wl);
1849 
1850 	head = wl->wl_head;
1851 	tail = wl->wl_tail;
1852 
1853 	wapbl_advance_head(wl->wl_circ_size, wl->wl_circ_off, flushsize,
1854 	    &head, &tail);
1855 
1856 	KASSERTMSG(head == off,
1857 	    "lost head! head=%"PRIdMAX" tail=%" PRIdMAX
1858 	    " off=%"PRIdMAX" flush=%zu",
1859 	    (intmax_t)head, (intmax_t)tail, (intmax_t)off,
1860 	    flushsize);
1861 
1862 	/* Opportunistically move the tail forward if we can */
1863 	mutex_enter(&wl->wl_mtx);
1864 	delta = wl->wl_reclaimable_bytes;
1865 	mutex_exit(&wl->wl_mtx);
1866 	wapbl_advance_tail(wl->wl_circ_size, wl->wl_circ_off, delta,
1867 	    &head, &tail);
1868 
1869 	error = wapbl_write_commit(wl, head, tail);
1870 	if (error)
1871 		goto out;
1872 
1873 	we = pool_get(&wapbl_entry_pool, PR_WAITOK);
1874 
1875 #ifdef WAPBL_DEBUG_BUFBYTES
1876 	WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
1877 		("wapbl_flush: thread %d.%d head+=%zu tail+=%zu used=%zu"
1878 		 " unsynced=%zu"
1879 		 "\n\tbufcount=%zu bufbytes=%zu bcount=%zu deallocs=%d "
1880 		 "inodes=%d\n",
1881 		 curproc->p_pid, curlwp->l_lid, flushsize, delta,
1882 		 wapbl_space_used(wl->wl_circ_size, head, tail),
1883 		 wl->wl_unsynced_bufbytes, wl->wl_bufcount,
1884 		 wl->wl_bufbytes, wl->wl_bcount, wl->wl_dealloccnt,
1885 		 wl->wl_inohashcnt));
1886 #else
1887 	WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
1888 		("wapbl_flush: thread %d.%d head+=%zu tail+=%zu used=%zu"
1889 		 "\n\tbufcount=%zu bufbytes=%zu bcount=%zu deallocs=%d "
1890 		 "inodes=%d\n",
1891 		 curproc->p_pid, curlwp->l_lid, flushsize, delta,
1892 		 wapbl_space_used(wl->wl_circ_size, head, tail),
1893 		 wl->wl_bufcount, wl->wl_bufbytes, wl->wl_bcount,
1894 		 wl->wl_dealloccnt, wl->wl_inohashcnt));
1895 #endif
1896 
1897 
1898 	mutex_enter(&bufcache_lock);
1899 	mutex_enter(&wl->wl_mtx);
1900 
1901 	wl->wl_reserved_bytes = reserved;
1902 	wl->wl_head = head;
1903 	wl->wl_tail = tail;
1904 	KASSERT(wl->wl_reclaimable_bytes >= delta);
1905 	wl->wl_reclaimable_bytes -= delta;
1906 	KDASSERT(wl->wl_dealloccnt == 0);
1907 #ifdef WAPBL_DEBUG_BUFBYTES
1908 	wl->wl_unsynced_bufbytes += wl->wl_bufbytes;
1909 #endif
1910 
1911 	we->we_wapbl = wl;
1912 	we->we_bufcount = wl->wl_bufcount;
1913 #ifdef WAPBL_DEBUG_BUFBYTES
1914 	we->we_unsynced_bufbytes = wl->wl_bufbytes;
1915 #endif
1916 	we->we_reclaimable_bytes = flushsize;
1917 	we->we_error = 0;
1918 	SIMPLEQ_INSERT_TAIL(&wl->wl_entries, we, we_entries);
1919 
1920 	/*
1921 	 * This flushes bufs in order than they were queued, so the LRU
1922 	 * order is preserved.
1923 	 */
1924 	while ((bp = TAILQ_FIRST(&wl->wl_bufs)) != NULL) {
1925 		if (bbusy(bp, 0, 0, &wl->wl_mtx)) {
1926 			continue;
1927 		}
1928 		bp->b_iodone = wapbl_biodone;
1929 		bp->b_private = we;
1930 
1931 		bremfree(bp);
1932 		wapbl_remove_buf_locked(wl, bp);
1933 		mutex_exit(&wl->wl_mtx);
1934 		mutex_exit(&bufcache_lock);
1935 		bawrite(bp);
1936 		mutex_enter(&bufcache_lock);
1937 		mutex_enter(&wl->wl_mtx);
1938 	}
1939 	mutex_exit(&wl->wl_mtx);
1940 	mutex_exit(&bufcache_lock);
1941 
1942 #if 0
1943 	WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
1944 		     ("wapbl_flush thread %d.%d done flushing entries...\n",
1945 		     curproc->p_pid, curlwp->l_lid));
1946 #endif
1947 
1948  wait_out:
1949 
1950 	/*
1951 	 * If the waitfor flag is set, don't return until everything is
1952 	 * fully flushed and the on disk log is empty.
1953 	 */
1954 	if (waitfor) {
1955 		error = wapbl_truncate(wl, wl->wl_circ_size -
1956 			wl->wl_reserved_bytes);
1957 	}
1958 
1959  out:
1960 	if (error) {
1961 		wl->wl_flush_abort(wl->wl_mount,
1962 		    TAILQ_FIRST(&wl->wl_dealloclist));
1963 	}
1964 
1965 #ifdef WAPBL_DEBUG_PRINT
1966 	if (error) {
1967 		pid_t pid = -1;
1968 		lwpid_t lid = -1;
1969 		if (curproc)
1970 			pid = curproc->p_pid;
1971 		if (curlwp)
1972 			lid = curlwp->l_lid;
1973 		mutex_enter(&wl->wl_mtx);
1974 #ifdef WAPBL_DEBUG_BUFBYTES
1975 		WAPBL_PRINTF(WAPBL_PRINT_ERROR,
1976 		    ("wapbl_flush: thread %d.%d aborted flush: "
1977 		    "error = %d\n"
1978 		    "\tbufcount=%zu bufbytes=%zu bcount=%zu "
1979 		    "deallocs=%d inodes=%d\n"
1980 		    "\terrcnt = %d, reclaimable=%zu reserved=%zu "
1981 		    "unsynced=%zu\n",
1982 		    pid, lid, error, wl->wl_bufcount,
1983 		    wl->wl_bufbytes, wl->wl_bcount,
1984 		    wl->wl_dealloccnt, wl->wl_inohashcnt,
1985 		    wl->wl_error_count, wl->wl_reclaimable_bytes,
1986 		    wl->wl_reserved_bytes, wl->wl_unsynced_bufbytes));
1987 		SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
1988 			WAPBL_PRINTF(WAPBL_PRINT_ERROR,
1989 			    ("\tentry: bufcount = %zu, reclaimable = %zu, "
1990 			     "error = %d, unsynced = %zu\n",
1991 			     we->we_bufcount, we->we_reclaimable_bytes,
1992 			     we->we_error, we->we_unsynced_bufbytes));
1993 		}
1994 #else
1995 		WAPBL_PRINTF(WAPBL_PRINT_ERROR,
1996 		    ("wapbl_flush: thread %d.%d aborted flush: "
1997 		     "error = %d\n"
1998 		     "\tbufcount=%zu bufbytes=%zu bcount=%zu "
1999 		     "deallocs=%d inodes=%d\n"
2000 		     "\terrcnt = %d, reclaimable=%zu reserved=%zu\n",
2001 		     pid, lid, error, wl->wl_bufcount,
2002 		     wl->wl_bufbytes, wl->wl_bcount,
2003 		     wl->wl_dealloccnt, wl->wl_inohashcnt,
2004 		     wl->wl_error_count, wl->wl_reclaimable_bytes,
2005 		     wl->wl_reserved_bytes));
2006 		SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
2007 			WAPBL_PRINTF(WAPBL_PRINT_ERROR,
2008 			    ("\tentry: bufcount = %zu, reclaimable = %zu, "
2009 			     "error = %d\n", we->we_bufcount,
2010 			     we->we_reclaimable_bytes, we->we_error));
2011 		}
2012 #endif
2013 		mutex_exit(&wl->wl_mtx);
2014 	}
2015 #endif
2016 
2017 	rw_exit(&wl->wl_rwlock);
2018 	return error;
2019 }
2020 
2021 /****************************************************************/
2022 
2023 void
2024 wapbl_jlock_assert(struct wapbl *wl)
2025 {
2026 
2027 	KASSERT(rw_lock_held(&wl->wl_rwlock));
2028 }
2029 
2030 void
2031 wapbl_junlock_assert(struct wapbl *wl)
2032 {
2033 
2034 	KASSERT(!rw_write_held(&wl->wl_rwlock));
2035 }
2036 
2037 /****************************************************************/
2038 
2039 /* locks missing */
2040 void
2041 wapbl_print(struct wapbl *wl,
2042 		int full,
2043 		void (*pr)(const char *, ...))
2044 {
2045 	struct buf *bp;
2046 	struct wapbl_entry *we;
2047 	(*pr)("wapbl %p", wl);
2048 	(*pr)("\nlogvp = %p, devvp = %p, logpbn = %"PRId64"\n",
2049 	      wl->wl_logvp, wl->wl_devvp, wl->wl_logpbn);
2050 	(*pr)("circ = %zu, header = %zu, head = %"PRIdMAX" tail = %"PRIdMAX"\n",
2051 	      wl->wl_circ_size, wl->wl_circ_off,
2052 	      (intmax_t)wl->wl_head, (intmax_t)wl->wl_tail);
2053 	(*pr)("fs_dev_bshift = %d, log_dev_bshift = %d\n",
2054 	      wl->wl_log_dev_bshift, wl->wl_fs_dev_bshift);
2055 #ifdef WAPBL_DEBUG_BUFBYTES
2056 	(*pr)("bufcount = %zu, bufbytes = %zu bcount = %zu reclaimable = %zu "
2057 	      "reserved = %zu errcnt = %d unsynced = %zu\n",
2058 	      wl->wl_bufcount, wl->wl_bufbytes, wl->wl_bcount,
2059 	      wl->wl_reclaimable_bytes, wl->wl_reserved_bytes,
2060 				wl->wl_error_count, wl->wl_unsynced_bufbytes);
2061 #else
2062 	(*pr)("bufcount = %zu, bufbytes = %zu bcount = %zu reclaimable = %zu "
2063 	      "reserved = %zu errcnt = %d\n", wl->wl_bufcount, wl->wl_bufbytes,
2064 	      wl->wl_bcount, wl->wl_reclaimable_bytes, wl->wl_reserved_bytes,
2065 				wl->wl_error_count);
2066 #endif
2067 	(*pr)("\tdealloccnt = %d, dealloclim = %d\n",
2068 	      wl->wl_dealloccnt, wl->wl_dealloclim);
2069 	(*pr)("\tinohashcnt = %d, inohashmask = 0x%08x\n",
2070 	      wl->wl_inohashcnt, wl->wl_inohashmask);
2071 	(*pr)("entries:\n");
2072 	SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
2073 #ifdef WAPBL_DEBUG_BUFBYTES
2074 		(*pr)("\tbufcount = %zu, reclaimable = %zu, error = %d, "
2075 		      "unsynced = %zu\n",
2076 		      we->we_bufcount, we->we_reclaimable_bytes,
2077 		      we->we_error, we->we_unsynced_bufbytes);
2078 #else
2079 		(*pr)("\tbufcount = %zu, reclaimable = %zu, error = %d\n",
2080 		      we->we_bufcount, we->we_reclaimable_bytes, we->we_error);
2081 #endif
2082 	}
2083 	if (full) {
2084 		int cnt = 0;
2085 		(*pr)("bufs =");
2086 		TAILQ_FOREACH(bp, &wl->wl_bufs, b_wapbllist) {
2087 			if (!TAILQ_NEXT(bp, b_wapbllist)) {
2088 				(*pr)(" %p", bp);
2089 			} else if ((++cnt % 6) == 0) {
2090 				(*pr)(" %p,\n\t", bp);
2091 			} else {
2092 				(*pr)(" %p,", bp);
2093 			}
2094 		}
2095 		(*pr)("\n");
2096 
2097 		(*pr)("dealloced blks = ");
2098 		{
2099 			struct wapbl_dealloc *wd;
2100 			cnt = 0;
2101 			TAILQ_FOREACH(wd, &wl->wl_dealloclist, wd_entries) {
2102 				(*pr)(" %"PRId64":%d,",
2103 				      wd->wd_blkno,
2104 				      wd->wd_len);
2105 				if ((++cnt % 4) == 0) {
2106 					(*pr)("\n\t");
2107 				}
2108 			}
2109 		}
2110 		(*pr)("\n");
2111 
2112 		(*pr)("registered inodes = ");
2113 		{
2114 			int i;
2115 			cnt = 0;
2116 			for (i = 0; i <= wl->wl_inohashmask; i++) {
2117 				struct wapbl_ino_head *wih;
2118 				struct wapbl_ino *wi;
2119 
2120 				wih = &wl->wl_inohash[i];
2121 				LIST_FOREACH(wi, wih, wi_hash) {
2122 					if (wi->wi_ino == 0)
2123 						continue;
2124 					(*pr)(" %"PRIu64"/0%06"PRIo32",",
2125 					    wi->wi_ino, wi->wi_mode);
2126 					if ((++cnt % 4) == 0) {
2127 						(*pr)("\n\t");
2128 					}
2129 				}
2130 			}
2131 			(*pr)("\n");
2132 		}
2133 
2134 		(*pr)("iobufs free =");
2135 		TAILQ_FOREACH(bp, &wl->wl_iobufs, b_wapbllist) {
2136 			if (!TAILQ_NEXT(bp, b_wapbllist)) {
2137 				(*pr)(" %p", bp);
2138 			} else if ((++cnt % 6) == 0) {
2139 				(*pr)(" %p,\n\t", bp);
2140 			} else {
2141 				(*pr)(" %p,", bp);
2142 			}
2143 		}
2144 		(*pr)("\n");
2145 
2146 		(*pr)("iobufs busy =");
2147 		TAILQ_FOREACH(bp, &wl->wl_iobufs_busy, b_wapbllist) {
2148 			if (!TAILQ_NEXT(bp, b_wapbllist)) {
2149 				(*pr)(" %p", bp);
2150 			} else if ((++cnt % 6) == 0) {
2151 				(*pr)(" %p,\n\t", bp);
2152 			} else {
2153 				(*pr)(" %p,", bp);
2154 			}
2155 		}
2156 		(*pr)("\n");
2157 	}
2158 }
2159 
2160 #if defined(WAPBL_DEBUG) || defined(DDB)
2161 void
2162 wapbl_dump(struct wapbl *wl)
2163 {
2164 #if defined(WAPBL_DEBUG)
2165 	if (!wl)
2166 		wl = wapbl_debug_wl;
2167 #endif
2168 	if (!wl)
2169 		return;
2170 	wapbl_print(wl, 1, printf);
2171 }
2172 #endif
2173 
2174 /****************************************************************/
2175 
2176 int
2177 wapbl_register_deallocation(struct wapbl *wl, daddr_t blk, int len, bool force,
2178     void **cookiep)
2179 {
2180 	struct wapbl_dealloc *wd;
2181 	int error = 0;
2182 
2183 	wapbl_jlock_assert(wl);
2184 
2185 	mutex_enter(&wl->wl_mtx);
2186 
2187 	if (__predict_false(wl->wl_dealloccnt >= wl->wl_dealloclim)) {
2188 		if (!force) {
2189 			error = EAGAIN;
2190 			goto out;
2191 		}
2192 
2193 		/*
2194 		 * Forced registration can only be used when:
2195 		 * 1) the caller can't cope with failure
2196 		 * 2) the path can be triggered only bounded, small
2197 		 *    times per transaction
2198 		 * If this is not fullfilled, and the path would be triggered
2199 		 * many times, this could overflow maximum transaction size
2200 		 * and panic later.
2201 		 */
2202 		printf("%s: forced dealloc registration over limit: %d >= %d\n",
2203 			wl->wl_mount->mnt_stat.f_mntonname,
2204 			wl->wl_dealloccnt, wl->wl_dealloclim);
2205 	}
2206 
2207 	wl->wl_dealloccnt++;
2208 	mutex_exit(&wl->wl_mtx);
2209 
2210 	wd = pool_get(&wapbl_dealloc_pool, PR_WAITOK);
2211 	wd->wd_blkno = blk;
2212 	wd->wd_len = len;
2213 
2214 	mutex_enter(&wl->wl_mtx);
2215 	TAILQ_INSERT_TAIL(&wl->wl_dealloclist, wd, wd_entries);
2216 
2217 	if (cookiep)
2218 		*cookiep = wd;
2219 
2220  out:
2221 	mutex_exit(&wl->wl_mtx);
2222 
2223 	WAPBL_PRINTF(WAPBL_PRINT_ALLOC,
2224 	    ("wapbl_register_deallocation: blk=%"PRId64" len=%d error=%d\n",
2225 	    blk, len, error));
2226 
2227 	return error;
2228 }
2229 
2230 static void
2231 wapbl_deallocation_free(struct wapbl *wl, struct wapbl_dealloc *wd,
2232 	bool locked)
2233 {
2234 	KASSERT(!locked
2235 	    || rw_lock_held(&wl->wl_rwlock) || mutex_owned(&wl->wl_mtx));
2236 
2237 	if (!locked)
2238 		mutex_enter(&wl->wl_mtx);
2239 
2240 	TAILQ_REMOVE(&wl->wl_dealloclist, wd, wd_entries);
2241 	wl->wl_dealloccnt--;
2242 
2243 	if (!locked)
2244 		mutex_exit(&wl->wl_mtx);
2245 
2246 	pool_put(&wapbl_dealloc_pool, wd);
2247 }
2248 
2249 void
2250 wapbl_unregister_deallocation(struct wapbl *wl, void *cookie)
2251 {
2252 	KASSERT(cookie != NULL);
2253 	wapbl_deallocation_free(wl, cookie, false);
2254 }
2255 
2256 /****************************************************************/
2257 
2258 static void
2259 wapbl_inodetrk_init(struct wapbl *wl, u_int size)
2260 {
2261 
2262 	wl->wl_inohash = hashinit(size, HASH_LIST, true, &wl->wl_inohashmask);
2263 	if (atomic_inc_uint_nv(&wapbl_ino_pool_refcount) == 1) {
2264 		pool_init(&wapbl_ino_pool, sizeof(struct wapbl_ino), 0, 0, 0,
2265 		    "wapblinopl", &pool_allocator_nointr, IPL_NONE);
2266 	}
2267 }
2268 
2269 static void
2270 wapbl_inodetrk_free(struct wapbl *wl)
2271 {
2272 
2273 	/* XXX this KASSERT needs locking/mutex analysis */
2274 	KASSERT(wl->wl_inohashcnt == 0);
2275 	hashdone(wl->wl_inohash, HASH_LIST, wl->wl_inohashmask);
2276 	membar_release();
2277 	if (atomic_dec_uint_nv(&wapbl_ino_pool_refcount) == 0) {
2278 		membar_acquire();
2279 		pool_destroy(&wapbl_ino_pool);
2280 	}
2281 }
2282 
2283 static struct wapbl_ino *
2284 wapbl_inodetrk_get(struct wapbl *wl, ino_t ino)
2285 {
2286 	struct wapbl_ino_head *wih;
2287 	struct wapbl_ino *wi;
2288 
2289 	KASSERT(mutex_owned(&wl->wl_mtx));
2290 
2291 	wih = &wl->wl_inohash[ino & wl->wl_inohashmask];
2292 	LIST_FOREACH(wi, wih, wi_hash) {
2293 		if (ino == wi->wi_ino)
2294 			return wi;
2295 	}
2296 	return 0;
2297 }
2298 
2299 void
2300 wapbl_register_inode(struct wapbl *wl, ino_t ino, mode_t mode)
2301 {
2302 	struct wapbl_ino_head *wih;
2303 	struct wapbl_ino *wi;
2304 
2305 	wi = pool_get(&wapbl_ino_pool, PR_WAITOK);
2306 
2307 	mutex_enter(&wl->wl_mtx);
2308 	if (wapbl_inodetrk_get(wl, ino) == NULL) {
2309 		wi->wi_ino = ino;
2310 		wi->wi_mode = mode;
2311 		wih = &wl->wl_inohash[ino & wl->wl_inohashmask];
2312 		LIST_INSERT_HEAD(wih, wi, wi_hash);
2313 		wl->wl_inohashcnt++;
2314 		WAPBL_PRINTF(WAPBL_PRINT_INODE,
2315 		    ("wapbl_register_inode: ino=%"PRId64"\n", ino));
2316 		mutex_exit(&wl->wl_mtx);
2317 	} else {
2318 		mutex_exit(&wl->wl_mtx);
2319 		pool_put(&wapbl_ino_pool, wi);
2320 	}
2321 }
2322 
2323 void
2324 wapbl_unregister_inode(struct wapbl *wl, ino_t ino, mode_t mode)
2325 {
2326 	struct wapbl_ino *wi;
2327 
2328 	mutex_enter(&wl->wl_mtx);
2329 	wi = wapbl_inodetrk_get(wl, ino);
2330 	if (wi) {
2331 		WAPBL_PRINTF(WAPBL_PRINT_INODE,
2332 		    ("wapbl_unregister_inode: ino=%"PRId64"\n", ino));
2333 		KASSERT(wl->wl_inohashcnt > 0);
2334 		wl->wl_inohashcnt--;
2335 		LIST_REMOVE(wi, wi_hash);
2336 		mutex_exit(&wl->wl_mtx);
2337 
2338 		pool_put(&wapbl_ino_pool, wi);
2339 	} else {
2340 		mutex_exit(&wl->wl_mtx);
2341 	}
2342 }
2343 
2344 /****************************************************************/
2345 
2346 /*
2347  * wapbl_transaction_inodes_len(wl)
2348  *
2349  *	Calculate the number of bytes required for inode registration
2350  *	log records in wl.
2351  */
2352 static inline size_t
2353 wapbl_transaction_inodes_len(struct wapbl *wl)
2354 {
2355 	int blocklen = 1<<wl->wl_log_dev_bshift;
2356 	int iph;
2357 
2358 	/* Calculate number of inodes described in a inodelist header */
2359 	iph = (blocklen - offsetof(struct wapbl_wc_inodelist, wc_inodes)) /
2360 	    sizeof(((struct wapbl_wc_inodelist *)0)->wc_inodes[0]);
2361 
2362 	KASSERT(iph > 0);
2363 
2364 	return MAX(1, howmany(wl->wl_inohashcnt, iph)) * blocklen;
2365 }
2366 
2367 
2368 /*
2369  * wapbl_transaction_len(wl)
2370  *
2371  *	Calculate number of bytes required for all log records in wl.
2372  */
2373 static size_t
2374 wapbl_transaction_len(struct wapbl *wl)
2375 {
2376 	int blocklen = 1<<wl->wl_log_dev_bshift;
2377 	size_t len;
2378 
2379 	/* Calculate number of blocks described in a blocklist header */
2380 	len = wl->wl_bcount;
2381 	len += howmany(wl->wl_bufcount, wl->wl_brperjblock) * blocklen;
2382 	len += howmany(wl->wl_dealloccnt, wl->wl_brperjblock) * blocklen;
2383 	len += wapbl_transaction_inodes_len(wl);
2384 
2385 	return len;
2386 }
2387 
2388 /*
2389  * wapbl_cache_sync(wl, msg)
2390  *
2391  *	Issue DIOCCACHESYNC to wl->wl_devvp.
2392  *
2393  *	If sysctl(vfs.wapbl.verbose_commit) >= 2, print a message
2394  *	including msg about the duration of the cache sync.
2395  */
2396 static int
2397 wapbl_cache_sync(struct wapbl *wl, const char *msg)
2398 {
2399 	const bool verbose = wapbl_verbose_commit >= 2;
2400 	struct bintime start_time;
2401 	int force = 1;
2402 	int error;
2403 
2404 	/* Skip full cache sync if disabled */
2405 	if (!wapbl_flush_disk_cache) {
2406 		return 0;
2407 	}
2408 	if (verbose) {
2409 		bintime(&start_time);
2410 	}
2411 	error = VOP_IOCTL(wl->wl_devvp, DIOCCACHESYNC, &force,
2412 	    FWRITE, FSCRED);
2413 	if (error) {
2414 		WAPBL_PRINTF(WAPBL_PRINT_ERROR,
2415 		    ("wapbl_cache_sync: DIOCCACHESYNC on dev 0x%jx "
2416 		    "returned %d\n", (uintmax_t)wl->wl_devvp->v_rdev, error));
2417 	}
2418 	if (verbose) {
2419 		struct bintime d;
2420 		struct timespec ts;
2421 
2422 		bintime(&d);
2423 		bintime_sub(&d, &start_time);
2424 		bintime2timespec(&d, &ts);
2425 		printf("wapbl_cache_sync: %s: dev 0x%jx %ju.%09lu\n",
2426 		    msg, (uintmax_t)wl->wl_devvp->v_rdev,
2427 		    (uintmax_t)ts.tv_sec, ts.tv_nsec);
2428 	}
2429 
2430 	wl->wl_ev_cacheflush.ev_count++;
2431 
2432 	return error;
2433 }
2434 
2435 /*
2436  * wapbl_write_commit(wl, head, tail)
2437  *
2438  *	Issue a disk cache sync to wait for all pending writes to the
2439  *	log to complete, and then synchronously commit the current
2440  *	circular queue head and tail to the log, in the next of two
2441  *	locations for commit headers on disk.
2442  *
2443  *	Increment the generation number.  If the generation number
2444  *	rolls over to zero, then a subsequent commit would appear to
2445  *	have an older generation than this one -- in that case, issue a
2446  *	duplicate commit to avoid this.
2447  *
2448  *	=> Caller must have exclusive access to wl, either by holding
2449  *	wl->wl_rwlock for writer or by being wapbl_start before anyone
2450  *	else has seen wl.
2451  */
2452 static int
2453 wapbl_write_commit(struct wapbl *wl, off_t head, off_t tail)
2454 {
2455 	struct wapbl_wc_header *wc = wl->wl_wc_header;
2456 	struct timespec ts;
2457 	int error;
2458 	daddr_t pbn;
2459 
2460 	error = wapbl_buffered_flush(wl, true);
2461 	if (error)
2462 		return error;
2463 	/*
2464 	 * Flush disk cache to ensure that blocks we've written are actually
2465 	 * written to the stable storage before the commit header.
2466 	 * This flushes to disk not only journal blocks, but also all
2467 	 * metadata blocks, written asynchronously since previous commit.
2468 	 *
2469 	 * XXX Calc checksum here, instead we do this for now
2470 	 */
2471 	wapbl_cache_sync(wl, "1");
2472 
2473 	wc->wc_head = head;
2474 	wc->wc_tail = tail;
2475 	wc->wc_checksum = 0;
2476 	wc->wc_version = 1;
2477 	getnanotime(&ts);
2478 	wc->wc_time = ts.tv_sec;
2479 	wc->wc_timensec = ts.tv_nsec;
2480 
2481 	WAPBL_PRINTF(WAPBL_PRINT_WRITE,
2482 	    ("wapbl_write_commit: head = %"PRIdMAX "tail = %"PRIdMAX"\n",
2483 	    (intmax_t)head, (intmax_t)tail));
2484 
2485 	/*
2486 	 * write the commit header.
2487 	 *
2488 	 * XXX if generation will rollover, then first zero
2489 	 * over second commit header before trying to write both headers.
2490 	 */
2491 
2492 	pbn = wl->wl_logpbn + (wc->wc_generation % 2);
2493 #ifdef _KERNEL
2494 	pbn = btodb(pbn << wc->wc_log_dev_bshift);
2495 #endif
2496 	error = wapbl_buffered_write(wc, wc->wc_len, wl, pbn, WAPBL_JFLAGS(wl));
2497 	if (error)
2498 		return error;
2499 	error = wapbl_buffered_flush(wl, true);
2500 	if (error)
2501 		return error;
2502 
2503 	/*
2504 	 * Flush disk cache to ensure that the commit header is actually
2505 	 * written before meta data blocks. Commit block is written using
2506 	 * FUA when enabled, in that case this flush is not needed.
2507 	 */
2508 	if (!WAPBL_USE_FUA(wl))
2509 		wapbl_cache_sync(wl, "2");
2510 
2511 	/*
2512 	 * If the generation number was zero, write it out a second time.
2513 	 * This handles initialization and generation number rollover
2514 	 */
2515 	if (wc->wc_generation++ == 0) {
2516 		error = wapbl_write_commit(wl, head, tail);
2517 		/*
2518 		 * This panic should be able to be removed if we do the
2519 		 * zero'ing mentioned above, and we are certain to roll
2520 		 * back generation number on failure.
2521 		 */
2522 		if (error)
2523 			panic("wapbl_write_commit: error writing duplicate "
2524 			      "log header: %d", error);
2525 	}
2526 
2527 	wl->wl_ev_commit.ev_count++;
2528 
2529 	return 0;
2530 }
2531 
2532 /*
2533  * wapbl_write_blocks(wl, offp)
2534  *
2535  *	Write all pending physical blocks in the current transaction
2536  *	from wapbl_add_buf to the log on disk, adding to the circular
2537  *	queue head at byte offset *offp, and returning the new head's
2538  *	byte offset in *offp.
2539  */
2540 static int
2541 wapbl_write_blocks(struct wapbl *wl, off_t *offp)
2542 {
2543 	struct wapbl_wc_blocklist *wc =
2544 	    (struct wapbl_wc_blocklist *)wl->wl_wc_scratch;
2545 	int blocklen = 1<<wl->wl_log_dev_bshift;
2546 	struct buf *bp;
2547 	off_t off = *offp;
2548 	int error;
2549 	size_t padding;
2550 
2551 	KASSERT(rw_write_held(&wl->wl_rwlock));
2552 
2553 	bp = TAILQ_FIRST(&wl->wl_bufs);
2554 
2555 	while (bp) {
2556 		int cnt;
2557 		struct buf *obp = bp;
2558 
2559 		KASSERT(bp->b_flags & B_LOCKED);
2560 
2561 		wc->wc_type = WAPBL_WC_BLOCKS;
2562 		wc->wc_len = blocklen;
2563 		wc->wc_blkcount = 0;
2564 		wc->wc_unused = 0;
2565 		while (bp && (wc->wc_blkcount < wl->wl_brperjblock)) {
2566 			/*
2567 			 * Make sure all the physical block numbers are up to
2568 			 * date.  If this is not always true on a given
2569 			 * filesystem, then VOP_BMAP must be called.  We
2570 			 * could call VOP_BMAP here, or else in the filesystem
2571 			 * specific flush callback, although neither of those
2572 			 * solutions allow us to take the vnode lock.  If a
2573 			 * filesystem requires that we must take the vnode lock
2574 			 * to call VOP_BMAP, then we can probably do it in
2575 			 * bwrite when the vnode lock should already be held
2576 			 * by the invoking code.
2577 			 */
2578 			KASSERT((bp->b_vp->v_type == VBLK) ||
2579 				 (bp->b_blkno != bp->b_lblkno));
2580 			KASSERT(bp->b_blkno > 0);
2581 
2582 			wc->wc_blocks[wc->wc_blkcount].wc_daddr = bp->b_blkno;
2583 			wc->wc_blocks[wc->wc_blkcount].wc_dlen = bp->b_bcount;
2584 			wc->wc_len += bp->b_bcount;
2585 			wc->wc_blkcount++;
2586 			bp = TAILQ_NEXT(bp, b_wapbllist);
2587 		}
2588 		if (wc->wc_len % blocklen != 0) {
2589 			padding = blocklen - wc->wc_len % blocklen;
2590 			wc->wc_len += padding;
2591 		} else {
2592 			padding = 0;
2593 		}
2594 
2595 		WAPBL_PRINTF(WAPBL_PRINT_WRITE,
2596 		    ("wapbl_write_blocks: len = %u (padding %zu) off = %"PRIdMAX"\n",
2597 		    wc->wc_len, padding, (intmax_t)off));
2598 
2599 		error = wapbl_circ_write(wl, wc, blocklen, &off);
2600 		if (error)
2601 			return error;
2602 		bp = obp;
2603 		cnt = 0;
2604 		while (bp && (cnt++ < wl->wl_brperjblock)) {
2605 			error = wapbl_circ_write(wl, bp->b_data,
2606 			    bp->b_bcount, &off);
2607 			if (error)
2608 				return error;
2609 			bp = TAILQ_NEXT(bp, b_wapbllist);
2610 		}
2611 		if (padding) {
2612 			void *zero;
2613 
2614 			zero = wapbl_alloc(padding);
2615 			memset(zero, 0, padding);
2616 			error = wapbl_circ_write(wl, zero, padding, &off);
2617 			wapbl_free(zero, padding);
2618 			if (error)
2619 				return error;
2620 		}
2621 	}
2622 	*offp = off;
2623 	return 0;
2624 }
2625 
2626 /*
2627  * wapbl_write_revocations(wl, offp)
2628  *
2629  *	Write all pending deallocations in the current transaction from
2630  *	wapbl_register_deallocation to the log on disk, adding to the
2631  *	circular queue's head at byte offset *offp, and returning the
2632  *	new head's byte offset in *offp.
2633  */
2634 static int
2635 wapbl_write_revocations(struct wapbl *wl, off_t *offp)
2636 {
2637 	struct wapbl_wc_blocklist *wc =
2638 	    (struct wapbl_wc_blocklist *)wl->wl_wc_scratch;
2639 	struct wapbl_dealloc *wd, *lwd;
2640 	int blocklen = 1<<wl->wl_log_dev_bshift;
2641 	off_t off = *offp;
2642 	int error;
2643 
2644 	KASSERT(rw_write_held(&wl->wl_rwlock));
2645 
2646 	if (wl->wl_dealloccnt == 0)
2647 		return 0;
2648 
2649 	while ((wd = TAILQ_FIRST(&wl->wl_dealloclist)) != NULL) {
2650 		wc->wc_type = WAPBL_WC_REVOCATIONS;
2651 		wc->wc_len = blocklen;
2652 		wc->wc_blkcount = 0;
2653 		wc->wc_unused = 0;
2654 		while (wd && (wc->wc_blkcount < wl->wl_brperjblock)) {
2655 			wc->wc_blocks[wc->wc_blkcount].wc_daddr =
2656 			    wd->wd_blkno;
2657 			wc->wc_blocks[wc->wc_blkcount].wc_dlen =
2658 			    wd->wd_len;
2659 			wc->wc_blkcount++;
2660 
2661 			wd = TAILQ_NEXT(wd, wd_entries);
2662 		}
2663 		WAPBL_PRINTF(WAPBL_PRINT_WRITE,
2664 		    ("wapbl_write_revocations: len = %u off = %"PRIdMAX"\n",
2665 		    wc->wc_len, (intmax_t)off));
2666 		error = wapbl_circ_write(wl, wc, blocklen, &off);
2667 		if (error)
2668 			return error;
2669 
2670 		/* free all successfully written deallocs */
2671 		lwd = wd;
2672 		while ((wd = TAILQ_FIRST(&wl->wl_dealloclist)) != NULL) {
2673 			if (wd == lwd)
2674 				break;
2675 			wapbl_deallocation_free(wl, wd, true);
2676 		}
2677 	}
2678 	*offp = off;
2679 	return 0;
2680 }
2681 
2682 /*
2683  * wapbl_write_inodes(wl, offp)
2684  *
2685  *	Write all pending inode allocations in the current transaction
2686  *	from wapbl_register_inode to the log on disk, adding to the
2687  *	circular queue's head at byte offset *offp and returning the
2688  *	new head's byte offset in *offp.
2689  */
2690 static int
2691 wapbl_write_inodes(struct wapbl *wl, off_t *offp)
2692 {
2693 	struct wapbl_wc_inodelist *wc =
2694 	    (struct wapbl_wc_inodelist *)wl->wl_wc_scratch;
2695 	int i;
2696 	int blocklen = 1 << wl->wl_log_dev_bshift;
2697 	off_t off = *offp;
2698 	int error;
2699 
2700 	struct wapbl_ino_head *wih;
2701 	struct wapbl_ino *wi;
2702 	int iph;
2703 
2704 	iph = (blocklen - offsetof(struct wapbl_wc_inodelist, wc_inodes)) /
2705 	    sizeof(((struct wapbl_wc_inodelist *)0)->wc_inodes[0]);
2706 
2707 	i = 0;
2708 	wih = &wl->wl_inohash[0];
2709 	wi = 0;
2710 	do {
2711 		wc->wc_type = WAPBL_WC_INODES;
2712 		wc->wc_len = blocklen;
2713 		wc->wc_inocnt = 0;
2714 		wc->wc_clear = (i == 0);
2715 		while ((i < wl->wl_inohashcnt) && (wc->wc_inocnt < iph)) {
2716 			while (!wi) {
2717 				KASSERT((wih - &wl->wl_inohash[0])
2718 				    <= wl->wl_inohashmask);
2719 				wi = LIST_FIRST(wih++);
2720 			}
2721 			wc->wc_inodes[wc->wc_inocnt].wc_inumber = wi->wi_ino;
2722 			wc->wc_inodes[wc->wc_inocnt].wc_imode = wi->wi_mode;
2723 			wc->wc_inocnt++;
2724 			i++;
2725 			wi = LIST_NEXT(wi, wi_hash);
2726 		}
2727 		WAPBL_PRINTF(WAPBL_PRINT_WRITE,
2728 		    ("wapbl_write_inodes: len = %u off = %"PRIdMAX"\n",
2729 		    wc->wc_len, (intmax_t)off));
2730 		error = wapbl_circ_write(wl, wc, blocklen, &off);
2731 		if (error)
2732 			return error;
2733 	} while (i < wl->wl_inohashcnt);
2734 
2735 	*offp = off;
2736 	return 0;
2737 }
2738 
2739 #endif /* _KERNEL */
2740 
2741 /****************************************************************/
2742 
2743 struct wapbl_blk {
2744 	LIST_ENTRY(wapbl_blk) wb_hash;
2745 	daddr_t wb_blk;
2746 	off_t wb_off; /* Offset of this block in the log */
2747 };
2748 #define	WAPBL_BLKPOOL_MIN 83
2749 
2750 static void
2751 wapbl_blkhash_init(struct wapbl_replay *wr, u_int size)
2752 {
2753 	if (size < WAPBL_BLKPOOL_MIN)
2754 		size = WAPBL_BLKPOOL_MIN;
2755 	KASSERT(wr->wr_blkhash == 0);
2756 #ifdef _KERNEL
2757 	wr->wr_blkhash = hashinit(size, HASH_LIST, true, &wr->wr_blkhashmask);
2758 #else /* ! _KERNEL */
2759 	/* Manually implement hashinit */
2760 	{
2761 		unsigned long i, hashsize;
2762 		for (hashsize = 1; hashsize < size; hashsize <<= 1)
2763 			continue;
2764 		wr->wr_blkhash = wapbl_alloc(hashsize * sizeof(*wr->wr_blkhash));
2765 		for (i = 0; i < hashsize; i++)
2766 			LIST_INIT(&wr->wr_blkhash[i]);
2767 		wr->wr_blkhashmask = hashsize - 1;
2768 	}
2769 #endif /* ! _KERNEL */
2770 }
2771 
2772 static void
2773 wapbl_blkhash_free(struct wapbl_replay *wr)
2774 {
2775 	KASSERT(wr->wr_blkhashcnt == 0);
2776 #ifdef _KERNEL
2777 	hashdone(wr->wr_blkhash, HASH_LIST, wr->wr_blkhashmask);
2778 #else /* ! _KERNEL */
2779 	wapbl_free(wr->wr_blkhash,
2780 	    (wr->wr_blkhashmask + 1) * sizeof(*wr->wr_blkhash));
2781 #endif /* ! _KERNEL */
2782 }
2783 
2784 static struct wapbl_blk *
2785 wapbl_blkhash_get(struct wapbl_replay *wr, daddr_t blk)
2786 {
2787 	struct wapbl_blk_head *wbh;
2788 	struct wapbl_blk *wb;
2789 	wbh = &wr->wr_blkhash[blk & wr->wr_blkhashmask];
2790 	LIST_FOREACH(wb, wbh, wb_hash) {
2791 		if (blk == wb->wb_blk)
2792 			return wb;
2793 	}
2794 	return 0;
2795 }
2796 
2797 static void
2798 wapbl_blkhash_ins(struct wapbl_replay *wr, daddr_t blk, off_t off)
2799 {
2800 	struct wapbl_blk_head *wbh;
2801 	struct wapbl_blk *wb;
2802 	wb = wapbl_blkhash_get(wr, blk);
2803 	if (wb) {
2804 		KASSERT(wb->wb_blk == blk);
2805 		wb->wb_off = off;
2806 	} else {
2807 		wb = wapbl_alloc(sizeof(*wb));
2808 		wb->wb_blk = blk;
2809 		wb->wb_off = off;
2810 		wbh = &wr->wr_blkhash[blk & wr->wr_blkhashmask];
2811 		LIST_INSERT_HEAD(wbh, wb, wb_hash);
2812 		wr->wr_blkhashcnt++;
2813 	}
2814 }
2815 
2816 static void
2817 wapbl_blkhash_rem(struct wapbl_replay *wr, daddr_t blk)
2818 {
2819 	struct wapbl_blk *wb = wapbl_blkhash_get(wr, blk);
2820 	if (wb) {
2821 		KASSERT(wr->wr_blkhashcnt > 0);
2822 		wr->wr_blkhashcnt--;
2823 		LIST_REMOVE(wb, wb_hash);
2824 		wapbl_free(wb, sizeof(*wb));
2825 	}
2826 }
2827 
2828 static void
2829 wapbl_blkhash_clear(struct wapbl_replay *wr)
2830 {
2831 	unsigned long i;
2832 	for (i = 0; i <= wr->wr_blkhashmask; i++) {
2833 		struct wapbl_blk *wb;
2834 
2835 		while ((wb = LIST_FIRST(&wr->wr_blkhash[i]))) {
2836 			KASSERT(wr->wr_blkhashcnt > 0);
2837 			wr->wr_blkhashcnt--;
2838 			LIST_REMOVE(wb, wb_hash);
2839 			wapbl_free(wb, sizeof(*wb));
2840 		}
2841 	}
2842 	KASSERT(wr->wr_blkhashcnt == 0);
2843 }
2844 
2845 /****************************************************************/
2846 
2847 /*
2848  * wapbl_circ_read(wr, data, len, offp)
2849  *
2850  *	Read len bytes into data from the circular queue of wr,
2851  *	starting at the linear byte offset *offp, and returning the new
2852  *	linear byte offset in *offp.
2853  *
2854  *	If the starting linear byte offset precedes wr->wr_circ_off,
2855  *	the read instead begins at wr->wr_circ_off.  XXX WTF?  This
2856  *	should be a KASSERT, not a conditional.
2857  */
2858 static int
2859 wapbl_circ_read(struct wapbl_replay *wr, void *data, size_t len, off_t *offp)
2860 {
2861 	size_t slen;
2862 	off_t off = *offp;
2863 	int error;
2864 	daddr_t pbn;
2865 
2866 	KASSERT(((len >> wr->wr_log_dev_bshift) <<
2867 	    wr->wr_log_dev_bshift) == len);
2868 
2869 	if (off < wr->wr_circ_off)
2870 		off = wr->wr_circ_off;
2871 	slen = wr->wr_circ_off + wr->wr_circ_size - off;
2872 	if (slen < len) {
2873 		pbn = wr->wr_logpbn + (off >> wr->wr_log_dev_bshift);
2874 #ifdef _KERNEL
2875 		pbn = btodb(pbn << wr->wr_log_dev_bshift);
2876 #endif
2877 		error = wapbl_read(data, slen, wr->wr_devvp, pbn);
2878 		if (error)
2879 			return error;
2880 		data = (uint8_t *)data + slen;
2881 		len -= slen;
2882 		off = wr->wr_circ_off;
2883 	}
2884 	pbn = wr->wr_logpbn + (off >> wr->wr_log_dev_bshift);
2885 #ifdef _KERNEL
2886 	pbn = btodb(pbn << wr->wr_log_dev_bshift);
2887 #endif
2888 	error = wapbl_read(data, len, wr->wr_devvp, pbn);
2889 	if (error)
2890 		return error;
2891 	off += len;
2892 	if (off >= wr->wr_circ_off + wr->wr_circ_size)
2893 		off = wr->wr_circ_off;
2894 	*offp = off;
2895 	return 0;
2896 }
2897 
2898 /*
2899  * wapbl_circ_advance(wr, len, offp)
2900  *
2901  *	Compute the linear byte offset of the circular queue of wr that
2902  *	is len bytes past *offp, and store it in *offp.
2903  *
2904  *	This is as if wapbl_circ_read, but without actually reading
2905  *	anything.
2906  *
2907  *	If the starting linear byte offset precedes wr->wr_circ_off, it
2908  *	is taken to be wr->wr_circ_off instead.  XXX WTF?  This should
2909  *	be a KASSERT, not a conditional.
2910  */
2911 static void
2912 wapbl_circ_advance(struct wapbl_replay *wr, size_t len, off_t *offp)
2913 {
2914 	size_t slen;
2915 	off_t off = *offp;
2916 
2917 	KASSERT(((len >> wr->wr_log_dev_bshift) <<
2918 	    wr->wr_log_dev_bshift) == len);
2919 
2920 	if (off < wr->wr_circ_off)
2921 		off = wr->wr_circ_off;
2922 	slen = wr->wr_circ_off + wr->wr_circ_size - off;
2923 	if (slen < len) {
2924 		len -= slen;
2925 		off = wr->wr_circ_off;
2926 	}
2927 	off += len;
2928 	if (off >= wr->wr_circ_off + wr->wr_circ_size)
2929 		off = wr->wr_circ_off;
2930 	*offp = off;
2931 }
2932 
2933 /****************************************************************/
2934 
2935 int
2936 wapbl_replay_start(struct wapbl_replay **wrp, struct vnode *vp,
2937 	daddr_t off, size_t count, size_t blksize)
2938 {
2939 	struct wapbl_replay *wr;
2940 	int error;
2941 	struct vnode *devvp;
2942 	daddr_t logpbn;
2943 	uint8_t *scratch;
2944 	struct wapbl_wc_header *wch;
2945 	struct wapbl_wc_header *wch2;
2946 	/* Use this until we read the actual log header */
2947 	int log_dev_bshift = ilog2(blksize);
2948 	size_t used;
2949 	daddr_t pbn;
2950 
2951 	WAPBL_PRINTF(WAPBL_PRINT_REPLAY,
2952 	    ("wapbl_replay_start: vp=%p off=%"PRId64 " count=%zu blksize=%zu\n",
2953 	    vp, off, count, blksize));
2954 
2955 	if (off < 0)
2956 		return EINVAL;
2957 
2958 	if (blksize < DEV_BSIZE)
2959 		return EINVAL;
2960 	if (blksize % DEV_BSIZE)
2961 		return EINVAL;
2962 
2963 #ifdef _KERNEL
2964 #if 0
2965 	/* XXX vp->v_size isn't reliably set for VBLK devices,
2966 	 * especially root.  However, we might still want to verify
2967 	 * that the full load is readable */
2968 	if ((off + count) * blksize > vp->v_size)
2969 		return EINVAL;
2970 #endif
2971 	if ((error = VOP_BMAP(vp, off, &devvp, &logpbn, 0)) != 0) {
2972 		return error;
2973 	}
2974 #else /* ! _KERNEL */
2975 	devvp = vp;
2976 	logpbn = off;
2977 #endif /* ! _KERNEL */
2978 
2979 	scratch = wapbl_alloc(MAXBSIZE);
2980 
2981 	pbn = logpbn;
2982 #ifdef _KERNEL
2983 	pbn = btodb(pbn << log_dev_bshift);
2984 #endif
2985 	error = wapbl_read(scratch, 2<<log_dev_bshift, devvp, pbn);
2986 	if (error)
2987 		goto errout;
2988 
2989 	wch = (struct wapbl_wc_header *)scratch;
2990 	wch2 =
2991 	    (struct wapbl_wc_header *)(scratch + (1<<log_dev_bshift));
2992 	/* XXX verify checksums and magic numbers */
2993 	if (wch->wc_type != WAPBL_WC_HEADER) {
2994 		printf("Unrecognized wapbl magic: 0x%08x\n", wch->wc_type);
2995 		error = EFTYPE;
2996 		goto errout;
2997 	}
2998 
2999 	if (wch2->wc_generation > wch->wc_generation)
3000 		wch = wch2;
3001 
3002 	wr = wapbl_calloc(1, sizeof(*wr));
3003 
3004 	wr->wr_logvp = vp;
3005 	wr->wr_devvp = devvp;
3006 	wr->wr_logpbn = logpbn;
3007 
3008 	wr->wr_scratch = scratch;
3009 
3010 	wr->wr_log_dev_bshift = wch->wc_log_dev_bshift;
3011 	wr->wr_fs_dev_bshift = wch->wc_fs_dev_bshift;
3012 	wr->wr_circ_off = wch->wc_circ_off;
3013 	wr->wr_circ_size = wch->wc_circ_size;
3014 	wr->wr_generation = wch->wc_generation;
3015 
3016 	used = wapbl_space_used(wch->wc_circ_size, wch->wc_head, wch->wc_tail);
3017 
3018 	WAPBL_PRINTF(WAPBL_PRINT_REPLAY,
3019 	    ("wapbl_replay: head=%"PRId64" tail=%"PRId64" off=%"PRId64
3020 	    " len=%"PRId64" used=%zu\n",
3021 	    wch->wc_head, wch->wc_tail, wch->wc_circ_off,
3022 	    wch->wc_circ_size, used));
3023 
3024 	wapbl_blkhash_init(wr, (used >> wch->wc_fs_dev_bshift));
3025 
3026 	error = wapbl_replay_process(wr, wch->wc_head, wch->wc_tail);
3027 	if (error) {
3028 		wapbl_replay_stop(wr);
3029 		wapbl_replay_free(wr);
3030 		return error;
3031 	}
3032 
3033 	*wrp = wr;
3034 	return 0;
3035 
3036  errout:
3037 	wapbl_free(scratch, MAXBSIZE);
3038 	return error;
3039 }
3040 
3041 void
3042 wapbl_replay_stop(struct wapbl_replay *wr)
3043 {
3044 
3045 	if (!wapbl_replay_isopen(wr))
3046 		return;
3047 
3048 	WAPBL_PRINTF(WAPBL_PRINT_REPLAY, ("wapbl_replay_stop called\n"));
3049 
3050 	wapbl_free(wr->wr_scratch, MAXBSIZE);
3051 	wr->wr_scratch = NULL;
3052 
3053 	wr->wr_logvp = NULL;
3054 
3055 	wapbl_blkhash_clear(wr);
3056 	wapbl_blkhash_free(wr);
3057 }
3058 
3059 void
3060 wapbl_replay_free(struct wapbl_replay *wr)
3061 {
3062 
3063 	KDASSERT(!wapbl_replay_isopen(wr));
3064 
3065 	if (wr->wr_inodes)
3066 		wapbl_free(wr->wr_inodes,
3067 		    wr->wr_inodescnt * sizeof(wr->wr_inodes[0]));
3068 	wapbl_free(wr, sizeof(*wr));
3069 }
3070 
3071 #ifdef _KERNEL
3072 int
3073 wapbl_replay_isopen1(struct wapbl_replay *wr)
3074 {
3075 
3076 	return wapbl_replay_isopen(wr);
3077 }
3078 #endif
3079 
3080 /*
3081  * calculate the disk address for the i'th block in the wc_blockblist
3082  * offset by j blocks of size blen.
3083  *
3084  * wc_daddr is always a kernel disk address in DEV_BSIZE units that
3085  * was written to the journal.
3086  *
3087  * The kernel needs that address plus the offset in DEV_BSIZE units.
3088  *
3089  * Userland needs that address plus the offset in blen units.
3090  *
3091  */
3092 static daddr_t
3093 wapbl_block_daddr(struct wapbl_wc_blocklist *wc, int i, int j, int blen)
3094 {
3095 	daddr_t pbn;
3096 
3097 #ifdef _KERNEL
3098 	pbn = wc->wc_blocks[i].wc_daddr + btodb(j * blen);
3099 #else
3100 	pbn = dbtob(wc->wc_blocks[i].wc_daddr) / blen + j;
3101 #endif
3102 
3103 	return pbn;
3104 }
3105 
3106 static void
3107 wapbl_replay_process_blocks(struct wapbl_replay *wr, off_t *offp)
3108 {
3109 	struct wapbl_wc_blocklist *wc =
3110 	    (struct wapbl_wc_blocklist *)wr->wr_scratch;
3111 	int fsblklen = 1 << wr->wr_fs_dev_bshift;
3112 	int i, j, n;
3113 
3114 	for (i = 0; i < wc->wc_blkcount; i++) {
3115 		/*
3116 		 * Enter each physical block into the hashtable independently.
3117 		 */
3118 		n = wc->wc_blocks[i].wc_dlen >> wr->wr_fs_dev_bshift;
3119 		for (j = 0; j < n; j++) {
3120 			wapbl_blkhash_ins(wr, wapbl_block_daddr(wc, i, j, fsblklen),
3121 			    *offp);
3122 			wapbl_circ_advance(wr, fsblklen, offp);
3123 		}
3124 	}
3125 }
3126 
3127 static void
3128 wapbl_replay_process_revocations(struct wapbl_replay *wr)
3129 {
3130 	struct wapbl_wc_blocklist *wc =
3131 	    (struct wapbl_wc_blocklist *)wr->wr_scratch;
3132 	int fsblklen = 1 << wr->wr_fs_dev_bshift;
3133 	int i, j, n;
3134 
3135 	for (i = 0; i < wc->wc_blkcount; i++) {
3136 		/*
3137 		 * Remove any blocks found from the hashtable.
3138 		 */
3139 		n = wc->wc_blocks[i].wc_dlen >> wr->wr_fs_dev_bshift;
3140 		for (j = 0; j < n; j++)
3141 			wapbl_blkhash_rem(wr, wapbl_block_daddr(wc, i, j, fsblklen));
3142 	}
3143 }
3144 
3145 static void
3146 wapbl_replay_process_inodes(struct wapbl_replay *wr, off_t oldoff, off_t newoff)
3147 {
3148 	struct wapbl_wc_inodelist *wc =
3149 	    (struct wapbl_wc_inodelist *)wr->wr_scratch;
3150 	void *new_inodes;
3151 	const size_t oldsize = wr->wr_inodescnt * sizeof(wr->wr_inodes[0]);
3152 
3153 	KASSERT(sizeof(wr->wr_inodes[0]) == sizeof(wc->wc_inodes[0]));
3154 
3155 	/*
3156 	 * Keep track of where we found this so location won't be
3157 	 * overwritten.
3158 	 */
3159 	if (wc->wc_clear) {
3160 		wr->wr_inodestail = oldoff;
3161 		wr->wr_inodescnt = 0;
3162 		if (wr->wr_inodes != NULL) {
3163 			wapbl_free(wr->wr_inodes, oldsize);
3164 			wr->wr_inodes = NULL;
3165 		}
3166 	}
3167 	wr->wr_inodeshead = newoff;
3168 	if (wc->wc_inocnt == 0)
3169 		return;
3170 
3171 	new_inodes = wapbl_alloc((wr->wr_inodescnt + wc->wc_inocnt) *
3172 	    sizeof(wr->wr_inodes[0]));
3173 	if (wr->wr_inodes != NULL) {
3174 		memcpy(new_inodes, wr->wr_inodes, oldsize);
3175 		wapbl_free(wr->wr_inodes, oldsize);
3176 	}
3177 	wr->wr_inodes = new_inodes;
3178 	memcpy(&wr->wr_inodes[wr->wr_inodescnt], wc->wc_inodes,
3179 	    wc->wc_inocnt * sizeof(wr->wr_inodes[0]));
3180 	wr->wr_inodescnt += wc->wc_inocnt;
3181 }
3182 
3183 static int
3184 wapbl_replay_process(struct wapbl_replay *wr, off_t head, off_t tail)
3185 {
3186 	off_t off;
3187 	int error;
3188 
3189 	int logblklen = 1 << wr->wr_log_dev_bshift;
3190 
3191 	wapbl_blkhash_clear(wr);
3192 
3193 	off = tail;
3194 	while (off != head) {
3195 		struct wapbl_wc_null *wcn;
3196 		off_t saveoff = off;
3197 		error = wapbl_circ_read(wr, wr->wr_scratch, logblklen, &off);
3198 		if (error)
3199 			goto errout;
3200 		wcn = (struct wapbl_wc_null *)wr->wr_scratch;
3201 		switch (wcn->wc_type) {
3202 		case WAPBL_WC_BLOCKS:
3203 			wapbl_replay_process_blocks(wr, &off);
3204 			break;
3205 
3206 		case WAPBL_WC_REVOCATIONS:
3207 			wapbl_replay_process_revocations(wr);
3208 			break;
3209 
3210 		case WAPBL_WC_INODES:
3211 			wapbl_replay_process_inodes(wr, saveoff, off);
3212 			break;
3213 
3214 		default:
3215 			printf("Unrecognized wapbl type: 0x%08x\n",
3216 			       wcn->wc_type);
3217  			error = EFTYPE;
3218 			goto errout;
3219 		}
3220 		wapbl_circ_advance(wr, wcn->wc_len, &saveoff);
3221 		if (off != saveoff) {
3222 			printf("wapbl_replay: corrupted records\n");
3223 			error = EFTYPE;
3224 			goto errout;
3225 		}
3226 	}
3227 	return 0;
3228 
3229  errout:
3230 	wapbl_blkhash_clear(wr);
3231 	return error;
3232 }
3233 
3234 #if 0
3235 int
3236 wapbl_replay_verify(struct wapbl_replay *wr, struct vnode *fsdevvp)
3237 {
3238 	off_t off;
3239 	int mismatchcnt = 0;
3240 	int logblklen = 1 << wr->wr_log_dev_bshift;
3241 	int fsblklen = 1 << wr->wr_fs_dev_bshift;
3242 	void *scratch1 = wapbl_alloc(MAXBSIZE);
3243 	void *scratch2 = wapbl_alloc(MAXBSIZE);
3244 	int error = 0;
3245 
3246 	KDASSERT(wapbl_replay_isopen(wr));
3247 
3248 	off = wch->wc_tail;
3249 	while (off != wch->wc_head) {
3250 		struct wapbl_wc_null *wcn;
3251 #ifdef DEBUG
3252 		off_t saveoff = off;
3253 #endif
3254 		error = wapbl_circ_read(wr, wr->wr_scratch, logblklen, &off);
3255 		if (error)
3256 			goto out;
3257 		wcn = (struct wapbl_wc_null *)wr->wr_scratch;
3258 		switch (wcn->wc_type) {
3259 		case WAPBL_WC_BLOCKS:
3260 			{
3261 				struct wapbl_wc_blocklist *wc =
3262 				    (struct wapbl_wc_blocklist *)wr->wr_scratch;
3263 				int i;
3264 				for (i = 0; i < wc->wc_blkcount; i++) {
3265 					int foundcnt = 0;
3266 					int dirtycnt = 0;
3267 					int j, n;
3268 					/*
3269 					 * Check each physical block into the
3270 					 * hashtable independently
3271 					 */
3272 					n = wc->wc_blocks[i].wc_dlen >>
3273 					    wch->wc_fs_dev_bshift;
3274 					for (j = 0; j < n; j++) {
3275 						struct wapbl_blk *wb =
3276 						   wapbl_blkhash_get(wr,
3277 						   wapbl_block_daddr(wc, i, j, fsblklen));
3278 						if (wb && (wb->wb_off == off)) {
3279 							foundcnt++;
3280 							error =
3281 							    wapbl_circ_read(wr,
3282 							    scratch1, fsblklen,
3283 							    &off);
3284 							if (error)
3285 								goto out;
3286 							error =
3287 							    wapbl_read(scratch2,
3288 							    fsblklen, fsdevvp,
3289 							    wb->wb_blk);
3290 							if (error)
3291 								goto out;
3292 							if (memcmp(scratch1,
3293 								   scratch2,
3294 								   fsblklen)) {
3295 								printf(
3296 		"wapbl_verify: mismatch block %"PRId64" at off %"PRIdMAX"\n",
3297 		wb->wb_blk, (intmax_t)off);
3298 								dirtycnt++;
3299 								mismatchcnt++;
3300 							}
3301 						} else {
3302 							wapbl_circ_advance(wr,
3303 							    fsblklen, &off);
3304 						}
3305 					}
3306 #if 0
3307 					/*
3308 					 * If all of the blocks in an entry
3309 					 * are clean, then remove all of its
3310 					 * blocks from the hashtable since they
3311 					 * never will need replay.
3312 					 */
3313 					if ((foundcnt != 0) &&
3314 					    (dirtycnt == 0)) {
3315 						off = saveoff;
3316 						wapbl_circ_advance(wr,
3317 						    logblklen, &off);
3318 						for (j = 0; j < n; j++) {
3319 							struct wapbl_blk *wb =
3320 							   wapbl_blkhash_get(wr,
3321 							   wapbl_block_daddr(wc, i, j, fsblklen));
3322 							if (wb &&
3323 							  (wb->wb_off == off)) {
3324 								wapbl_blkhash_rem(wr, wb->wb_blk);
3325 							}
3326 							wapbl_circ_advance(wr,
3327 							    fsblklen, &off);
3328 						}
3329 					}
3330 #endif
3331 				}
3332 			}
3333 			break;
3334 		case WAPBL_WC_REVOCATIONS:
3335 		case WAPBL_WC_INODES:
3336 			break;
3337 		default:
3338 			KASSERT(0);
3339 		}
3340 #ifdef DEBUG
3341 		wapbl_circ_advance(wr, wcn->wc_len, &saveoff);
3342 		KASSERT(off == saveoff);
3343 #endif
3344 	}
3345  out:
3346 	wapbl_free(scratch1, MAXBSIZE);
3347 	wapbl_free(scratch2, MAXBSIZE);
3348 	if (!error && mismatchcnt)
3349 		error = EFTYPE;
3350 	return error;
3351 }
3352 #endif
3353 
3354 int
3355 wapbl_replay_write(struct wapbl_replay *wr, struct vnode *fsdevvp)
3356 {
3357 	struct wapbl_blk *wb;
3358 	size_t i;
3359 	off_t off;
3360 	void *scratch;
3361 	int error = 0;
3362 	int fsblklen = 1 << wr->wr_fs_dev_bshift;
3363 
3364 	KDASSERT(wapbl_replay_isopen(wr));
3365 
3366 	scratch = wapbl_alloc(MAXBSIZE);
3367 
3368 	for (i = 0; i <= wr->wr_blkhashmask; ++i) {
3369 		LIST_FOREACH(wb, &wr->wr_blkhash[i], wb_hash) {
3370 			off = wb->wb_off;
3371 			error = wapbl_circ_read(wr, scratch, fsblklen, &off);
3372 			if (error)
3373 				break;
3374 			error = wapbl_write(scratch, fsblklen, fsdevvp,
3375 			    wb->wb_blk);
3376 			if (error)
3377 				break;
3378 		}
3379 	}
3380 
3381 	wapbl_free(scratch, MAXBSIZE);
3382 	return error;
3383 }
3384 
3385 int
3386 wapbl_replay_can_read(struct wapbl_replay *wr, daddr_t blk, long len)
3387 {
3388 	int fsblklen = 1 << wr->wr_fs_dev_bshift;
3389 
3390 	KDASSERT(wapbl_replay_isopen(wr));
3391 	KASSERT((len % fsblklen) == 0);
3392 
3393 	while (len != 0) {
3394 		struct wapbl_blk *wb = wapbl_blkhash_get(wr, blk);
3395 		if (wb)
3396 			return 1;
3397 		len -= fsblklen;
3398 	}
3399 	return 0;
3400 }
3401 
3402 int
3403 wapbl_replay_read(struct wapbl_replay *wr, void *data, daddr_t blk, long len)
3404 {
3405 	int fsblklen = 1 << wr->wr_fs_dev_bshift;
3406 
3407 	KDASSERT(wapbl_replay_isopen(wr));
3408 
3409 	KASSERT((len % fsblklen) == 0);
3410 
3411 	while (len != 0) {
3412 		struct wapbl_blk *wb = wapbl_blkhash_get(wr, blk);
3413 		if (wb) {
3414 			off_t off = wb->wb_off;
3415 			int error;
3416 			error = wapbl_circ_read(wr, data, fsblklen, &off);
3417 			if (error)
3418 				return error;
3419 		}
3420 		data = (uint8_t *)data + fsblklen;
3421 		len -= fsblklen;
3422 		blk++;
3423 	}
3424 	return 0;
3425 }
3426 
3427 #ifdef _KERNEL
3428 
3429 MODULE(MODULE_CLASS_VFS, wapbl, NULL);
3430 
3431 static int
3432 wapbl_modcmd(modcmd_t cmd, void *arg)
3433 {
3434 
3435 	switch (cmd) {
3436 	case MODULE_CMD_INIT:
3437 		wapbl_init();
3438 		return 0;
3439 	case MODULE_CMD_FINI:
3440 		return wapbl_fini();
3441 	default:
3442 		return ENOTTY;
3443 	}
3444 }
3445 #endif /* _KERNEL */
3446