xref: /netbsd-src/sys/kern/vfs_subr.c (revision cac8e449158efc7261bebc8657cbb0125a2cfdde)
1 /*	$NetBSD: vfs_subr.c,v 1.355 2008/07/31 05:38:05 simonb Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)vfs_subr.c	8.13 (Berkeley) 4/18/94
67  */
68 
69 /*
70  * Note on v_usecount and locking:
71  *
72  * At nearly all points it is known that v_usecount could be zero, the
73  * vnode interlock will be held.
74  *
75  * To change v_usecount away from zero, the interlock must be held.  To
76  * change from a non-zero value to zero, again the interlock must be
77  * held.
78  *
79  * Changing the usecount from a non-zero value to a non-zero value can
80  * safely be done using atomic operations, without the interlock held.
81  */
82 
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: vfs_subr.c,v 1.355 2008/07/31 05:38:05 simonb Exp $");
85 
86 #include "opt_ddb.h"
87 #include "opt_compat_netbsd.h"
88 #include "opt_compat_43.h"
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/proc.h>
93 #include <sys/kernel.h>
94 #include <sys/mount.h>
95 #include <sys/fcntl.h>
96 #include <sys/vnode.h>
97 #include <sys/stat.h>
98 #include <sys/namei.h>
99 #include <sys/ucred.h>
100 #include <sys/buf.h>
101 #include <sys/errno.h>
102 #include <sys/malloc.h>
103 #include <sys/syscallargs.h>
104 #include <sys/device.h>
105 #include <sys/filedesc.h>
106 #include <sys/kauth.h>
107 #include <sys/atomic.h>
108 #include <sys/kthread.h>
109 #include <sys/wapbl.h>
110 
111 #include <miscfs/specfs/specdev.h>
112 #include <miscfs/syncfs/syncfs.h>
113 
114 #include <uvm/uvm.h>
115 #include <uvm/uvm_readahead.h>
116 #include <uvm/uvm_ddb.h>
117 
118 #include <sys/sysctl.h>
119 
120 const enum vtype iftovt_tab[16] = {
121 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
122 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
123 };
124 const int	vttoif_tab[9] = {
125 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
126 	S_IFSOCK, S_IFIFO, S_IFMT,
127 };
128 
129 /*
130  * Insq/Remq for the vnode usage lists.
131  */
132 #define	bufinsvn(bp, dp)	LIST_INSERT_HEAD(dp, bp, b_vnbufs)
133 #define	bufremvn(bp) {							\
134 	LIST_REMOVE(bp, b_vnbufs);					\
135 	(bp)->b_vnbufs.le_next = NOLIST;				\
136 }
137 
138 int doforce = 1;		/* 1 => permit forcible unmounting */
139 int prtactive = 0;		/* 1 => print out reclaim of active vnodes */
140 
141 extern int dovfsusermount;	/* 1 => permit any user to mount filesystems */
142 extern int vfs_magiclinks;	/* 1 => expand "magic" symlinks */
143 
144 static vnodelst_t vnode_free_list = TAILQ_HEAD_INITIALIZER(vnode_free_list);
145 static vnodelst_t vnode_hold_list = TAILQ_HEAD_INITIALIZER(vnode_hold_list);
146 static vnodelst_t vrele_list = TAILQ_HEAD_INITIALIZER(vrele_list);
147 
148 struct mntlist mountlist =			/* mounted filesystem list */
149     CIRCLEQ_HEAD_INITIALIZER(mountlist);
150 
151 u_int numvnodes;
152 static specificdata_domain_t mount_specificdata_domain;
153 
154 static int vrele_pending;
155 static int vrele_gen;
156 static kmutex_t	vrele_lock;
157 static kcondvar_t vrele_cv;
158 static lwp_t *vrele_lwp;
159 
160 kmutex_t mountlist_lock;
161 kmutex_t mntid_lock;
162 kmutex_t mntvnode_lock;
163 kmutex_t vnode_free_list_lock;
164 kmutex_t specfs_lock;
165 kmutex_t vfs_list_lock;
166 
167 static pool_cache_t vnode_cache;
168 
169 MALLOC_DEFINE(M_VNODE, "vnodes", "Dynamically allocated vnodes");
170 
171 /*
172  * These define the root filesystem and device.
173  */
174 struct vnode *rootvnode;
175 struct device *root_device;			/* root device */
176 
177 /*
178  * Local declarations.
179  */
180 
181 static void vrele_thread(void *);
182 static void insmntque(vnode_t *, struct mount *);
183 static int getdevvp(dev_t, vnode_t **, enum vtype);
184 static vnode_t *getcleanvnode(void);;
185 void vpanic(vnode_t *, const char *);
186 
187 #ifdef DEBUG
188 void printlockedvnodes(void);
189 #endif
190 
191 #ifdef DIAGNOSTIC
192 void
193 vpanic(vnode_t *vp, const char *msg)
194 {
195 
196 	vprint(NULL, vp);
197 	panic("%s\n", msg);
198 }
199 #else
200 #define	vpanic(vp, msg)	/* nothing */
201 #endif
202 
203 void
204 vn_init1(void)
205 {
206 
207 	vnode_cache = pool_cache_init(sizeof(struct vnode), 0, 0, 0, "vnodepl",
208 	    NULL, IPL_NONE, NULL, NULL, NULL);
209 	KASSERT(vnode_cache != NULL);
210 
211 	/* Create deferred release thread. */
212 	mutex_init(&vrele_lock, MUTEX_DEFAULT, IPL_NONE);
213 	cv_init(&vrele_cv, "vrele");
214 	if (kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vrele_thread,
215 	    NULL, &vrele_lwp, "vrele"))
216 		panic("fork vrele");
217 }
218 
219 /*
220  * Initialize the vnode management data structures.
221  */
222 void
223 vntblinit(void)
224 {
225 
226 	mutex_init(&mountlist_lock, MUTEX_DEFAULT, IPL_NONE);
227 	mutex_init(&mntid_lock, MUTEX_DEFAULT, IPL_NONE);
228 	mutex_init(&mntvnode_lock, MUTEX_DEFAULT, IPL_NONE);
229 	mutex_init(&vnode_free_list_lock, MUTEX_DEFAULT, IPL_NONE);
230 	mutex_init(&specfs_lock, MUTEX_DEFAULT, IPL_NONE);
231 	mutex_init(&vfs_list_lock, MUTEX_DEFAULT, IPL_NONE);
232 
233 	mount_specificdata_domain = specificdata_domain_create();
234 
235 	/* Initialize the filesystem syncer. */
236 	vn_initialize_syncerd();
237 	vn_init1();
238 }
239 
240 int
241 vfs_drainvnodes(long target, struct lwp *l)
242 {
243 
244 	while (numvnodes > target) {
245 		vnode_t *vp;
246 
247 		mutex_enter(&vnode_free_list_lock);
248 		vp = getcleanvnode();
249 		if (vp == NULL)
250 			return EBUSY; /* give up */
251 		ungetnewvnode(vp);
252 	}
253 
254 	return 0;
255 }
256 
257 /*
258  * Lookup a mount point by filesystem identifier.
259  *
260  * XXX Needs to add a reference to the mount point.
261  */
262 struct mount *
263 vfs_getvfs(fsid_t *fsid)
264 {
265 	struct mount *mp;
266 
267 	mutex_enter(&mountlist_lock);
268 	CIRCLEQ_FOREACH(mp, &mountlist, mnt_list) {
269 		if (mp->mnt_stat.f_fsidx.__fsid_val[0] == fsid->__fsid_val[0] &&
270 		    mp->mnt_stat.f_fsidx.__fsid_val[1] == fsid->__fsid_val[1]) {
271 			mutex_exit(&mountlist_lock);
272 			return (mp);
273 		}
274 	}
275 	mutex_exit(&mountlist_lock);
276 	return ((struct mount *)0);
277 }
278 
279 /*
280  * Drop a reference to a mount structure, freeing if the last reference.
281  */
282 void
283 vfs_destroy(struct mount *mp)
284 {
285 
286 	if (__predict_true(atomic_dec_uint_nv(&mp->mnt_refcnt) > 0)) {
287 		return;
288 	}
289 
290 	/*
291 	 * Nothing else has visibility of the mount: we can now
292 	 * free the data structures.
293 	 */
294 	specificdata_fini(mount_specificdata_domain, &mp->mnt_specdataref);
295 	rw_destroy(&mp->mnt_unmounting);
296 	mutex_destroy(&mp->mnt_updating);
297 	mutex_destroy(&mp->mnt_renamelock);
298 	if (mp->mnt_op != NULL) {
299 		vfs_delref(mp->mnt_op);
300 	}
301 	kmem_free(mp, sizeof(*mp));
302 }
303 
304 /*
305  * grab a vnode from freelist and clean it.
306  */
307 vnode_t *
308 getcleanvnode(void)
309 {
310 	vnode_t *vp;
311 	vnodelst_t *listhd;
312 
313 	KASSERT(mutex_owned(&vnode_free_list_lock));
314 
315 retry:
316 	listhd = &vnode_free_list;
317 try_nextlist:
318 	TAILQ_FOREACH(vp, listhd, v_freelist) {
319 		/*
320 		 * It's safe to test v_usecount and v_iflag
321 		 * without holding the interlock here, since
322 		 * these vnodes should never appear on the
323 		 * lists.
324 		 */
325 		if (vp->v_usecount != 0) {
326 			vpanic(vp, "free vnode isn't");
327 		}
328 		if ((vp->v_iflag & VI_CLEAN) != 0) {
329 			vpanic(vp, "clean vnode on freelist");
330 		}
331 		if (vp->v_freelisthd != listhd) {
332 			printf("vnode sez %p, listhd %p\n", vp->v_freelisthd, listhd);
333 			vpanic(vp, "list head mismatch");
334 		}
335 		if (!mutex_tryenter(&vp->v_interlock))
336 			continue;
337 		/*
338 		 * Our lwp might hold the underlying vnode
339 		 * locked, so don't try to reclaim a VI_LAYER
340 		 * node if it's locked.
341 		 */
342 		if ((vp->v_iflag & VI_XLOCK) == 0 &&
343 		    ((vp->v_iflag & VI_LAYER) == 0 || VOP_ISLOCKED(vp) == 0)) {
344 			break;
345 		}
346 		mutex_exit(&vp->v_interlock);
347 	}
348 
349 	if (vp == NULL) {
350 		if (listhd == &vnode_free_list) {
351 			listhd = &vnode_hold_list;
352 			goto try_nextlist;
353 		}
354 		mutex_exit(&vnode_free_list_lock);
355 		return NULL;
356 	}
357 
358 	/* Remove it from the freelist. */
359 	TAILQ_REMOVE(listhd, vp, v_freelist);
360 	vp->v_freelisthd = NULL;
361 	mutex_exit(&vnode_free_list_lock);
362 
363 	/*
364 	 * The vnode is still associated with a file system, so we must
365 	 * clean it out before reusing it.  We need to add a reference
366 	 * before doing this.  If the vnode gains another reference while
367 	 * being cleaned out then we lose - retry.
368 	 */
369 	atomic_inc_uint(&vp->v_usecount);
370 	vclean(vp, DOCLOSE);
371 	if (vp->v_usecount == 1) {
372 		/* We're about to dirty it. */
373 		vp->v_iflag &= ~VI_CLEAN;
374 		mutex_exit(&vp->v_interlock);
375 		if (vp->v_type == VBLK || vp->v_type == VCHR) {
376 			spec_node_destroy(vp);
377 		}
378 		vp->v_type = VNON;
379 	} else {
380 		/*
381 		 * Don't return to freelist - the holder of the last
382 		 * reference will destroy it.
383 		 */
384 		vrelel(vp, 0); /* releases vp->v_interlock */
385 		mutex_enter(&vnode_free_list_lock);
386 		goto retry;
387 	}
388 
389 	if (vp->v_data != NULL || vp->v_uobj.uo_npages != 0 ||
390 	    !TAILQ_EMPTY(&vp->v_uobj.memq)) {
391 		vpanic(vp, "cleaned vnode isn't");
392 	}
393 	if (vp->v_numoutput != 0) {
394 		vpanic(vp, "clean vnode has pending I/O's");
395 	}
396 	if ((vp->v_iflag & VI_ONWORKLST) != 0) {
397 		vpanic(vp, "clean vnode on syncer list");
398 	}
399 
400 	return vp;
401 }
402 
403 /*
404  * Mark a mount point as busy, and gain a new reference to it.  Used to
405  * prevent the file system from being unmounted during critical sections.
406  *
407  * => The caller must hold a pre-existing reference to the mount.
408  * => Will fail if the file system is being unmounted, or is unmounted.
409  */
410 int
411 vfs_busy(struct mount *mp, struct mount **nextp)
412 {
413 
414 	KASSERT(mp->mnt_refcnt > 0);
415 
416 	if (__predict_false(!rw_tryenter(&mp->mnt_unmounting, RW_READER))) {
417 		if (nextp != NULL) {
418 			KASSERT(mutex_owned(&mountlist_lock));
419 			*nextp = CIRCLEQ_NEXT(mp, mnt_list);
420 		}
421 		return EBUSY;
422 	}
423 	if (__predict_false((mp->mnt_iflag & IMNT_GONE) != 0)) {
424 		rw_exit(&mp->mnt_unmounting);
425 		if (nextp != NULL) {
426 			KASSERT(mutex_owned(&mountlist_lock));
427 			*nextp = CIRCLEQ_NEXT(mp, mnt_list);
428 		}
429 		return ENOENT;
430 	}
431 	if (nextp != NULL) {
432 		mutex_exit(&mountlist_lock);
433 	}
434 	atomic_inc_uint(&mp->mnt_refcnt);
435 	return 0;
436 }
437 
438 /*
439  * Unbusy a busy filesystem.
440  *
441  * => If keepref is true, preserve reference added by vfs_busy().
442  * => If nextp != NULL, acquire mountlist_lock.
443  */
444 void
445 vfs_unbusy(struct mount *mp, bool keepref, struct mount **nextp)
446 {
447 
448 	KASSERT(mp->mnt_refcnt > 0);
449 
450 	if (nextp != NULL) {
451 		mutex_enter(&mountlist_lock);
452 	}
453 	rw_exit(&mp->mnt_unmounting);
454 	if (!keepref) {
455 		vfs_destroy(mp);
456 	}
457 	if (nextp != NULL) {
458 		KASSERT(mutex_owned(&mountlist_lock));
459 		*nextp = CIRCLEQ_NEXT(mp, mnt_list);
460 	}
461 }
462 
463 /*
464  * Lookup a filesystem type, and if found allocate and initialize
465  * a mount structure for it.
466  *
467  * Devname is usually updated by mount(8) after booting.
468  */
469 int
470 vfs_rootmountalloc(const char *fstypename, const char *devname,
471     struct mount **mpp)
472 {
473 	struct vfsops *vfsp = NULL;
474 	struct mount *mp;
475 
476 	mutex_enter(&vfs_list_lock);
477 	LIST_FOREACH(vfsp, &vfs_list, vfs_list)
478 		if (!strncmp(vfsp->vfs_name, fstypename,
479 		    sizeof(mp->mnt_stat.f_fstypename)))
480 			break;
481 	if (vfsp == NULL) {
482 		mutex_exit(&vfs_list_lock);
483 		return (ENODEV);
484 	}
485 	vfsp->vfs_refcount++;
486 	mutex_exit(&vfs_list_lock);
487 
488 	mp = kmem_zalloc(sizeof(*mp), KM_SLEEP);
489 	if (mp == NULL)
490 		return ENOMEM;
491 	mp->mnt_refcnt = 1;
492 	rw_init(&mp->mnt_unmounting);
493 	mutex_init(&mp->mnt_updating, MUTEX_DEFAULT, IPL_NONE);
494 	mutex_init(&mp->mnt_renamelock, MUTEX_DEFAULT, IPL_NONE);
495 	(void)vfs_busy(mp, NULL);
496 	TAILQ_INIT(&mp->mnt_vnodelist);
497 	mp->mnt_op = vfsp;
498 	mp->mnt_flag = MNT_RDONLY;
499 	mp->mnt_vnodecovered = NULL;
500 	(void)strlcpy(mp->mnt_stat.f_fstypename, vfsp->vfs_name,
501 	    sizeof(mp->mnt_stat.f_fstypename));
502 	mp->mnt_stat.f_mntonname[0] = '/';
503 	mp->mnt_stat.f_mntonname[1] = '\0';
504 	mp->mnt_stat.f_mntfromname[sizeof(mp->mnt_stat.f_mntfromname) - 1] =
505 	    '\0';
506 	(void)copystr(devname, mp->mnt_stat.f_mntfromname,
507 	    sizeof(mp->mnt_stat.f_mntfromname) - 1, 0);
508 	mount_initspecific(mp);
509 	*mpp = mp;
510 	return (0);
511 }
512 
513 /*
514  * Routines having to do with the management of the vnode table.
515  */
516 extern int (**dead_vnodeop_p)(void *);
517 
518 /*
519  * Return the next vnode from the free list.
520  */
521 int
522 getnewvnode(enum vtagtype tag, struct mount *mp, int (**vops)(void *),
523 	    vnode_t **vpp)
524 {
525 	struct uvm_object *uobj;
526 	static int toggle;
527 	vnode_t *vp;
528 	int error = 0, tryalloc;
529 
530  try_again:
531 	if (mp != NULL) {
532 		/*
533 		 * Mark filesystem busy while we're creating a
534 		 * vnode.  If unmount is in progress, this will
535 		 * fail.
536 		 */
537 		error = vfs_busy(mp, NULL);
538 		if (error)
539 			return error;
540 	}
541 
542 	/*
543 	 * We must choose whether to allocate a new vnode or recycle an
544 	 * existing one. The criterion for allocating a new one is that
545 	 * the total number of vnodes is less than the number desired or
546 	 * there are no vnodes on either free list. Generally we only
547 	 * want to recycle vnodes that have no buffers associated with
548 	 * them, so we look first on the vnode_free_list. If it is empty,
549 	 * we next consider vnodes with referencing buffers on the
550 	 * vnode_hold_list. The toggle ensures that half the time we
551 	 * will use a buffer from the vnode_hold_list, and half the time
552 	 * we will allocate a new one unless the list has grown to twice
553 	 * the desired size. We are reticent to recycle vnodes from the
554 	 * vnode_hold_list because we will lose the identity of all its
555 	 * referencing buffers.
556 	 */
557 
558 	vp = NULL;
559 
560 	mutex_enter(&vnode_free_list_lock);
561 
562 	toggle ^= 1;
563 	if (numvnodes > 2 * desiredvnodes)
564 		toggle = 0;
565 
566 	tryalloc = numvnodes < desiredvnodes ||
567 	    (TAILQ_FIRST(&vnode_free_list) == NULL &&
568 	     (TAILQ_FIRST(&vnode_hold_list) == NULL || toggle));
569 
570 	if (tryalloc) {
571 		numvnodes++;
572 		mutex_exit(&vnode_free_list_lock);
573 		if ((vp = vnalloc(NULL)) == NULL) {
574 			mutex_enter(&vnode_free_list_lock);
575 			numvnodes--;
576 		} else
577 			vp->v_usecount = 1;
578 	}
579 
580 	if (vp == NULL) {
581 		vp = getcleanvnode();
582 		if (vp == NULL) {
583 			if (mp != NULL) {
584 				vfs_unbusy(mp, false, NULL);
585 			}
586 			if (tryalloc) {
587 				printf("WARNING: unable to allocate new "
588 				    "vnode, retrying...\n");
589 				kpause("newvn", false, hz, NULL);
590 				goto try_again;
591 			}
592 			tablefull("vnode", "increase kern.maxvnodes or NVNODE");
593 			*vpp = 0;
594 			return (ENFILE);
595 		}
596 		vp->v_iflag = 0;
597 		vp->v_vflag = 0;
598 		vp->v_uflag = 0;
599 		vp->v_socket = NULL;
600 	}
601 
602 	KASSERT(vp->v_usecount == 1);
603 	KASSERT(vp->v_freelisthd == NULL);
604 	KASSERT(LIST_EMPTY(&vp->v_nclist));
605 	KASSERT(LIST_EMPTY(&vp->v_dnclist));
606 
607 	vp->v_type = VNON;
608 	vp->v_vnlock = &vp->v_lock;
609 	vp->v_tag = tag;
610 	vp->v_op = vops;
611 	insmntque(vp, mp);
612 	*vpp = vp;
613 	vp->v_data = 0;
614 
615 	/*
616 	 * initialize uvm_object within vnode.
617 	 */
618 
619 	uobj = &vp->v_uobj;
620 	KASSERT(uobj->pgops == &uvm_vnodeops);
621 	KASSERT(uobj->uo_npages == 0);
622 	KASSERT(TAILQ_FIRST(&uobj->memq) == NULL);
623 	vp->v_size = vp->v_writesize = VSIZENOTSET;
624 
625 	if (mp != NULL) {
626 		if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
627 			vp->v_vflag |= VV_MPSAFE;
628 		vfs_unbusy(mp, true, NULL);
629 	}
630 
631 	return (0);
632 }
633 
634 /*
635  * This is really just the reverse of getnewvnode(). Needed for
636  * VFS_VGET functions who may need to push back a vnode in case
637  * of a locking race.
638  */
639 void
640 ungetnewvnode(vnode_t *vp)
641 {
642 
643 	KASSERT(vp->v_usecount == 1);
644 	KASSERT(vp->v_data == NULL);
645 	KASSERT(vp->v_freelisthd == NULL);
646 
647 	mutex_enter(&vp->v_interlock);
648 	vp->v_iflag |= VI_CLEAN;
649 	vrelel(vp, 0);
650 }
651 
652 /*
653  * Allocate a new, uninitialized vnode.  If 'mp' is non-NULL, this is a
654  * marker vnode and we are prepared to wait for the allocation.
655  */
656 vnode_t *
657 vnalloc(struct mount *mp)
658 {
659 	vnode_t *vp;
660 
661 	vp = pool_cache_get(vnode_cache, (mp != NULL ? PR_WAITOK : PR_NOWAIT));
662 	if (vp == NULL) {
663 		return NULL;
664 	}
665 
666 	memset(vp, 0, sizeof(*vp));
667 	UVM_OBJ_INIT(&vp->v_uobj, &uvm_vnodeops, 0);
668 	cv_init(&vp->v_cv, "vnode");
669 	/*
670 	 * done by memset() above.
671 	 *	LIST_INIT(&vp->v_nclist);
672 	 *	LIST_INIT(&vp->v_dnclist);
673 	 */
674 
675 	if (mp != NULL) {
676 		vp->v_mount = mp;
677 		vp->v_type = VBAD;
678 		vp->v_iflag = VI_MARKER;
679 	} else {
680 		rw_init(&vp->v_lock.vl_lock);
681 	}
682 
683 	return vp;
684 }
685 
686 /*
687  * Free an unused, unreferenced vnode.
688  */
689 void
690 vnfree(vnode_t *vp)
691 {
692 
693 	KASSERT(vp->v_usecount == 0);
694 
695 	if ((vp->v_iflag & VI_MARKER) == 0) {
696 		rw_destroy(&vp->v_lock.vl_lock);
697 		mutex_enter(&vnode_free_list_lock);
698 		numvnodes--;
699 		mutex_exit(&vnode_free_list_lock);
700 	}
701 
702 	UVM_OBJ_DESTROY(&vp->v_uobj);
703 	cv_destroy(&vp->v_cv);
704 	pool_cache_put(vnode_cache, vp);
705 }
706 
707 /*
708  * Remove a vnode from its freelist.
709  */
710 static inline void
711 vremfree(vnode_t *vp)
712 {
713 
714 	KASSERT(mutex_owned(&vp->v_interlock));
715 	KASSERT(vp->v_usecount == 0);
716 
717 	/*
718 	 * Note that the reference count must not change until
719 	 * the vnode is removed.
720 	 */
721 	mutex_enter(&vnode_free_list_lock);
722 	if (vp->v_holdcnt > 0) {
723 		KASSERT(vp->v_freelisthd == &vnode_hold_list);
724 	} else {
725 		KASSERT(vp->v_freelisthd == &vnode_free_list);
726 	}
727 	TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
728 	vp->v_freelisthd = NULL;
729 	mutex_exit(&vnode_free_list_lock);
730 }
731 
732 /*
733  * Move a vnode from one mount queue to another.
734  */
735 static void
736 insmntque(vnode_t *vp, struct mount *mp)
737 {
738 	struct mount *omp;
739 
740 #ifdef DIAGNOSTIC
741 	if ((mp != NULL) &&
742 	    (mp->mnt_iflag & IMNT_UNMOUNT) &&
743 	    !(mp->mnt_flag & MNT_SOFTDEP) &&
744 	    vp->v_tag != VT_VFS) {
745 		panic("insmntque into dying filesystem");
746 	}
747 #endif
748 
749 	mutex_enter(&mntvnode_lock);
750 	/*
751 	 * Delete from old mount point vnode list, if on one.
752 	 */
753 	if ((omp = vp->v_mount) != NULL)
754 		TAILQ_REMOVE(&vp->v_mount->mnt_vnodelist, vp, v_mntvnodes);
755 	/*
756 	 * Insert into list of vnodes for the new mount point, if
757 	 * available.  The caller must take a reference on the mount
758 	 * structure and donate to the vnode.
759 	 */
760 	if ((vp->v_mount = mp) != NULL)
761 		TAILQ_INSERT_TAIL(&mp->mnt_vnodelist, vp, v_mntvnodes);
762 	mutex_exit(&mntvnode_lock);
763 
764 	if (omp != NULL) {
765 		/* Release reference to old mount. */
766 		vfs_destroy(omp);
767 	}
768 }
769 
770 /*
771  * Wait for a vnode (typically with VI_XLOCK set) to be cleaned or
772  * recycled.
773  */
774 void
775 vwait(vnode_t *vp, int flags)
776 {
777 
778 	KASSERT(mutex_owned(&vp->v_interlock));
779 	KASSERT(vp->v_usecount != 0);
780 
781 	while ((vp->v_iflag & flags) != 0)
782 		cv_wait(&vp->v_cv, &vp->v_interlock);
783 }
784 
785 /*
786  * Insert a marker vnode into a mount's vnode list, after the
787  * specified vnode.  mntvnode_lock must be held.
788  */
789 void
790 vmark(vnode_t *mvp, vnode_t *vp)
791 {
792 	struct mount *mp;
793 
794 	mp = mvp->v_mount;
795 
796 	KASSERT(mutex_owned(&mntvnode_lock));
797 	KASSERT((mvp->v_iflag & VI_MARKER) != 0);
798 	KASSERT(vp->v_mount == mp);
799 
800 	TAILQ_INSERT_AFTER(&mp->mnt_vnodelist, vp, mvp, v_mntvnodes);
801 }
802 
803 /*
804  * Remove a marker vnode from a mount's vnode list, and return
805  * a pointer to the next vnode in the list.  mntvnode_lock must
806  * be held.
807  */
808 vnode_t *
809 vunmark(vnode_t *mvp)
810 {
811 	vnode_t *vp;
812 	struct mount *mp;
813 
814 	mp = mvp->v_mount;
815 
816 	KASSERT(mutex_owned(&mntvnode_lock));
817 	KASSERT((mvp->v_iflag & VI_MARKER) != 0);
818 
819 	vp = TAILQ_NEXT(mvp, v_mntvnodes);
820 	TAILQ_REMOVE(&mp->mnt_vnodelist, mvp, v_mntvnodes);
821 
822 	KASSERT(vp == NULL || vp->v_mount == mp);
823 
824 	return vp;
825 }
826 
827 /*
828  * Update outstanding I/O count and do wakeup if requested.
829  */
830 void
831 vwakeup(struct buf *bp)
832 {
833 	struct vnode *vp;
834 
835 	if ((vp = bp->b_vp) == NULL)
836 		return;
837 
838 	KASSERT(bp->b_objlock == &vp->v_interlock);
839 	KASSERT(mutex_owned(bp->b_objlock));
840 
841 	if (--vp->v_numoutput < 0)
842 		panic("vwakeup: neg numoutput, vp %p", vp);
843 	if (vp->v_numoutput == 0)
844 		cv_broadcast(&vp->v_cv);
845 }
846 
847 /*
848  * Flush out and invalidate all buffers associated with a vnode.
849  * Called with the underlying vnode locked, which should prevent new dirty
850  * buffers from being queued.
851  */
852 int
853 vinvalbuf(struct vnode *vp, int flags, kauth_cred_t cred, struct lwp *l,
854 	  bool catch, int slptimeo)
855 {
856 	struct buf *bp, *nbp;
857 	int error;
858 	int flushflags = PGO_ALLPAGES | PGO_FREE | PGO_SYNCIO |
859 	    (flags & V_SAVE ? PGO_CLEANIT | PGO_RECLAIM : 0);
860 
861 	/* XXXUBC this doesn't look at flags or slp* */
862 	mutex_enter(&vp->v_interlock);
863 	error = VOP_PUTPAGES(vp, 0, 0, flushflags);
864 	if (error) {
865 		return error;
866 	}
867 
868 	if (flags & V_SAVE) {
869 		error = VOP_FSYNC(vp, cred, FSYNC_WAIT|FSYNC_RECLAIM, 0, 0);
870 		if (error)
871 		        return (error);
872 		KASSERT(LIST_EMPTY(&vp->v_dirtyblkhd));
873 	}
874 
875 	mutex_enter(&bufcache_lock);
876 restart:
877 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
878 		nbp = LIST_NEXT(bp, b_vnbufs);
879 		error = bbusy(bp, catch, slptimeo, NULL);
880 		if (error != 0) {
881 			if (error == EPASSTHROUGH)
882 				goto restart;
883 			mutex_exit(&bufcache_lock);
884 			return (error);
885 		}
886 		brelsel(bp, BC_INVAL | BC_VFLUSH);
887 	}
888 
889 	for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
890 		nbp = LIST_NEXT(bp, b_vnbufs);
891 		error = bbusy(bp, catch, slptimeo, NULL);
892 		if (error != 0) {
893 			if (error == EPASSTHROUGH)
894 				goto restart;
895 			mutex_exit(&bufcache_lock);
896 			return (error);
897 		}
898 		/*
899 		 * XXX Since there are no node locks for NFS, I believe
900 		 * there is a slight chance that a delayed write will
901 		 * occur while sleeping just above, so check for it.
902 		 */
903 		if ((bp->b_oflags & BO_DELWRI) && (flags & V_SAVE)) {
904 #ifdef DEBUG
905 			printf("buffer still DELWRI\n");
906 #endif
907 			bp->b_cflags |= BC_BUSY | BC_VFLUSH;
908 			mutex_exit(&bufcache_lock);
909 			VOP_BWRITE(bp);
910 			mutex_enter(&bufcache_lock);
911 			goto restart;
912 		}
913 		brelsel(bp, BC_INVAL | BC_VFLUSH);
914 	}
915 
916 #ifdef DIAGNOSTIC
917 	if (!LIST_EMPTY(&vp->v_cleanblkhd) || !LIST_EMPTY(&vp->v_dirtyblkhd))
918 		panic("vinvalbuf: flush failed, vp %p", vp);
919 #endif
920 
921 	mutex_exit(&bufcache_lock);
922 
923 	return (0);
924 }
925 
926 /*
927  * Destroy any in core blocks past the truncation length.
928  * Called with the underlying vnode locked, which should prevent new dirty
929  * buffers from being queued.
930  */
931 int
932 vtruncbuf(struct vnode *vp, daddr_t lbn, bool catch, int slptimeo)
933 {
934 	struct buf *bp, *nbp;
935 	int error;
936 	voff_t off;
937 
938 	off = round_page((voff_t)lbn << vp->v_mount->mnt_fs_bshift);
939 	mutex_enter(&vp->v_interlock);
940 	error = VOP_PUTPAGES(vp, off, 0, PGO_FREE | PGO_SYNCIO);
941 	if (error) {
942 		return error;
943 	}
944 
945 	mutex_enter(&bufcache_lock);
946 restart:
947 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
948 		nbp = LIST_NEXT(bp, b_vnbufs);
949 		if (bp->b_lblkno < lbn)
950 			continue;
951 		error = bbusy(bp, catch, slptimeo, NULL);
952 		if (error != 0) {
953 			if (error == EPASSTHROUGH)
954 				goto restart;
955 			mutex_exit(&bufcache_lock);
956 			return (error);
957 		}
958 		brelsel(bp, BC_INVAL | BC_VFLUSH);
959 	}
960 
961 	for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
962 		nbp = LIST_NEXT(bp, b_vnbufs);
963 		if (bp->b_lblkno < lbn)
964 			continue;
965 		error = bbusy(bp, catch, slptimeo, NULL);
966 		if (error != 0) {
967 			if (error == EPASSTHROUGH)
968 				goto restart;
969 			mutex_exit(&bufcache_lock);
970 			return (error);
971 		}
972 		brelsel(bp, BC_INVAL | BC_VFLUSH);
973 	}
974 	mutex_exit(&bufcache_lock);
975 
976 	return (0);
977 }
978 
979 /*
980  * Flush all dirty buffers from a vnode.
981  * Called with the underlying vnode locked, which should prevent new dirty
982  * buffers from being queued.
983  */
984 void
985 vflushbuf(struct vnode *vp, int sync)
986 {
987 	struct buf *bp, *nbp;
988 	int flags = PGO_CLEANIT | PGO_ALLPAGES | (sync ? PGO_SYNCIO : 0);
989 	bool dirty;
990 
991 	mutex_enter(&vp->v_interlock);
992 	(void) VOP_PUTPAGES(vp, 0, 0, flags);
993 
994 loop:
995 	mutex_enter(&bufcache_lock);
996 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
997 		nbp = LIST_NEXT(bp, b_vnbufs);
998 		if ((bp->b_cflags & BC_BUSY))
999 			continue;
1000 		if ((bp->b_oflags & BO_DELWRI) == 0)
1001 			panic("vflushbuf: not dirty, bp %p", bp);
1002 		bp->b_cflags |= BC_BUSY | BC_VFLUSH;
1003 		mutex_exit(&bufcache_lock);
1004 		/*
1005 		 * Wait for I/O associated with indirect blocks to complete,
1006 		 * since there is no way to quickly wait for them below.
1007 		 */
1008 		if (bp->b_vp == vp || sync == 0)
1009 			(void) bawrite(bp);
1010 		else
1011 			(void) bwrite(bp);
1012 		goto loop;
1013 	}
1014 	mutex_exit(&bufcache_lock);
1015 
1016 	if (sync == 0)
1017 		return;
1018 
1019 	mutex_enter(&vp->v_interlock);
1020 	while (vp->v_numoutput != 0)
1021 		cv_wait(&vp->v_cv, &vp->v_interlock);
1022 	dirty = !LIST_EMPTY(&vp->v_dirtyblkhd);
1023 	mutex_exit(&vp->v_interlock);
1024 
1025 	if (dirty) {
1026 		vprint("vflushbuf: dirty", vp);
1027 		goto loop;
1028 	}
1029 }
1030 
1031 /*
1032  * Create a vnode for a block device.
1033  * Used for root filesystem and swap areas.
1034  * Also used for memory file system special devices.
1035  */
1036 int
1037 bdevvp(dev_t dev, vnode_t **vpp)
1038 {
1039 
1040 	return (getdevvp(dev, vpp, VBLK));
1041 }
1042 
1043 /*
1044  * Create a vnode for a character device.
1045  * Used for kernfs and some console handling.
1046  */
1047 int
1048 cdevvp(dev_t dev, vnode_t **vpp)
1049 {
1050 
1051 	return (getdevvp(dev, vpp, VCHR));
1052 }
1053 
1054 /*
1055  * Associate a buffer with a vnode.  There must already be a hold on
1056  * the vnode.
1057  */
1058 void
1059 bgetvp(struct vnode *vp, struct buf *bp)
1060 {
1061 
1062 	KASSERT(bp->b_vp == NULL);
1063 	KASSERT(bp->b_objlock == &buffer_lock);
1064 	KASSERT(mutex_owned(&vp->v_interlock));
1065 	KASSERT(mutex_owned(&bufcache_lock));
1066 	KASSERT((bp->b_cflags & BC_BUSY) != 0);
1067 	KASSERT(!cv_has_waiters(&bp->b_done));
1068 
1069 	vholdl(vp);
1070 	bp->b_vp = vp;
1071 	if (vp->v_type == VBLK || vp->v_type == VCHR)
1072 		bp->b_dev = vp->v_rdev;
1073 	else
1074 		bp->b_dev = NODEV;
1075 
1076 	/*
1077 	 * Insert onto list for new vnode.
1078 	 */
1079 	bufinsvn(bp, &vp->v_cleanblkhd);
1080 	bp->b_objlock = &vp->v_interlock;
1081 }
1082 
1083 /*
1084  * Disassociate a buffer from a vnode.
1085  */
1086 void
1087 brelvp(struct buf *bp)
1088 {
1089 	struct vnode *vp = bp->b_vp;
1090 
1091 	KASSERT(vp != NULL);
1092 	KASSERT(bp->b_objlock == &vp->v_interlock);
1093 	KASSERT(mutex_owned(&vp->v_interlock));
1094 	KASSERT(mutex_owned(&bufcache_lock));
1095 	KASSERT((bp->b_cflags & BC_BUSY) != 0);
1096 	KASSERT(!cv_has_waiters(&bp->b_done));
1097 
1098 	/*
1099 	 * Delete from old vnode list, if on one.
1100 	 */
1101 	if (LIST_NEXT(bp, b_vnbufs) != NOLIST)
1102 		bufremvn(bp);
1103 
1104 	if (TAILQ_EMPTY(&vp->v_uobj.memq) && (vp->v_iflag & VI_ONWORKLST) &&
1105 	    LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1106 		vp->v_iflag &= ~VI_WRMAPDIRTY;
1107 		vn_syncer_remove_from_worklist(vp);
1108 	}
1109 
1110 	bp->b_objlock = &buffer_lock;
1111 	bp->b_vp = NULL;
1112 	holdrelel(vp);
1113 }
1114 
1115 /*
1116  * Reassign a buffer from one vnode list to another.
1117  * The list reassignment must be within the same vnode.
1118  * Used to assign file specific control information
1119  * (indirect blocks) to the list to which they belong.
1120  */
1121 void
1122 reassignbuf(struct buf *bp, struct vnode *vp)
1123 {
1124 	struct buflists *listheadp;
1125 	int delayx;
1126 
1127 	KASSERT(mutex_owned(&bufcache_lock));
1128 	KASSERT(bp->b_objlock == &vp->v_interlock);
1129 	KASSERT(mutex_owned(&vp->v_interlock));
1130 	KASSERT((bp->b_cflags & BC_BUSY) != 0);
1131 
1132 	/*
1133 	 * Delete from old vnode list, if on one.
1134 	 */
1135 	if (LIST_NEXT(bp, b_vnbufs) != NOLIST)
1136 		bufremvn(bp);
1137 
1138 	/*
1139 	 * If dirty, put on list of dirty buffers;
1140 	 * otherwise insert onto list of clean buffers.
1141 	 */
1142 	if ((bp->b_oflags & BO_DELWRI) == 0) {
1143 		listheadp = &vp->v_cleanblkhd;
1144 		if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
1145 		    (vp->v_iflag & VI_ONWORKLST) &&
1146 		    LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1147 			vp->v_iflag &= ~VI_WRMAPDIRTY;
1148 			vn_syncer_remove_from_worklist(vp);
1149 		}
1150 	} else {
1151 		listheadp = &vp->v_dirtyblkhd;
1152 		if ((vp->v_iflag & VI_ONWORKLST) == 0) {
1153 			switch (vp->v_type) {
1154 			case VDIR:
1155 				delayx = dirdelay;
1156 				break;
1157 			case VBLK:
1158 				if (vp->v_specmountpoint != NULL) {
1159 					delayx = metadelay;
1160 					break;
1161 				}
1162 				/* fall through */
1163 			default:
1164 				delayx = filedelay;
1165 				break;
1166 			}
1167 			if (!vp->v_mount ||
1168 			    (vp->v_mount->mnt_flag & MNT_ASYNC) == 0)
1169 				vn_syncer_add_to_worklist(vp, delayx);
1170 		}
1171 	}
1172 	bufinsvn(bp, listheadp);
1173 }
1174 
1175 /*
1176  * Create a vnode for a device.
1177  * Used by bdevvp (block device) for root file system etc.,
1178  * and by cdevvp (character device) for console and kernfs.
1179  */
1180 static int
1181 getdevvp(dev_t dev, vnode_t **vpp, enum vtype type)
1182 {
1183 	vnode_t *vp;
1184 	vnode_t *nvp;
1185 	int error;
1186 
1187 	if (dev == NODEV) {
1188 		*vpp = NULL;
1189 		return (0);
1190 	}
1191 	error = getnewvnode(VT_NON, NULL, spec_vnodeop_p, &nvp);
1192 	if (error) {
1193 		*vpp = NULL;
1194 		return (error);
1195 	}
1196 	vp = nvp;
1197 	vp->v_type = type;
1198 	vp->v_vflag |= VV_MPSAFE;
1199 	uvm_vnp_setsize(vp, 0);
1200 	spec_node_init(vp, dev);
1201 	*vpp = vp;
1202 	return (0);
1203 }
1204 
1205 /*
1206  * Try to gain a reference to a vnode, without acquiring its interlock.
1207  * The caller must hold a lock that will prevent the vnode from being
1208  * recycled or freed.
1209  */
1210 bool
1211 vtryget(vnode_t *vp)
1212 {
1213 	u_int use, next;
1214 
1215 	/*
1216 	 * If the vnode is being freed, don't make life any harder
1217 	 * for vclean() by adding another reference without waiting.
1218 	 * This is not strictly necessary, but we'll do it anyway.
1219 	 */
1220 	if (__predict_false((vp->v_iflag & (VI_XLOCK | VI_FREEING)) != 0)) {
1221 		return false;
1222 	}
1223 	for (use = vp->v_usecount;; use = next) {
1224 		if (use == 0) {
1225 			/* Need interlock held if first reference. */
1226 			return false;
1227 		}
1228 		next = atomic_cas_uint(&vp->v_usecount, use, use + 1);
1229 		if (__predict_true(next == use)) {
1230 			return true;
1231 		}
1232 	}
1233 }
1234 
1235 /*
1236  * Grab a particular vnode from the free list, increment its
1237  * reference count and lock it. If the vnode lock bit is set the
1238  * vnode is being eliminated in vgone. In that case, we can not
1239  * grab the vnode, so the process is awakened when the transition is
1240  * completed, and an error returned to indicate that the vnode is no
1241  * longer usable (possibly having been changed to a new file system type).
1242  */
1243 int
1244 vget(vnode_t *vp, int flags)
1245 {
1246 	int error;
1247 
1248 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1249 
1250 	if ((flags & LK_INTERLOCK) == 0)
1251 		mutex_enter(&vp->v_interlock);
1252 
1253 	/*
1254 	 * Before adding a reference, we must remove the vnode
1255 	 * from its freelist.
1256 	 */
1257 	if (vp->v_usecount == 0) {
1258 		vremfree(vp);
1259 		vp->v_usecount = 1;
1260 	} else {
1261 		atomic_inc_uint(&vp->v_usecount);
1262 	}
1263 
1264 	/*
1265 	 * If the vnode is in the process of being cleaned out for
1266 	 * another use, we wait for the cleaning to finish and then
1267 	 * return failure.  Cleaning is determined by checking if
1268 	 * the VI_XLOCK or VI_FREEING flags are set.
1269 	 */
1270 	if ((vp->v_iflag & (VI_XLOCK | VI_FREEING)) != 0) {
1271 		if ((flags & LK_NOWAIT) != 0) {
1272 			vrelel(vp, 0);
1273 			return EBUSY;
1274 		}
1275 		vwait(vp, VI_XLOCK | VI_FREEING);
1276 		vrelel(vp, 0);
1277 		return ENOENT;
1278 	}
1279 	if (flags & LK_TYPE_MASK) {
1280 		error = vn_lock(vp, flags | LK_INTERLOCK);
1281 		if (error != 0) {
1282 			vrele(vp);
1283 		}
1284 		return error;
1285 	}
1286 	mutex_exit(&vp->v_interlock);
1287 	return 0;
1288 }
1289 
1290 /*
1291  * vput(), just unlock and vrele()
1292  */
1293 void
1294 vput(vnode_t *vp)
1295 {
1296 
1297 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1298 
1299 	VOP_UNLOCK(vp, 0);
1300 	vrele(vp);
1301 }
1302 
1303 /*
1304  * Try to drop reference on a vnode.  Abort if we are releasing the
1305  * last reference.
1306  */
1307 static inline bool
1308 vtryrele(vnode_t *vp)
1309 {
1310 	u_int use, next;
1311 
1312 	for (use = vp->v_usecount;; use = next) {
1313 		if (use == 1) {
1314 			return false;
1315 		}
1316 		next = atomic_cas_uint(&vp->v_usecount, use, use - 1);
1317 		if (__predict_true(next == use)) {
1318 			return true;
1319 		}
1320 	}
1321 }
1322 
1323 /*
1324  * Vnode release.  If reference count drops to zero, call inactive
1325  * routine and either return to freelist or free to the pool.
1326  */
1327 void
1328 vrelel(vnode_t *vp, int flags)
1329 {
1330 	bool recycle, defer;
1331 	int error;
1332 
1333 	KASSERT(mutex_owned(&vp->v_interlock));
1334 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1335 	KASSERT(vp->v_freelisthd == NULL);
1336 
1337 	if (vp->v_op == dead_vnodeop_p && (vp->v_iflag & VI_CLEAN) == 0) {
1338 		vpanic(vp, "dead but not clean");
1339 	}
1340 
1341 	/*
1342 	 * If not the last reference, just drop the reference count
1343 	 * and unlock.
1344 	 */
1345 	if (vtryrele(vp)) {
1346 		vp->v_iflag |= VI_INACTREDO;
1347 		mutex_exit(&vp->v_interlock);
1348 		return;
1349 	}
1350 	if (vp->v_usecount <= 0 || vp->v_writecount != 0) {
1351 		vpanic(vp, "vput: bad ref count");
1352 	}
1353 
1354 	/*
1355 	 * If not clean, deactivate the vnode, but preserve
1356 	 * our reference across the call to VOP_INACTIVE().
1357 	 */
1358  retry:
1359 	if ((vp->v_iflag & VI_CLEAN) == 0) {
1360 		recycle = false;
1361 		vp->v_iflag |= VI_INACTNOW;
1362 
1363 		/*
1364 		 * XXX This ugly block can be largely eliminated if
1365 		 * locking is pushed down into the file systems.
1366 		 */
1367 		if (curlwp == uvm.pagedaemon_lwp) {
1368 			/* The pagedaemon can't wait around; defer. */
1369 			defer = true;
1370 		} else if (curlwp == vrele_lwp) {
1371 			/* We have to try harder. */
1372 			vp->v_iflag &= ~VI_INACTREDO;
1373 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK |
1374 			    LK_RETRY);
1375 			if (error != 0) {
1376 				/* XXX */
1377 				vpanic(vp, "vrele: unable to lock %p");
1378 			}
1379 			defer = false;
1380 		} else if ((vp->v_iflag & VI_LAYER) != 0) {
1381 			/*
1382 			 * Acquiring the stack's lock in vclean() even
1383 			 * for an honest vput/vrele is dangerous because
1384 			 * our caller may hold other vnode locks; defer.
1385 			 */
1386 			defer = true;
1387 		} else {
1388 			/* If we can't acquire the lock, then defer. */
1389 			vp->v_iflag &= ~VI_INACTREDO;
1390 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK |
1391 			    LK_NOWAIT);
1392 			if (error != 0) {
1393 				defer = true;
1394 				mutex_enter(&vp->v_interlock);
1395 			} else {
1396 				defer = false;
1397 			}
1398 		}
1399 
1400 		if (defer) {
1401 			/*
1402 			 * Defer reclaim to the kthread; it's not safe to
1403 			 * clean it here.  We donate it our last reference.
1404 			 */
1405 			KASSERT(mutex_owned(&vp->v_interlock));
1406 			KASSERT((vp->v_iflag & VI_INACTPEND) == 0);
1407 			vp->v_iflag &= ~VI_INACTNOW;
1408 			vp->v_iflag |= VI_INACTPEND;
1409 			mutex_enter(&vrele_lock);
1410 			TAILQ_INSERT_TAIL(&vrele_list, vp, v_freelist);
1411 			if (++vrele_pending > (desiredvnodes >> 8))
1412 				cv_signal(&vrele_cv);
1413 			mutex_exit(&vrele_lock);
1414 			mutex_exit(&vp->v_interlock);
1415 			return;
1416 		}
1417 
1418 #ifdef DIAGNOSTIC
1419 		if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
1420 		    vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) {
1421 			vprint("vrelel: missing VOP_CLOSE()", vp);
1422 		}
1423 #endif
1424 
1425 		/*
1426 		 * The vnode can gain another reference while being
1427 		 * deactivated.  If VOP_INACTIVE() indicates that
1428 		 * the described file has been deleted, then recycle
1429 		 * the vnode irrespective of additional references.
1430 		 * Another thread may be waiting to re-use the on-disk
1431 		 * inode.
1432 		 *
1433 		 * Note that VOP_INACTIVE() will drop the vnode lock.
1434 		 */
1435 		VOP_INACTIVE(vp, &recycle);
1436 		mutex_enter(&vp->v_interlock);
1437 		vp->v_iflag &= ~VI_INACTNOW;
1438 		if (!recycle) {
1439 			if (vtryrele(vp)) {
1440 				mutex_exit(&vp->v_interlock);
1441 				return;
1442 			}
1443 
1444 			/*
1445 			 * If we grew another reference while
1446 			 * VOP_INACTIVE() was underway, retry.
1447 			 */
1448 			if ((vp->v_iflag & VI_INACTREDO) != 0) {
1449 				goto retry;
1450 			}
1451 		}
1452 
1453 		/* Take care of space accounting. */
1454 		if (vp->v_iflag & VI_EXECMAP) {
1455 			atomic_add_int(&uvmexp.execpages,
1456 			    -vp->v_uobj.uo_npages);
1457 			atomic_add_int(&uvmexp.filepages,
1458 			    vp->v_uobj.uo_npages);
1459 		}
1460 		vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP);
1461 		vp->v_vflag &= ~VV_MAPPED;
1462 
1463 		/*
1464 		 * Recycle the vnode if the file is now unused (unlinked),
1465 		 * otherwise just free it.
1466 		 */
1467 		if (recycle) {
1468 			vclean(vp, DOCLOSE);
1469 		}
1470 		KASSERT(vp->v_usecount > 0);
1471 	}
1472 
1473 	if (atomic_dec_uint_nv(&vp->v_usecount) != 0) {
1474 		/* Gained another reference while being reclaimed. */
1475 		mutex_exit(&vp->v_interlock);
1476 		return;
1477 	}
1478 
1479 	if ((vp->v_iflag & VI_CLEAN) != 0) {
1480 		/*
1481 		 * It's clean so destroy it.  It isn't referenced
1482 		 * anywhere since it has been reclaimed.
1483 		 */
1484 		KASSERT(vp->v_holdcnt == 0);
1485 		KASSERT(vp->v_writecount == 0);
1486 		mutex_exit(&vp->v_interlock);
1487 		insmntque(vp, NULL);
1488 		if (vp->v_type == VBLK || vp->v_type == VCHR) {
1489 			spec_node_destroy(vp);
1490 		}
1491 		vnfree(vp);
1492 	} else {
1493 		/*
1494 		 * Otherwise, put it back onto the freelist.  It
1495 		 * can't be destroyed while still associated with
1496 		 * a file system.
1497 		 */
1498 		mutex_enter(&vnode_free_list_lock);
1499 		if (vp->v_holdcnt > 0) {
1500 			vp->v_freelisthd = &vnode_hold_list;
1501 		} else {
1502 			vp->v_freelisthd = &vnode_free_list;
1503 		}
1504 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
1505 		mutex_exit(&vnode_free_list_lock);
1506 		mutex_exit(&vp->v_interlock);
1507 	}
1508 }
1509 
1510 void
1511 vrele(vnode_t *vp)
1512 {
1513 
1514 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1515 
1516 	if ((vp->v_iflag & VI_INACTNOW) == 0 && vtryrele(vp)) {
1517 		return;
1518 	}
1519 	mutex_enter(&vp->v_interlock);
1520 	vrelel(vp, 0);
1521 }
1522 
1523 static void
1524 vrele_thread(void *cookie)
1525 {
1526 	vnode_t *vp;
1527 
1528 	for (;;) {
1529 		mutex_enter(&vrele_lock);
1530 		while (TAILQ_EMPTY(&vrele_list)) {
1531 			vrele_gen++;
1532 			cv_broadcast(&vrele_cv);
1533 			cv_timedwait(&vrele_cv, &vrele_lock, hz);
1534 		}
1535 		vp = TAILQ_FIRST(&vrele_list);
1536 		TAILQ_REMOVE(&vrele_list, vp, v_freelist);
1537 		vrele_pending--;
1538 		mutex_exit(&vrele_lock);
1539 
1540 		/*
1541 		 * If not the last reference, then ignore the vnode
1542 		 * and look for more work.
1543 		 */
1544 		mutex_enter(&vp->v_interlock);
1545 		KASSERT((vp->v_iflag & VI_INACTPEND) != 0);
1546 		vp->v_iflag &= ~VI_INACTPEND;
1547 		vrelel(vp, 0);
1548 	}
1549 }
1550 
1551 /*
1552  * Page or buffer structure gets a reference.
1553  * Called with v_interlock held.
1554  */
1555 void
1556 vholdl(vnode_t *vp)
1557 {
1558 
1559 	KASSERT(mutex_owned(&vp->v_interlock));
1560 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1561 
1562 	if (vp->v_holdcnt++ == 0 && vp->v_usecount == 0) {
1563 		mutex_enter(&vnode_free_list_lock);
1564 		KASSERT(vp->v_freelisthd == &vnode_free_list);
1565 		TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
1566 		vp->v_freelisthd = &vnode_hold_list;
1567 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
1568 		mutex_exit(&vnode_free_list_lock);
1569 	}
1570 }
1571 
1572 /*
1573  * Page or buffer structure frees a reference.
1574  * Called with v_interlock held.
1575  */
1576 void
1577 holdrelel(vnode_t *vp)
1578 {
1579 
1580 	KASSERT(mutex_owned(&vp->v_interlock));
1581 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1582 
1583 	if (vp->v_holdcnt <= 0) {
1584 		vpanic(vp, "holdrelel: holdcnt vp %p");
1585 	}
1586 
1587 	vp->v_holdcnt--;
1588 	if (vp->v_holdcnt == 0 && vp->v_usecount == 0) {
1589 		mutex_enter(&vnode_free_list_lock);
1590 		KASSERT(vp->v_freelisthd == &vnode_hold_list);
1591 		TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
1592 		vp->v_freelisthd = &vnode_free_list;
1593 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
1594 		mutex_exit(&vnode_free_list_lock);
1595 	}
1596 }
1597 
1598 /*
1599  * Vnode reference, where a reference is already held by some other
1600  * object (for example, a file structure).
1601  */
1602 void
1603 vref(vnode_t *vp)
1604 {
1605 
1606 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1607 	KASSERT(vp->v_usecount != 0);
1608 
1609 	atomic_inc_uint(&vp->v_usecount);
1610 }
1611 
1612 /*
1613  * Remove any vnodes in the vnode table belonging to mount point mp.
1614  *
1615  * If FORCECLOSE is not specified, there should not be any active ones,
1616  * return error if any are found (nb: this is a user error, not a
1617  * system error). If FORCECLOSE is specified, detach any active vnodes
1618  * that are found.
1619  *
1620  * If WRITECLOSE is set, only flush out regular file vnodes open for
1621  * writing.
1622  *
1623  * SKIPSYSTEM causes any vnodes marked V_SYSTEM to be skipped.
1624  */
1625 #ifdef DEBUG
1626 int busyprt = 0;	/* print out busy vnodes */
1627 struct ctldebug debug1 = { "busyprt", &busyprt };
1628 #endif
1629 
1630 static vnode_t *
1631 vflushnext(vnode_t *mvp, int *when)
1632 {
1633 
1634 	if (hardclock_ticks > *when) {
1635 		mutex_exit(&mntvnode_lock);
1636 		yield();
1637 		mutex_enter(&mntvnode_lock);
1638 		*when = hardclock_ticks + hz / 10;
1639 	}
1640 
1641 	return vunmark(mvp);
1642 }
1643 
1644 int
1645 vflush(struct mount *mp, vnode_t *skipvp, int flags)
1646 {
1647 	vnode_t *vp, *mvp;
1648 	int busy = 0, when = 0, gen;
1649 
1650 	/*
1651 	 * First, flush out any vnode references from vrele_list.
1652 	 */
1653 	mutex_enter(&vrele_lock);
1654 	gen = vrele_gen;
1655 	while (vrele_pending && gen == vrele_gen) {
1656 		cv_broadcast(&vrele_cv);
1657 		cv_wait(&vrele_cv, &vrele_lock);
1658 	}
1659 	mutex_exit(&vrele_lock);
1660 
1661 	/* Allocate a marker vnode. */
1662 	if ((mvp = vnalloc(mp)) == NULL)
1663 		return (ENOMEM);
1664 
1665 	/*
1666 	 * NOTE: not using the TAILQ_FOREACH here since in this loop vgone()
1667 	 * and vclean() are called
1668 	 */
1669 	mutex_enter(&mntvnode_lock);
1670 	for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp != NULL;
1671 	    vp = vflushnext(mvp, &when)) {
1672 		vmark(mvp, vp);
1673 		if (vp->v_mount != mp || vismarker(vp))
1674 			continue;
1675 		/*
1676 		 * Skip over a selected vnode.
1677 		 */
1678 		if (vp == skipvp)
1679 			continue;
1680 		mutex_enter(&vp->v_interlock);
1681 		/*
1682 		 * Ignore clean but still referenced vnodes.
1683 		 */
1684 		if ((vp->v_iflag & VI_CLEAN) != 0) {
1685 			mutex_exit(&vp->v_interlock);
1686 			continue;
1687 		}
1688 		/*
1689 		 * Skip over a vnodes marked VSYSTEM.
1690 		 */
1691 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
1692 			mutex_exit(&vp->v_interlock);
1693 			continue;
1694 		}
1695 		/*
1696 		 * If WRITECLOSE is set, only flush out regular file
1697 		 * vnodes open for writing.
1698 		 */
1699 		if ((flags & WRITECLOSE) &&
1700 		    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1701 			mutex_exit(&vp->v_interlock);
1702 			continue;
1703 		}
1704 		/*
1705 		 * With v_usecount == 0, all we need to do is clear
1706 		 * out the vnode data structures and we are done.
1707 		 */
1708 		if (vp->v_usecount == 0) {
1709 			mutex_exit(&mntvnode_lock);
1710 			vremfree(vp);
1711 			vp->v_usecount = 1;
1712 			vclean(vp, DOCLOSE);
1713 			vrelel(vp, 0);
1714 			mutex_enter(&mntvnode_lock);
1715 			continue;
1716 		}
1717 		/*
1718 		 * If FORCECLOSE is set, forcibly close the vnode.
1719 		 * For block or character devices, revert to an
1720 		 * anonymous device.  For all other files, just
1721 		 * kill them.
1722 		 */
1723 		if (flags & FORCECLOSE) {
1724 			mutex_exit(&mntvnode_lock);
1725 			atomic_inc_uint(&vp->v_usecount);
1726 			if (vp->v_type != VBLK && vp->v_type != VCHR) {
1727 				vclean(vp, DOCLOSE);
1728 				vrelel(vp, 0);
1729 			} else {
1730 				vclean(vp, 0);
1731 				vp->v_op = spec_vnodeop_p; /* XXXSMP */
1732 				mutex_exit(&vp->v_interlock);
1733 				/*
1734 				 * The vnode isn't clean, but still resides
1735 				 * on the mount list.  Remove it. XXX This
1736 				 * is a bit dodgy.
1737 				 */
1738 				insmntque(vp, NULL);
1739 				vrele(vp);
1740 			}
1741 			mutex_enter(&mntvnode_lock);
1742 			continue;
1743 		}
1744 #ifdef DEBUG
1745 		if (busyprt)
1746 			vprint("vflush: busy vnode", vp);
1747 #endif
1748 		mutex_exit(&vp->v_interlock);
1749 		busy++;
1750 	}
1751 	mutex_exit(&mntvnode_lock);
1752 	vnfree(mvp);
1753 	if (busy)
1754 		return (EBUSY);
1755 	return (0);
1756 }
1757 
1758 /*
1759  * Disassociate the underlying file system from a vnode.
1760  *
1761  * Must be called with the interlock held, and will return with it held.
1762  */
1763 void
1764 vclean(vnode_t *vp, int flags)
1765 {
1766 	lwp_t *l = curlwp;
1767 	bool recycle, active;
1768 	int error;
1769 
1770 	KASSERT(mutex_owned(&vp->v_interlock));
1771 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1772 	KASSERT(vp->v_usecount != 0);
1773 
1774 	/* If cleaning is already in progress wait until done and return. */
1775 	if (vp->v_iflag & VI_XLOCK) {
1776 		vwait(vp, VI_XLOCK);
1777 		return;
1778 	}
1779 
1780 	/* If already clean, nothing to do. */
1781 	if ((vp->v_iflag & VI_CLEAN) != 0) {
1782 		return;
1783 	}
1784 
1785 	/*
1786 	 * Prevent the vnode from being recycled or brought into use
1787 	 * while we clean it out.
1788 	 */
1789 	vp->v_iflag |= VI_XLOCK;
1790 	if (vp->v_iflag & VI_EXECMAP) {
1791 		atomic_add_int(&uvmexp.execpages, -vp->v_uobj.uo_npages);
1792 		atomic_add_int(&uvmexp.filepages, vp->v_uobj.uo_npages);
1793 	}
1794 	vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP);
1795 	active = (vp->v_usecount > 1);
1796 
1797 	/* XXXAD should not lock vnode under layer */
1798 	VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
1799 
1800 	/*
1801 	 * Clean out any cached data associated with the vnode.
1802 	 * If purging an active vnode, it must be closed and
1803 	 * deactivated before being reclaimed. Note that the
1804 	 * VOP_INACTIVE will unlock the vnode.
1805 	 */
1806 	if (flags & DOCLOSE) {
1807 		error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0);
1808 		if (error != 0) {
1809 			/* XXX, fix vn_start_write's grab of mp and use that. */
1810 
1811 			if (wapbl_vphaswapbl(vp))
1812 				WAPBL_DISCARD(wapbl_vptomp(vp));
1813 			error = vinvalbuf(vp, 0, NOCRED, l, 0, 0);
1814 		}
1815 		KASSERT(error == 0);
1816 		KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1817 		if (active && (vp->v_type == VBLK || vp->v_type == VCHR)) {
1818 			 spec_node_revoke(vp);
1819 		}
1820 	}
1821 	if (active) {
1822 		VOP_INACTIVE(vp, &recycle);
1823 	} else {
1824 		/*
1825 		 * Any other processes trying to obtain this lock must first
1826 		 * wait for VI_XLOCK to clear, then call the new lock operation.
1827 		 */
1828 		VOP_UNLOCK(vp, 0);
1829 	}
1830 
1831 	/* Disassociate the underlying file system from the vnode. */
1832 	if (VOP_RECLAIM(vp)) {
1833 		vpanic(vp, "vclean: cannot reclaim");
1834 	}
1835 
1836 	KASSERT(vp->v_uobj.uo_npages == 0);
1837 	if (vp->v_type == VREG && vp->v_ractx != NULL) {
1838 		uvm_ra_freectx(vp->v_ractx);
1839 		vp->v_ractx = NULL;
1840 	}
1841 	cache_purge(vp);
1842 
1843 	/* Done with purge, notify sleepers of the grim news. */
1844 	vp->v_op = dead_vnodeop_p;
1845 	vp->v_tag = VT_NON;
1846 	mutex_enter(&vp->v_interlock);
1847 	vp->v_vnlock = &vp->v_lock;
1848 	KNOTE(&vp->v_klist, NOTE_REVOKE);
1849 	vp->v_iflag &= ~(VI_XLOCK | VI_FREEING);
1850 	vp->v_vflag &= ~VV_LOCKSWORK;
1851 	if ((flags & DOCLOSE) != 0) {
1852 		vp->v_iflag |= VI_CLEAN;
1853 	}
1854 	cv_broadcast(&vp->v_cv);
1855 
1856 	KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1857 }
1858 
1859 /*
1860  * Recycle an unused vnode to the front of the free list.
1861  * Release the passed interlock if the vnode will be recycled.
1862  */
1863 int
1864 vrecycle(vnode_t *vp, kmutex_t *inter_lkp, struct lwp *l)
1865 {
1866 
1867 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1868 
1869 	mutex_enter(&vp->v_interlock);
1870 	if (vp->v_usecount != 0) {
1871 		mutex_exit(&vp->v_interlock);
1872 		return (0);
1873 	}
1874 	if (inter_lkp)
1875 		mutex_exit(inter_lkp);
1876 	vremfree(vp);
1877 	vp->v_usecount = 1;
1878 	vclean(vp, DOCLOSE);
1879 	vrelel(vp, 0);
1880 	return (1);
1881 }
1882 
1883 /*
1884  * Eliminate all activity associated with a vnode in preparation for
1885  * reuse.  Drops a reference from the vnode.
1886  */
1887 void
1888 vgone(vnode_t *vp)
1889 {
1890 
1891 	mutex_enter(&vp->v_interlock);
1892 	vclean(vp, DOCLOSE);
1893 	vrelel(vp, 0);
1894 }
1895 
1896 /*
1897  * Lookup a vnode by device number.
1898  */
1899 int
1900 vfinddev(dev_t dev, enum vtype type, vnode_t **vpp)
1901 {
1902 	vnode_t *vp;
1903 	int rc = 0;
1904 
1905 	mutex_enter(&specfs_lock);
1906 	for (vp = specfs_hash[SPECHASH(dev)]; vp; vp = vp->v_specnext) {
1907 		if (dev != vp->v_rdev || type != vp->v_type)
1908 			continue;
1909 		*vpp = vp;
1910 		rc = 1;
1911 		break;
1912 	}
1913 	mutex_exit(&specfs_lock);
1914 	return (rc);
1915 }
1916 
1917 /*
1918  * Revoke all the vnodes corresponding to the specified minor number
1919  * range (endpoints inclusive) of the specified major.
1920  */
1921 void
1922 vdevgone(int maj, int minl, int minh, enum vtype type)
1923 {
1924 	vnode_t *vp, **vpp;
1925 	dev_t dev;
1926 	int mn;
1927 
1928 	vp = NULL;	/* XXX gcc */
1929 
1930 	mutex_enter(&specfs_lock);
1931 	for (mn = minl; mn <= minh; mn++) {
1932 		dev = makedev(maj, mn);
1933 		vpp = &specfs_hash[SPECHASH(dev)];
1934 		for (vp = *vpp; vp != NULL;) {
1935 			mutex_enter(&vp->v_interlock);
1936 			if ((vp->v_iflag & VI_CLEAN) != 0 ||
1937 			    dev != vp->v_rdev || type != vp->v_type) {
1938 				mutex_exit(&vp->v_interlock);
1939 				vp = vp->v_specnext;
1940 				continue;
1941 			}
1942 			mutex_exit(&specfs_lock);
1943 			if (vget(vp, LK_INTERLOCK) == 0) {
1944 				VOP_REVOKE(vp, REVOKEALL);
1945 				vrele(vp);
1946 			}
1947 			mutex_enter(&specfs_lock);
1948 			vp = *vpp;
1949 		}
1950 	}
1951 	mutex_exit(&specfs_lock);
1952 }
1953 
1954 /*
1955  * Calculate the total number of references to a special device.
1956  */
1957 int
1958 vcount(vnode_t *vp)
1959 {
1960 	int count;
1961 
1962 	mutex_enter(&specfs_lock);
1963 	mutex_enter(&vp->v_interlock);
1964 	if (vp->v_specnode == NULL) {
1965 		count = vp->v_usecount - ((vp->v_iflag & VI_INACTPEND) != 0);
1966 		mutex_exit(&vp->v_interlock);
1967 		mutex_exit(&specfs_lock);
1968 		return (count);
1969 	}
1970 	mutex_exit(&vp->v_interlock);
1971 	count = vp->v_specnode->sn_dev->sd_opencnt;
1972 	mutex_exit(&specfs_lock);
1973 	return (count);
1974 }
1975 
1976 /*
1977  * Eliminate all activity associated with the requested vnode
1978  * and with all vnodes aliased to the requested vnode.
1979  */
1980 void
1981 vrevoke(vnode_t *vp)
1982 {
1983 	vnode_t *vq, **vpp;
1984 	enum vtype type;
1985 	dev_t dev;
1986 
1987 	KASSERT(vp->v_usecount > 0);
1988 
1989 	mutex_enter(&vp->v_interlock);
1990 	if ((vp->v_iflag & VI_CLEAN) != 0) {
1991 		mutex_exit(&vp->v_interlock);
1992 		return;
1993 	} else {
1994 		dev = vp->v_rdev;
1995 		type = vp->v_type;
1996 		mutex_exit(&vp->v_interlock);
1997 	}
1998 
1999 	vpp = &specfs_hash[SPECHASH(dev)];
2000 	mutex_enter(&specfs_lock);
2001 	for (vq = *vpp; vq != NULL;) {
2002 		/* If clean or being cleaned, then ignore it. */
2003 		mutex_enter(&vq->v_interlock);
2004 		if ((vq->v_iflag & (VI_CLEAN | VI_XLOCK)) != 0 ||
2005 		    vq->v_rdev != dev || vq->v_type != type) {
2006 			mutex_exit(&vq->v_interlock);
2007 			vq = vq->v_specnext;
2008 			continue;
2009 		}
2010 		mutex_exit(&specfs_lock);
2011 		if (vq->v_usecount == 0) {
2012 			vremfree(vq);
2013 			vq->v_usecount = 1;
2014 		} else {
2015 			atomic_inc_uint(&vq->v_usecount);
2016 		}
2017 		vclean(vq, DOCLOSE);
2018 		vrelel(vq, 0);
2019 		mutex_enter(&specfs_lock);
2020 		vq = *vpp;
2021 	}
2022 	mutex_exit(&specfs_lock);
2023 }
2024 
2025 /*
2026  * sysctl helper routine to return list of supported fstypes
2027  */
2028 static int
2029 sysctl_vfs_generic_fstypes(SYSCTLFN_ARGS)
2030 {
2031 	char bf[sizeof(((struct statvfs *)NULL)->f_fstypename)];
2032 	char *where = oldp;
2033 	struct vfsops *v;
2034 	size_t needed, left, slen;
2035 	int error, first;
2036 
2037 	if (newp != NULL)
2038 		return (EPERM);
2039 	if (namelen != 0)
2040 		return (EINVAL);
2041 
2042 	first = 1;
2043 	error = 0;
2044 	needed = 0;
2045 	left = *oldlenp;
2046 
2047 	sysctl_unlock();
2048 	mutex_enter(&vfs_list_lock);
2049 	LIST_FOREACH(v, &vfs_list, vfs_list) {
2050 		if (where == NULL)
2051 			needed += strlen(v->vfs_name) + 1;
2052 		else {
2053 			memset(bf, 0, sizeof(bf));
2054 			if (first) {
2055 				strncpy(bf, v->vfs_name, sizeof(bf));
2056 				first = 0;
2057 			} else {
2058 				bf[0] = ' ';
2059 				strncpy(bf + 1, v->vfs_name, sizeof(bf) - 1);
2060 			}
2061 			bf[sizeof(bf)-1] = '\0';
2062 			slen = strlen(bf);
2063 			if (left < slen + 1)
2064 				break;
2065 			v->vfs_refcount++;
2066 			mutex_exit(&vfs_list_lock);
2067 			/* +1 to copy out the trailing NUL byte */
2068 			error = copyout(bf, where, slen + 1);
2069 			mutex_enter(&vfs_list_lock);
2070 			v->vfs_refcount--;
2071 			if (error)
2072 				break;
2073 			where += slen;
2074 			needed += slen;
2075 			left -= slen;
2076 		}
2077 	}
2078 	mutex_exit(&vfs_list_lock);
2079 	sysctl_relock();
2080 	*oldlenp = needed;
2081 	return (error);
2082 }
2083 
2084 /*
2085  * Top level filesystem related information gathering.
2086  */
2087 SYSCTL_SETUP(sysctl_vfs_setup, "sysctl vfs subtree setup")
2088 {
2089 	sysctl_createv(clog, 0, NULL, NULL,
2090 		       CTLFLAG_PERMANENT,
2091 		       CTLTYPE_NODE, "vfs", NULL,
2092 		       NULL, 0, NULL, 0,
2093 		       CTL_VFS, CTL_EOL);
2094 	sysctl_createv(clog, 0, NULL, NULL,
2095 		       CTLFLAG_PERMANENT,
2096 		       CTLTYPE_NODE, "generic",
2097 		       SYSCTL_DESCR("Non-specific vfs related information"),
2098 		       NULL, 0, NULL, 0,
2099 		       CTL_VFS, VFS_GENERIC, CTL_EOL);
2100 	sysctl_createv(clog, 0, NULL, NULL,
2101 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2102 		       CTLTYPE_INT, "usermount",
2103 		       SYSCTL_DESCR("Whether unprivileged users may mount "
2104 				    "filesystems"),
2105 		       NULL, 0, &dovfsusermount, 0,
2106 		       CTL_VFS, VFS_GENERIC, VFS_USERMOUNT, CTL_EOL);
2107 	sysctl_createv(clog, 0, NULL, NULL,
2108 		       CTLFLAG_PERMANENT,
2109 		       CTLTYPE_STRING, "fstypes",
2110 		       SYSCTL_DESCR("List of file systems present"),
2111 		       sysctl_vfs_generic_fstypes, 0, NULL, 0,
2112 		       CTL_VFS, VFS_GENERIC, CTL_CREATE, CTL_EOL);
2113 	sysctl_createv(clog, 0, NULL, NULL,
2114 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2115 		       CTLTYPE_INT, "magiclinks",
2116 		       SYSCTL_DESCR("Whether \"magic\" symlinks are expanded"),
2117 		       NULL, 0, &vfs_magiclinks, 0,
2118 		       CTL_VFS, VFS_GENERIC, VFS_MAGICLINKS, CTL_EOL);
2119 }
2120 
2121 
2122 int kinfo_vdebug = 1;
2123 int kinfo_vgetfailed;
2124 #define KINFO_VNODESLOP	10
2125 /*
2126  * Dump vnode list (via sysctl).
2127  * Copyout address of vnode followed by vnode.
2128  */
2129 /* ARGSUSED */
2130 int
2131 sysctl_kern_vnode(SYSCTLFN_ARGS)
2132 {
2133 	char *where = oldp;
2134 	size_t *sizep = oldlenp;
2135 	struct mount *mp, *nmp;
2136 	vnode_t *vp, *mvp, vbuf;
2137 	char *bp = where, *savebp;
2138 	char *ewhere;
2139 	int error;
2140 
2141 	if (namelen != 0)
2142 		return (EOPNOTSUPP);
2143 	if (newp != NULL)
2144 		return (EPERM);
2145 
2146 #define VPTRSZ	sizeof(vnode_t *)
2147 #define VNODESZ	sizeof(vnode_t)
2148 	if (where == NULL) {
2149 		*sizep = (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ);
2150 		return (0);
2151 	}
2152 	ewhere = where + *sizep;
2153 
2154 	sysctl_unlock();
2155 	mutex_enter(&mountlist_lock);
2156 	for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
2157 	     mp = nmp) {
2158 		if (vfs_busy(mp, &nmp)) {
2159 			continue;
2160 		}
2161 		savebp = bp;
2162 		/* Allocate a marker vnode. */
2163 		if ((mvp = vnalloc(mp)) == NULL) {
2164 			sysctl_relock();
2165 			return (ENOMEM);
2166 		}
2167 		mutex_enter(&mntvnode_lock);
2168 		for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = vunmark(mvp)) {
2169 			vmark(mvp, vp);
2170 			/*
2171 			 * Check that the vp is still associated with
2172 			 * this filesystem.  RACE: could have been
2173 			 * recycled onto the same filesystem.
2174 			 */
2175 			if (vp->v_mount != mp || vismarker(vp))
2176 				continue;
2177 			if (bp + VPTRSZ + VNODESZ > ewhere) {
2178 				(void)vunmark(mvp);
2179 				mutex_exit(&mntvnode_lock);
2180 				vnfree(mvp);
2181 				sysctl_relock();
2182 				*sizep = bp - where;
2183 				return (ENOMEM);
2184 			}
2185 			memcpy(&vbuf, vp, VNODESZ);
2186 			mutex_exit(&mntvnode_lock);
2187 			if ((error = copyout(vp, bp, VPTRSZ)) ||
2188 			   (error = copyout(&vbuf, bp + VPTRSZ, VNODESZ))) {
2189 			   	mutex_enter(&mntvnode_lock);
2190 				(void)vunmark(mvp);
2191 				mutex_exit(&mntvnode_lock);
2192 				vnfree(mvp);
2193 				sysctl_relock();
2194 				return (error);
2195 			}
2196 			bp += VPTRSZ + VNODESZ;
2197 			mutex_enter(&mntvnode_lock);
2198 		}
2199 		mutex_exit(&mntvnode_lock);
2200 		vnfree(mvp);
2201 		vfs_unbusy(mp, false, &nmp);
2202 	}
2203 	mutex_exit(&mountlist_lock);
2204 	sysctl_relock();
2205 
2206 	*sizep = bp - where;
2207 	return (0);
2208 }
2209 
2210 /*
2211  * Remove clean vnodes from a mountpoint's vnode list.
2212  */
2213 void
2214 vfs_scrubvnlist(struct mount *mp)
2215 {
2216 	vnode_t *vp, *nvp;
2217 
2218  retry:
2219 	mutex_enter(&mntvnode_lock);
2220 	for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
2221 		nvp = TAILQ_NEXT(vp, v_mntvnodes);
2222 		mutex_enter(&vp->v_interlock);
2223 		if ((vp->v_iflag & VI_CLEAN) != 0) {
2224 			TAILQ_REMOVE(&mp->mnt_vnodelist, vp, v_mntvnodes);
2225 			vp->v_mount = NULL;
2226 			mutex_exit(&mntvnode_lock);
2227 			mutex_exit(&vp->v_interlock);
2228 			vfs_destroy(mp);
2229 			goto retry;
2230 		}
2231 		mutex_exit(&vp->v_interlock);
2232 	}
2233 	mutex_exit(&mntvnode_lock);
2234 }
2235 
2236 /*
2237  * Check to see if a filesystem is mounted on a block device.
2238  */
2239 int
2240 vfs_mountedon(vnode_t *vp)
2241 {
2242 	vnode_t *vq;
2243 	int error = 0;
2244 
2245 	if (vp->v_type != VBLK)
2246 		return ENOTBLK;
2247 	if (vp->v_specmountpoint != NULL)
2248 		return (EBUSY);
2249 	mutex_enter(&specfs_lock);
2250 	for (vq = specfs_hash[SPECHASH(vp->v_rdev)]; vq != NULL;
2251 	    vq = vq->v_specnext) {
2252 		if (vq->v_rdev != vp->v_rdev || vq->v_type != vp->v_type)
2253 			continue;
2254 		if (vq->v_specmountpoint != NULL) {
2255 			error = EBUSY;
2256 			break;
2257 		}
2258 	}
2259 	mutex_exit(&specfs_lock);
2260 	return (error);
2261 }
2262 
2263 /*
2264  * Unmount all file systems.
2265  * We traverse the list in reverse order under the assumption that doing so
2266  * will avoid needing to worry about dependencies.
2267  */
2268 void
2269 vfs_unmountall(struct lwp *l)
2270 {
2271 	struct mount *mp, *nmp;
2272 	int allerror, error;
2273 
2274 	printf("unmounting file systems...");
2275 	for (allerror = 0, mp = CIRCLEQ_LAST(&mountlist);
2276 	     !CIRCLEQ_EMPTY(&mountlist);
2277 	     mp = nmp) {
2278 		nmp = CIRCLEQ_PREV(mp, mnt_list);
2279 #ifdef DEBUG
2280 		printf("\nunmounting %s (%s)...",
2281 		    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_mntfromname);
2282 #endif
2283 		atomic_inc_uint(&mp->mnt_refcnt);
2284 		if ((error = dounmount(mp, MNT_FORCE, l)) != 0) {
2285 			printf("unmount of %s failed with error %d\n",
2286 			    mp->mnt_stat.f_mntonname, error);
2287 			allerror = 1;
2288 		}
2289 	}
2290 	printf(" done\n");
2291 	if (allerror)
2292 		printf("WARNING: some file systems would not unmount\n");
2293 }
2294 
2295 /*
2296  * Sync and unmount file systems before shutting down.
2297  */
2298 void
2299 vfs_shutdown(void)
2300 {
2301 	struct lwp *l;
2302 
2303 	/* XXX we're certainly not running in lwp0's context! */
2304 	l = curlwp;
2305 	if (l == NULL)
2306 		l = &lwp0;
2307 
2308 	printf("syncing disks... ");
2309 
2310 	/* remove user processes from run queue */
2311 	suspendsched();
2312 	(void) spl0();
2313 
2314 	/* avoid coming back this way again if we panic. */
2315 	doing_shutdown = 1;
2316 
2317 	sys_sync(l, NULL, NULL);
2318 
2319 	/* Wait for sync to finish. */
2320 	if (buf_syncwait() != 0) {
2321 #if defined(DDB) && defined(DEBUG_HALT_BUSY)
2322 		Debugger();
2323 #endif
2324 		printf("giving up\n");
2325 		return;
2326 	} else
2327 		printf("done\n");
2328 
2329 	/*
2330 	 * If we've panic'd, don't make the situation potentially
2331 	 * worse by unmounting the file systems.
2332 	 */
2333 	if (panicstr != NULL)
2334 		return;
2335 
2336 	/* Release inodes held by texts before update. */
2337 #ifdef notdef
2338 	vnshutdown();
2339 #endif
2340 	/* Unmount file systems. */
2341 	vfs_unmountall(l);
2342 }
2343 
2344 /*
2345  * Mount the root file system.  If the operator didn't specify a
2346  * file system to use, try all possible file systems until one
2347  * succeeds.
2348  */
2349 int
2350 vfs_mountroot(void)
2351 {
2352 	struct vfsops *v;
2353 	int error = ENODEV;
2354 
2355 	if (root_device == NULL)
2356 		panic("vfs_mountroot: root device unknown");
2357 
2358 	switch (device_class(root_device)) {
2359 	case DV_IFNET:
2360 		if (rootdev != NODEV)
2361 			panic("vfs_mountroot: rootdev set for DV_IFNET "
2362 			    "(0x%08x -> %d,%d)", rootdev,
2363 			    major(rootdev), minor(rootdev));
2364 		break;
2365 
2366 	case DV_DISK:
2367 		if (rootdev == NODEV)
2368 			panic("vfs_mountroot: rootdev not set for DV_DISK");
2369 	        if (bdevvp(rootdev, &rootvp))
2370 	                panic("vfs_mountroot: can't get vnode for rootdev");
2371 		error = VOP_OPEN(rootvp, FREAD, FSCRED);
2372 		if (error) {
2373 			printf("vfs_mountroot: can't open root device\n");
2374 			return (error);
2375 		}
2376 		break;
2377 
2378 	default:
2379 		printf("%s: inappropriate for root file system\n",
2380 		    device_xname(root_device));
2381 		return (ENODEV);
2382 	}
2383 
2384 	/*
2385 	 * If user specified a file system, use it.
2386 	 */
2387 	if (mountroot != NULL) {
2388 		error = (*mountroot)();
2389 		goto done;
2390 	}
2391 
2392 	/*
2393 	 * Try each file system currently configured into the kernel.
2394 	 */
2395 	mutex_enter(&vfs_list_lock);
2396 	LIST_FOREACH(v, &vfs_list, vfs_list) {
2397 		if (v->vfs_mountroot == NULL)
2398 			continue;
2399 #ifdef DEBUG
2400 		aprint_normal("mountroot: trying %s...\n", v->vfs_name);
2401 #endif
2402 		v->vfs_refcount++;
2403 		mutex_exit(&vfs_list_lock);
2404 		error = (*v->vfs_mountroot)();
2405 		mutex_enter(&vfs_list_lock);
2406 		v->vfs_refcount--;
2407 		if (!error) {
2408 			aprint_normal("root file system type: %s\n",
2409 			    v->vfs_name);
2410 			break;
2411 		}
2412 	}
2413 	mutex_exit(&vfs_list_lock);
2414 
2415 	if (v == NULL) {
2416 		printf("no file system for %s", device_xname(root_device));
2417 		if (device_class(root_device) == DV_DISK)
2418 			printf(" (dev 0x%x)", rootdev);
2419 		printf("\n");
2420 		error = EFTYPE;
2421 	}
2422 
2423 done:
2424 	if (error && device_class(root_device) == DV_DISK) {
2425 		VOP_CLOSE(rootvp, FREAD, FSCRED);
2426 		vrele(rootvp);
2427 	}
2428 	return (error);
2429 }
2430 
2431 /*
2432  * Get a new unique fsid
2433  */
2434 void
2435 vfs_getnewfsid(struct mount *mp)
2436 {
2437 	static u_short xxxfs_mntid;
2438 	fsid_t tfsid;
2439 	int mtype;
2440 
2441 	mutex_enter(&mntid_lock);
2442 	mtype = makefstype(mp->mnt_op->vfs_name);
2443 	mp->mnt_stat.f_fsidx.__fsid_val[0] = makedev(mtype, 0);
2444 	mp->mnt_stat.f_fsidx.__fsid_val[1] = mtype;
2445 	mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
2446 	if (xxxfs_mntid == 0)
2447 		++xxxfs_mntid;
2448 	tfsid.__fsid_val[0] = makedev(mtype & 0xff, xxxfs_mntid);
2449 	tfsid.__fsid_val[1] = mtype;
2450 	if (!CIRCLEQ_EMPTY(&mountlist)) {
2451 		while (vfs_getvfs(&tfsid)) {
2452 			tfsid.__fsid_val[0]++;
2453 			xxxfs_mntid++;
2454 		}
2455 	}
2456 	mp->mnt_stat.f_fsidx.__fsid_val[0] = tfsid.__fsid_val[0];
2457 	mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
2458 	mutex_exit(&mntid_lock);
2459 }
2460 
2461 /*
2462  * Make a 'unique' number from a mount type name.
2463  */
2464 long
2465 makefstype(const char *type)
2466 {
2467 	long rv;
2468 
2469 	for (rv = 0; *type; type++) {
2470 		rv <<= 2;
2471 		rv ^= *type;
2472 	}
2473 	return rv;
2474 }
2475 
2476 /*
2477  * Set vnode attributes to VNOVAL
2478  */
2479 void
2480 vattr_null(struct vattr *vap)
2481 {
2482 
2483 	vap->va_type = VNON;
2484 
2485 	/*
2486 	 * Assign individually so that it is safe even if size and
2487 	 * sign of each member are varied.
2488 	 */
2489 	vap->va_mode = VNOVAL;
2490 	vap->va_nlink = VNOVAL;
2491 	vap->va_uid = VNOVAL;
2492 	vap->va_gid = VNOVAL;
2493 	vap->va_fsid = VNOVAL;
2494 	vap->va_fileid = VNOVAL;
2495 	vap->va_size = VNOVAL;
2496 	vap->va_blocksize = VNOVAL;
2497 	vap->va_atime.tv_sec =
2498 	    vap->va_mtime.tv_sec =
2499 	    vap->va_ctime.tv_sec =
2500 	    vap->va_birthtime.tv_sec = VNOVAL;
2501 	vap->va_atime.tv_nsec =
2502 	    vap->va_mtime.tv_nsec =
2503 	    vap->va_ctime.tv_nsec =
2504 	    vap->va_birthtime.tv_nsec = VNOVAL;
2505 	vap->va_gen = VNOVAL;
2506 	vap->va_flags = VNOVAL;
2507 	vap->va_rdev = VNOVAL;
2508 	vap->va_bytes = VNOVAL;
2509 	vap->va_vaflags = 0;
2510 }
2511 
2512 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof(arr[0]))
2513 #define ARRAY_PRINT(idx, arr) \
2514     ((idx) > 0 && (idx) < ARRAY_SIZE(arr) ? (arr)[(idx)] : "UNKNOWN")
2515 
2516 const char * const vnode_tags[] = { VNODE_TAGS };
2517 const char * const vnode_types[] = { VNODE_TYPES };
2518 const char vnode_flagbits[] = VNODE_FLAGBITS;
2519 
2520 /*
2521  * Print out a description of a vnode.
2522  */
2523 void
2524 vprint(const char *label, struct vnode *vp)
2525 {
2526 	struct vnlock *vl;
2527 	char bf[96];
2528 	int flag;
2529 
2530 	vl = (vp->v_vnlock != NULL ? vp->v_vnlock : &vp->v_lock);
2531 	flag = vp->v_iflag | vp->v_vflag | vp->v_uflag;
2532 	bitmask_snprintf(flag, vnode_flagbits, bf, sizeof(bf));
2533 
2534 	if (label != NULL)
2535 		printf("%s: ", label);
2536 	printf("vnode @ %p, flags (%s)\n\ttag %s(%d), type %s(%d), "
2537 	    "usecount %d, writecount %d, holdcount %d\n"
2538 	    "\tfreelisthd %p, mount %p, data %p lock %p recursecnt %d\n",
2539 	    vp, bf, ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag,
2540 	    ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type,
2541 	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt,
2542 	    vp->v_freelisthd, vp->v_mount, vp->v_data, vl, vl->vl_recursecnt);
2543 	if (vp->v_data != NULL) {
2544 		printf("\t");
2545 		VOP_PRINT(vp);
2546 	}
2547 }
2548 
2549 #ifdef DEBUG
2550 /*
2551  * List all of the locked vnodes in the system.
2552  * Called when debugging the kernel.
2553  */
2554 void
2555 printlockedvnodes(void)
2556 {
2557 	struct mount *mp, *nmp;
2558 	struct vnode *vp;
2559 
2560 	printf("Locked vnodes\n");
2561 	mutex_enter(&mountlist_lock);
2562 	for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
2563 	     mp = nmp) {
2564 		if (vfs_busy(mp, &nmp)) {
2565 			continue;
2566 		}
2567 		TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2568 			if (VOP_ISLOCKED(vp))
2569 				vprint(NULL, vp);
2570 		}
2571 		mutex_enter(&mountlist_lock);
2572 		vfs_unbusy(mp, false, &nmp);
2573 	}
2574 	mutex_exit(&mountlist_lock);
2575 }
2576 #endif
2577 
2578 /*
2579  * Do the usual access checking.
2580  * file_mode, uid and gid are from the vnode in question,
2581  * while acc_mode and cred are from the VOP_ACCESS parameter list
2582  */
2583 int
2584 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid,
2585     mode_t acc_mode, kauth_cred_t cred)
2586 {
2587 	mode_t mask;
2588 	int error, ismember;
2589 
2590 	/*
2591 	 * Super-user always gets read/write access, but execute access depends
2592 	 * on at least one execute bit being set.
2593 	 */
2594 	if (kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) == 0) {
2595 		if ((acc_mode & VEXEC) && type != VDIR &&
2596 		    (file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)
2597 			return (EACCES);
2598 		return (0);
2599 	}
2600 
2601 	mask = 0;
2602 
2603 	/* Otherwise, check the owner. */
2604 	if (kauth_cred_geteuid(cred) == uid) {
2605 		if (acc_mode & VEXEC)
2606 			mask |= S_IXUSR;
2607 		if (acc_mode & VREAD)
2608 			mask |= S_IRUSR;
2609 		if (acc_mode & VWRITE)
2610 			mask |= S_IWUSR;
2611 		return ((file_mode & mask) == mask ? 0 : EACCES);
2612 	}
2613 
2614 	/* Otherwise, check the groups. */
2615 	error = kauth_cred_ismember_gid(cred, gid, &ismember);
2616 	if (error)
2617 		return (error);
2618 	if (kauth_cred_getegid(cred) == gid || ismember) {
2619 		if (acc_mode & VEXEC)
2620 			mask |= S_IXGRP;
2621 		if (acc_mode & VREAD)
2622 			mask |= S_IRGRP;
2623 		if (acc_mode & VWRITE)
2624 			mask |= S_IWGRP;
2625 		return ((file_mode & mask) == mask ? 0 : EACCES);
2626 	}
2627 
2628 	/* Otherwise, check everyone else. */
2629 	if (acc_mode & VEXEC)
2630 		mask |= S_IXOTH;
2631 	if (acc_mode & VREAD)
2632 		mask |= S_IROTH;
2633 	if (acc_mode & VWRITE)
2634 		mask |= S_IWOTH;
2635 	return ((file_mode & mask) == mask ? 0 : EACCES);
2636 }
2637 
2638 /*
2639  * Given a file system name, look up the vfsops for that
2640  * file system, or return NULL if file system isn't present
2641  * in the kernel.
2642  */
2643 struct vfsops *
2644 vfs_getopsbyname(const char *name)
2645 {
2646 	struct vfsops *v;
2647 
2648 	mutex_enter(&vfs_list_lock);
2649 	LIST_FOREACH(v, &vfs_list, vfs_list) {
2650 		if (strcmp(v->vfs_name, name) == 0)
2651 			break;
2652 	}
2653 	if (v != NULL)
2654 		v->vfs_refcount++;
2655 	mutex_exit(&vfs_list_lock);
2656 
2657 	return (v);
2658 }
2659 
2660 void
2661 copy_statvfs_info(struct statvfs *sbp, const struct mount *mp)
2662 {
2663 	const struct statvfs *mbp;
2664 
2665 	if (sbp == (mbp = &mp->mnt_stat))
2666 		return;
2667 
2668 	(void)memcpy(&sbp->f_fsidx, &mbp->f_fsidx, sizeof(sbp->f_fsidx));
2669 	sbp->f_fsid = mbp->f_fsid;
2670 	sbp->f_owner = mbp->f_owner;
2671 	sbp->f_flag = mbp->f_flag;
2672 	sbp->f_syncwrites = mbp->f_syncwrites;
2673 	sbp->f_asyncwrites = mbp->f_asyncwrites;
2674 	sbp->f_syncreads = mbp->f_syncreads;
2675 	sbp->f_asyncreads = mbp->f_asyncreads;
2676 	(void)memcpy(sbp->f_spare, mbp->f_spare, sizeof(mbp->f_spare));
2677 	(void)memcpy(sbp->f_fstypename, mbp->f_fstypename,
2678 	    sizeof(sbp->f_fstypename));
2679 	(void)memcpy(sbp->f_mntonname, mbp->f_mntonname,
2680 	    sizeof(sbp->f_mntonname));
2681 	(void)memcpy(sbp->f_mntfromname, mp->mnt_stat.f_mntfromname,
2682 	    sizeof(sbp->f_mntfromname));
2683 	sbp->f_namemax = mbp->f_namemax;
2684 }
2685 
2686 int
2687 set_statvfs_info(const char *onp, int ukon, const char *fromp, int ukfrom,
2688     const char *vfsname, struct mount *mp, struct lwp *l)
2689 {
2690 	int error;
2691 	size_t size;
2692 	struct statvfs *sfs = &mp->mnt_stat;
2693 	int (*fun)(const void *, void *, size_t, size_t *);
2694 
2695 	(void)strlcpy(mp->mnt_stat.f_fstypename, vfsname,
2696 	    sizeof(mp->mnt_stat.f_fstypename));
2697 
2698 	if (onp) {
2699 		struct cwdinfo *cwdi = l->l_proc->p_cwdi;
2700 		fun = (ukon == UIO_SYSSPACE) ? copystr : copyinstr;
2701 		if (cwdi->cwdi_rdir != NULL) {
2702 			size_t len;
2703 			char *bp;
2704 			char *path = PNBUF_GET();
2705 
2706 			bp = path + MAXPATHLEN;
2707 			*--bp = '\0';
2708 			rw_enter(&cwdi->cwdi_lock, RW_READER);
2709 			error = getcwd_common(cwdi->cwdi_rdir, rootvnode, &bp,
2710 			    path, MAXPATHLEN / 2, 0, l);
2711 			rw_exit(&cwdi->cwdi_lock);
2712 			if (error) {
2713 				PNBUF_PUT(path);
2714 				return error;
2715 			}
2716 
2717 			len = strlen(bp);
2718 			if (len > sizeof(sfs->f_mntonname) - 1)
2719 				len = sizeof(sfs->f_mntonname) - 1;
2720 			(void)strncpy(sfs->f_mntonname, bp, len);
2721 			PNBUF_PUT(path);
2722 
2723 			if (len < sizeof(sfs->f_mntonname) - 1) {
2724 				error = (*fun)(onp, &sfs->f_mntonname[len],
2725 				    sizeof(sfs->f_mntonname) - len - 1, &size);
2726 				if (error)
2727 					return error;
2728 				size += len;
2729 			} else {
2730 				size = len;
2731 			}
2732 		} else {
2733 			error = (*fun)(onp, &sfs->f_mntonname,
2734 			    sizeof(sfs->f_mntonname) - 1, &size);
2735 			if (error)
2736 				return error;
2737 		}
2738 		(void)memset(sfs->f_mntonname + size, 0,
2739 		    sizeof(sfs->f_mntonname) - size);
2740 	}
2741 
2742 	if (fromp) {
2743 		fun = (ukfrom == UIO_SYSSPACE) ? copystr : copyinstr;
2744 		error = (*fun)(fromp, sfs->f_mntfromname,
2745 		    sizeof(sfs->f_mntfromname) - 1, &size);
2746 		if (error)
2747 			return error;
2748 		(void)memset(sfs->f_mntfromname + size, 0,
2749 		    sizeof(sfs->f_mntfromname) - size);
2750 	}
2751 	return 0;
2752 }
2753 
2754 void
2755 vfs_timestamp(struct timespec *ts)
2756 {
2757 
2758 	nanotime(ts);
2759 }
2760 
2761 time_t	rootfstime;			/* recorded root fs time, if known */
2762 void
2763 setrootfstime(time_t t)
2764 {
2765 	rootfstime = t;
2766 }
2767 
2768 /*
2769  * Sham lock manager for vnodes.  This is a temporary measure.
2770  */
2771 int
2772 vlockmgr(struct vnlock *vl, int flags)
2773 {
2774 
2775 	KASSERT((flags & ~(LK_CANRECURSE | LK_NOWAIT | LK_TYPE_MASK)) == 0);
2776 
2777 	switch (flags & LK_TYPE_MASK) {
2778 	case LK_SHARED:
2779 		if (rw_tryenter(&vl->vl_lock, RW_READER)) {
2780 			return 0;
2781 		}
2782 		if ((flags & LK_NOWAIT) != 0) {
2783 			return EBUSY;
2784 		}
2785 		rw_enter(&vl->vl_lock, RW_READER);
2786 		return 0;
2787 
2788 	case LK_EXCLUSIVE:
2789 		if (rw_tryenter(&vl->vl_lock, RW_WRITER)) {
2790 			return 0;
2791 		}
2792 		if ((vl->vl_canrecurse || (flags & LK_CANRECURSE) != 0) &&
2793 		    rw_write_held(&vl->vl_lock)) {
2794 			vl->vl_recursecnt++;
2795 			return 0;
2796 		}
2797 		if ((flags & LK_NOWAIT) != 0) {
2798 			return EBUSY;
2799 		}
2800 		rw_enter(&vl->vl_lock, RW_WRITER);
2801 		return 0;
2802 
2803 	case LK_RELEASE:
2804 		if (vl->vl_recursecnt != 0) {
2805 			KASSERT(rw_write_held(&vl->vl_lock));
2806 			vl->vl_recursecnt--;
2807 			return 0;
2808 		}
2809 		rw_exit(&vl->vl_lock);
2810 		return 0;
2811 
2812 	default:
2813 		panic("vlockmgr: flags %x", flags);
2814 	}
2815 }
2816 
2817 int
2818 vlockstatus(struct vnlock *vl)
2819 {
2820 
2821 	if (rw_write_held(&vl->vl_lock)) {
2822 		return LK_EXCLUSIVE;
2823 	}
2824 	if (rw_read_held(&vl->vl_lock)) {
2825 		return LK_SHARED;
2826 	}
2827 	return 0;
2828 }
2829 
2830 /*
2831  * mount_specific_key_create --
2832  *	Create a key for subsystem mount-specific data.
2833  */
2834 int
2835 mount_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
2836 {
2837 
2838 	return (specificdata_key_create(mount_specificdata_domain, keyp, dtor));
2839 }
2840 
2841 /*
2842  * mount_specific_key_delete --
2843  *	Delete a key for subsystem mount-specific data.
2844  */
2845 void
2846 mount_specific_key_delete(specificdata_key_t key)
2847 {
2848 
2849 	specificdata_key_delete(mount_specificdata_domain, key);
2850 }
2851 
2852 /*
2853  * mount_initspecific --
2854  *	Initialize a mount's specificdata container.
2855  */
2856 void
2857 mount_initspecific(struct mount *mp)
2858 {
2859 	int error;
2860 
2861 	error = specificdata_init(mount_specificdata_domain,
2862 				  &mp->mnt_specdataref);
2863 	KASSERT(error == 0);
2864 }
2865 
2866 /*
2867  * mount_finispecific --
2868  *	Finalize a mount's specificdata container.
2869  */
2870 void
2871 mount_finispecific(struct mount *mp)
2872 {
2873 
2874 	specificdata_fini(mount_specificdata_domain, &mp->mnt_specdataref);
2875 }
2876 
2877 /*
2878  * mount_getspecific --
2879  *	Return mount-specific data corresponding to the specified key.
2880  */
2881 void *
2882 mount_getspecific(struct mount *mp, specificdata_key_t key)
2883 {
2884 
2885 	return (specificdata_getspecific(mount_specificdata_domain,
2886 					 &mp->mnt_specdataref, key));
2887 }
2888 
2889 /*
2890  * mount_setspecific --
2891  *	Set mount-specific data corresponding to the specified key.
2892  */
2893 void
2894 mount_setspecific(struct mount *mp, specificdata_key_t key, void *data)
2895 {
2896 
2897 	specificdata_setspecific(mount_specificdata_domain,
2898 				 &mp->mnt_specdataref, key, data);
2899 }
2900 
2901 int
2902 VFS_MOUNT(struct mount *mp, const char *a, void *b, size_t *c)
2903 {
2904 	int error;
2905 
2906 	KERNEL_LOCK(1, NULL);
2907 	error = (*(mp->mnt_op->vfs_mount))(mp, a, b, c);
2908 	KERNEL_UNLOCK_ONE(NULL);
2909 
2910 	return error;
2911 }
2912 
2913 int
2914 VFS_START(struct mount *mp, int a)
2915 {
2916 	int error;
2917 
2918 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2919 		KERNEL_LOCK(1, NULL);
2920 	}
2921 	error = (*(mp->mnt_op->vfs_start))(mp, a);
2922 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2923 		KERNEL_UNLOCK_ONE(NULL);
2924 	}
2925 
2926 	return error;
2927 }
2928 
2929 int
2930 VFS_UNMOUNT(struct mount *mp, int a)
2931 {
2932 	int error;
2933 
2934 	KERNEL_LOCK(1, NULL);
2935 	error = (*(mp->mnt_op->vfs_unmount))(mp, a);
2936 	KERNEL_UNLOCK_ONE(NULL);
2937 
2938 	return error;
2939 }
2940 
2941 int
2942 VFS_ROOT(struct mount *mp, struct vnode **a)
2943 {
2944 	int error;
2945 
2946 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2947 		KERNEL_LOCK(1, NULL);
2948 	}
2949 	error = (*(mp->mnt_op->vfs_root))(mp, a);
2950 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2951 		KERNEL_UNLOCK_ONE(NULL);
2952 	}
2953 
2954 	return error;
2955 }
2956 
2957 int
2958 VFS_QUOTACTL(struct mount *mp, int a, uid_t b, void *c)
2959 {
2960 	int error;
2961 
2962 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2963 		KERNEL_LOCK(1, NULL);
2964 	}
2965 	error = (*(mp->mnt_op->vfs_quotactl))(mp, a, b, c);
2966 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2967 		KERNEL_UNLOCK_ONE(NULL);
2968 	}
2969 
2970 	return error;
2971 }
2972 
2973 int
2974 VFS_STATVFS(struct mount *mp, struct statvfs *a)
2975 {
2976 	int error;
2977 
2978 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2979 		KERNEL_LOCK(1, NULL);
2980 	}
2981 	error = (*(mp->mnt_op->vfs_statvfs))(mp, a);
2982 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2983 		KERNEL_UNLOCK_ONE(NULL);
2984 	}
2985 
2986 	return error;
2987 }
2988 
2989 int
2990 VFS_SYNC(struct mount *mp, int a, struct kauth_cred *b)
2991 {
2992 	int error;
2993 
2994 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2995 		KERNEL_LOCK(1, NULL);
2996 	}
2997 	error = (*(mp->mnt_op->vfs_sync))(mp, a, b);
2998 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2999 		KERNEL_UNLOCK_ONE(NULL);
3000 	}
3001 
3002 	return error;
3003 }
3004 
3005 int
3006 VFS_FHTOVP(struct mount *mp, struct fid *a, struct vnode **b)
3007 {
3008 	int error;
3009 
3010 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3011 		KERNEL_LOCK(1, NULL);
3012 	}
3013 	error = (*(mp->mnt_op->vfs_fhtovp))(mp, a, b);
3014 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3015 		KERNEL_UNLOCK_ONE(NULL);
3016 	}
3017 
3018 	return error;
3019 }
3020 
3021 int
3022 VFS_VPTOFH(struct vnode *vp, struct fid *a, size_t *b)
3023 {
3024 	int error;
3025 
3026 	if ((vp->v_vflag & VV_MPSAFE) == 0) {
3027 		KERNEL_LOCK(1, NULL);
3028 	}
3029 	error = (*(vp->v_mount->mnt_op->vfs_vptofh))(vp, a, b);
3030 	if ((vp->v_vflag & VV_MPSAFE) == 0) {
3031 		KERNEL_UNLOCK_ONE(NULL);
3032 	}
3033 
3034 	return error;
3035 }
3036 
3037 int
3038 VFS_SNAPSHOT(struct mount *mp, struct vnode *a, struct timespec *b)
3039 {
3040 	int error;
3041 
3042 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3043 		KERNEL_LOCK(1, NULL);
3044 	}
3045 	error = (*(mp->mnt_op->vfs_snapshot))(mp, a, b);
3046 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3047 		KERNEL_UNLOCK_ONE(NULL);
3048 	}
3049 
3050 	return error;
3051 }
3052 
3053 int
3054 VFS_EXTATTRCTL(struct mount *mp, int a, struct vnode *b, int c, const char *d)
3055 {
3056 	int error;
3057 
3058 	KERNEL_LOCK(1, NULL);		/* XXXSMP check ffs */
3059 	error = (*(mp->mnt_op->vfs_extattrctl))(mp, a, b, c, d);
3060 	KERNEL_UNLOCK_ONE(NULL);	/* XXX */
3061 
3062 	return error;
3063 }
3064 
3065 int
3066 VFS_SUSPENDCTL(struct mount *mp, int a)
3067 {
3068 	int error;
3069 
3070 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3071 		KERNEL_LOCK(1, NULL);
3072 	}
3073 	error = (*(mp->mnt_op->vfs_suspendctl))(mp, a);
3074 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3075 		KERNEL_UNLOCK_ONE(NULL);
3076 	}
3077 
3078 	return error;
3079 }
3080 
3081 #ifdef DDB
3082 static const char buf_flagbits[] = BUF_FLAGBITS;
3083 
3084 void
3085 vfs_buf_print(struct buf *bp, int full, void (*pr)(const char *, ...))
3086 {
3087 	char bf[1024];
3088 
3089 	(*pr)("  vp %p lblkno 0x%"PRIx64" blkno 0x%"PRIx64" rawblkno 0x%"
3090 	    PRIx64 " dev 0x%x\n",
3091 	    bp->b_vp, bp->b_lblkno, bp->b_blkno, bp->b_rawblkno, bp->b_dev);
3092 
3093 	bitmask_snprintf(bp->b_flags | bp->b_oflags | bp->b_cflags,
3094 	    buf_flagbits, bf, sizeof(bf));
3095 	(*pr)("  error %d flags 0x%s\n", bp->b_error, bf);
3096 
3097 	(*pr)("  bufsize 0x%lx bcount 0x%lx resid 0x%lx\n",
3098 		  bp->b_bufsize, bp->b_bcount, bp->b_resid);
3099 	(*pr)("  data %p saveaddr %p dep %p\n",
3100 		  bp->b_data, bp->b_saveaddr, LIST_FIRST(&bp->b_dep));
3101 	(*pr)("  iodone %p objlock %p\n", bp->b_iodone, bp->b_objlock);
3102 }
3103 
3104 
3105 void
3106 vfs_vnode_print(struct vnode *vp, int full, void (*pr)(const char *, ...))
3107 {
3108 	char bf[256];
3109 
3110 	uvm_object_printit(&vp->v_uobj, full, pr);
3111 	bitmask_snprintf(vp->v_iflag | vp->v_vflag | vp->v_uflag,
3112 	    vnode_flagbits, bf, sizeof(bf));
3113 	(*pr)("\nVNODE flags %s\n", bf);
3114 	(*pr)("mp %p numoutput %d size 0x%llx writesize 0x%llx\n",
3115 	      vp->v_mount, vp->v_numoutput, vp->v_size, vp->v_writesize);
3116 
3117 	(*pr)("data %p writecount %ld holdcnt %ld\n",
3118 	      vp->v_data, vp->v_writecount, vp->v_holdcnt);
3119 
3120 	(*pr)("tag %s(%d) type %s(%d) mount %p typedata %p\n",
3121 	      ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag,
3122 	      ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type,
3123 	      vp->v_mount, vp->v_mountedhere);
3124 
3125 	(*pr)("v_lock %p v_vnlock %p\n", &vp->v_lock, vp->v_vnlock);
3126 
3127 	if (full) {
3128 		struct buf *bp;
3129 
3130 		(*pr)("clean bufs:\n");
3131 		LIST_FOREACH(bp, &vp->v_cleanblkhd, b_vnbufs) {
3132 			(*pr)(" bp %p\n", bp);
3133 			vfs_buf_print(bp, full, pr);
3134 		}
3135 
3136 		(*pr)("dirty bufs:\n");
3137 		LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
3138 			(*pr)(" bp %p\n", bp);
3139 			vfs_buf_print(bp, full, pr);
3140 		}
3141 	}
3142 }
3143 
3144 void
3145 vfs_mount_print(struct mount *mp, int full, void (*pr)(const char *, ...))
3146 {
3147 	char sbuf[256];
3148 
3149 	(*pr)("vnodecovered = %p syncer = %p data = %p\n",
3150 			mp->mnt_vnodecovered,mp->mnt_syncer,mp->mnt_data);
3151 
3152 	(*pr)("fs_bshift %d dev_bshift = %d\n",
3153 			mp->mnt_fs_bshift,mp->mnt_dev_bshift);
3154 
3155 	bitmask_snprintf(mp->mnt_flag, __MNT_FLAG_BITS, sbuf, sizeof(sbuf));
3156 	(*pr)("flag = %s\n", sbuf);
3157 
3158 	bitmask_snprintf(mp->mnt_iflag, __IMNT_FLAG_BITS, sbuf, sizeof(sbuf));
3159 	(*pr)("iflag = %s\n", sbuf);
3160 
3161 	(*pr)("refcnt = %d unmounting @ %p updating @ %p\n", mp->mnt_refcnt,
3162 	    &mp->mnt_unmounting, &mp->mnt_updating);
3163 
3164 	(*pr)("statvfs cache:\n");
3165 	(*pr)("\tbsize = %lu\n",mp->mnt_stat.f_bsize);
3166 	(*pr)("\tfrsize = %lu\n",mp->mnt_stat.f_frsize);
3167 	(*pr)("\tiosize = %lu\n",mp->mnt_stat.f_iosize);
3168 
3169 	(*pr)("\tblocks = %"PRIu64"\n",mp->mnt_stat.f_blocks);
3170 	(*pr)("\tbfree = %"PRIu64"\n",mp->mnt_stat.f_bfree);
3171 	(*pr)("\tbavail = %"PRIu64"\n",mp->mnt_stat.f_bavail);
3172 	(*pr)("\tbresvd = %"PRIu64"\n",mp->mnt_stat.f_bresvd);
3173 
3174 	(*pr)("\tfiles = %"PRIu64"\n",mp->mnt_stat.f_files);
3175 	(*pr)("\tffree = %"PRIu64"\n",mp->mnt_stat.f_ffree);
3176 	(*pr)("\tfavail = %"PRIu64"\n",mp->mnt_stat.f_favail);
3177 	(*pr)("\tfresvd = %"PRIu64"\n",mp->mnt_stat.f_fresvd);
3178 
3179 	(*pr)("\tf_fsidx = { 0x%"PRIx32", 0x%"PRIx32" }\n",
3180 			mp->mnt_stat.f_fsidx.__fsid_val[0],
3181 			mp->mnt_stat.f_fsidx.__fsid_val[1]);
3182 
3183 	(*pr)("\towner = %"PRIu32"\n",mp->mnt_stat.f_owner);
3184 	(*pr)("\tnamemax = %lu\n",mp->mnt_stat.f_namemax);
3185 
3186 	bitmask_snprintf(mp->mnt_stat.f_flag, __MNT_FLAG_BITS, sbuf,
3187 	    sizeof(sbuf));
3188 	(*pr)("\tflag = %s\n",sbuf);
3189 	(*pr)("\tsyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_syncwrites);
3190 	(*pr)("\tasyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_asyncwrites);
3191 	(*pr)("\tsyncreads = %" PRIu64 "\n",mp->mnt_stat.f_syncreads);
3192 	(*pr)("\tasyncreads = %" PRIu64 "\n",mp->mnt_stat.f_asyncreads);
3193 	(*pr)("\tfstypename = %s\n",mp->mnt_stat.f_fstypename);
3194 	(*pr)("\tmntonname = %s\n",mp->mnt_stat.f_mntonname);
3195 	(*pr)("\tmntfromname = %s\n",mp->mnt_stat.f_mntfromname);
3196 
3197 	{
3198 		int cnt = 0;
3199 		struct vnode *vp;
3200 		(*pr)("locked vnodes =");
3201 		TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
3202 			if (VOP_ISLOCKED(vp)) {
3203 				if ((++cnt % 6) == 0) {
3204 					(*pr)(" %p,\n\t", vp);
3205 				} else {
3206 					(*pr)(" %p,", vp);
3207 				}
3208 			}
3209 		}
3210 		(*pr)("\n");
3211 	}
3212 
3213 	if (full) {
3214 		int cnt = 0;
3215 		struct vnode *vp;
3216 		(*pr)("all vnodes =");
3217 		TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
3218 			if (!TAILQ_NEXT(vp, v_mntvnodes)) {
3219 				(*pr)(" %p", vp);
3220 			} else if ((++cnt % 6) == 0) {
3221 				(*pr)(" %p,\n\t", vp);
3222 			} else {
3223 				(*pr)(" %p,", vp);
3224 			}
3225 		}
3226 		(*pr)("\n", vp);
3227 	}
3228 }
3229 #endif /* DDB */
3230