xref: /netbsd-src/sys/kern/vfs_vnode.c (revision e89934bbf778a6d6d6894877c4da59d0c7835b0f)
1 /*	$NetBSD: vfs_vnode.c,v 1.73 2017/01/27 10:50:10 hannken Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997-2011 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)vfs_subr.c	8.13 (Berkeley) 4/18/94
67  */
68 
69 /*
70  * The vnode cache subsystem.
71  *
72  * Life-cycle
73  *
74  *	Normally, there are two points where new vnodes are created:
75  *	VOP_CREATE(9) and VOP_LOOKUP(9).  The life-cycle of a vnode
76  *	starts in one of the following ways:
77  *
78  *	- Allocation, via vcache_get(9) or vcache_new(9).
79  *	- Reclamation of inactive vnode, via vcache_vget(9).
80  *
81  *	Recycle from a free list, via getnewvnode(9) -> getcleanvnode(9)
82  *	was another, traditional way.  Currently, only the draining thread
83  *	recycles the vnodes.  This behaviour might be revisited.
84  *
85  *	The life-cycle ends when the last reference is dropped, usually
86  *	in VOP_REMOVE(9).  In such case, VOP_INACTIVE(9) is called to inform
87  *	the file system that vnode is inactive.  Via this call, file system
88  *	indicates whether vnode can be recycled (usually, it checks its own
89  *	references, e.g. count of links, whether the file was removed).
90  *
91  *	Depending on indication, vnode can be put into a free list (cache),
92  *	or cleaned via vcache_reclaim, which calls VOP_RECLAIM(9) to
93  *	disassociate underlying file system from the vnode, and finally
94  *	destroyed.
95  *
96  * Vnode state
97  *
98  *	Vnode is always in one of six states:
99  *	- MARKER	This is a marker vnode to help list traversal.  It
100  *			will never change its state.
101  *	- LOADING	Vnode is associating underlying file system and not
102  *			yet ready to use.
103  *	- ACTIVE	Vnode has associated underlying file system and is
104  *			ready to use.
105  *	- BLOCKED	Vnode is active but cannot get new references.
106  *	- RECLAIMING	Vnode is disassociating from the underlying file
107  *			system.
108  *	- RECLAIMED	Vnode has disassociated from underlying file system
109  *			and is dead.
110  *
111  *	Valid state changes are:
112  *	LOADING -> ACTIVE
113  *			Vnode has been initialised in vcache_get() or
114  *			vcache_new() and is ready to use.
115  *	ACTIVE -> RECLAIMING
116  *			Vnode starts disassociation from underlying file
117  *			system in vcache_reclaim().
118  *	RECLAIMING -> RECLAIMED
119  *			Vnode finished disassociation from underlying file
120  *			system in vcache_reclaim().
121  *	ACTIVE -> BLOCKED
122  *			Either vcache_rekey*() is changing the vnode key or
123  *			vrelel() is about to call VOP_INACTIVE().
124  *	BLOCKED -> ACTIVE
125  *			The block condition is over.
126  *	LOADING -> RECLAIMED
127  *			Either vcache_get() or vcache_new() failed to
128  *			associate the underlying file system or vcache_rekey*()
129  *			drops a vnode used as placeholder.
130  *
131  *	Of these states LOADING, BLOCKED and RECLAIMING are intermediate
132  *	and it is possible to wait for state change.
133  *
134  *	State is protected with v_interlock with one exception:
135  *	to change from LOADING both v_interlock and vcache_lock must be held
136  *	so it is possible to check "state == LOADING" without holding
137  *	v_interlock.  See vcache_get() for details.
138  *
139  * Reference counting
140  *
141  *	Vnode is considered active, if reference count (vnode_t::v_usecount)
142  *	is non-zero.  It is maintained using: vref(9) and vrele(9), as well
143  *	as vput(9), routines.  Common points holding references are e.g.
144  *	file openings, current working directory, mount points, etc.
145  *
146  * Note on v_usecount and its locking
147  *
148  *	At nearly all points it is known that v_usecount could be zero,
149  *	the vnode_t::v_interlock will be held.  To change v_usecount away
150  *	from zero, the interlock must be held.  To change from a non-zero
151  *	value to zero, again the interlock must be held.
152  *
153  *	Changing the usecount from a non-zero value to a non-zero value can
154  *	safely be done using atomic operations, without the interlock held.
155  *
156  */
157 
158 #include <sys/cdefs.h>
159 __KERNEL_RCSID(0, "$NetBSD: vfs_vnode.c,v 1.73 2017/01/27 10:50:10 hannken Exp $");
160 
161 #include <sys/param.h>
162 #include <sys/kernel.h>
163 
164 #include <sys/atomic.h>
165 #include <sys/buf.h>
166 #include <sys/conf.h>
167 #include <sys/device.h>
168 #include <sys/hash.h>
169 #include <sys/kauth.h>
170 #include <sys/kmem.h>
171 #include <sys/kthread.h>
172 #include <sys/module.h>
173 #include <sys/mount.h>
174 #include <sys/namei.h>
175 #include <sys/syscallargs.h>
176 #include <sys/sysctl.h>
177 #include <sys/systm.h>
178 #include <sys/vnode_impl.h>
179 #include <sys/wapbl.h>
180 #include <sys/fstrans.h>
181 
182 #include <uvm/uvm.h>
183 #include <uvm/uvm_readahead.h>
184 
185 /* Flags to vrelel. */
186 #define	VRELEL_ASYNC_RELE	0x0001	/* Always defer to vrele thread. */
187 
188 u_int			numvnodes		__cacheline_aligned;
189 
190 /*
191  * There are three lru lists: one holds vnodes waiting for async release,
192  * one is for vnodes which have no buffer/page references and
193  * one for those which do (i.e. v_holdcnt is non-zero).
194  */
195 static vnodelst_t	lru_vrele_list		__cacheline_aligned;
196 static vnodelst_t	lru_free_list		__cacheline_aligned;
197 static vnodelst_t	lru_hold_list		__cacheline_aligned;
198 static kmutex_t		vdrain_lock		__cacheline_aligned;
199 static kcondvar_t	vdrain_cv		__cacheline_aligned;
200 static int		vdrain_gen;
201 static kcondvar_t	vdrain_gen_cv;
202 static bool		vdrain_retry;
203 static lwp_t *		vdrain_lwp;
204 SLIST_HEAD(hashhead, vnode_impl);
205 static kmutex_t		vcache_lock		__cacheline_aligned;
206 static kcondvar_t	vcache_cv		__cacheline_aligned;
207 static u_int		vcache_hashsize;
208 static u_long		vcache_hashmask;
209 static struct hashhead	*vcache_hashtab		__cacheline_aligned;
210 static pool_cache_t	vcache_pool;
211 static void		lru_requeue(vnode_t *, vnodelst_t *);
212 static vnodelst_t *	lru_which(vnode_t *);
213 static vnode_impl_t *	vcache_alloc(void);
214 static void		vcache_free(vnode_impl_t *);
215 static void		vcache_init(void);
216 static void		vcache_reinit(void);
217 static void		vcache_reclaim(vnode_t *);
218 static void		vrelel(vnode_t *, int);
219 static void		vdrain_thread(void *);
220 static void		vnpanic(vnode_t *, const char *, ...)
221     __printflike(2, 3);
222 
223 /* Routines having to do with the management of the vnode table. */
224 extern struct mount	*dead_rootmount;
225 extern int		(**dead_vnodeop_p)(void *);
226 extern struct vfsops	dead_vfsops;
227 
228 /* Vnode state operations and diagnostics. */
229 
230 #if defined(DIAGNOSTIC)
231 
232 #define VSTATE_GET(vp) \
233 	vstate_assert_get((vp), __func__, __LINE__)
234 #define VSTATE_CHANGE(vp, from, to) \
235 	vstate_assert_change((vp), (from), (to), __func__, __LINE__)
236 #define VSTATE_WAIT_STABLE(vp) \
237 	vstate_assert_wait_stable((vp), __func__, __LINE__)
238 #define VSTATE_ASSERT(vp, state) \
239 	vstate_assert((vp), (state), __func__, __LINE__)
240 
241 static void
242 vstate_assert(vnode_t *vp, enum vnode_state state, const char *func, int line)
243 {
244 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
245 
246 	KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
247 
248 	if (__predict_true(vip->vi_state == state))
249 		return;
250 	vnpanic(vp, "state is %s, expected %s at %s:%d",
251 	    vstate_name(vip->vi_state), vstate_name(state), func, line);
252 }
253 
254 static enum vnode_state
255 vstate_assert_get(vnode_t *vp, const char *func, int line)
256 {
257 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
258 
259 	KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
260 	if (vip->vi_state == VS_MARKER)
261 		vnpanic(vp, "state is %s at %s:%d",
262 		    vstate_name(vip->vi_state), func, line);
263 
264 	return vip->vi_state;
265 }
266 
267 static void
268 vstate_assert_wait_stable(vnode_t *vp, const char *func, int line)
269 {
270 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
271 
272 	KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
273 	if (vip->vi_state == VS_MARKER)
274 		vnpanic(vp, "state is %s at %s:%d",
275 		    vstate_name(vip->vi_state), func, line);
276 
277 	while (vip->vi_state != VS_ACTIVE && vip->vi_state != VS_RECLAIMED)
278 		cv_wait(&vp->v_cv, vp->v_interlock);
279 
280 	if (vip->vi_state == VS_MARKER)
281 		vnpanic(vp, "state is %s at %s:%d",
282 		    vstate_name(vip->vi_state), func, line);
283 }
284 
285 static void
286 vstate_assert_change(vnode_t *vp, enum vnode_state from, enum vnode_state to,
287     const char *func, int line)
288 {
289 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
290 
291 	KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
292 	if (from == VS_LOADING)
293 		KASSERTMSG(mutex_owned(&vcache_lock), "at %s:%d", func, line);
294 
295 	if (from == VS_MARKER)
296 		vnpanic(vp, "from is %s at %s:%d",
297 		    vstate_name(from), func, line);
298 	if (to == VS_MARKER)
299 		vnpanic(vp, "to is %s at %s:%d",
300 		    vstate_name(to), func, line);
301 	if (vip->vi_state != from)
302 		vnpanic(vp, "from is %s, expected %s at %s:%d\n",
303 		    vstate_name(vip->vi_state), vstate_name(from), func, line);
304 	if ((from == VS_BLOCKED || to == VS_BLOCKED) && vp->v_usecount != 1)
305 		vnpanic(vp, "%s to %s with usecount %d at %s:%d",
306 		    vstate_name(from), vstate_name(to), vp->v_usecount,
307 		    func, line);
308 
309 	vip->vi_state = to;
310 	if (from == VS_LOADING)
311 		cv_broadcast(&vcache_cv);
312 	if (to == VS_ACTIVE || to == VS_RECLAIMED)
313 		cv_broadcast(&vp->v_cv);
314 }
315 
316 #else /* defined(DIAGNOSTIC) */
317 
318 #define VSTATE_GET(vp) \
319 	(VNODE_TO_VIMPL((vp))->vi_state)
320 #define VSTATE_CHANGE(vp, from, to) \
321 	vstate_change((vp), (from), (to))
322 #define VSTATE_WAIT_STABLE(vp) \
323 	vstate_wait_stable((vp))
324 #define VSTATE_ASSERT(vp, state)
325 
326 static void
327 vstate_wait_stable(vnode_t *vp)
328 {
329 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
330 
331 	while (vip->vi_state != VS_ACTIVE && vip->vi_state != VS_RECLAIMED)
332 		cv_wait(&vp->v_cv, vp->v_interlock);
333 }
334 
335 static void
336 vstate_change(vnode_t *vp, enum vnode_state from, enum vnode_state to)
337 {
338 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
339 
340 	vip->vi_state = to;
341 	if (from == VS_LOADING)
342 		cv_broadcast(&vcache_cv);
343 	if (to == VS_ACTIVE || to == VS_RECLAIMED)
344 		cv_broadcast(&vp->v_cv);
345 }
346 
347 #endif /* defined(DIAGNOSTIC) */
348 
349 void
350 vfs_vnode_sysinit(void)
351 {
352 	int error __diagused;
353 
354 	dead_rootmount = vfs_mountalloc(&dead_vfsops, NULL);
355 	KASSERT(dead_rootmount != NULL);
356 	dead_rootmount->mnt_iflag = IMNT_MPSAFE;
357 
358 	mutex_init(&vdrain_lock, MUTEX_DEFAULT, IPL_NONE);
359 	TAILQ_INIT(&lru_free_list);
360 	TAILQ_INIT(&lru_hold_list);
361 	TAILQ_INIT(&lru_vrele_list);
362 
363 	vcache_init();
364 
365 	cv_init(&vdrain_cv, "vdrain");
366 	cv_init(&vdrain_gen_cv, "vdrainwt");
367 	error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vdrain_thread,
368 	    NULL, &vdrain_lwp, "vdrain");
369 	KASSERTMSG((error == 0), "kthread_create(vdrain) failed: %d", error);
370 }
371 
372 /*
373  * Allocate a new marker vnode.
374  */
375 vnode_t *
376 vnalloc_marker(struct mount *mp)
377 {
378 	vnode_impl_t *vip;
379 	vnode_t *vp;
380 
381 	vip = pool_cache_get(vcache_pool, PR_WAITOK);
382 	memset(vip, 0, sizeof(*vip));
383 	vp = VIMPL_TO_VNODE(vip);
384 	uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 0);
385 	vp->v_mount = mp;
386 	vp->v_type = VBAD;
387 	vip->vi_state = VS_MARKER;
388 
389 	return vp;
390 }
391 
392 /*
393  * Free a marker vnode.
394  */
395 void
396 vnfree_marker(vnode_t *vp)
397 {
398 	vnode_impl_t *vip;
399 
400 	vip = VNODE_TO_VIMPL(vp);
401 	KASSERT(vip->vi_state == VS_MARKER);
402 	uvm_obj_destroy(&vp->v_uobj, true);
403 	pool_cache_put(vcache_pool, vip);
404 }
405 
406 /*
407  * Test a vnode for being a marker vnode.
408  */
409 bool
410 vnis_marker(vnode_t *vp)
411 {
412 
413 	return (VNODE_TO_VIMPL(vp)->vi_state == VS_MARKER);
414 }
415 
416 /*
417  * Return the lru list this node should be on.
418  */
419 static vnodelst_t *
420 lru_which(vnode_t *vp)
421 {
422 
423 	KASSERT(mutex_owned(vp->v_interlock));
424 
425 	if (vp->v_holdcnt > 0)
426 		return &lru_hold_list;
427 	else
428 		return &lru_free_list;
429 }
430 
431 /*
432  * Put vnode to end of given list.
433  * Both the current and the new list may be NULL, used on vnode alloc/free.
434  * Adjust numvnodes and signal vdrain thread if there is work.
435  */
436 static void
437 lru_requeue(vnode_t *vp, vnodelst_t *listhd)
438 {
439 	vnode_impl_t *vip;
440 
441 	mutex_enter(&vdrain_lock);
442 	vip = VNODE_TO_VIMPL(vp);
443 	if (vip->vi_lrulisthd != NULL)
444 		TAILQ_REMOVE(vip->vi_lrulisthd, vip, vi_lrulist);
445 	else
446 		numvnodes++;
447 	vip->vi_lrulisthd = listhd;
448 	if (vip->vi_lrulisthd != NULL)
449 		TAILQ_INSERT_TAIL(vip->vi_lrulisthd, vip, vi_lrulist);
450 	else
451 		numvnodes--;
452 	if (numvnodes > desiredvnodes || listhd == &lru_vrele_list)
453 		cv_broadcast(&vdrain_cv);
454 	mutex_exit(&vdrain_lock);
455 }
456 
457 /*
458  * Reclaim a cached vnode.  Used from vdrain_thread only.
459  */
460 static __inline void
461 vdrain_remove(vnode_t *vp)
462 {
463 	struct mount *mp;
464 
465 	KASSERT(mutex_owned(&vdrain_lock));
466 
467 	/* Probe usecount (unlocked). */
468 	if (vp->v_usecount > 0)
469 		return;
470 	/* Try v_interlock -- we lock the wrong direction! */
471 	if (!mutex_tryenter(vp->v_interlock))
472 		return;
473 	/* Probe usecount and state. */
474 	if (vp->v_usecount > 0 || VSTATE_GET(vp) != VS_ACTIVE) {
475 		mutex_exit(vp->v_interlock);
476 		return;
477 	}
478 	mp = vp->v_mount;
479 	if (fstrans_start_nowait(mp, FSTRANS_SHARED) != 0) {
480 		mutex_exit(vp->v_interlock);
481 		return;
482 	}
483 	vdrain_retry = true;
484 	mutex_exit(&vdrain_lock);
485 
486 	if (vcache_vget(vp) == 0) {
487 		if (!vrecycle(vp))
488 			vrele(vp);
489 	}
490 	fstrans_done(mp);
491 
492 	mutex_enter(&vdrain_lock);
493 }
494 
495 /*
496  * Release a cached vnode.  Used from vdrain_thread only.
497  */
498 static __inline void
499 vdrain_vrele(vnode_t *vp)
500 {
501 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
502 	struct mount *mp;
503 
504 	KASSERT(mutex_owned(&vdrain_lock));
505 
506 	mp = vp->v_mount;
507 	if (fstrans_start_nowait(mp, FSTRANS_LAZY) != 0)
508 		return;
509 
510 	/*
511 	 * First remove the vnode from the vrele list.
512 	 * Put it on the last lru list, the last vrele()
513 	 * will put it back onto the right list before
514 	 * its v_usecount reaches zero.
515 	 */
516 	KASSERT(vip->vi_lrulisthd == &lru_vrele_list);
517 	TAILQ_REMOVE(vip->vi_lrulisthd, vip, vi_lrulist);
518 	vip->vi_lrulisthd = &lru_hold_list;
519 	TAILQ_INSERT_TAIL(vip->vi_lrulisthd, vip, vi_lrulist);
520 
521 	vdrain_retry = true;
522 	mutex_exit(&vdrain_lock);
523 
524 	mutex_enter(vp->v_interlock);
525 	vrelel(vp, 0);
526 	fstrans_done(mp);
527 
528 	mutex_enter(&vdrain_lock);
529 }
530 
531 /*
532  * Helper thread to keep the number of vnodes below desiredvnodes
533  * and release vnodes from asynchronous vrele.
534  */
535 static void
536 vdrain_thread(void *cookie)
537 {
538 	vnodelst_t *listhd[] = {
539 	    &lru_vrele_list, &lru_free_list, &lru_hold_list
540 	};
541 	int i;
542 	u_int target;
543 	vnode_impl_t *vip, *marker;
544 
545 	marker = VNODE_TO_VIMPL(vnalloc_marker(NULL));
546 
547 	mutex_enter(&vdrain_lock);
548 
549 	for (;;) {
550 		vdrain_retry = false;
551 		target = desiredvnodes - desiredvnodes/10;
552 
553 		for (i = 0; i < __arraycount(listhd); i++) {
554 			TAILQ_INSERT_HEAD(listhd[i], marker, vi_lrulist);
555 			while ((vip = TAILQ_NEXT(marker, vi_lrulist))) {
556 				TAILQ_REMOVE(listhd[i], marker, vi_lrulist);
557 				TAILQ_INSERT_AFTER(listhd[i], vip, marker,
558 				    vi_lrulist);
559 				if (listhd[i] == &lru_vrele_list)
560 					vdrain_vrele(VIMPL_TO_VNODE(vip));
561 				else if (numvnodes < target)
562 					break;
563 				else
564 					vdrain_remove(VIMPL_TO_VNODE(vip));
565 			}
566 			TAILQ_REMOVE(listhd[i], marker, vi_lrulist);
567 		}
568 
569 		if (vdrain_retry) {
570 			mutex_exit(&vdrain_lock);
571 			yield();
572 			mutex_enter(&vdrain_lock);
573 		} else {
574 			vdrain_gen++;
575 			cv_broadcast(&vdrain_gen_cv);
576 			cv_wait(&vdrain_cv, &vdrain_lock);
577 		}
578 	}
579 }
580 
581 /*
582  * vput: unlock and release the reference.
583  */
584 void
585 vput(vnode_t *vp)
586 {
587 
588 	VOP_UNLOCK(vp);
589 	vrele(vp);
590 }
591 
592 /*
593  * Try to drop reference on a vnode.  Abort if we are releasing the
594  * last reference.  Note: this _must_ succeed if not the last reference.
595  */
596 static inline bool
597 vtryrele(vnode_t *vp)
598 {
599 	u_int use, next;
600 
601 	for (use = vp->v_usecount;; use = next) {
602 		if (use == 1) {
603 			return false;
604 		}
605 		KASSERT(use > 1);
606 		next = atomic_cas_uint(&vp->v_usecount, use, use - 1);
607 		if (__predict_true(next == use)) {
608 			return true;
609 		}
610 	}
611 }
612 
613 /*
614  * Vnode release.  If reference count drops to zero, call inactive
615  * routine and either return to freelist or free to the pool.
616  */
617 static void
618 vrelel(vnode_t *vp, int flags)
619 {
620 	bool recycle, defer;
621 	int error;
622 
623 	KASSERT(mutex_owned(vp->v_interlock));
624 
625 	if (__predict_false(vp->v_op == dead_vnodeop_p &&
626 	    VSTATE_GET(vp) != VS_RECLAIMED)) {
627 		vnpanic(vp, "dead but not clean");
628 	}
629 
630 	/*
631 	 * If not the last reference, just drop the reference count
632 	 * and unlock.
633 	 */
634 	if (vtryrele(vp)) {
635 		mutex_exit(vp->v_interlock);
636 		return;
637 	}
638 	if (vp->v_usecount <= 0 || vp->v_writecount != 0) {
639 		vnpanic(vp, "%s: bad ref count", __func__);
640 	}
641 
642 #ifdef DIAGNOSTIC
643 	if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
644 	    vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) {
645 		vprint("vrelel: missing VOP_CLOSE()", vp);
646 	}
647 #endif
648 
649 	/*
650 	 * If not clean, deactivate the vnode, but preserve
651 	 * our reference across the call to VOP_INACTIVE().
652 	 */
653 	if (VSTATE_GET(vp) != VS_RECLAIMED) {
654 		recycle = false;
655 
656 		/*
657 		 * XXX This ugly block can be largely eliminated if
658 		 * locking is pushed down into the file systems.
659 		 *
660 		 * Defer vnode release to vdrain_thread if caller
661 		 * requests it explicitly or is the pagedaemon.
662 		 */
663 		if ((curlwp == uvm.pagedaemon_lwp) ||
664 		    (flags & VRELEL_ASYNC_RELE) != 0) {
665 			defer = true;
666 		} else if (curlwp == vdrain_lwp) {
667 			/*
668 			 * We have to try harder.
669 			 */
670 			mutex_exit(vp->v_interlock);
671 			error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
672 			KASSERTMSG((error == 0), "vn_lock failed: %d", error);
673 			mutex_enter(vp->v_interlock);
674 			defer = false;
675 		} else {
676 			/* If we can't acquire the lock, then defer. */
677 			mutex_exit(vp->v_interlock);
678 			error = vn_lock(vp,
679 			    LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT);
680 			defer = (error != 0);
681 			mutex_enter(vp->v_interlock);
682 		}
683 
684 		KASSERT(mutex_owned(vp->v_interlock));
685 		KASSERT(! (curlwp == vdrain_lwp && defer));
686 
687 		if (defer) {
688 			/*
689 			 * Defer reclaim to the kthread; it's not safe to
690 			 * clean it here.  We donate it our last reference.
691 			 */
692 			lru_requeue(vp, &lru_vrele_list);
693 			mutex_exit(vp->v_interlock);
694 			return;
695 		}
696 
697 		/*
698 		 * If the node got another reference while we
699 		 * released the interlock, don't try to inactivate it yet.
700 		 */
701 		if (__predict_false(vtryrele(vp))) {
702 			VOP_UNLOCK(vp);
703 			mutex_exit(vp->v_interlock);
704 			return;
705 		}
706 		VSTATE_CHANGE(vp, VS_ACTIVE, VS_BLOCKED);
707 		mutex_exit(vp->v_interlock);
708 
709 		/*
710 		 * The vnode must not gain another reference while being
711 		 * deactivated.  If VOP_INACTIVE() indicates that
712 		 * the described file has been deleted, then recycle
713 		 * the vnode.
714 		 *
715 		 * Note that VOP_INACTIVE() will drop the vnode lock.
716 		 */
717 		VOP_INACTIVE(vp, &recycle);
718 		if (recycle) {
719 			/* vcache_reclaim() below will drop the lock. */
720 			if (vn_lock(vp, LK_EXCLUSIVE) != 0)
721 				recycle = false;
722 		}
723 		mutex_enter(vp->v_interlock);
724 		VSTATE_CHANGE(vp, VS_BLOCKED, VS_ACTIVE);
725 		if (!recycle) {
726 			if (vtryrele(vp)) {
727 				mutex_exit(vp->v_interlock);
728 				return;
729 			}
730 		}
731 
732 		/* Take care of space accounting. */
733 		if (vp->v_iflag & VI_EXECMAP) {
734 			atomic_add_int(&uvmexp.execpages,
735 			    -vp->v_uobj.uo_npages);
736 			atomic_add_int(&uvmexp.filepages,
737 			    vp->v_uobj.uo_npages);
738 		}
739 		vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP);
740 		vp->v_vflag &= ~VV_MAPPED;
741 
742 		/*
743 		 * Recycle the vnode if the file is now unused (unlinked),
744 		 * otherwise just free it.
745 		 */
746 		if (recycle) {
747 			VSTATE_ASSERT(vp, VS_ACTIVE);
748 			vcache_reclaim(vp);
749 		}
750 		KASSERT(vp->v_usecount > 0);
751 	}
752 
753 	if (atomic_dec_uint_nv(&vp->v_usecount) != 0) {
754 		/* Gained another reference while being reclaimed. */
755 		mutex_exit(vp->v_interlock);
756 		return;
757 	}
758 
759 	if (VSTATE_GET(vp) == VS_RECLAIMED && vp->v_holdcnt == 0) {
760 		/*
761 		 * It's clean so destroy it.  It isn't referenced
762 		 * anywhere since it has been reclaimed.
763 		 */
764 		vcache_free(VNODE_TO_VIMPL(vp));
765 	} else {
766 		/*
767 		 * Otherwise, put it back onto the freelist.  It
768 		 * can't be destroyed while still associated with
769 		 * a file system.
770 		 */
771 		lru_requeue(vp, lru_which(vp));
772 		mutex_exit(vp->v_interlock);
773 	}
774 }
775 
776 void
777 vrele(vnode_t *vp)
778 {
779 
780 	if (vtryrele(vp)) {
781 		return;
782 	}
783 	mutex_enter(vp->v_interlock);
784 	vrelel(vp, 0);
785 }
786 
787 /*
788  * Asynchronous vnode release, vnode is released in different context.
789  */
790 void
791 vrele_async(vnode_t *vp)
792 {
793 
794 	if (vtryrele(vp)) {
795 		return;
796 	}
797 	mutex_enter(vp->v_interlock);
798 	vrelel(vp, VRELEL_ASYNC_RELE);
799 }
800 
801 /*
802  * Vnode reference, where a reference is already held by some other
803  * object (for example, a file structure).
804  */
805 void
806 vref(vnode_t *vp)
807 {
808 
809 	KASSERT(vp->v_usecount != 0);
810 
811 	atomic_inc_uint(&vp->v_usecount);
812 }
813 
814 /*
815  * Page or buffer structure gets a reference.
816  * Called with v_interlock held.
817  */
818 void
819 vholdl(vnode_t *vp)
820 {
821 
822 	KASSERT(mutex_owned(vp->v_interlock));
823 
824 	if (vp->v_holdcnt++ == 0 && vp->v_usecount == 0)
825 		lru_requeue(vp, lru_which(vp));
826 }
827 
828 /*
829  * Page or buffer structure frees a reference.
830  * Called with v_interlock held.
831  */
832 void
833 holdrelel(vnode_t *vp)
834 {
835 
836 	KASSERT(mutex_owned(vp->v_interlock));
837 
838 	if (vp->v_holdcnt <= 0) {
839 		vnpanic(vp, "%s: holdcnt vp %p", __func__, vp);
840 	}
841 
842 	vp->v_holdcnt--;
843 	if (vp->v_holdcnt == 0 && vp->v_usecount == 0)
844 		lru_requeue(vp, lru_which(vp));
845 }
846 
847 /*
848  * Recycle an unused vnode if caller holds the last reference.
849  */
850 bool
851 vrecycle(vnode_t *vp)
852 {
853 	int error __diagused;
854 
855 	mutex_enter(vp->v_interlock);
856 
857 	/* Make sure we hold the last reference. */
858 	VSTATE_WAIT_STABLE(vp);
859 	if (vp->v_usecount != 1) {
860 		mutex_exit(vp->v_interlock);
861 		return false;
862 	}
863 
864 	/* If the vnode is already clean we're done. */
865 	if (VSTATE_GET(vp) != VS_ACTIVE) {
866 		VSTATE_ASSERT(vp, VS_RECLAIMED);
867 		vrelel(vp, 0);
868 		return true;
869 	}
870 
871 	/* Prevent further references until the vnode is locked. */
872 	VSTATE_CHANGE(vp, VS_ACTIVE, VS_BLOCKED);
873 	mutex_exit(vp->v_interlock);
874 
875 	/*
876 	 * On a leaf file system this lock will always succeed as we hold
877 	 * the last reference and prevent further references.
878 	 * On layered file systems waiting for the lock would open a can of
879 	 * deadlocks as the lower vnodes may have other active references.
880 	 */
881 	error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
882 
883 	mutex_enter(vp->v_interlock);
884 	VSTATE_CHANGE(vp, VS_BLOCKED, VS_ACTIVE);
885 
886 	if (error) {
887 		mutex_exit(vp->v_interlock);
888 		return false;
889 	}
890 
891 	KASSERT(vp->v_usecount == 1);
892 	vcache_reclaim(vp);
893 	vrelel(vp, 0);
894 
895 	return true;
896 }
897 
898 /*
899  * Eliminate all activity associated with the requested vnode
900  * and with all vnodes aliased to the requested vnode.
901  */
902 void
903 vrevoke(vnode_t *vp)
904 {
905 	vnode_t *vq;
906 	enum vtype type;
907 	dev_t dev;
908 
909 	KASSERT(vp->v_usecount > 0);
910 
911 	mutex_enter(vp->v_interlock);
912 	VSTATE_WAIT_STABLE(vp);
913 	if (VSTATE_GET(vp) == VS_RECLAIMED) {
914 		mutex_exit(vp->v_interlock);
915 		return;
916 	} else if (vp->v_type != VBLK && vp->v_type != VCHR) {
917 		atomic_inc_uint(&vp->v_usecount);
918 		mutex_exit(vp->v_interlock);
919 		vgone(vp);
920 		return;
921 	} else {
922 		dev = vp->v_rdev;
923 		type = vp->v_type;
924 		mutex_exit(vp->v_interlock);
925 	}
926 
927 	while (spec_node_lookup_by_dev(type, dev, &vq) == 0) {
928 		vgone(vq);
929 	}
930 }
931 
932 /*
933  * Eliminate all activity associated with a vnode in preparation for
934  * reuse.  Drops a reference from the vnode.
935  */
936 void
937 vgone(vnode_t *vp)
938 {
939 
940 	if (vn_lock(vp, LK_EXCLUSIVE) != 0) {
941 		VSTATE_ASSERT(vp, VS_RECLAIMED);
942 		vrele(vp);
943 	}
944 
945 	mutex_enter(vp->v_interlock);
946 	vcache_reclaim(vp);
947 	vrelel(vp, 0);
948 }
949 
950 static inline uint32_t
951 vcache_hash(const struct vcache_key *key)
952 {
953 	uint32_t hash = HASH32_BUF_INIT;
954 
955 	hash = hash32_buf(&key->vk_mount, sizeof(struct mount *), hash);
956 	hash = hash32_buf(key->vk_key, key->vk_key_len, hash);
957 	return hash;
958 }
959 
960 static void
961 vcache_init(void)
962 {
963 
964 	vcache_pool = pool_cache_init(sizeof(vnode_impl_t), 0, 0, 0,
965 	    "vcachepl", NULL, IPL_NONE, NULL, NULL, NULL);
966 	KASSERT(vcache_pool != NULL);
967 	mutex_init(&vcache_lock, MUTEX_DEFAULT, IPL_NONE);
968 	cv_init(&vcache_cv, "vcache");
969 	vcache_hashsize = desiredvnodes;
970 	vcache_hashtab = hashinit(desiredvnodes, HASH_SLIST, true,
971 	    &vcache_hashmask);
972 }
973 
974 static void
975 vcache_reinit(void)
976 {
977 	int i;
978 	uint32_t hash;
979 	u_long oldmask, newmask;
980 	struct hashhead *oldtab, *newtab;
981 	vnode_impl_t *vip;
982 
983 	newtab = hashinit(desiredvnodes, HASH_SLIST, true, &newmask);
984 	mutex_enter(&vcache_lock);
985 	oldtab = vcache_hashtab;
986 	oldmask = vcache_hashmask;
987 	vcache_hashsize = desiredvnodes;
988 	vcache_hashtab = newtab;
989 	vcache_hashmask = newmask;
990 	for (i = 0; i <= oldmask; i++) {
991 		while ((vip = SLIST_FIRST(&oldtab[i])) != NULL) {
992 			SLIST_REMOVE(&oldtab[i], vip, vnode_impl, vi_hash);
993 			hash = vcache_hash(&vip->vi_key);
994 			SLIST_INSERT_HEAD(&newtab[hash & vcache_hashmask],
995 			    vip, vi_hash);
996 		}
997 	}
998 	mutex_exit(&vcache_lock);
999 	hashdone(oldtab, HASH_SLIST, oldmask);
1000 }
1001 
1002 static inline vnode_impl_t *
1003 vcache_hash_lookup(const struct vcache_key *key, uint32_t hash)
1004 {
1005 	struct hashhead *hashp;
1006 	vnode_impl_t *vip;
1007 
1008 	KASSERT(mutex_owned(&vcache_lock));
1009 
1010 	hashp = &vcache_hashtab[hash & vcache_hashmask];
1011 	SLIST_FOREACH(vip, hashp, vi_hash) {
1012 		if (key->vk_mount != vip->vi_key.vk_mount)
1013 			continue;
1014 		if (key->vk_key_len != vip->vi_key.vk_key_len)
1015 			continue;
1016 		if (memcmp(key->vk_key, vip->vi_key.vk_key, key->vk_key_len))
1017 			continue;
1018 		return vip;
1019 	}
1020 	return NULL;
1021 }
1022 
1023 /*
1024  * Allocate a new, uninitialized vcache node.
1025  */
1026 static vnode_impl_t *
1027 vcache_alloc(void)
1028 {
1029 	vnode_impl_t *vip;
1030 	vnode_t *vp;
1031 
1032 	vip = pool_cache_get(vcache_pool, PR_WAITOK);
1033 	memset(vip, 0, sizeof(*vip));
1034 
1035 	rw_init(&vip->vi_lock);
1036 	/* SLIST_INIT(&vip->vi_hash); */
1037 	/* LIST_INIT(&vip->vi_nclist); */
1038 	/* LIST_INIT(&vip->vi_dnclist); */
1039 
1040 	vp = VIMPL_TO_VNODE(vip);
1041 	uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 0);
1042 	cv_init(&vp->v_cv, "vnode");
1043 
1044 	vp->v_usecount = 1;
1045 	vp->v_type = VNON;
1046 	vp->v_size = vp->v_writesize = VSIZENOTSET;
1047 
1048 	vip->vi_state = VS_LOADING;
1049 
1050 	lru_requeue(vp, &lru_free_list);
1051 
1052 	return vip;
1053 }
1054 
1055 /*
1056  * Free an unused, unreferenced vcache node.
1057  * v_interlock locked on entry.
1058  */
1059 static void
1060 vcache_free(vnode_impl_t *vip)
1061 {
1062 	vnode_t *vp;
1063 
1064 	vp = VIMPL_TO_VNODE(vip);
1065 	KASSERT(mutex_owned(vp->v_interlock));
1066 
1067 	KASSERT(vp->v_usecount == 0);
1068 	KASSERT(vp->v_holdcnt == 0);
1069 	KASSERT(vp->v_writecount == 0);
1070 	lru_requeue(vp, NULL);
1071 	mutex_exit(vp->v_interlock);
1072 
1073 	vfs_insmntque(vp, NULL);
1074 	if (vp->v_type == VBLK || vp->v_type == VCHR)
1075 		spec_node_destroy(vp);
1076 
1077 	rw_destroy(&vip->vi_lock);
1078 	uvm_obj_destroy(&vp->v_uobj, true);
1079 	cv_destroy(&vp->v_cv);
1080 	pool_cache_put(vcache_pool, vip);
1081 }
1082 
1083 /*
1084  * Try to get an initial reference on this cached vnode.
1085  * Returns zero on success,  ENOENT if the vnode has been reclaimed and
1086  * EBUSY if the vnode state is unstable.
1087  *
1088  * v_interlock locked on entry and unlocked on exit.
1089  */
1090 int
1091 vcache_tryvget(vnode_t *vp)
1092 {
1093 	int error = 0;
1094 
1095 	KASSERT(mutex_owned(vp->v_interlock));
1096 
1097 	if (__predict_false(VSTATE_GET(vp) == VS_RECLAIMED))
1098 		error = ENOENT;
1099 	else if (__predict_false(VSTATE_GET(vp) != VS_ACTIVE))
1100 		error = EBUSY;
1101 	else if (vp->v_usecount == 0)
1102 		vp->v_usecount = 1;
1103 	else
1104 		atomic_inc_uint(&vp->v_usecount);
1105 
1106 	mutex_exit(vp->v_interlock);
1107 
1108 	return error;
1109 }
1110 
1111 /*
1112  * Try to get an initial reference on this cached vnode.
1113  * Returns zero on success and  ENOENT if the vnode has been reclaimed.
1114  * Will wait for the vnode state to be stable.
1115  *
1116  * v_interlock locked on entry and unlocked on exit.
1117  */
1118 int
1119 vcache_vget(vnode_t *vp)
1120 {
1121 
1122 	KASSERT(mutex_owned(vp->v_interlock));
1123 
1124 	/* Increment hold count to prevent vnode from disappearing. */
1125 	vp->v_holdcnt++;
1126 	VSTATE_WAIT_STABLE(vp);
1127 	vp->v_holdcnt--;
1128 
1129 	/* If this was the last reference to a reclaimed vnode free it now. */
1130 	if (__predict_false(VSTATE_GET(vp) == VS_RECLAIMED)) {
1131 		if (vp->v_holdcnt == 0 && vp->v_usecount == 0)
1132 			vcache_free(VNODE_TO_VIMPL(vp));
1133 		else
1134 			mutex_exit(vp->v_interlock);
1135 		return ENOENT;
1136 	}
1137 	VSTATE_ASSERT(vp, VS_ACTIVE);
1138 	if (vp->v_usecount == 0)
1139 		vp->v_usecount = 1;
1140 	else
1141 		atomic_inc_uint(&vp->v_usecount);
1142 
1143 	mutex_exit(vp->v_interlock);
1144 
1145 	return 0;
1146 }
1147 
1148 /*
1149  * Get a vnode / fs node pair by key and return it referenced through vpp.
1150  */
1151 int
1152 vcache_get(struct mount *mp, const void *key, size_t key_len,
1153     struct vnode **vpp)
1154 {
1155 	int error;
1156 	uint32_t hash;
1157 	const void *new_key;
1158 	struct vnode *vp;
1159 	struct vcache_key vcache_key;
1160 	vnode_impl_t *vip, *new_vip;
1161 
1162 	new_key = NULL;
1163 	*vpp = NULL;
1164 
1165 	vcache_key.vk_mount = mp;
1166 	vcache_key.vk_key = key;
1167 	vcache_key.vk_key_len = key_len;
1168 	hash = vcache_hash(&vcache_key);
1169 
1170 again:
1171 	mutex_enter(&vcache_lock);
1172 	vip = vcache_hash_lookup(&vcache_key, hash);
1173 
1174 	/* If found, take a reference or retry. */
1175 	if (__predict_true(vip != NULL)) {
1176 		/*
1177 		 * If the vnode is loading we cannot take the v_interlock
1178 		 * here as it might change during load (see uvm_obj_setlock()).
1179 		 * As changing state from VS_LOADING requires both vcache_lock
1180 		 * and v_interlock it is safe to test with vcache_lock held.
1181 		 *
1182 		 * Wait for vnodes changing state from VS_LOADING and retry.
1183 		 */
1184 		if (__predict_false(vip->vi_state == VS_LOADING)) {
1185 			cv_wait(&vcache_cv, &vcache_lock);
1186 			mutex_exit(&vcache_lock);
1187 			goto again;
1188 		}
1189 		vp = VIMPL_TO_VNODE(vip);
1190 		mutex_enter(vp->v_interlock);
1191 		mutex_exit(&vcache_lock);
1192 		error = vcache_vget(vp);
1193 		if (error == ENOENT)
1194 			goto again;
1195 		if (error == 0)
1196 			*vpp = vp;
1197 		KASSERT((error != 0) == (*vpp == NULL));
1198 		return error;
1199 	}
1200 	mutex_exit(&vcache_lock);
1201 
1202 	/* Allocate and initialize a new vcache / vnode pair. */
1203 	error = vfs_busy(mp, NULL);
1204 	if (error)
1205 		return error;
1206 	new_vip = vcache_alloc();
1207 	new_vip->vi_key = vcache_key;
1208 	vp = VIMPL_TO_VNODE(new_vip);
1209 	mutex_enter(&vcache_lock);
1210 	vip = vcache_hash_lookup(&vcache_key, hash);
1211 	if (vip == NULL) {
1212 		SLIST_INSERT_HEAD(&vcache_hashtab[hash & vcache_hashmask],
1213 		    new_vip, vi_hash);
1214 		vip = new_vip;
1215 	}
1216 
1217 	/* If another thread beat us inserting this node, retry. */
1218 	if (vip != new_vip) {
1219 		mutex_enter(vp->v_interlock);
1220 		VSTATE_CHANGE(vp, VS_LOADING, VS_RECLAIMED);
1221 		mutex_exit(&vcache_lock);
1222 		vrelel(vp, 0);
1223 		vfs_unbusy(mp, false, NULL);
1224 		goto again;
1225 	}
1226 	mutex_exit(&vcache_lock);
1227 
1228 	/* Load the fs node.  Exclusive as new_node is VS_LOADING. */
1229 	error = VFS_LOADVNODE(mp, vp, key, key_len, &new_key);
1230 	if (error) {
1231 		mutex_enter(&vcache_lock);
1232 		SLIST_REMOVE(&vcache_hashtab[hash & vcache_hashmask],
1233 		    new_vip, vnode_impl, vi_hash);
1234 		mutex_enter(vp->v_interlock);
1235 		VSTATE_CHANGE(vp, VS_LOADING, VS_RECLAIMED);
1236 		mutex_exit(&vcache_lock);
1237 		vrelel(vp, 0);
1238 		vfs_unbusy(mp, false, NULL);
1239 		KASSERT(*vpp == NULL);
1240 		return error;
1241 	}
1242 	KASSERT(new_key != NULL);
1243 	KASSERT(memcmp(key, new_key, key_len) == 0);
1244 	KASSERT(vp->v_op != NULL);
1245 	vfs_insmntque(vp, mp);
1246 	if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
1247 		vp->v_vflag |= VV_MPSAFE;
1248 	vfs_unbusy(mp, true, NULL);
1249 
1250 	/* Finished loading, finalize node. */
1251 	mutex_enter(&vcache_lock);
1252 	new_vip->vi_key.vk_key = new_key;
1253 	mutex_enter(vp->v_interlock);
1254 	VSTATE_CHANGE(vp, VS_LOADING, VS_ACTIVE);
1255 	mutex_exit(vp->v_interlock);
1256 	mutex_exit(&vcache_lock);
1257 	*vpp = vp;
1258 	return 0;
1259 }
1260 
1261 /*
1262  * Create a new vnode / fs node pair and return it referenced through vpp.
1263  */
1264 int
1265 vcache_new(struct mount *mp, struct vnode *dvp, struct vattr *vap,
1266     kauth_cred_t cred, struct vnode **vpp)
1267 {
1268 	int error;
1269 	uint32_t hash;
1270 	struct vnode *vp, *ovp;
1271 	vnode_impl_t *vip, *ovip;
1272 
1273 	*vpp = NULL;
1274 
1275 	/* Allocate and initialize a new vcache / vnode pair. */
1276 	error = vfs_busy(mp, NULL);
1277 	if (error)
1278 		return error;
1279 	vip = vcache_alloc();
1280 	vip->vi_key.vk_mount = mp;
1281 	vp = VIMPL_TO_VNODE(vip);
1282 
1283 	/* Create and load the fs node. */
1284 	error = VFS_NEWVNODE(mp, dvp, vp, vap, cred,
1285 	    &vip->vi_key.vk_key_len, &vip->vi_key.vk_key);
1286 	if (error) {
1287 		mutex_enter(&vcache_lock);
1288 		mutex_enter(vp->v_interlock);
1289 		VSTATE_CHANGE(vp, VS_LOADING, VS_RECLAIMED);
1290 		mutex_exit(&vcache_lock);
1291 		vrelel(vp, 0);
1292 		vfs_unbusy(mp, false, NULL);
1293 		KASSERT(*vpp == NULL);
1294 		return error;
1295 	}
1296 	KASSERT(vip->vi_key.vk_key != NULL);
1297 	KASSERT(vp->v_op != NULL);
1298 	hash = vcache_hash(&vip->vi_key);
1299 
1300 	/* Wait for previous instance to be reclaimed, then insert new node. */
1301 	mutex_enter(&vcache_lock);
1302 	while ((ovip = vcache_hash_lookup(&vip->vi_key, hash))) {
1303 		ovp = VIMPL_TO_VNODE(ovip);
1304 		mutex_enter(ovp->v_interlock);
1305 		mutex_exit(&vcache_lock);
1306 		error = vcache_vget(ovp);
1307 		KASSERT(error == ENOENT);
1308 		mutex_enter(&vcache_lock);
1309 	}
1310 	SLIST_INSERT_HEAD(&vcache_hashtab[hash & vcache_hashmask],
1311 	    vip, vi_hash);
1312 	mutex_exit(&vcache_lock);
1313 	vfs_insmntque(vp, mp);
1314 	if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
1315 		vp->v_vflag |= VV_MPSAFE;
1316 	vfs_unbusy(mp, true, NULL);
1317 
1318 	/* Finished loading, finalize node. */
1319 	mutex_enter(&vcache_lock);
1320 	mutex_enter(vp->v_interlock);
1321 	VSTATE_CHANGE(vp, VS_LOADING, VS_ACTIVE);
1322 	mutex_exit(&vcache_lock);
1323 	mutex_exit(vp->v_interlock);
1324 	*vpp = vp;
1325 	return 0;
1326 }
1327 
1328 /*
1329  * Prepare key change: update old cache nodes key and lock new cache node.
1330  * Return an error if the new node already exists.
1331  */
1332 int
1333 vcache_rekey_enter(struct mount *mp, struct vnode *vp,
1334     const void *old_key, size_t old_key_len,
1335     const void *new_key, size_t new_key_len)
1336 {
1337 	uint32_t old_hash, new_hash;
1338 	struct vcache_key old_vcache_key, new_vcache_key;
1339 	vnode_impl_t *vip, *new_vip;
1340 	struct vnode *new_vp;
1341 
1342 	old_vcache_key.vk_mount = mp;
1343 	old_vcache_key.vk_key = old_key;
1344 	old_vcache_key.vk_key_len = old_key_len;
1345 	old_hash = vcache_hash(&old_vcache_key);
1346 
1347 	new_vcache_key.vk_mount = mp;
1348 	new_vcache_key.vk_key = new_key;
1349 	new_vcache_key.vk_key_len = new_key_len;
1350 	new_hash = vcache_hash(&new_vcache_key);
1351 
1352 	new_vip = vcache_alloc();
1353 	new_vip->vi_key = new_vcache_key;
1354 	new_vp = VIMPL_TO_VNODE(new_vip);
1355 
1356 	/* Insert locked new node used as placeholder. */
1357 	mutex_enter(&vcache_lock);
1358 	vip = vcache_hash_lookup(&new_vcache_key, new_hash);
1359 	if (vip != NULL) {
1360 		mutex_enter(new_vp->v_interlock);
1361 		VSTATE_CHANGE(new_vp, VS_LOADING, VS_RECLAIMED);
1362 		mutex_exit(&vcache_lock);
1363 		vrelel(new_vp, 0);
1364 		return EEXIST;
1365 	}
1366 	SLIST_INSERT_HEAD(&vcache_hashtab[new_hash & vcache_hashmask],
1367 	    new_vip, vi_hash);
1368 
1369 	/* Replace old nodes key with the temporary copy. */
1370 	vip = vcache_hash_lookup(&old_vcache_key, old_hash);
1371 	KASSERT(vip != NULL);
1372 	KASSERT(VIMPL_TO_VNODE(vip) == vp);
1373 	KASSERT(vip->vi_key.vk_key != old_vcache_key.vk_key);
1374 	vip->vi_key = old_vcache_key;
1375 	mutex_exit(&vcache_lock);
1376 	return 0;
1377 }
1378 
1379 /*
1380  * Key change complete: update old node and remove placeholder.
1381  */
1382 void
1383 vcache_rekey_exit(struct mount *mp, struct vnode *vp,
1384     const void *old_key, size_t old_key_len,
1385     const void *new_key, size_t new_key_len)
1386 {
1387 	uint32_t old_hash, new_hash;
1388 	struct vcache_key old_vcache_key, new_vcache_key;
1389 	vnode_impl_t *vip, *new_vip;
1390 	struct vnode *new_vp;
1391 
1392 	old_vcache_key.vk_mount = mp;
1393 	old_vcache_key.vk_key = old_key;
1394 	old_vcache_key.vk_key_len = old_key_len;
1395 	old_hash = vcache_hash(&old_vcache_key);
1396 
1397 	new_vcache_key.vk_mount = mp;
1398 	new_vcache_key.vk_key = new_key;
1399 	new_vcache_key.vk_key_len = new_key_len;
1400 	new_hash = vcache_hash(&new_vcache_key);
1401 
1402 	mutex_enter(&vcache_lock);
1403 
1404 	/* Lookup old and new node. */
1405 	vip = vcache_hash_lookup(&old_vcache_key, old_hash);
1406 	KASSERT(vip != NULL);
1407 	KASSERT(VIMPL_TO_VNODE(vip) == vp);
1408 
1409 	new_vip = vcache_hash_lookup(&new_vcache_key, new_hash);
1410 	KASSERT(new_vip != NULL);
1411 	KASSERT(new_vip->vi_key.vk_key_len == new_key_len);
1412 	new_vp = VIMPL_TO_VNODE(new_vip);
1413 	mutex_enter(new_vp->v_interlock);
1414 	VSTATE_ASSERT(VIMPL_TO_VNODE(new_vip), VS_LOADING);
1415 
1416 	/* Rekey old node and put it onto its new hashlist. */
1417 	vip->vi_key = new_vcache_key;
1418 	if (old_hash != new_hash) {
1419 		SLIST_REMOVE(&vcache_hashtab[old_hash & vcache_hashmask],
1420 		    vip, vnode_impl, vi_hash);
1421 		SLIST_INSERT_HEAD(&vcache_hashtab[new_hash & vcache_hashmask],
1422 		    vip, vi_hash);
1423 	}
1424 
1425 	/* Remove new node used as placeholder. */
1426 	SLIST_REMOVE(&vcache_hashtab[new_hash & vcache_hashmask],
1427 	    new_vip, vnode_impl, vi_hash);
1428 	VSTATE_CHANGE(new_vp, VS_LOADING, VS_RECLAIMED);
1429 	mutex_exit(&vcache_lock);
1430 	vrelel(new_vp, 0);
1431 }
1432 
1433 /*
1434  * Disassociate the underlying file system from a vnode.
1435  *
1436  * Must be called with vnode locked and will return unlocked.
1437  * Must be called with the interlock held, and will return with it held.
1438  */
1439 static void
1440 vcache_reclaim(vnode_t *vp)
1441 {
1442 	lwp_t *l = curlwp;
1443 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
1444 	uint32_t hash;
1445 	uint8_t temp_buf[64], *temp_key;
1446 	size_t temp_key_len;
1447 	bool recycle, active;
1448 	int error;
1449 
1450 	KASSERT((vp->v_vflag & VV_LOCKSWORK) == 0 ||
1451 	    VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
1452 	KASSERT(mutex_owned(vp->v_interlock));
1453 	KASSERT(vp->v_usecount != 0);
1454 
1455 	active = (vp->v_usecount > 1);
1456 	temp_key_len = vip->vi_key.vk_key_len;
1457 	/*
1458 	 * Prevent the vnode from being recycled or brought into use
1459 	 * while we clean it out.
1460 	 */
1461 	VSTATE_CHANGE(vp, VS_ACTIVE, VS_RECLAIMING);
1462 	if (vp->v_iflag & VI_EXECMAP) {
1463 		atomic_add_int(&uvmexp.execpages, -vp->v_uobj.uo_npages);
1464 		atomic_add_int(&uvmexp.filepages, vp->v_uobj.uo_npages);
1465 	}
1466 	vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP);
1467 	mutex_exit(vp->v_interlock);
1468 
1469 	/* Replace the vnode key with a temporary copy. */
1470 	if (vip->vi_key.vk_key_len > sizeof(temp_buf)) {
1471 		temp_key = kmem_alloc(temp_key_len, KM_SLEEP);
1472 	} else {
1473 		temp_key = temp_buf;
1474 	}
1475 	mutex_enter(&vcache_lock);
1476 	memcpy(temp_key, vip->vi_key.vk_key, temp_key_len);
1477 	vip->vi_key.vk_key = temp_key;
1478 	mutex_exit(&vcache_lock);
1479 
1480 	/*
1481 	 * Clean out any cached data associated with the vnode.
1482 	 * If purging an active vnode, it must be closed and
1483 	 * deactivated before being reclaimed.
1484 	 */
1485 	error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0);
1486 	if (error != 0) {
1487 		if (wapbl_vphaswapbl(vp))
1488 			WAPBL_DISCARD(wapbl_vptomp(vp));
1489 		error = vinvalbuf(vp, 0, NOCRED, l, 0, 0);
1490 	}
1491 	KASSERTMSG((error == 0), "vinvalbuf failed: %d", error);
1492 	KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1493 	if (active && (vp->v_type == VBLK || vp->v_type == VCHR)) {
1494 		 spec_node_revoke(vp);
1495 	}
1496 
1497 	/*
1498 	 * Disassociate the underlying file system from the vnode.
1499 	 * Note that the VOP_INACTIVE will unlock the vnode.
1500 	 */
1501 	VOP_INACTIVE(vp, &recycle);
1502 	if (VOP_RECLAIM(vp)) {
1503 		vnpanic(vp, "%s: cannot reclaim", __func__);
1504 	}
1505 
1506 	KASSERT(vp->v_data == NULL);
1507 	KASSERT(vp->v_uobj.uo_npages == 0);
1508 
1509 	if (vp->v_type == VREG && vp->v_ractx != NULL) {
1510 		uvm_ra_freectx(vp->v_ractx);
1511 		vp->v_ractx = NULL;
1512 	}
1513 
1514 	/* Purge name cache. */
1515 	cache_purge(vp);
1516 
1517 	/* Move to dead mount. */
1518 	vp->v_vflag &= ~VV_ROOT;
1519 	atomic_inc_uint(&dead_rootmount->mnt_refcnt);
1520 	vfs_insmntque(vp, dead_rootmount);
1521 
1522 	/* Remove from vnode cache. */
1523 	hash = vcache_hash(&vip->vi_key);
1524 	mutex_enter(&vcache_lock);
1525 	KASSERT(vip == vcache_hash_lookup(&vip->vi_key, hash));
1526 	SLIST_REMOVE(&vcache_hashtab[hash & vcache_hashmask],
1527 	    vip, vnode_impl, vi_hash);
1528 	mutex_exit(&vcache_lock);
1529 	if (temp_key != temp_buf)
1530 		kmem_free(temp_key, temp_key_len);
1531 
1532 	/* Done with purge, notify sleepers of the grim news. */
1533 	mutex_enter(vp->v_interlock);
1534 	vp->v_op = dead_vnodeop_p;
1535 	vp->v_vflag |= VV_LOCKSWORK;
1536 	VSTATE_CHANGE(vp, VS_RECLAIMING, VS_RECLAIMED);
1537 	vp->v_tag = VT_NON;
1538 	KNOTE(&vp->v_klist, NOTE_REVOKE);
1539 
1540 	KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1541 }
1542 
1543 /*
1544  * Update outstanding I/O count and do wakeup if requested.
1545  */
1546 void
1547 vwakeup(struct buf *bp)
1548 {
1549 	vnode_t *vp;
1550 
1551 	if ((vp = bp->b_vp) == NULL)
1552 		return;
1553 
1554 	KASSERT(bp->b_objlock == vp->v_interlock);
1555 	KASSERT(mutex_owned(bp->b_objlock));
1556 
1557 	if (--vp->v_numoutput < 0)
1558 		vnpanic(vp, "%s: neg numoutput, vp %p", __func__, vp);
1559 	if (vp->v_numoutput == 0)
1560 		cv_broadcast(&vp->v_cv);
1561 }
1562 
1563 /*
1564  * Test a vnode for being or becoming dead.  Returns one of:
1565  * EBUSY:  vnode is becoming dead, with "flags == VDEAD_NOWAIT" only.
1566  * ENOENT: vnode is dead.
1567  * 0:      otherwise.
1568  *
1569  * Whenever this function returns a non-zero value all future
1570  * calls will also return a non-zero value.
1571  */
1572 int
1573 vdead_check(struct vnode *vp, int flags)
1574 {
1575 
1576 	KASSERT(mutex_owned(vp->v_interlock));
1577 
1578 	if (! ISSET(flags, VDEAD_NOWAIT))
1579 		VSTATE_WAIT_STABLE(vp);
1580 
1581 	if (VSTATE_GET(vp) == VS_RECLAIMING) {
1582 		KASSERT(ISSET(flags, VDEAD_NOWAIT));
1583 		return EBUSY;
1584 	} else if (VSTATE_GET(vp) == VS_RECLAIMED) {
1585 		return ENOENT;
1586 	}
1587 
1588 	return 0;
1589 }
1590 
1591 int
1592 vfs_drainvnodes(void)
1593 {
1594 	int i, gen;
1595 
1596 	mutex_enter(&vdrain_lock);
1597 	for (i = 0; i < 2; i++) {
1598 		gen = vdrain_gen;
1599 		while (gen == vdrain_gen) {
1600 			cv_broadcast(&vdrain_cv);
1601 			cv_wait(&vdrain_gen_cv, &vdrain_lock);
1602 		}
1603 	}
1604 	mutex_exit(&vdrain_lock);
1605 
1606 	if (numvnodes >= desiredvnodes)
1607 		return EBUSY;
1608 
1609 	if (vcache_hashsize != desiredvnodes)
1610 		vcache_reinit();
1611 
1612 	return 0;
1613 }
1614 
1615 void
1616 vnpanic(vnode_t *vp, const char *fmt, ...)
1617 {
1618 	va_list ap;
1619 
1620 #ifdef DIAGNOSTIC
1621 	vprint(NULL, vp);
1622 #endif
1623 	va_start(ap, fmt);
1624 	vpanic(fmt, ap);
1625 	va_end(ap);
1626 }
1627