xref: /netbsd-src/sys/kern/vfs_subr.c (revision 9ee9e0d7de4c59c936a17df52be682915dc66f43)
1 /*	$NetBSD: vfs_subr.c,v 1.378 2009/05/03 16:52:54 pooka Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)vfs_subr.c	8.13 (Berkeley) 4/18/94
67  */
68 
69 /*
70  * Note on v_usecount and locking:
71  *
72  * At nearly all points it is known that v_usecount could be zero, the
73  * vnode interlock will be held.
74  *
75  * To change v_usecount away from zero, the interlock must be held.  To
76  * change from a non-zero value to zero, again the interlock must be
77  * held.
78  *
79  * Changing the usecount from a non-zero value to a non-zero value can
80  * safely be done using atomic operations, without the interlock held.
81  */
82 
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: vfs_subr.c,v 1.378 2009/05/03 16:52:54 pooka Exp $");
85 
86 #include "opt_ddb.h"
87 #include "opt_compat_netbsd.h"
88 #include "opt_compat_43.h"
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/conf.h>
93 #include <sys/proc.h>
94 #include <sys/kernel.h>
95 #include <sys/mount.h>
96 #include <sys/fcntl.h>
97 #include <sys/vnode.h>
98 #include <sys/stat.h>
99 #include <sys/namei.h>
100 #include <sys/ucred.h>
101 #include <sys/buf.h>
102 #include <sys/errno.h>
103 #include <sys/kmem.h>
104 #include <sys/syscallargs.h>
105 #include <sys/device.h>
106 #include <sys/filedesc.h>
107 #include <sys/kauth.h>
108 #include <sys/atomic.h>
109 #include <sys/kthread.h>
110 #include <sys/wapbl.h>
111 
112 #include <miscfs/specfs/specdev.h>
113 #include <miscfs/syncfs/syncfs.h>
114 
115 #include <uvm/uvm.h>
116 #include <uvm/uvm_readahead.h>
117 #include <uvm/uvm_ddb.h>
118 
119 #include <sys/sysctl.h>
120 
121 const enum vtype iftovt_tab[16] = {
122 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
123 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
124 };
125 const int	vttoif_tab[9] = {
126 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
127 	S_IFSOCK, S_IFIFO, S_IFMT,
128 };
129 
130 /*
131  * Insq/Remq for the vnode usage lists.
132  */
133 #define	bufinsvn(bp, dp)	LIST_INSERT_HEAD(dp, bp, b_vnbufs)
134 #define	bufremvn(bp) {							\
135 	LIST_REMOVE(bp, b_vnbufs);					\
136 	(bp)->b_vnbufs.le_next = NOLIST;				\
137 }
138 
139 int doforce = 1;		/* 1 => permit forcible unmounting */
140 int prtactive = 0;		/* 1 => print out reclaim of active vnodes */
141 
142 static vnodelst_t vnode_free_list = TAILQ_HEAD_INITIALIZER(vnode_free_list);
143 static vnodelst_t vnode_hold_list = TAILQ_HEAD_INITIALIZER(vnode_hold_list);
144 static vnodelst_t vrele_list = TAILQ_HEAD_INITIALIZER(vrele_list);
145 
146 struct mntlist mountlist =			/* mounted filesystem list */
147     CIRCLEQ_HEAD_INITIALIZER(mountlist);
148 
149 u_int numvnodes;
150 static specificdata_domain_t mount_specificdata_domain;
151 
152 static int vrele_pending;
153 static int vrele_gen;
154 static kmutex_t	vrele_lock;
155 static kcondvar_t vrele_cv;
156 static lwp_t *vrele_lwp;
157 
158 kmutex_t mountlist_lock;
159 kmutex_t mntid_lock;
160 kmutex_t mntvnode_lock;
161 kmutex_t vnode_free_list_lock;
162 kmutex_t vfs_list_lock;
163 
164 static pool_cache_t vnode_cache;
165 
166 /*
167  * These define the root filesystem and device.
168  */
169 struct vnode *rootvnode;
170 struct device *root_device;			/* root device */
171 
172 /*
173  * Local declarations.
174  */
175 
176 static void vrele_thread(void *);
177 static void insmntque(vnode_t *, struct mount *);
178 static int getdevvp(dev_t, vnode_t **, enum vtype);
179 static vnode_t *getcleanvnode(void);
180 void vpanic(vnode_t *, const char *);
181 
182 #ifdef DEBUG
183 void printlockedvnodes(void);
184 #endif
185 
186 #ifdef DIAGNOSTIC
187 void
188 vpanic(vnode_t *vp, const char *msg)
189 {
190 
191 	vprint(NULL, vp);
192 	panic("%s\n", msg);
193 }
194 #else
195 #define	vpanic(vp, msg)	/* nothing */
196 #endif
197 
198 void
199 vn_init1(void)
200 {
201 
202 	vnode_cache = pool_cache_init(sizeof(struct vnode), 0, 0, 0, "vnodepl",
203 	    NULL, IPL_NONE, NULL, NULL, NULL);
204 	KASSERT(vnode_cache != NULL);
205 
206 	/* Create deferred release thread. */
207 	mutex_init(&vrele_lock, MUTEX_DEFAULT, IPL_NONE);
208 	cv_init(&vrele_cv, "vrele");
209 	if (kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vrele_thread,
210 	    NULL, &vrele_lwp, "vrele"))
211 		panic("fork vrele");
212 }
213 
214 /*
215  * Initialize the vnode management data structures.
216  */
217 void
218 vntblinit(void)
219 {
220 
221 	mutex_init(&mountlist_lock, MUTEX_DEFAULT, IPL_NONE);
222 	mutex_init(&mntid_lock, MUTEX_DEFAULT, IPL_NONE);
223 	mutex_init(&mntvnode_lock, MUTEX_DEFAULT, IPL_NONE);
224 	mutex_init(&vnode_free_list_lock, MUTEX_DEFAULT, IPL_NONE);
225 	mutex_init(&vfs_list_lock, MUTEX_DEFAULT, IPL_NONE);
226 
227 	mount_specificdata_domain = specificdata_domain_create();
228 
229 	/* Initialize the filesystem syncer. */
230 	vn_initialize_syncerd();
231 	vn_init1();
232 }
233 
234 int
235 vfs_drainvnodes(long target, struct lwp *l)
236 {
237 
238 	while (numvnodes > target) {
239 		vnode_t *vp;
240 
241 		mutex_enter(&vnode_free_list_lock);
242 		vp = getcleanvnode();
243 		if (vp == NULL)
244 			return EBUSY; /* give up */
245 		ungetnewvnode(vp);
246 	}
247 
248 	return 0;
249 }
250 
251 /*
252  * Lookup a mount point by filesystem identifier.
253  *
254  * XXX Needs to add a reference to the mount point.
255  */
256 struct mount *
257 vfs_getvfs(fsid_t *fsid)
258 {
259 	struct mount *mp;
260 
261 	mutex_enter(&mountlist_lock);
262 	CIRCLEQ_FOREACH(mp, &mountlist, mnt_list) {
263 		if (mp->mnt_stat.f_fsidx.__fsid_val[0] == fsid->__fsid_val[0] &&
264 		    mp->mnt_stat.f_fsidx.__fsid_val[1] == fsid->__fsid_val[1]) {
265 			mutex_exit(&mountlist_lock);
266 			return (mp);
267 		}
268 	}
269 	mutex_exit(&mountlist_lock);
270 	return ((struct mount *)0);
271 }
272 
273 /*
274  * Drop a reference to a mount structure, freeing if the last reference.
275  */
276 void
277 vfs_destroy(struct mount *mp)
278 {
279 
280 	if (__predict_true((int)atomic_dec_uint_nv(&mp->mnt_refcnt) > 0)) {
281 		return;
282 	}
283 
284 	/*
285 	 * Nothing else has visibility of the mount: we can now
286 	 * free the data structures.
287 	 */
288 	KASSERT(mp->mnt_refcnt == 0);
289 	specificdata_fini(mount_specificdata_domain, &mp->mnt_specdataref);
290 	rw_destroy(&mp->mnt_unmounting);
291 	mutex_destroy(&mp->mnt_updating);
292 	mutex_destroy(&mp->mnt_renamelock);
293 	if (mp->mnt_op != NULL) {
294 		vfs_delref(mp->mnt_op);
295 	}
296 	kmem_free(mp, sizeof(*mp));
297 }
298 
299 /*
300  * grab a vnode from freelist and clean it.
301  */
302 vnode_t *
303 getcleanvnode(void)
304 {
305 	vnode_t *vp;
306 	vnodelst_t *listhd;
307 
308 	KASSERT(mutex_owned(&vnode_free_list_lock));
309 
310 retry:
311 	listhd = &vnode_free_list;
312 try_nextlist:
313 	TAILQ_FOREACH(vp, listhd, v_freelist) {
314 		/*
315 		 * It's safe to test v_usecount and v_iflag
316 		 * without holding the interlock here, since
317 		 * these vnodes should never appear on the
318 		 * lists.
319 		 */
320 		if (vp->v_usecount != 0) {
321 			vpanic(vp, "free vnode isn't");
322 		}
323 		if ((vp->v_iflag & VI_CLEAN) != 0) {
324 			vpanic(vp, "clean vnode on freelist");
325 		}
326 		if (vp->v_freelisthd != listhd) {
327 			printf("vnode sez %p, listhd %p\n", vp->v_freelisthd, listhd);
328 			vpanic(vp, "list head mismatch");
329 		}
330 		if (!mutex_tryenter(&vp->v_interlock))
331 			continue;
332 		/*
333 		 * Our lwp might hold the underlying vnode
334 		 * locked, so don't try to reclaim a VI_LAYER
335 		 * node if it's locked.
336 		 */
337 		if ((vp->v_iflag & VI_XLOCK) == 0 &&
338 		    ((vp->v_iflag & VI_LAYER) == 0 || VOP_ISLOCKED(vp) == 0)) {
339 			break;
340 		}
341 		mutex_exit(&vp->v_interlock);
342 	}
343 
344 	if (vp == NULL) {
345 		if (listhd == &vnode_free_list) {
346 			listhd = &vnode_hold_list;
347 			goto try_nextlist;
348 		}
349 		mutex_exit(&vnode_free_list_lock);
350 		return NULL;
351 	}
352 
353 	/* Remove it from the freelist. */
354 	TAILQ_REMOVE(listhd, vp, v_freelist);
355 	vp->v_freelisthd = NULL;
356 	mutex_exit(&vnode_free_list_lock);
357 
358 	/*
359 	 * The vnode is still associated with a file system, so we must
360 	 * clean it out before reusing it.  We need to add a reference
361 	 * before doing this.  If the vnode gains another reference while
362 	 * being cleaned out then we lose - retry.
363 	 */
364 	atomic_inc_uint(&vp->v_usecount);
365 	vclean(vp, DOCLOSE);
366 	if (vp->v_usecount == 1) {
367 		/* We're about to dirty it. */
368 		vp->v_iflag &= ~VI_CLEAN;
369 		mutex_exit(&vp->v_interlock);
370 		if (vp->v_type == VBLK || vp->v_type == VCHR) {
371 			spec_node_destroy(vp);
372 		}
373 		vp->v_type = VNON;
374 	} else {
375 		/*
376 		 * Don't return to freelist - the holder of the last
377 		 * reference will destroy it.
378 		 */
379 		vrelel(vp, 0); /* releases vp->v_interlock */
380 		mutex_enter(&vnode_free_list_lock);
381 		goto retry;
382 	}
383 
384 	if (vp->v_data != NULL || vp->v_uobj.uo_npages != 0 ||
385 	    !TAILQ_EMPTY(&vp->v_uobj.memq)) {
386 		vpanic(vp, "cleaned vnode isn't");
387 	}
388 	if (vp->v_numoutput != 0) {
389 		vpanic(vp, "clean vnode has pending I/O's");
390 	}
391 	if ((vp->v_iflag & VI_ONWORKLST) != 0) {
392 		vpanic(vp, "clean vnode on syncer list");
393 	}
394 
395 	return vp;
396 }
397 
398 /*
399  * Mark a mount point as busy, and gain a new reference to it.  Used to
400  * prevent the file system from being unmounted during critical sections.
401  *
402  * => The caller must hold a pre-existing reference to the mount.
403  * => Will fail if the file system is being unmounted, or is unmounted.
404  */
405 int
406 vfs_busy(struct mount *mp, struct mount **nextp)
407 {
408 
409 	KASSERT(mp->mnt_refcnt > 0);
410 
411 	if (__predict_false(!rw_tryenter(&mp->mnt_unmounting, RW_READER))) {
412 		if (nextp != NULL) {
413 			KASSERT(mutex_owned(&mountlist_lock));
414 			*nextp = CIRCLEQ_NEXT(mp, mnt_list);
415 		}
416 		return EBUSY;
417 	}
418 	if (__predict_false((mp->mnt_iflag & IMNT_GONE) != 0)) {
419 		rw_exit(&mp->mnt_unmounting);
420 		if (nextp != NULL) {
421 			KASSERT(mutex_owned(&mountlist_lock));
422 			*nextp = CIRCLEQ_NEXT(mp, mnt_list);
423 		}
424 		return ENOENT;
425 	}
426 	if (nextp != NULL) {
427 		mutex_exit(&mountlist_lock);
428 	}
429 	atomic_inc_uint(&mp->mnt_refcnt);
430 	return 0;
431 }
432 
433 /*
434  * Unbusy a busy filesystem.
435  *
436  * => If keepref is true, preserve reference added by vfs_busy().
437  * => If nextp != NULL, acquire mountlist_lock.
438  */
439 void
440 vfs_unbusy(struct mount *mp, bool keepref, struct mount **nextp)
441 {
442 
443 	KASSERT(mp->mnt_refcnt > 0);
444 
445 	if (nextp != NULL) {
446 		mutex_enter(&mountlist_lock);
447 	}
448 	rw_exit(&mp->mnt_unmounting);
449 	if (!keepref) {
450 		vfs_destroy(mp);
451 	}
452 	if (nextp != NULL) {
453 		KASSERT(mutex_owned(&mountlist_lock));
454 		*nextp = CIRCLEQ_NEXT(mp, mnt_list);
455 	}
456 }
457 
458 struct mount *
459 vfs_mountalloc(struct vfsops *vfsops, struct vnode *vp)
460 {
461 	int error;
462 	struct mount *mp;
463 
464 	mp = kmem_zalloc(sizeof(*mp), KM_SLEEP);
465 	if (mp == NULL)
466 		return NULL;
467 
468 	mp->mnt_op = vfsops;
469 	mp->mnt_refcnt = 1;
470 	TAILQ_INIT(&mp->mnt_vnodelist);
471 	rw_init(&mp->mnt_unmounting);
472 	mutex_init(&mp->mnt_renamelock, MUTEX_DEFAULT, IPL_NONE);
473 	mutex_init(&mp->mnt_updating, MUTEX_DEFAULT, IPL_NONE);
474 	error = vfs_busy(mp, NULL);
475 	KASSERT(error == 0);
476 	mp->mnt_vnodecovered = vp;
477 	mount_initspecific(mp);
478 
479 	return mp;
480 }
481 
482 /*
483  * Lookup a filesystem type, and if found allocate and initialize
484  * a mount structure for it.
485  *
486  * Devname is usually updated by mount(8) after booting.
487  */
488 int
489 vfs_rootmountalloc(const char *fstypename, const char *devname,
490     struct mount **mpp)
491 {
492 	struct vfsops *vfsp = NULL;
493 	struct mount *mp;
494 
495 	mutex_enter(&vfs_list_lock);
496 	LIST_FOREACH(vfsp, &vfs_list, vfs_list)
497 		if (!strncmp(vfsp->vfs_name, fstypename,
498 		    sizeof(mp->mnt_stat.f_fstypename)))
499 			break;
500 	if (vfsp == NULL) {
501 		mutex_exit(&vfs_list_lock);
502 		return (ENODEV);
503 	}
504 	vfsp->vfs_refcount++;
505 	mutex_exit(&vfs_list_lock);
506 
507 	if ((mp = vfs_mountalloc(vfsp, NULL)) == NULL)
508 		return ENOMEM;
509 	mp->mnt_flag = MNT_RDONLY;
510 	(void)strlcpy(mp->mnt_stat.f_fstypename, vfsp->vfs_name,
511 	    sizeof(mp->mnt_stat.f_fstypename));
512 	mp->mnt_stat.f_mntonname[0] = '/';
513 	mp->mnt_stat.f_mntonname[1] = '\0';
514 	mp->mnt_stat.f_mntfromname[sizeof(mp->mnt_stat.f_mntfromname) - 1] =
515 	    '\0';
516 	(void)copystr(devname, mp->mnt_stat.f_mntfromname,
517 	    sizeof(mp->mnt_stat.f_mntfromname) - 1, 0);
518 	*mpp = mp;
519 	return (0);
520 }
521 
522 /*
523  * Routines having to do with the management of the vnode table.
524  */
525 extern int (**dead_vnodeop_p)(void *);
526 
527 /*
528  * Return the next vnode from the free list.
529  */
530 int
531 getnewvnode(enum vtagtype tag, struct mount *mp, int (**vops)(void *),
532 	    vnode_t **vpp)
533 {
534 	struct uvm_object *uobj;
535 	static int toggle;
536 	vnode_t *vp;
537 	int error = 0, tryalloc;
538 
539  try_again:
540 	if (mp != NULL) {
541 		/*
542 		 * Mark filesystem busy while we're creating a
543 		 * vnode.  If unmount is in progress, this will
544 		 * fail.
545 		 */
546 		error = vfs_busy(mp, NULL);
547 		if (error)
548 			return error;
549 	}
550 
551 	/*
552 	 * We must choose whether to allocate a new vnode or recycle an
553 	 * existing one. The criterion for allocating a new one is that
554 	 * the total number of vnodes is less than the number desired or
555 	 * there are no vnodes on either free list. Generally we only
556 	 * want to recycle vnodes that have no buffers associated with
557 	 * them, so we look first on the vnode_free_list. If it is empty,
558 	 * we next consider vnodes with referencing buffers on the
559 	 * vnode_hold_list. The toggle ensures that half the time we
560 	 * will use a buffer from the vnode_hold_list, and half the time
561 	 * we will allocate a new one unless the list has grown to twice
562 	 * the desired size. We are reticent to recycle vnodes from the
563 	 * vnode_hold_list because we will lose the identity of all its
564 	 * referencing buffers.
565 	 */
566 
567 	vp = NULL;
568 
569 	mutex_enter(&vnode_free_list_lock);
570 
571 	toggle ^= 1;
572 	if (numvnodes > 2 * desiredvnodes)
573 		toggle = 0;
574 
575 	tryalloc = numvnodes < desiredvnodes ||
576 	    (TAILQ_FIRST(&vnode_free_list) == NULL &&
577 	     (TAILQ_FIRST(&vnode_hold_list) == NULL || toggle));
578 
579 	if (tryalloc) {
580 		numvnodes++;
581 		mutex_exit(&vnode_free_list_lock);
582 		if ((vp = vnalloc(NULL)) == NULL) {
583 			mutex_enter(&vnode_free_list_lock);
584 			numvnodes--;
585 		} else
586 			vp->v_usecount = 1;
587 	}
588 
589 	if (vp == NULL) {
590 		vp = getcleanvnode();
591 		if (vp == NULL) {
592 			if (mp != NULL) {
593 				vfs_unbusy(mp, false, NULL);
594 			}
595 			if (tryalloc) {
596 				printf("WARNING: unable to allocate new "
597 				    "vnode, retrying...\n");
598 				kpause("newvn", false, hz, NULL);
599 				goto try_again;
600 			}
601 			tablefull("vnode", "increase kern.maxvnodes or NVNODE");
602 			*vpp = 0;
603 			return (ENFILE);
604 		}
605 		vp->v_iflag = 0;
606 		vp->v_vflag = 0;
607 		vp->v_uflag = 0;
608 		vp->v_socket = NULL;
609 	}
610 
611 	KASSERT(vp->v_usecount == 1);
612 	KASSERT(vp->v_freelisthd == NULL);
613 	KASSERT(LIST_EMPTY(&vp->v_nclist));
614 	KASSERT(LIST_EMPTY(&vp->v_dnclist));
615 
616 	vp->v_type = VNON;
617 	vp->v_vnlock = &vp->v_lock;
618 	vp->v_tag = tag;
619 	vp->v_op = vops;
620 	insmntque(vp, mp);
621 	*vpp = vp;
622 	vp->v_data = 0;
623 
624 	/*
625 	 * initialize uvm_object within vnode.
626 	 */
627 
628 	uobj = &vp->v_uobj;
629 	KASSERT(uobj->pgops == &uvm_vnodeops);
630 	KASSERT(uobj->uo_npages == 0);
631 	KASSERT(TAILQ_FIRST(&uobj->memq) == NULL);
632 	vp->v_size = vp->v_writesize = VSIZENOTSET;
633 
634 	if (mp != NULL) {
635 		if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
636 			vp->v_vflag |= VV_MPSAFE;
637 		vfs_unbusy(mp, true, NULL);
638 	}
639 
640 	return (0);
641 }
642 
643 /*
644  * This is really just the reverse of getnewvnode(). Needed for
645  * VFS_VGET functions who may need to push back a vnode in case
646  * of a locking race.
647  */
648 void
649 ungetnewvnode(vnode_t *vp)
650 {
651 
652 	KASSERT(vp->v_usecount == 1);
653 	KASSERT(vp->v_data == NULL);
654 	KASSERT(vp->v_freelisthd == NULL);
655 
656 	mutex_enter(&vp->v_interlock);
657 	vp->v_iflag |= VI_CLEAN;
658 	vrelel(vp, 0);
659 }
660 
661 /*
662  * Allocate a new, uninitialized vnode.  If 'mp' is non-NULL, this is a
663  * marker vnode and we are prepared to wait for the allocation.
664  */
665 vnode_t *
666 vnalloc(struct mount *mp)
667 {
668 	vnode_t *vp;
669 
670 	vp = pool_cache_get(vnode_cache, (mp != NULL ? PR_WAITOK : PR_NOWAIT));
671 	if (vp == NULL) {
672 		return NULL;
673 	}
674 
675 	memset(vp, 0, sizeof(*vp));
676 	UVM_OBJ_INIT(&vp->v_uobj, &uvm_vnodeops, 0);
677 	cv_init(&vp->v_cv, "vnode");
678 	/*
679 	 * done by memset() above.
680 	 *	LIST_INIT(&vp->v_nclist);
681 	 *	LIST_INIT(&vp->v_dnclist);
682 	 */
683 
684 	if (mp != NULL) {
685 		vp->v_mount = mp;
686 		vp->v_type = VBAD;
687 		vp->v_iflag = VI_MARKER;
688 	} else {
689 		rw_init(&vp->v_lock.vl_lock);
690 	}
691 
692 	return vp;
693 }
694 
695 /*
696  * Free an unused, unreferenced vnode.
697  */
698 void
699 vnfree(vnode_t *vp)
700 {
701 
702 	KASSERT(vp->v_usecount == 0);
703 
704 	if ((vp->v_iflag & VI_MARKER) == 0) {
705 		rw_destroy(&vp->v_lock.vl_lock);
706 		mutex_enter(&vnode_free_list_lock);
707 		numvnodes--;
708 		mutex_exit(&vnode_free_list_lock);
709 	}
710 
711 	UVM_OBJ_DESTROY(&vp->v_uobj);
712 	cv_destroy(&vp->v_cv);
713 	pool_cache_put(vnode_cache, vp);
714 }
715 
716 /*
717  * Remove a vnode from its freelist.
718  */
719 static inline void
720 vremfree(vnode_t *vp)
721 {
722 
723 	KASSERT(mutex_owned(&vp->v_interlock));
724 	KASSERT(vp->v_usecount == 0);
725 
726 	/*
727 	 * Note that the reference count must not change until
728 	 * the vnode is removed.
729 	 */
730 	mutex_enter(&vnode_free_list_lock);
731 	if (vp->v_holdcnt > 0) {
732 		KASSERT(vp->v_freelisthd == &vnode_hold_list);
733 	} else {
734 		KASSERT(vp->v_freelisthd == &vnode_free_list);
735 	}
736 	TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
737 	vp->v_freelisthd = NULL;
738 	mutex_exit(&vnode_free_list_lock);
739 }
740 
741 /*
742  * Move a vnode from one mount queue to another.
743  */
744 static void
745 insmntque(vnode_t *vp, struct mount *mp)
746 {
747 	struct mount *omp;
748 
749 #ifdef DIAGNOSTIC
750 	if ((mp != NULL) &&
751 	    (mp->mnt_iflag & IMNT_UNMOUNT) &&
752 	    vp->v_tag != VT_VFS) {
753 		panic("insmntque into dying filesystem");
754 	}
755 #endif
756 
757 	mutex_enter(&mntvnode_lock);
758 	/*
759 	 * Delete from old mount point vnode list, if on one.
760 	 */
761 	if ((omp = vp->v_mount) != NULL)
762 		TAILQ_REMOVE(&vp->v_mount->mnt_vnodelist, vp, v_mntvnodes);
763 	/*
764 	 * Insert into list of vnodes for the new mount point, if
765 	 * available.  The caller must take a reference on the mount
766 	 * structure and donate to the vnode.
767 	 */
768 	if ((vp->v_mount = mp) != NULL)
769 		TAILQ_INSERT_TAIL(&mp->mnt_vnodelist, vp, v_mntvnodes);
770 	mutex_exit(&mntvnode_lock);
771 
772 	if (omp != NULL) {
773 		/* Release reference to old mount. */
774 		vfs_destroy(omp);
775 	}
776 }
777 
778 /*
779  * Wait for a vnode (typically with VI_XLOCK set) to be cleaned or
780  * recycled.
781  */
782 void
783 vwait(vnode_t *vp, int flags)
784 {
785 
786 	KASSERT(mutex_owned(&vp->v_interlock));
787 	KASSERT(vp->v_usecount != 0);
788 
789 	while ((vp->v_iflag & flags) != 0)
790 		cv_wait(&vp->v_cv, &vp->v_interlock);
791 }
792 
793 /*
794  * Insert a marker vnode into a mount's vnode list, after the
795  * specified vnode.  mntvnode_lock must be held.
796  */
797 void
798 vmark(vnode_t *mvp, vnode_t *vp)
799 {
800 	struct mount *mp;
801 
802 	mp = mvp->v_mount;
803 
804 	KASSERT(mutex_owned(&mntvnode_lock));
805 	KASSERT((mvp->v_iflag & VI_MARKER) != 0);
806 	KASSERT(vp->v_mount == mp);
807 
808 	TAILQ_INSERT_AFTER(&mp->mnt_vnodelist, vp, mvp, v_mntvnodes);
809 }
810 
811 /*
812  * Remove a marker vnode from a mount's vnode list, and return
813  * a pointer to the next vnode in the list.  mntvnode_lock must
814  * be held.
815  */
816 vnode_t *
817 vunmark(vnode_t *mvp)
818 {
819 	vnode_t *vp;
820 	struct mount *mp;
821 
822 	mp = mvp->v_mount;
823 
824 	KASSERT(mutex_owned(&mntvnode_lock));
825 	KASSERT((mvp->v_iflag & VI_MARKER) != 0);
826 
827 	vp = TAILQ_NEXT(mvp, v_mntvnodes);
828 	TAILQ_REMOVE(&mp->mnt_vnodelist, mvp, v_mntvnodes);
829 
830 	KASSERT(vp == NULL || vp->v_mount == mp);
831 
832 	return vp;
833 }
834 
835 /*
836  * Update outstanding I/O count and do wakeup if requested.
837  */
838 void
839 vwakeup(struct buf *bp)
840 {
841 	struct vnode *vp;
842 
843 	if ((vp = bp->b_vp) == NULL)
844 		return;
845 
846 	KASSERT(bp->b_objlock == &vp->v_interlock);
847 	KASSERT(mutex_owned(bp->b_objlock));
848 
849 	if (--vp->v_numoutput < 0)
850 		panic("vwakeup: neg numoutput, vp %p", vp);
851 	if (vp->v_numoutput == 0)
852 		cv_broadcast(&vp->v_cv);
853 }
854 
855 /*
856  * Flush out and invalidate all buffers associated with a vnode.
857  * Called with the underlying vnode locked, which should prevent new dirty
858  * buffers from being queued.
859  */
860 int
861 vinvalbuf(struct vnode *vp, int flags, kauth_cred_t cred, struct lwp *l,
862 	  bool catch, int slptimeo)
863 {
864 	struct buf *bp, *nbp;
865 	int error;
866 	int flushflags = PGO_ALLPAGES | PGO_FREE | PGO_SYNCIO |
867 	    (flags & V_SAVE ? PGO_CLEANIT | PGO_RECLAIM : 0);
868 
869 	/* XXXUBC this doesn't look at flags or slp* */
870 	mutex_enter(&vp->v_interlock);
871 	error = VOP_PUTPAGES(vp, 0, 0, flushflags);
872 	if (error) {
873 		return error;
874 	}
875 
876 	if (flags & V_SAVE) {
877 		error = VOP_FSYNC(vp, cred, FSYNC_WAIT|FSYNC_RECLAIM, 0, 0);
878 		if (error)
879 		        return (error);
880 		KASSERT(LIST_EMPTY(&vp->v_dirtyblkhd));
881 	}
882 
883 	mutex_enter(&bufcache_lock);
884 restart:
885 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
886 		nbp = LIST_NEXT(bp, b_vnbufs);
887 		error = bbusy(bp, catch, slptimeo, NULL);
888 		if (error != 0) {
889 			if (error == EPASSTHROUGH)
890 				goto restart;
891 			mutex_exit(&bufcache_lock);
892 			return (error);
893 		}
894 		brelsel(bp, BC_INVAL | BC_VFLUSH);
895 	}
896 
897 	for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
898 		nbp = LIST_NEXT(bp, b_vnbufs);
899 		error = bbusy(bp, catch, slptimeo, NULL);
900 		if (error != 0) {
901 			if (error == EPASSTHROUGH)
902 				goto restart;
903 			mutex_exit(&bufcache_lock);
904 			return (error);
905 		}
906 		/*
907 		 * XXX Since there are no node locks for NFS, I believe
908 		 * there is a slight chance that a delayed write will
909 		 * occur while sleeping just above, so check for it.
910 		 */
911 		if ((bp->b_oflags & BO_DELWRI) && (flags & V_SAVE)) {
912 #ifdef DEBUG
913 			printf("buffer still DELWRI\n");
914 #endif
915 			bp->b_cflags |= BC_BUSY | BC_VFLUSH;
916 			mutex_exit(&bufcache_lock);
917 			VOP_BWRITE(bp);
918 			mutex_enter(&bufcache_lock);
919 			goto restart;
920 		}
921 		brelsel(bp, BC_INVAL | BC_VFLUSH);
922 	}
923 
924 #ifdef DIAGNOSTIC
925 	if (!LIST_EMPTY(&vp->v_cleanblkhd) || !LIST_EMPTY(&vp->v_dirtyblkhd))
926 		panic("vinvalbuf: flush failed, vp %p", vp);
927 #endif
928 
929 	mutex_exit(&bufcache_lock);
930 
931 	return (0);
932 }
933 
934 /*
935  * Destroy any in core blocks past the truncation length.
936  * Called with the underlying vnode locked, which should prevent new dirty
937  * buffers from being queued.
938  */
939 int
940 vtruncbuf(struct vnode *vp, daddr_t lbn, bool catch, int slptimeo)
941 {
942 	struct buf *bp, *nbp;
943 	int error;
944 	voff_t off;
945 
946 	off = round_page((voff_t)lbn << vp->v_mount->mnt_fs_bshift);
947 	mutex_enter(&vp->v_interlock);
948 	error = VOP_PUTPAGES(vp, off, 0, PGO_FREE | PGO_SYNCIO);
949 	if (error) {
950 		return error;
951 	}
952 
953 	mutex_enter(&bufcache_lock);
954 restart:
955 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
956 		nbp = LIST_NEXT(bp, b_vnbufs);
957 		if (bp->b_lblkno < lbn)
958 			continue;
959 		error = bbusy(bp, catch, slptimeo, NULL);
960 		if (error != 0) {
961 			if (error == EPASSTHROUGH)
962 				goto restart;
963 			mutex_exit(&bufcache_lock);
964 			return (error);
965 		}
966 		brelsel(bp, BC_INVAL | BC_VFLUSH);
967 	}
968 
969 	for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
970 		nbp = LIST_NEXT(bp, b_vnbufs);
971 		if (bp->b_lblkno < lbn)
972 			continue;
973 		error = bbusy(bp, catch, slptimeo, NULL);
974 		if (error != 0) {
975 			if (error == EPASSTHROUGH)
976 				goto restart;
977 			mutex_exit(&bufcache_lock);
978 			return (error);
979 		}
980 		brelsel(bp, BC_INVAL | BC_VFLUSH);
981 	}
982 	mutex_exit(&bufcache_lock);
983 
984 	return (0);
985 }
986 
987 /*
988  * Flush all dirty buffers from a vnode.
989  * Called with the underlying vnode locked, which should prevent new dirty
990  * buffers from being queued.
991  */
992 void
993 vflushbuf(struct vnode *vp, int sync)
994 {
995 	struct buf *bp, *nbp;
996 	int flags = PGO_CLEANIT | PGO_ALLPAGES | (sync ? PGO_SYNCIO : 0);
997 	bool dirty;
998 
999 	mutex_enter(&vp->v_interlock);
1000 	(void) VOP_PUTPAGES(vp, 0, 0, flags);
1001 
1002 loop:
1003 	mutex_enter(&bufcache_lock);
1004 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1005 		nbp = LIST_NEXT(bp, b_vnbufs);
1006 		if ((bp->b_cflags & BC_BUSY))
1007 			continue;
1008 		if ((bp->b_oflags & BO_DELWRI) == 0)
1009 			panic("vflushbuf: not dirty, bp %p", bp);
1010 		bp->b_cflags |= BC_BUSY | BC_VFLUSH;
1011 		mutex_exit(&bufcache_lock);
1012 		/*
1013 		 * Wait for I/O associated with indirect blocks to complete,
1014 		 * since there is no way to quickly wait for them below.
1015 		 */
1016 		if (bp->b_vp == vp || sync == 0)
1017 			(void) bawrite(bp);
1018 		else
1019 			(void) bwrite(bp);
1020 		goto loop;
1021 	}
1022 	mutex_exit(&bufcache_lock);
1023 
1024 	if (sync == 0)
1025 		return;
1026 
1027 	mutex_enter(&vp->v_interlock);
1028 	while (vp->v_numoutput != 0)
1029 		cv_wait(&vp->v_cv, &vp->v_interlock);
1030 	dirty = !LIST_EMPTY(&vp->v_dirtyblkhd);
1031 	mutex_exit(&vp->v_interlock);
1032 
1033 	if (dirty) {
1034 		vprint("vflushbuf: dirty", vp);
1035 		goto loop;
1036 	}
1037 }
1038 
1039 /*
1040  * Create a vnode for a block device.
1041  * Used for root filesystem and swap areas.
1042  * Also used for memory file system special devices.
1043  */
1044 int
1045 bdevvp(dev_t dev, vnode_t **vpp)
1046 {
1047 
1048 	return (getdevvp(dev, vpp, VBLK));
1049 }
1050 
1051 /*
1052  * Create a vnode for a character device.
1053  * Used for kernfs and some console handling.
1054  */
1055 int
1056 cdevvp(dev_t dev, vnode_t **vpp)
1057 {
1058 
1059 	return (getdevvp(dev, vpp, VCHR));
1060 }
1061 
1062 /*
1063  * Associate a buffer with a vnode.  There must already be a hold on
1064  * the vnode.
1065  */
1066 void
1067 bgetvp(struct vnode *vp, struct buf *bp)
1068 {
1069 
1070 	KASSERT(bp->b_vp == NULL);
1071 	KASSERT(bp->b_objlock == &buffer_lock);
1072 	KASSERT(mutex_owned(&vp->v_interlock));
1073 	KASSERT(mutex_owned(&bufcache_lock));
1074 	KASSERT((bp->b_cflags & BC_BUSY) != 0);
1075 	KASSERT(!cv_has_waiters(&bp->b_done));
1076 
1077 	vholdl(vp);
1078 	bp->b_vp = vp;
1079 	if (vp->v_type == VBLK || vp->v_type == VCHR)
1080 		bp->b_dev = vp->v_rdev;
1081 	else
1082 		bp->b_dev = NODEV;
1083 
1084 	/*
1085 	 * Insert onto list for new vnode.
1086 	 */
1087 	bufinsvn(bp, &vp->v_cleanblkhd);
1088 	bp->b_objlock = &vp->v_interlock;
1089 }
1090 
1091 /*
1092  * Disassociate a buffer from a vnode.
1093  */
1094 void
1095 brelvp(struct buf *bp)
1096 {
1097 	struct vnode *vp = bp->b_vp;
1098 
1099 	KASSERT(vp != NULL);
1100 	KASSERT(bp->b_objlock == &vp->v_interlock);
1101 	KASSERT(mutex_owned(&vp->v_interlock));
1102 	KASSERT(mutex_owned(&bufcache_lock));
1103 	KASSERT((bp->b_cflags & BC_BUSY) != 0);
1104 	KASSERT(!cv_has_waiters(&bp->b_done));
1105 
1106 	/*
1107 	 * Delete from old vnode list, if on one.
1108 	 */
1109 	if (LIST_NEXT(bp, b_vnbufs) != NOLIST)
1110 		bufremvn(bp);
1111 
1112 	if (TAILQ_EMPTY(&vp->v_uobj.memq) && (vp->v_iflag & VI_ONWORKLST) &&
1113 	    LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1114 		vp->v_iflag &= ~VI_WRMAPDIRTY;
1115 		vn_syncer_remove_from_worklist(vp);
1116 	}
1117 
1118 	bp->b_objlock = &buffer_lock;
1119 	bp->b_vp = NULL;
1120 	holdrelel(vp);
1121 }
1122 
1123 /*
1124  * Reassign a buffer from one vnode list to another.
1125  * The list reassignment must be within the same vnode.
1126  * Used to assign file specific control information
1127  * (indirect blocks) to the list to which they belong.
1128  */
1129 void
1130 reassignbuf(struct buf *bp, struct vnode *vp)
1131 {
1132 	struct buflists *listheadp;
1133 	int delayx;
1134 
1135 	KASSERT(mutex_owned(&bufcache_lock));
1136 	KASSERT(bp->b_objlock == &vp->v_interlock);
1137 	KASSERT(mutex_owned(&vp->v_interlock));
1138 	KASSERT((bp->b_cflags & BC_BUSY) != 0);
1139 
1140 	/*
1141 	 * Delete from old vnode list, if on one.
1142 	 */
1143 	if (LIST_NEXT(bp, b_vnbufs) != NOLIST)
1144 		bufremvn(bp);
1145 
1146 	/*
1147 	 * If dirty, put on list of dirty buffers;
1148 	 * otherwise insert onto list of clean buffers.
1149 	 */
1150 	if ((bp->b_oflags & BO_DELWRI) == 0) {
1151 		listheadp = &vp->v_cleanblkhd;
1152 		if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
1153 		    (vp->v_iflag & VI_ONWORKLST) &&
1154 		    LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1155 			vp->v_iflag &= ~VI_WRMAPDIRTY;
1156 			vn_syncer_remove_from_worklist(vp);
1157 		}
1158 	} else {
1159 		listheadp = &vp->v_dirtyblkhd;
1160 		if ((vp->v_iflag & VI_ONWORKLST) == 0) {
1161 			switch (vp->v_type) {
1162 			case VDIR:
1163 				delayx = dirdelay;
1164 				break;
1165 			case VBLK:
1166 				if (vp->v_specmountpoint != NULL) {
1167 					delayx = metadelay;
1168 					break;
1169 				}
1170 				/* fall through */
1171 			default:
1172 				delayx = filedelay;
1173 				break;
1174 			}
1175 			if (!vp->v_mount ||
1176 			    (vp->v_mount->mnt_flag & MNT_ASYNC) == 0)
1177 				vn_syncer_add_to_worklist(vp, delayx);
1178 		}
1179 	}
1180 	bufinsvn(bp, listheadp);
1181 }
1182 
1183 /*
1184  * Create a vnode for a device.
1185  * Used by bdevvp (block device) for root file system etc.,
1186  * and by cdevvp (character device) for console and kernfs.
1187  */
1188 static int
1189 getdevvp(dev_t dev, vnode_t **vpp, enum vtype type)
1190 {
1191 	vnode_t *vp;
1192 	vnode_t *nvp;
1193 	int error;
1194 
1195 	if (dev == NODEV) {
1196 		*vpp = NULL;
1197 		return (0);
1198 	}
1199 	error = getnewvnode(VT_NON, NULL, spec_vnodeop_p, &nvp);
1200 	if (error) {
1201 		*vpp = NULL;
1202 		return (error);
1203 	}
1204 	vp = nvp;
1205 	vp->v_type = type;
1206 	vp->v_vflag |= VV_MPSAFE;
1207 	uvm_vnp_setsize(vp, 0);
1208 	spec_node_init(vp, dev);
1209 	*vpp = vp;
1210 	return (0);
1211 }
1212 
1213 /*
1214  * Try to gain a reference to a vnode, without acquiring its interlock.
1215  * The caller must hold a lock that will prevent the vnode from being
1216  * recycled or freed.
1217  */
1218 bool
1219 vtryget(vnode_t *vp)
1220 {
1221 	u_int use, next;
1222 
1223 	/*
1224 	 * If the vnode is being freed, don't make life any harder
1225 	 * for vclean() by adding another reference without waiting.
1226 	 * This is not strictly necessary, but we'll do it anyway.
1227 	 */
1228 	if (__predict_false((vp->v_iflag & (VI_XLOCK | VI_FREEING)) != 0)) {
1229 		return false;
1230 	}
1231 	for (use = vp->v_usecount;; use = next) {
1232 		if (use == 0) {
1233 			/* Need interlock held if first reference. */
1234 			return false;
1235 		}
1236 		next = atomic_cas_uint(&vp->v_usecount, use, use + 1);
1237 		if (__predict_true(next == use)) {
1238 			return true;
1239 		}
1240 	}
1241 }
1242 
1243 /*
1244  * Grab a particular vnode from the free list, increment its
1245  * reference count and lock it. If the vnode lock bit is set the
1246  * vnode is being eliminated in vgone. In that case, we can not
1247  * grab the vnode, so the process is awakened when the transition is
1248  * completed, and an error returned to indicate that the vnode is no
1249  * longer usable (possibly having been changed to a new file system type).
1250  */
1251 int
1252 vget(vnode_t *vp, int flags)
1253 {
1254 	int error;
1255 
1256 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1257 
1258 	if ((flags & LK_INTERLOCK) == 0)
1259 		mutex_enter(&vp->v_interlock);
1260 
1261 	/*
1262 	 * Before adding a reference, we must remove the vnode
1263 	 * from its freelist.
1264 	 */
1265 	if (vp->v_usecount == 0) {
1266 		vremfree(vp);
1267 		vp->v_usecount = 1;
1268 	} else {
1269 		atomic_inc_uint(&vp->v_usecount);
1270 	}
1271 
1272 	/*
1273 	 * If the vnode is in the process of being cleaned out for
1274 	 * another use, we wait for the cleaning to finish and then
1275 	 * return failure.  Cleaning is determined by checking if
1276 	 * the VI_XLOCK or VI_FREEING flags are set.
1277 	 */
1278 	if ((vp->v_iflag & (VI_XLOCK | VI_FREEING)) != 0) {
1279 		if ((flags & LK_NOWAIT) != 0) {
1280 			vrelel(vp, 0);
1281 			return EBUSY;
1282 		}
1283 		vwait(vp, VI_XLOCK | VI_FREEING);
1284 		vrelel(vp, 0);
1285 		return ENOENT;
1286 	}
1287 	if (flags & LK_TYPE_MASK) {
1288 		error = vn_lock(vp, flags | LK_INTERLOCK);
1289 		if (error != 0) {
1290 			vrele(vp);
1291 		}
1292 		return error;
1293 	}
1294 	mutex_exit(&vp->v_interlock);
1295 	return 0;
1296 }
1297 
1298 /*
1299  * vput(), just unlock and vrele()
1300  */
1301 void
1302 vput(vnode_t *vp)
1303 {
1304 
1305 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1306 
1307 	VOP_UNLOCK(vp, 0);
1308 	vrele(vp);
1309 }
1310 
1311 /*
1312  * Try to drop reference on a vnode.  Abort if we are releasing the
1313  * last reference.  Note: this _must_ succeed if not the last reference.
1314  */
1315 static inline bool
1316 vtryrele(vnode_t *vp)
1317 {
1318 	u_int use, next;
1319 
1320 	for (use = vp->v_usecount;; use = next) {
1321 		if (use == 1) {
1322 			return false;
1323 		}
1324 		next = atomic_cas_uint(&vp->v_usecount, use, use - 1);
1325 		if (__predict_true(next == use)) {
1326 			return true;
1327 		}
1328 	}
1329 }
1330 
1331 /*
1332  * Vnode release.  If reference count drops to zero, call inactive
1333  * routine and either return to freelist or free to the pool.
1334  */
1335 void
1336 vrelel(vnode_t *vp, int flags)
1337 {
1338 	bool recycle, defer;
1339 	int error;
1340 
1341 	KASSERT(mutex_owned(&vp->v_interlock));
1342 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1343 	KASSERT(vp->v_freelisthd == NULL);
1344 
1345 	if (__predict_false(vp->v_op == dead_vnodeop_p &&
1346 	    (vp->v_iflag & (VI_CLEAN|VI_XLOCK)) == 0)) {
1347 		vpanic(vp, "dead but not clean");
1348 	}
1349 
1350 	/*
1351 	 * If not the last reference, just drop the reference count
1352 	 * and unlock.
1353 	 */
1354 	if (vtryrele(vp)) {
1355 		vp->v_iflag |= VI_INACTREDO;
1356 		mutex_exit(&vp->v_interlock);
1357 		return;
1358 	}
1359 	if (vp->v_usecount <= 0 || vp->v_writecount != 0) {
1360 		vpanic(vp, "vrelel: bad ref count");
1361 	}
1362 
1363 	KASSERT((vp->v_iflag & VI_XLOCK) == 0);
1364 
1365 	/*
1366 	 * If not clean, deactivate the vnode, but preserve
1367 	 * our reference across the call to VOP_INACTIVE().
1368 	 */
1369  retry:
1370 	if ((vp->v_iflag & VI_CLEAN) == 0) {
1371 		recycle = false;
1372 		vp->v_iflag |= VI_INACTNOW;
1373 
1374 		/*
1375 		 * XXX This ugly block can be largely eliminated if
1376 		 * locking is pushed down into the file systems.
1377 		 */
1378 		if (curlwp == uvm.pagedaemon_lwp) {
1379 			/* The pagedaemon can't wait around; defer. */
1380 			defer = true;
1381 		} else if (curlwp == vrele_lwp) {
1382 			/* We have to try harder. */
1383 			vp->v_iflag &= ~VI_INACTREDO;
1384 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK |
1385 			    LK_RETRY);
1386 			if (error != 0) {
1387 				/* XXX */
1388 				vpanic(vp, "vrele: unable to lock %p");
1389 			}
1390 			defer = false;
1391 		} else if ((vp->v_iflag & VI_LAYER) != 0) {
1392 			/*
1393 			 * Acquiring the stack's lock in vclean() even
1394 			 * for an honest vput/vrele is dangerous because
1395 			 * our caller may hold other vnode locks; defer.
1396 			 */
1397 			defer = true;
1398 		} else {
1399 			/* If we can't acquire the lock, then defer. */
1400 			vp->v_iflag &= ~VI_INACTREDO;
1401 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK |
1402 			    LK_NOWAIT);
1403 			if (error != 0) {
1404 				defer = true;
1405 				mutex_enter(&vp->v_interlock);
1406 			} else {
1407 				defer = false;
1408 			}
1409 		}
1410 
1411 		if (defer) {
1412 			/*
1413 			 * Defer reclaim to the kthread; it's not safe to
1414 			 * clean it here.  We donate it our last reference.
1415 			 */
1416 			KASSERT(mutex_owned(&vp->v_interlock));
1417 			KASSERT((vp->v_iflag & VI_INACTPEND) == 0);
1418 			vp->v_iflag &= ~VI_INACTNOW;
1419 			vp->v_iflag |= VI_INACTPEND;
1420 			mutex_enter(&vrele_lock);
1421 			TAILQ_INSERT_TAIL(&vrele_list, vp, v_freelist);
1422 			if (++vrele_pending > (desiredvnodes >> 8))
1423 				cv_signal(&vrele_cv);
1424 			mutex_exit(&vrele_lock);
1425 			mutex_exit(&vp->v_interlock);
1426 			return;
1427 		}
1428 
1429 #ifdef DIAGNOSTIC
1430 		if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
1431 		    vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) {
1432 			vprint("vrelel: missing VOP_CLOSE()", vp);
1433 		}
1434 #endif
1435 
1436 		/*
1437 		 * The vnode can gain another reference while being
1438 		 * deactivated.  If VOP_INACTIVE() indicates that
1439 		 * the described file has been deleted, then recycle
1440 		 * the vnode irrespective of additional references.
1441 		 * Another thread may be waiting to re-use the on-disk
1442 		 * inode.
1443 		 *
1444 		 * Note that VOP_INACTIVE() will drop the vnode lock.
1445 		 */
1446 		VOP_INACTIVE(vp, &recycle);
1447 		mutex_enter(&vp->v_interlock);
1448 		vp->v_iflag &= ~VI_INACTNOW;
1449 		if (!recycle) {
1450 			if (vtryrele(vp)) {
1451 				mutex_exit(&vp->v_interlock);
1452 				return;
1453 			}
1454 
1455 			/*
1456 			 * If we grew another reference while
1457 			 * VOP_INACTIVE() was underway, retry.
1458 			 */
1459 			if ((vp->v_iflag & VI_INACTREDO) != 0) {
1460 				goto retry;
1461 			}
1462 		}
1463 
1464 		/* Take care of space accounting. */
1465 		if (vp->v_iflag & VI_EXECMAP) {
1466 			atomic_add_int(&uvmexp.execpages,
1467 			    -vp->v_uobj.uo_npages);
1468 			atomic_add_int(&uvmexp.filepages,
1469 			    vp->v_uobj.uo_npages);
1470 		}
1471 		vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP);
1472 		vp->v_vflag &= ~VV_MAPPED;
1473 
1474 		/*
1475 		 * Recycle the vnode if the file is now unused (unlinked),
1476 		 * otherwise just free it.
1477 		 */
1478 		if (recycle) {
1479 			vclean(vp, DOCLOSE);
1480 		}
1481 		KASSERT(vp->v_usecount > 0);
1482 	}
1483 
1484 	if (atomic_dec_uint_nv(&vp->v_usecount) != 0) {
1485 		/* Gained another reference while being reclaimed. */
1486 		mutex_exit(&vp->v_interlock);
1487 		return;
1488 	}
1489 
1490 	if ((vp->v_iflag & VI_CLEAN) != 0) {
1491 		/*
1492 		 * It's clean so destroy it.  It isn't referenced
1493 		 * anywhere since it has been reclaimed.
1494 		 */
1495 		KASSERT(vp->v_holdcnt == 0);
1496 		KASSERT(vp->v_writecount == 0);
1497 		mutex_exit(&vp->v_interlock);
1498 		insmntque(vp, NULL);
1499 		if (vp->v_type == VBLK || vp->v_type == VCHR) {
1500 			spec_node_destroy(vp);
1501 		}
1502 		vnfree(vp);
1503 	} else {
1504 		/*
1505 		 * Otherwise, put it back onto the freelist.  It
1506 		 * can't be destroyed while still associated with
1507 		 * a file system.
1508 		 */
1509 		mutex_enter(&vnode_free_list_lock);
1510 		if (vp->v_holdcnt > 0) {
1511 			vp->v_freelisthd = &vnode_hold_list;
1512 		} else {
1513 			vp->v_freelisthd = &vnode_free_list;
1514 		}
1515 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
1516 		mutex_exit(&vnode_free_list_lock);
1517 		mutex_exit(&vp->v_interlock);
1518 	}
1519 }
1520 
1521 void
1522 vrele(vnode_t *vp)
1523 {
1524 
1525 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1526 
1527 	if ((vp->v_iflag & VI_INACTNOW) == 0 && vtryrele(vp)) {
1528 		return;
1529 	}
1530 	mutex_enter(&vp->v_interlock);
1531 	vrelel(vp, 0);
1532 }
1533 
1534 static void
1535 vrele_thread(void *cookie)
1536 {
1537 	vnode_t *vp;
1538 
1539 	for (;;) {
1540 		mutex_enter(&vrele_lock);
1541 		while (TAILQ_EMPTY(&vrele_list)) {
1542 			vrele_gen++;
1543 			cv_broadcast(&vrele_cv);
1544 			cv_timedwait(&vrele_cv, &vrele_lock, hz);
1545 		}
1546 		vp = TAILQ_FIRST(&vrele_list);
1547 		TAILQ_REMOVE(&vrele_list, vp, v_freelist);
1548 		vrele_pending--;
1549 		mutex_exit(&vrele_lock);
1550 
1551 		/*
1552 		 * If not the last reference, then ignore the vnode
1553 		 * and look for more work.
1554 		 */
1555 		mutex_enter(&vp->v_interlock);
1556 		KASSERT((vp->v_iflag & VI_INACTPEND) != 0);
1557 		vp->v_iflag &= ~VI_INACTPEND;
1558 		vrelel(vp, 0);
1559 	}
1560 }
1561 
1562 /*
1563  * Page or buffer structure gets a reference.
1564  * Called with v_interlock held.
1565  */
1566 void
1567 vholdl(vnode_t *vp)
1568 {
1569 
1570 	KASSERT(mutex_owned(&vp->v_interlock));
1571 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1572 
1573 	if (vp->v_holdcnt++ == 0 && vp->v_usecount == 0) {
1574 		mutex_enter(&vnode_free_list_lock);
1575 		KASSERT(vp->v_freelisthd == &vnode_free_list);
1576 		TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
1577 		vp->v_freelisthd = &vnode_hold_list;
1578 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
1579 		mutex_exit(&vnode_free_list_lock);
1580 	}
1581 }
1582 
1583 /*
1584  * Page or buffer structure frees a reference.
1585  * Called with v_interlock held.
1586  */
1587 void
1588 holdrelel(vnode_t *vp)
1589 {
1590 
1591 	KASSERT(mutex_owned(&vp->v_interlock));
1592 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1593 
1594 	if (vp->v_holdcnt <= 0) {
1595 		vpanic(vp, "holdrelel: holdcnt vp %p");
1596 	}
1597 
1598 	vp->v_holdcnt--;
1599 	if (vp->v_holdcnt == 0 && vp->v_usecount == 0) {
1600 		mutex_enter(&vnode_free_list_lock);
1601 		KASSERT(vp->v_freelisthd == &vnode_hold_list);
1602 		TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
1603 		vp->v_freelisthd = &vnode_free_list;
1604 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
1605 		mutex_exit(&vnode_free_list_lock);
1606 	}
1607 }
1608 
1609 /*
1610  * Vnode reference, where a reference is already held by some other
1611  * object (for example, a file structure).
1612  */
1613 void
1614 vref(vnode_t *vp)
1615 {
1616 
1617 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1618 	KASSERT(vp->v_usecount != 0);
1619 
1620 	atomic_inc_uint(&vp->v_usecount);
1621 }
1622 
1623 /*
1624  * Remove any vnodes in the vnode table belonging to mount point mp.
1625  *
1626  * If FORCECLOSE is not specified, there should not be any active ones,
1627  * return error if any are found (nb: this is a user error, not a
1628  * system error). If FORCECLOSE is specified, detach any active vnodes
1629  * that are found.
1630  *
1631  * If WRITECLOSE is set, only flush out regular file vnodes open for
1632  * writing.
1633  *
1634  * SKIPSYSTEM causes any vnodes marked V_SYSTEM to be skipped.
1635  */
1636 #ifdef DEBUG
1637 int busyprt = 0;	/* print out busy vnodes */
1638 struct ctldebug debug1 = { "busyprt", &busyprt };
1639 #endif
1640 
1641 static vnode_t *
1642 vflushnext(vnode_t *mvp, int *when)
1643 {
1644 
1645 	if (hardclock_ticks > *when) {
1646 		mutex_exit(&mntvnode_lock);
1647 		yield();
1648 		mutex_enter(&mntvnode_lock);
1649 		*when = hardclock_ticks + hz / 10;
1650 	}
1651 
1652 	return vunmark(mvp);
1653 }
1654 
1655 int
1656 vflush(struct mount *mp, vnode_t *skipvp, int flags)
1657 {
1658 	vnode_t *vp, *mvp;
1659 	int busy = 0, when = 0, gen;
1660 
1661 	/*
1662 	 * First, flush out any vnode references from vrele_list.
1663 	 */
1664 	mutex_enter(&vrele_lock);
1665 	gen = vrele_gen;
1666 	while (vrele_pending && gen == vrele_gen) {
1667 		cv_broadcast(&vrele_cv);
1668 		cv_wait(&vrele_cv, &vrele_lock);
1669 	}
1670 	mutex_exit(&vrele_lock);
1671 
1672 	/* Allocate a marker vnode. */
1673 	if ((mvp = vnalloc(mp)) == NULL)
1674 		return (ENOMEM);
1675 
1676 	/*
1677 	 * NOTE: not using the TAILQ_FOREACH here since in this loop vgone()
1678 	 * and vclean() are called
1679 	 */
1680 	mutex_enter(&mntvnode_lock);
1681 	for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp != NULL;
1682 	    vp = vflushnext(mvp, &when)) {
1683 		vmark(mvp, vp);
1684 		if (vp->v_mount != mp || vismarker(vp))
1685 			continue;
1686 		/*
1687 		 * Skip over a selected vnode.
1688 		 */
1689 		if (vp == skipvp)
1690 			continue;
1691 		mutex_enter(&vp->v_interlock);
1692 		/*
1693 		 * Ignore clean but still referenced vnodes.
1694 		 */
1695 		if ((vp->v_iflag & VI_CLEAN) != 0) {
1696 			mutex_exit(&vp->v_interlock);
1697 			continue;
1698 		}
1699 		/*
1700 		 * Skip over a vnodes marked VSYSTEM.
1701 		 */
1702 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
1703 			mutex_exit(&vp->v_interlock);
1704 			continue;
1705 		}
1706 		/*
1707 		 * If WRITECLOSE is set, only flush out regular file
1708 		 * vnodes open for writing.
1709 		 */
1710 		if ((flags & WRITECLOSE) &&
1711 		    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1712 			mutex_exit(&vp->v_interlock);
1713 			continue;
1714 		}
1715 		/*
1716 		 * With v_usecount == 0, all we need to do is clear
1717 		 * out the vnode data structures and we are done.
1718 		 */
1719 		if (vp->v_usecount == 0) {
1720 			mutex_exit(&mntvnode_lock);
1721 			vremfree(vp);
1722 			vp->v_usecount = 1;
1723 			vclean(vp, DOCLOSE);
1724 			vrelel(vp, 0);
1725 			mutex_enter(&mntvnode_lock);
1726 			continue;
1727 		}
1728 		/*
1729 		 * If FORCECLOSE is set, forcibly close the vnode.
1730 		 * For block or character devices, revert to an
1731 		 * anonymous device.  For all other files, just
1732 		 * kill them.
1733 		 */
1734 		if (flags & FORCECLOSE) {
1735 			mutex_exit(&mntvnode_lock);
1736 			atomic_inc_uint(&vp->v_usecount);
1737 			if (vp->v_type != VBLK && vp->v_type != VCHR) {
1738 				vclean(vp, DOCLOSE);
1739 				vrelel(vp, 0);
1740 			} else {
1741 				vclean(vp, 0);
1742 				vp->v_op = spec_vnodeop_p; /* XXXSMP */
1743 				mutex_exit(&vp->v_interlock);
1744 				/*
1745 				 * The vnode isn't clean, but still resides
1746 				 * on the mount list.  Remove it. XXX This
1747 				 * is a bit dodgy.
1748 				 */
1749 				insmntque(vp, NULL);
1750 				vrele(vp);
1751 			}
1752 			mutex_enter(&mntvnode_lock);
1753 			continue;
1754 		}
1755 #ifdef DEBUG
1756 		if (busyprt)
1757 			vprint("vflush: busy vnode", vp);
1758 #endif
1759 		mutex_exit(&vp->v_interlock);
1760 		busy++;
1761 	}
1762 	mutex_exit(&mntvnode_lock);
1763 	vnfree(mvp);
1764 	if (busy)
1765 		return (EBUSY);
1766 	return (0);
1767 }
1768 
1769 /*
1770  * Disassociate the underlying file system from a vnode.
1771  *
1772  * Must be called with the interlock held, and will return with it held.
1773  */
1774 void
1775 vclean(vnode_t *vp, int flags)
1776 {
1777 	lwp_t *l = curlwp;
1778 	bool recycle, active;
1779 	int error;
1780 
1781 	KASSERT(mutex_owned(&vp->v_interlock));
1782 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1783 	KASSERT(vp->v_usecount != 0);
1784 
1785 	/* If cleaning is already in progress wait until done and return. */
1786 	if (vp->v_iflag & VI_XLOCK) {
1787 		vwait(vp, VI_XLOCK);
1788 		return;
1789 	}
1790 
1791 	/* If already clean, nothing to do. */
1792 	if ((vp->v_iflag & VI_CLEAN) != 0) {
1793 		return;
1794 	}
1795 
1796 	/*
1797 	 * Prevent the vnode from being recycled or brought into use
1798 	 * while we clean it out.
1799 	 */
1800 	vp->v_iflag |= VI_XLOCK;
1801 	if (vp->v_iflag & VI_EXECMAP) {
1802 		atomic_add_int(&uvmexp.execpages, -vp->v_uobj.uo_npages);
1803 		atomic_add_int(&uvmexp.filepages, vp->v_uobj.uo_npages);
1804 	}
1805 	vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP);
1806 	active = (vp->v_usecount > 1);
1807 
1808 	/* XXXAD should not lock vnode under layer */
1809 	VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
1810 
1811 	/*
1812 	 * Clean out any cached data associated with the vnode.
1813 	 * If purging an active vnode, it must be closed and
1814 	 * deactivated before being reclaimed. Note that the
1815 	 * VOP_INACTIVE will unlock the vnode.
1816 	 */
1817 	if (flags & DOCLOSE) {
1818 		error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0);
1819 		if (error != 0) {
1820 			/* XXX, fix vn_start_write's grab of mp and use that. */
1821 
1822 			if (wapbl_vphaswapbl(vp))
1823 				WAPBL_DISCARD(wapbl_vptomp(vp));
1824 			error = vinvalbuf(vp, 0, NOCRED, l, 0, 0);
1825 		}
1826 		KASSERT(error == 0);
1827 		KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1828 		if (active && (vp->v_type == VBLK || vp->v_type == VCHR)) {
1829 			 spec_node_revoke(vp);
1830 		}
1831 	}
1832 	if (active) {
1833 		VOP_INACTIVE(vp, &recycle);
1834 	} else {
1835 		/*
1836 		 * Any other processes trying to obtain this lock must first
1837 		 * wait for VI_XLOCK to clear, then call the new lock operation.
1838 		 */
1839 		VOP_UNLOCK(vp, 0);
1840 	}
1841 
1842 	/* Disassociate the underlying file system from the vnode. */
1843 	if (VOP_RECLAIM(vp)) {
1844 		vpanic(vp, "vclean: cannot reclaim");
1845 	}
1846 
1847 	KASSERT(vp->v_uobj.uo_npages == 0);
1848 	if (vp->v_type == VREG && vp->v_ractx != NULL) {
1849 		uvm_ra_freectx(vp->v_ractx);
1850 		vp->v_ractx = NULL;
1851 	}
1852 	cache_purge(vp);
1853 
1854 	/* Done with purge, notify sleepers of the grim news. */
1855 	mutex_enter(&vp->v_interlock);
1856 	vp->v_op = dead_vnodeop_p;
1857 	vp->v_tag = VT_NON;
1858 	vp->v_vnlock = &vp->v_lock;
1859 	KNOTE(&vp->v_klist, NOTE_REVOKE);
1860 	vp->v_iflag &= ~(VI_XLOCK | VI_FREEING);
1861 	vp->v_vflag &= ~VV_LOCKSWORK;
1862 	if ((flags & DOCLOSE) != 0) {
1863 		vp->v_iflag |= VI_CLEAN;
1864 	}
1865 	cv_broadcast(&vp->v_cv);
1866 
1867 	KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1868 }
1869 
1870 /*
1871  * Recycle an unused vnode to the front of the free list.
1872  * Release the passed interlock if the vnode will be recycled.
1873  */
1874 int
1875 vrecycle(vnode_t *vp, kmutex_t *inter_lkp, struct lwp *l)
1876 {
1877 
1878 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1879 
1880 	mutex_enter(&vp->v_interlock);
1881 	if (vp->v_usecount != 0) {
1882 		mutex_exit(&vp->v_interlock);
1883 		return (0);
1884 	}
1885 	if (inter_lkp)
1886 		mutex_exit(inter_lkp);
1887 	vremfree(vp);
1888 	vp->v_usecount = 1;
1889 	vclean(vp, DOCLOSE);
1890 	vrelel(vp, 0);
1891 	return (1);
1892 }
1893 
1894 /*
1895  * Eliminate all activity associated with a vnode in preparation for
1896  * reuse.  Drops a reference from the vnode.
1897  */
1898 void
1899 vgone(vnode_t *vp)
1900 {
1901 
1902 	mutex_enter(&vp->v_interlock);
1903 	vclean(vp, DOCLOSE);
1904 	vrelel(vp, 0);
1905 }
1906 
1907 /*
1908  * Lookup a vnode by device number.
1909  */
1910 int
1911 vfinddev(dev_t dev, enum vtype type, vnode_t **vpp)
1912 {
1913 	vnode_t *vp;
1914 	int rc = 0;
1915 
1916 	mutex_enter(&device_lock);
1917 	for (vp = specfs_hash[SPECHASH(dev)]; vp; vp = vp->v_specnext) {
1918 		if (dev != vp->v_rdev || type != vp->v_type)
1919 			continue;
1920 		*vpp = vp;
1921 		rc = 1;
1922 		break;
1923 	}
1924 	mutex_exit(&device_lock);
1925 	return (rc);
1926 }
1927 
1928 /*
1929  * Revoke all the vnodes corresponding to the specified minor number
1930  * range (endpoints inclusive) of the specified major.
1931  */
1932 void
1933 vdevgone(int maj, int minl, int minh, enum vtype type)
1934 {
1935 	vnode_t *vp, **vpp;
1936 	dev_t dev;
1937 	int mn;
1938 
1939 	vp = NULL;	/* XXX gcc */
1940 
1941 	mutex_enter(&device_lock);
1942 	for (mn = minl; mn <= minh; mn++) {
1943 		dev = makedev(maj, mn);
1944 		vpp = &specfs_hash[SPECHASH(dev)];
1945 		for (vp = *vpp; vp != NULL;) {
1946 			mutex_enter(&vp->v_interlock);
1947 			if ((vp->v_iflag & VI_CLEAN) != 0 ||
1948 			    dev != vp->v_rdev || type != vp->v_type) {
1949 				mutex_exit(&vp->v_interlock);
1950 				vp = vp->v_specnext;
1951 				continue;
1952 			}
1953 			mutex_exit(&device_lock);
1954 			if (vget(vp, LK_INTERLOCK) == 0) {
1955 				VOP_REVOKE(vp, REVOKEALL);
1956 				vrele(vp);
1957 			}
1958 			mutex_enter(&device_lock);
1959 			vp = *vpp;
1960 		}
1961 	}
1962 	mutex_exit(&device_lock);
1963 }
1964 
1965 /*
1966  * Calculate the total number of references to a special device.
1967  */
1968 int
1969 vcount(vnode_t *vp)
1970 {
1971 	int count;
1972 
1973 	mutex_enter(&device_lock);
1974 	mutex_enter(&vp->v_interlock);
1975 	if (vp->v_specnode == NULL) {
1976 		count = vp->v_usecount - ((vp->v_iflag & VI_INACTPEND) != 0);
1977 		mutex_exit(&vp->v_interlock);
1978 		mutex_exit(&device_lock);
1979 		return (count);
1980 	}
1981 	mutex_exit(&vp->v_interlock);
1982 	count = vp->v_specnode->sn_dev->sd_opencnt;
1983 	mutex_exit(&device_lock);
1984 	return (count);
1985 }
1986 
1987 /*
1988  * Eliminate all activity associated with the requested vnode
1989  * and with all vnodes aliased to the requested vnode.
1990  */
1991 void
1992 vrevoke(vnode_t *vp)
1993 {
1994 	vnode_t *vq, **vpp;
1995 	enum vtype type;
1996 	dev_t dev;
1997 
1998 	KASSERT(vp->v_usecount > 0);
1999 
2000 	mutex_enter(&vp->v_interlock);
2001 	if ((vp->v_iflag & VI_CLEAN) != 0) {
2002 		mutex_exit(&vp->v_interlock);
2003 		return;
2004 	} else if (vp->v_type != VBLK && vp->v_type != VCHR) {
2005 		atomic_inc_uint(&vp->v_usecount);
2006 		vclean(vp, DOCLOSE);
2007 		vrelel(vp, 0);
2008 		return;
2009 	} else {
2010 		dev = vp->v_rdev;
2011 		type = vp->v_type;
2012 		mutex_exit(&vp->v_interlock);
2013 	}
2014 
2015 	vpp = &specfs_hash[SPECHASH(dev)];
2016 	mutex_enter(&device_lock);
2017 	for (vq = *vpp; vq != NULL;) {
2018 		/* If clean or being cleaned, then ignore it. */
2019 		mutex_enter(&vq->v_interlock);
2020 		if ((vq->v_iflag & (VI_CLEAN | VI_XLOCK)) != 0 ||
2021 		    vq->v_rdev != dev || vq->v_type != type) {
2022 			mutex_exit(&vq->v_interlock);
2023 			vq = vq->v_specnext;
2024 			continue;
2025 		}
2026 		mutex_exit(&device_lock);
2027 		if (vq->v_usecount == 0) {
2028 			vremfree(vq);
2029 			vq->v_usecount = 1;
2030 		} else {
2031 			atomic_inc_uint(&vq->v_usecount);
2032 		}
2033 		vclean(vq, DOCLOSE);
2034 		vrelel(vq, 0);
2035 		mutex_enter(&device_lock);
2036 		vq = *vpp;
2037 	}
2038 	mutex_exit(&device_lock);
2039 }
2040 
2041 /*
2042  * sysctl helper routine to return list of supported fstypes
2043  */
2044 int
2045 sysctl_vfs_generic_fstypes(SYSCTLFN_ARGS)
2046 {
2047 	char bf[sizeof(((struct statvfs *)NULL)->f_fstypename)];
2048 	char *where = oldp;
2049 	struct vfsops *v;
2050 	size_t needed, left, slen;
2051 	int error, first;
2052 
2053 	if (newp != NULL)
2054 		return (EPERM);
2055 	if (namelen != 0)
2056 		return (EINVAL);
2057 
2058 	first = 1;
2059 	error = 0;
2060 	needed = 0;
2061 	left = *oldlenp;
2062 
2063 	sysctl_unlock();
2064 	mutex_enter(&vfs_list_lock);
2065 	LIST_FOREACH(v, &vfs_list, vfs_list) {
2066 		if (where == NULL)
2067 			needed += strlen(v->vfs_name) + 1;
2068 		else {
2069 			memset(bf, 0, sizeof(bf));
2070 			if (first) {
2071 				strncpy(bf, v->vfs_name, sizeof(bf));
2072 				first = 0;
2073 			} else {
2074 				bf[0] = ' ';
2075 				strncpy(bf + 1, v->vfs_name, sizeof(bf) - 1);
2076 			}
2077 			bf[sizeof(bf)-1] = '\0';
2078 			slen = strlen(bf);
2079 			if (left < slen + 1)
2080 				break;
2081 			v->vfs_refcount++;
2082 			mutex_exit(&vfs_list_lock);
2083 			/* +1 to copy out the trailing NUL byte */
2084 			error = copyout(bf, where, slen + 1);
2085 			mutex_enter(&vfs_list_lock);
2086 			v->vfs_refcount--;
2087 			if (error)
2088 				break;
2089 			where += slen;
2090 			needed += slen;
2091 			left -= slen;
2092 		}
2093 	}
2094 	mutex_exit(&vfs_list_lock);
2095 	sysctl_relock();
2096 	*oldlenp = needed;
2097 	return (error);
2098 }
2099 
2100 
2101 int kinfo_vdebug = 1;
2102 int kinfo_vgetfailed;
2103 #define KINFO_VNODESLOP	10
2104 /*
2105  * Dump vnode list (via sysctl).
2106  * Copyout address of vnode followed by vnode.
2107  */
2108 /* ARGSUSED */
2109 int
2110 sysctl_kern_vnode(SYSCTLFN_ARGS)
2111 {
2112 	char *where = oldp;
2113 	size_t *sizep = oldlenp;
2114 	struct mount *mp, *nmp;
2115 	vnode_t *vp, *mvp, vbuf;
2116 	char *bp = where, *savebp;
2117 	char *ewhere;
2118 	int error;
2119 
2120 	if (namelen != 0)
2121 		return (EOPNOTSUPP);
2122 	if (newp != NULL)
2123 		return (EPERM);
2124 
2125 #define VPTRSZ	sizeof(vnode_t *)
2126 #define VNODESZ	sizeof(vnode_t)
2127 	if (where == NULL) {
2128 		*sizep = (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ);
2129 		return (0);
2130 	}
2131 	ewhere = where + *sizep;
2132 
2133 	sysctl_unlock();
2134 	mutex_enter(&mountlist_lock);
2135 	for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
2136 	     mp = nmp) {
2137 		if (vfs_busy(mp, &nmp)) {
2138 			continue;
2139 		}
2140 		savebp = bp;
2141 		/* Allocate a marker vnode. */
2142 		mvp = vnalloc(mp);
2143 		/* Should never fail for mp != NULL */
2144 		KASSERT(mvp != NULL);
2145 		mutex_enter(&mntvnode_lock);
2146 		for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = vunmark(mvp)) {
2147 			vmark(mvp, vp);
2148 			/*
2149 			 * Check that the vp is still associated with
2150 			 * this filesystem.  RACE: could have been
2151 			 * recycled onto the same filesystem.
2152 			 */
2153 			if (vp->v_mount != mp || vismarker(vp))
2154 				continue;
2155 			if (bp + VPTRSZ + VNODESZ > ewhere) {
2156 				(void)vunmark(mvp);
2157 				mutex_exit(&mntvnode_lock);
2158 				vnfree(mvp);
2159 				sysctl_relock();
2160 				*sizep = bp - where;
2161 				return (ENOMEM);
2162 			}
2163 			memcpy(&vbuf, vp, VNODESZ);
2164 			mutex_exit(&mntvnode_lock);
2165 			if ((error = copyout(&vp, bp, VPTRSZ)) ||
2166 			   (error = copyout(&vbuf, bp + VPTRSZ, VNODESZ))) {
2167 			   	mutex_enter(&mntvnode_lock);
2168 				(void)vunmark(mvp);
2169 				mutex_exit(&mntvnode_lock);
2170 				vnfree(mvp);
2171 				sysctl_relock();
2172 				return (error);
2173 			}
2174 			bp += VPTRSZ + VNODESZ;
2175 			mutex_enter(&mntvnode_lock);
2176 		}
2177 		mutex_exit(&mntvnode_lock);
2178 		vnfree(mvp);
2179 		vfs_unbusy(mp, false, &nmp);
2180 	}
2181 	mutex_exit(&mountlist_lock);
2182 	sysctl_relock();
2183 
2184 	*sizep = bp - where;
2185 	return (0);
2186 }
2187 
2188 /*
2189  * Remove clean vnodes from a mountpoint's vnode list.
2190  */
2191 void
2192 vfs_scrubvnlist(struct mount *mp)
2193 {
2194 	vnode_t *vp, *nvp;
2195 
2196  retry:
2197 	mutex_enter(&mntvnode_lock);
2198 	for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
2199 		nvp = TAILQ_NEXT(vp, v_mntvnodes);
2200 		mutex_enter(&vp->v_interlock);
2201 		if ((vp->v_iflag & VI_CLEAN) != 0) {
2202 			TAILQ_REMOVE(&mp->mnt_vnodelist, vp, v_mntvnodes);
2203 			vp->v_mount = NULL;
2204 			mutex_exit(&mntvnode_lock);
2205 			mutex_exit(&vp->v_interlock);
2206 			vfs_destroy(mp);
2207 			goto retry;
2208 		}
2209 		mutex_exit(&vp->v_interlock);
2210 	}
2211 	mutex_exit(&mntvnode_lock);
2212 }
2213 
2214 /*
2215  * Check to see if a filesystem is mounted on a block device.
2216  */
2217 int
2218 vfs_mountedon(vnode_t *vp)
2219 {
2220 	vnode_t *vq;
2221 	int error = 0;
2222 
2223 	if (vp->v_type != VBLK)
2224 		return ENOTBLK;
2225 	if (vp->v_specmountpoint != NULL)
2226 		return (EBUSY);
2227 	mutex_enter(&device_lock);
2228 	for (vq = specfs_hash[SPECHASH(vp->v_rdev)]; vq != NULL;
2229 	    vq = vq->v_specnext) {
2230 		if (vq->v_rdev != vp->v_rdev || vq->v_type != vp->v_type)
2231 			continue;
2232 		if (vq->v_specmountpoint != NULL) {
2233 			error = EBUSY;
2234 			break;
2235 		}
2236 	}
2237 	mutex_exit(&device_lock);
2238 	return (error);
2239 }
2240 
2241 /*
2242  * Unmount all file systems.
2243  * We traverse the list in reverse order under the assumption that doing so
2244  * will avoid needing to worry about dependencies.
2245  */
2246 bool
2247 vfs_unmountall(struct lwp *l)
2248 {
2249 	printf("unmounting file systems...");
2250 	return vfs_unmountall1(l, true, true);
2251 }
2252 
2253 bool
2254 vfs_unmountall1(struct lwp *l, bool force, bool verbose)
2255 {
2256 	struct mount *mp, *nmp;
2257 	bool any_error, progress;
2258 	int error;
2259 
2260 	for (any_error = false, mp = CIRCLEQ_LAST(&mountlist);
2261 	     !CIRCLEQ_EMPTY(&mountlist);
2262 	     mp = nmp) {
2263 		nmp = CIRCLEQ_PREV(mp, mnt_list);
2264 #ifdef DEBUG
2265 		printf("\nunmounting %s (%s)...",
2266 		    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_mntfromname);
2267 #endif
2268 		atomic_inc_uint(&mp->mnt_refcnt);
2269 		if ((error = dounmount(mp, force ? MNT_FORCE : 0, l)) == 0)
2270 			progress = true;
2271 		else {
2272 			if (verbose) {
2273 				printf("unmount of %s failed with error %d\n",
2274 				    mp->mnt_stat.f_mntonname, error);
2275 			}
2276 			any_error = true;
2277 		}
2278 	}
2279 	if (verbose)
2280 		printf(" done\n");
2281 	if (any_error && verbose)
2282 		printf("WARNING: some file systems would not unmount\n");
2283 	return progress;
2284 }
2285 
2286 /*
2287  * Sync and unmount file systems before shutting down.
2288  */
2289 void
2290 vfs_shutdown(void)
2291 {
2292 	struct lwp *l;
2293 
2294 	/* XXX we're certainly not running in lwp0's context! */
2295 	l = (curlwp == NULL) ? &lwp0 : curlwp;
2296 
2297 	printf("syncing disks... ");
2298 
2299 	/* remove user processes from run queue */
2300 	suspendsched();
2301 	(void) spl0();
2302 
2303 	/* avoid coming back this way again if we panic. */
2304 	doing_shutdown = 1;
2305 
2306 	sys_sync(l, NULL, NULL);
2307 
2308 	/* Wait for sync to finish. */
2309 	if (buf_syncwait() != 0) {
2310 #if defined(DDB) && defined(DEBUG_HALT_BUSY)
2311 		Debugger();
2312 #endif
2313 		printf("giving up\n");
2314 		return;
2315 	} else
2316 		printf("done\n");
2317 
2318 	/*
2319 	 * If we've panic'd, don't make the situation potentially
2320 	 * worse by unmounting the file systems.
2321 	 */
2322 	if (panicstr != NULL)
2323 		return;
2324 
2325 	/* Release inodes held by texts before update. */
2326 #ifdef notdef
2327 	vnshutdown();
2328 #endif
2329 	/* Unmount file systems. */
2330 	vfs_unmountall(l);
2331 }
2332 
2333 /*
2334  * Mount the root file system.  If the operator didn't specify a
2335  * file system to use, try all possible file systems until one
2336  * succeeds.
2337  */
2338 int
2339 vfs_mountroot(void)
2340 {
2341 	struct vfsops *v;
2342 	int error = ENODEV;
2343 
2344 	if (root_device == NULL)
2345 		panic("vfs_mountroot: root device unknown");
2346 
2347 	switch (device_class(root_device)) {
2348 	case DV_IFNET:
2349 		if (rootdev != NODEV)
2350 			panic("vfs_mountroot: rootdev set for DV_IFNET "
2351 			    "(0x%llx -> %llu,%llu)",
2352 			    (unsigned long long)rootdev,
2353 			    (unsigned long long)major(rootdev),
2354 			    (unsigned long long)minor(rootdev));
2355 		break;
2356 
2357 	case DV_DISK:
2358 		if (rootdev == NODEV)
2359 			panic("vfs_mountroot: rootdev not set for DV_DISK");
2360 	        if (bdevvp(rootdev, &rootvp))
2361 	                panic("vfs_mountroot: can't get vnode for rootdev");
2362 		error = VOP_OPEN(rootvp, FREAD, FSCRED);
2363 		if (error) {
2364 			printf("vfs_mountroot: can't open root device\n");
2365 			return (error);
2366 		}
2367 		break;
2368 
2369 	default:
2370 		printf("%s: inappropriate for root file system\n",
2371 		    device_xname(root_device));
2372 		return (ENODEV);
2373 	}
2374 
2375 	/*
2376 	 * If user specified a root fs type, use it.  Make sure the
2377 	 * specified type exists and has a mount_root()
2378 	 */
2379 	if (strcmp(rootfstype, ROOT_FSTYPE_ANY) != 0) {
2380 		v = vfs_getopsbyname(rootfstype);
2381 		error = EFTYPE;
2382 		if (v != NULL) {
2383 			if (v->vfs_mountroot != NULL) {
2384 				error = (v->vfs_mountroot)();
2385 			}
2386 			v->vfs_refcount--;
2387 		}
2388 		goto done;
2389 	}
2390 
2391 	/*
2392 	 * Try each file system currently configured into the kernel.
2393 	 */
2394 	mutex_enter(&vfs_list_lock);
2395 	LIST_FOREACH(v, &vfs_list, vfs_list) {
2396 		if (v->vfs_mountroot == NULL)
2397 			continue;
2398 #ifdef DEBUG
2399 		aprint_normal("mountroot: trying %s...\n", v->vfs_name);
2400 #endif
2401 		v->vfs_refcount++;
2402 		mutex_exit(&vfs_list_lock);
2403 		error = (*v->vfs_mountroot)();
2404 		mutex_enter(&vfs_list_lock);
2405 		v->vfs_refcount--;
2406 		if (!error) {
2407 			aprint_normal("root file system type: %s\n",
2408 			    v->vfs_name);
2409 			break;
2410 		}
2411 	}
2412 	mutex_exit(&vfs_list_lock);
2413 
2414 	if (v == NULL) {
2415 		printf("no file system for %s", device_xname(root_device));
2416 		if (device_class(root_device) == DV_DISK)
2417 			printf(" (dev 0x%llx)", (unsigned long long)rootdev);
2418 		printf("\n");
2419 		error = EFTYPE;
2420 	}
2421 
2422 done:
2423 	if (error && device_class(root_device) == DV_DISK) {
2424 		VOP_CLOSE(rootvp, FREAD, FSCRED);
2425 		vrele(rootvp);
2426 	}
2427 	return (error);
2428 }
2429 
2430 /*
2431  * Get a new unique fsid
2432  */
2433 void
2434 vfs_getnewfsid(struct mount *mp)
2435 {
2436 	static u_short xxxfs_mntid;
2437 	fsid_t tfsid;
2438 	int mtype;
2439 
2440 	mutex_enter(&mntid_lock);
2441 	mtype = makefstype(mp->mnt_op->vfs_name);
2442 	mp->mnt_stat.f_fsidx.__fsid_val[0] = makedev(mtype, 0);
2443 	mp->mnt_stat.f_fsidx.__fsid_val[1] = mtype;
2444 	mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
2445 	if (xxxfs_mntid == 0)
2446 		++xxxfs_mntid;
2447 	tfsid.__fsid_val[0] = makedev(mtype & 0xff, xxxfs_mntid);
2448 	tfsid.__fsid_val[1] = mtype;
2449 	if (!CIRCLEQ_EMPTY(&mountlist)) {
2450 		while (vfs_getvfs(&tfsid)) {
2451 			tfsid.__fsid_val[0]++;
2452 			xxxfs_mntid++;
2453 		}
2454 	}
2455 	mp->mnt_stat.f_fsidx.__fsid_val[0] = tfsid.__fsid_val[0];
2456 	mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
2457 	mutex_exit(&mntid_lock);
2458 }
2459 
2460 /*
2461  * Make a 'unique' number from a mount type name.
2462  */
2463 long
2464 makefstype(const char *type)
2465 {
2466 	long rv;
2467 
2468 	for (rv = 0; *type; type++) {
2469 		rv <<= 2;
2470 		rv ^= *type;
2471 	}
2472 	return rv;
2473 }
2474 
2475 /*
2476  * Set vnode attributes to VNOVAL
2477  */
2478 void
2479 vattr_null(struct vattr *vap)
2480 {
2481 
2482 	vap->va_type = VNON;
2483 
2484 	/*
2485 	 * Assign individually so that it is safe even if size and
2486 	 * sign of each member are varied.
2487 	 */
2488 	vap->va_mode = VNOVAL;
2489 	vap->va_nlink = VNOVAL;
2490 	vap->va_uid = VNOVAL;
2491 	vap->va_gid = VNOVAL;
2492 	vap->va_fsid = VNOVAL;
2493 	vap->va_fileid = VNOVAL;
2494 	vap->va_size = VNOVAL;
2495 	vap->va_blocksize = VNOVAL;
2496 	vap->va_atime.tv_sec =
2497 	    vap->va_mtime.tv_sec =
2498 	    vap->va_ctime.tv_sec =
2499 	    vap->va_birthtime.tv_sec = VNOVAL;
2500 	vap->va_atime.tv_nsec =
2501 	    vap->va_mtime.tv_nsec =
2502 	    vap->va_ctime.tv_nsec =
2503 	    vap->va_birthtime.tv_nsec = VNOVAL;
2504 	vap->va_gen = VNOVAL;
2505 	vap->va_flags = VNOVAL;
2506 	vap->va_rdev = VNOVAL;
2507 	vap->va_bytes = VNOVAL;
2508 	vap->va_vaflags = 0;
2509 }
2510 
2511 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof(arr[0]))
2512 #define ARRAY_PRINT(idx, arr) \
2513     ((unsigned int)(idx) < ARRAY_SIZE(arr) ? (arr)[(idx)] : "UNKNOWN")
2514 
2515 const char * const vnode_tags[] = { VNODE_TAGS };
2516 const char * const vnode_types[] = { VNODE_TYPES };
2517 const char vnode_flagbits[] = VNODE_FLAGBITS;
2518 
2519 /*
2520  * Print out a description of a vnode.
2521  */
2522 void
2523 vprint(const char *label, struct vnode *vp)
2524 {
2525 	struct vnlock *vl;
2526 	char bf[96];
2527 	int flag;
2528 
2529 	vl = (vp->v_vnlock != NULL ? vp->v_vnlock : &vp->v_lock);
2530 	flag = vp->v_iflag | vp->v_vflag | vp->v_uflag;
2531 	snprintb(bf, sizeof(bf), vnode_flagbits, flag);
2532 
2533 	if (label != NULL)
2534 		printf("%s: ", label);
2535 	printf("vnode @ %p, flags (%s)\n\ttag %s(%d), type %s(%d), "
2536 	    "usecount %d, writecount %d, holdcount %d\n"
2537 	    "\tfreelisthd %p, mount %p, data %p lock %p recursecnt %d\n",
2538 	    vp, bf, ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag,
2539 	    ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type,
2540 	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt,
2541 	    vp->v_freelisthd, vp->v_mount, vp->v_data, vl, vl->vl_recursecnt);
2542 	if (vp->v_data != NULL) {
2543 		printf("\t");
2544 		VOP_PRINT(vp);
2545 	}
2546 }
2547 
2548 #ifdef DEBUG
2549 /*
2550  * List all of the locked vnodes in the system.
2551  * Called when debugging the kernel.
2552  */
2553 void
2554 printlockedvnodes(void)
2555 {
2556 	struct mount *mp, *nmp;
2557 	struct vnode *vp;
2558 
2559 	printf("Locked vnodes\n");
2560 	mutex_enter(&mountlist_lock);
2561 	for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
2562 	     mp = nmp) {
2563 		if (vfs_busy(mp, &nmp)) {
2564 			continue;
2565 		}
2566 		TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2567 			if (VOP_ISLOCKED(vp))
2568 				vprint(NULL, vp);
2569 		}
2570 		mutex_enter(&mountlist_lock);
2571 		vfs_unbusy(mp, false, &nmp);
2572 	}
2573 	mutex_exit(&mountlist_lock);
2574 }
2575 #endif
2576 
2577 /*
2578  * Do the usual access checking.
2579  * file_mode, uid and gid are from the vnode in question,
2580  * while acc_mode and cred are from the VOP_ACCESS parameter list
2581  */
2582 int
2583 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid,
2584     mode_t acc_mode, kauth_cred_t cred)
2585 {
2586 	mode_t mask;
2587 	int error, ismember;
2588 
2589 	/*
2590 	 * Super-user always gets read/write access, but execute access depends
2591 	 * on at least one execute bit being set.
2592 	 */
2593 	if (kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) == 0) {
2594 		if ((acc_mode & VEXEC) && type != VDIR &&
2595 		    (file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)
2596 			return (EACCES);
2597 		return (0);
2598 	}
2599 
2600 	mask = 0;
2601 
2602 	/* Otherwise, check the owner. */
2603 	if (kauth_cred_geteuid(cred) == uid) {
2604 		if (acc_mode & VEXEC)
2605 			mask |= S_IXUSR;
2606 		if (acc_mode & VREAD)
2607 			mask |= S_IRUSR;
2608 		if (acc_mode & VWRITE)
2609 			mask |= S_IWUSR;
2610 		return ((file_mode & mask) == mask ? 0 : EACCES);
2611 	}
2612 
2613 	/* Otherwise, check the groups. */
2614 	error = kauth_cred_ismember_gid(cred, gid, &ismember);
2615 	if (error)
2616 		return (error);
2617 	if (kauth_cred_getegid(cred) == gid || ismember) {
2618 		if (acc_mode & VEXEC)
2619 			mask |= S_IXGRP;
2620 		if (acc_mode & VREAD)
2621 			mask |= S_IRGRP;
2622 		if (acc_mode & VWRITE)
2623 			mask |= S_IWGRP;
2624 		return ((file_mode & mask) == mask ? 0 : EACCES);
2625 	}
2626 
2627 	/* Otherwise, check everyone else. */
2628 	if (acc_mode & VEXEC)
2629 		mask |= S_IXOTH;
2630 	if (acc_mode & VREAD)
2631 		mask |= S_IROTH;
2632 	if (acc_mode & VWRITE)
2633 		mask |= S_IWOTH;
2634 	return ((file_mode & mask) == mask ? 0 : EACCES);
2635 }
2636 
2637 /*
2638  * Given a file system name, look up the vfsops for that
2639  * file system, or return NULL if file system isn't present
2640  * in the kernel.
2641  */
2642 struct vfsops *
2643 vfs_getopsbyname(const char *name)
2644 {
2645 	struct vfsops *v;
2646 
2647 	mutex_enter(&vfs_list_lock);
2648 	LIST_FOREACH(v, &vfs_list, vfs_list) {
2649 		if (strcmp(v->vfs_name, name) == 0)
2650 			break;
2651 	}
2652 	if (v != NULL)
2653 		v->vfs_refcount++;
2654 	mutex_exit(&vfs_list_lock);
2655 
2656 	return (v);
2657 }
2658 
2659 void
2660 copy_statvfs_info(struct statvfs *sbp, const struct mount *mp)
2661 {
2662 	const struct statvfs *mbp;
2663 
2664 	if (sbp == (mbp = &mp->mnt_stat))
2665 		return;
2666 
2667 	(void)memcpy(&sbp->f_fsidx, &mbp->f_fsidx, sizeof(sbp->f_fsidx));
2668 	sbp->f_fsid = mbp->f_fsid;
2669 	sbp->f_owner = mbp->f_owner;
2670 	sbp->f_flag = mbp->f_flag;
2671 	sbp->f_syncwrites = mbp->f_syncwrites;
2672 	sbp->f_asyncwrites = mbp->f_asyncwrites;
2673 	sbp->f_syncreads = mbp->f_syncreads;
2674 	sbp->f_asyncreads = mbp->f_asyncreads;
2675 	(void)memcpy(sbp->f_spare, mbp->f_spare, sizeof(mbp->f_spare));
2676 	(void)memcpy(sbp->f_fstypename, mbp->f_fstypename,
2677 	    sizeof(sbp->f_fstypename));
2678 	(void)memcpy(sbp->f_mntonname, mbp->f_mntonname,
2679 	    sizeof(sbp->f_mntonname));
2680 	(void)memcpy(sbp->f_mntfromname, mp->mnt_stat.f_mntfromname,
2681 	    sizeof(sbp->f_mntfromname));
2682 	sbp->f_namemax = mbp->f_namemax;
2683 }
2684 
2685 int
2686 set_statvfs_info(const char *onp, int ukon, const char *fromp, int ukfrom,
2687     const char *vfsname, struct mount *mp, struct lwp *l)
2688 {
2689 	int error;
2690 	size_t size;
2691 	struct statvfs *sfs = &mp->mnt_stat;
2692 	int (*fun)(const void *, void *, size_t, size_t *);
2693 
2694 	(void)strlcpy(mp->mnt_stat.f_fstypename, vfsname,
2695 	    sizeof(mp->mnt_stat.f_fstypename));
2696 
2697 	if (onp) {
2698 		struct cwdinfo *cwdi = l->l_proc->p_cwdi;
2699 		fun = (ukon == UIO_SYSSPACE) ? copystr : copyinstr;
2700 		if (cwdi->cwdi_rdir != NULL) {
2701 			size_t len;
2702 			char *bp;
2703 			char *path = PNBUF_GET();
2704 
2705 			bp = path + MAXPATHLEN;
2706 			*--bp = '\0';
2707 			rw_enter(&cwdi->cwdi_lock, RW_READER);
2708 			error = getcwd_common(cwdi->cwdi_rdir, rootvnode, &bp,
2709 			    path, MAXPATHLEN / 2, 0, l);
2710 			rw_exit(&cwdi->cwdi_lock);
2711 			if (error) {
2712 				PNBUF_PUT(path);
2713 				return error;
2714 			}
2715 
2716 			len = strlen(bp);
2717 			if (len > sizeof(sfs->f_mntonname) - 1)
2718 				len = sizeof(sfs->f_mntonname) - 1;
2719 			(void)strncpy(sfs->f_mntonname, bp, len);
2720 			PNBUF_PUT(path);
2721 
2722 			if (len < sizeof(sfs->f_mntonname) - 1) {
2723 				error = (*fun)(onp, &sfs->f_mntonname[len],
2724 				    sizeof(sfs->f_mntonname) - len - 1, &size);
2725 				if (error)
2726 					return error;
2727 				size += len;
2728 			} else {
2729 				size = len;
2730 			}
2731 		} else {
2732 			error = (*fun)(onp, &sfs->f_mntonname,
2733 			    sizeof(sfs->f_mntonname) - 1, &size);
2734 			if (error)
2735 				return error;
2736 		}
2737 		(void)memset(sfs->f_mntonname + size, 0,
2738 		    sizeof(sfs->f_mntonname) - size);
2739 	}
2740 
2741 	if (fromp) {
2742 		fun = (ukfrom == UIO_SYSSPACE) ? copystr : copyinstr;
2743 		error = (*fun)(fromp, sfs->f_mntfromname,
2744 		    sizeof(sfs->f_mntfromname) - 1, &size);
2745 		if (error)
2746 			return error;
2747 		(void)memset(sfs->f_mntfromname + size, 0,
2748 		    sizeof(sfs->f_mntfromname) - size);
2749 	}
2750 	return 0;
2751 }
2752 
2753 void
2754 vfs_timestamp(struct timespec *ts)
2755 {
2756 
2757 	nanotime(ts);
2758 }
2759 
2760 time_t	rootfstime;			/* recorded root fs time, if known */
2761 void
2762 setrootfstime(time_t t)
2763 {
2764 	rootfstime = t;
2765 }
2766 
2767 /*
2768  * Sham lock manager for vnodes.  This is a temporary measure.
2769  */
2770 int
2771 vlockmgr(struct vnlock *vl, int flags)
2772 {
2773 
2774 	KASSERT((flags & ~(LK_CANRECURSE | LK_NOWAIT | LK_TYPE_MASK)) == 0);
2775 
2776 	switch (flags & LK_TYPE_MASK) {
2777 	case LK_SHARED:
2778 		if (rw_tryenter(&vl->vl_lock, RW_READER)) {
2779 			return 0;
2780 		}
2781 		if ((flags & LK_NOWAIT) != 0) {
2782 			return EBUSY;
2783 		}
2784 		rw_enter(&vl->vl_lock, RW_READER);
2785 		return 0;
2786 
2787 	case LK_EXCLUSIVE:
2788 		if (rw_tryenter(&vl->vl_lock, RW_WRITER)) {
2789 			return 0;
2790 		}
2791 		if ((vl->vl_canrecurse || (flags & LK_CANRECURSE) != 0) &&
2792 		    rw_write_held(&vl->vl_lock)) {
2793 			vl->vl_recursecnt++;
2794 			return 0;
2795 		}
2796 		if ((flags & LK_NOWAIT) != 0) {
2797 			return EBUSY;
2798 		}
2799 		rw_enter(&vl->vl_lock, RW_WRITER);
2800 		return 0;
2801 
2802 	case LK_RELEASE:
2803 		if (vl->vl_recursecnt != 0) {
2804 			KASSERT(rw_write_held(&vl->vl_lock));
2805 			vl->vl_recursecnt--;
2806 			return 0;
2807 		}
2808 		rw_exit(&vl->vl_lock);
2809 		return 0;
2810 
2811 	default:
2812 		panic("vlockmgr: flags %x", flags);
2813 	}
2814 }
2815 
2816 int
2817 vlockstatus(struct vnlock *vl)
2818 {
2819 
2820 	if (rw_write_held(&vl->vl_lock)) {
2821 		return LK_EXCLUSIVE;
2822 	}
2823 	if (rw_read_held(&vl->vl_lock)) {
2824 		return LK_SHARED;
2825 	}
2826 	return 0;
2827 }
2828 
2829 /*
2830  * mount_specific_key_create --
2831  *	Create a key for subsystem mount-specific data.
2832  */
2833 int
2834 mount_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
2835 {
2836 
2837 	return (specificdata_key_create(mount_specificdata_domain, keyp, dtor));
2838 }
2839 
2840 /*
2841  * mount_specific_key_delete --
2842  *	Delete a key for subsystem mount-specific data.
2843  */
2844 void
2845 mount_specific_key_delete(specificdata_key_t key)
2846 {
2847 
2848 	specificdata_key_delete(mount_specificdata_domain, key);
2849 }
2850 
2851 /*
2852  * mount_initspecific --
2853  *	Initialize a mount's specificdata container.
2854  */
2855 void
2856 mount_initspecific(struct mount *mp)
2857 {
2858 	int error;
2859 
2860 	error = specificdata_init(mount_specificdata_domain,
2861 				  &mp->mnt_specdataref);
2862 	KASSERT(error == 0);
2863 }
2864 
2865 /*
2866  * mount_finispecific --
2867  *	Finalize a mount's specificdata container.
2868  */
2869 void
2870 mount_finispecific(struct mount *mp)
2871 {
2872 
2873 	specificdata_fini(mount_specificdata_domain, &mp->mnt_specdataref);
2874 }
2875 
2876 /*
2877  * mount_getspecific --
2878  *	Return mount-specific data corresponding to the specified key.
2879  */
2880 void *
2881 mount_getspecific(struct mount *mp, specificdata_key_t key)
2882 {
2883 
2884 	return (specificdata_getspecific(mount_specificdata_domain,
2885 					 &mp->mnt_specdataref, key));
2886 }
2887 
2888 /*
2889  * mount_setspecific --
2890  *	Set mount-specific data corresponding to the specified key.
2891  */
2892 void
2893 mount_setspecific(struct mount *mp, specificdata_key_t key, void *data)
2894 {
2895 
2896 	specificdata_setspecific(mount_specificdata_domain,
2897 				 &mp->mnt_specdataref, key, data);
2898 }
2899 
2900 int
2901 VFS_MOUNT(struct mount *mp, const char *a, void *b, size_t *c)
2902 {
2903 	int error;
2904 
2905 	KERNEL_LOCK(1, NULL);
2906 	error = (*(mp->mnt_op->vfs_mount))(mp, a, b, c);
2907 	KERNEL_UNLOCK_ONE(NULL);
2908 
2909 	return error;
2910 }
2911 
2912 int
2913 VFS_START(struct mount *mp, int a)
2914 {
2915 	int error;
2916 
2917 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2918 		KERNEL_LOCK(1, NULL);
2919 	}
2920 	error = (*(mp->mnt_op->vfs_start))(mp, a);
2921 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2922 		KERNEL_UNLOCK_ONE(NULL);
2923 	}
2924 
2925 	return error;
2926 }
2927 
2928 int
2929 VFS_UNMOUNT(struct mount *mp, int a)
2930 {
2931 	int error;
2932 
2933 	KERNEL_LOCK(1, NULL);
2934 	error = (*(mp->mnt_op->vfs_unmount))(mp, a);
2935 	KERNEL_UNLOCK_ONE(NULL);
2936 
2937 	return error;
2938 }
2939 
2940 int
2941 VFS_ROOT(struct mount *mp, struct vnode **a)
2942 {
2943 	int error;
2944 
2945 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2946 		KERNEL_LOCK(1, NULL);
2947 	}
2948 	error = (*(mp->mnt_op->vfs_root))(mp, a);
2949 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2950 		KERNEL_UNLOCK_ONE(NULL);
2951 	}
2952 
2953 	return error;
2954 }
2955 
2956 int
2957 VFS_QUOTACTL(struct mount *mp, int a, uid_t b, void *c)
2958 {
2959 	int error;
2960 
2961 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2962 		KERNEL_LOCK(1, NULL);
2963 	}
2964 	error = (*(mp->mnt_op->vfs_quotactl))(mp, a, b, c);
2965 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2966 		KERNEL_UNLOCK_ONE(NULL);
2967 	}
2968 
2969 	return error;
2970 }
2971 
2972 int
2973 VFS_STATVFS(struct mount *mp, struct statvfs *a)
2974 {
2975 	int error;
2976 
2977 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2978 		KERNEL_LOCK(1, NULL);
2979 	}
2980 	error = (*(mp->mnt_op->vfs_statvfs))(mp, a);
2981 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2982 		KERNEL_UNLOCK_ONE(NULL);
2983 	}
2984 
2985 	return error;
2986 }
2987 
2988 int
2989 VFS_SYNC(struct mount *mp, int a, struct kauth_cred *b)
2990 {
2991 	int error;
2992 
2993 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2994 		KERNEL_LOCK(1, NULL);
2995 	}
2996 	error = (*(mp->mnt_op->vfs_sync))(mp, a, b);
2997 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2998 		KERNEL_UNLOCK_ONE(NULL);
2999 	}
3000 
3001 	return error;
3002 }
3003 
3004 int
3005 VFS_FHTOVP(struct mount *mp, struct fid *a, struct vnode **b)
3006 {
3007 	int error;
3008 
3009 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3010 		KERNEL_LOCK(1, NULL);
3011 	}
3012 	error = (*(mp->mnt_op->vfs_fhtovp))(mp, a, b);
3013 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3014 		KERNEL_UNLOCK_ONE(NULL);
3015 	}
3016 
3017 	return error;
3018 }
3019 
3020 int
3021 VFS_VPTOFH(struct vnode *vp, struct fid *a, size_t *b)
3022 {
3023 	int error;
3024 
3025 	if ((vp->v_vflag & VV_MPSAFE) == 0) {
3026 		KERNEL_LOCK(1, NULL);
3027 	}
3028 	error = (*(vp->v_mount->mnt_op->vfs_vptofh))(vp, a, b);
3029 	if ((vp->v_vflag & VV_MPSAFE) == 0) {
3030 		KERNEL_UNLOCK_ONE(NULL);
3031 	}
3032 
3033 	return error;
3034 }
3035 
3036 int
3037 VFS_SNAPSHOT(struct mount *mp, struct vnode *a, struct timespec *b)
3038 {
3039 	int error;
3040 
3041 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3042 		KERNEL_LOCK(1, NULL);
3043 	}
3044 	error = (*(mp->mnt_op->vfs_snapshot))(mp, a, b);
3045 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3046 		KERNEL_UNLOCK_ONE(NULL);
3047 	}
3048 
3049 	return error;
3050 }
3051 
3052 int
3053 VFS_EXTATTRCTL(struct mount *mp, int a, struct vnode *b, int c, const char *d)
3054 {
3055 	int error;
3056 
3057 	KERNEL_LOCK(1, NULL);		/* XXXSMP check ffs */
3058 	error = (*(mp->mnt_op->vfs_extattrctl))(mp, a, b, c, d);
3059 	KERNEL_UNLOCK_ONE(NULL);	/* XXX */
3060 
3061 	return error;
3062 }
3063 
3064 int
3065 VFS_SUSPENDCTL(struct mount *mp, int a)
3066 {
3067 	int error;
3068 
3069 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3070 		KERNEL_LOCK(1, NULL);
3071 	}
3072 	error = (*(mp->mnt_op->vfs_suspendctl))(mp, a);
3073 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3074 		KERNEL_UNLOCK_ONE(NULL);
3075 	}
3076 
3077 	return error;
3078 }
3079 
3080 #if defined(DDB) || defined(DEBUGPRINT)
3081 static const char buf_flagbits[] = BUF_FLAGBITS;
3082 
3083 void
3084 vfs_buf_print(struct buf *bp, int full, void (*pr)(const char *, ...))
3085 {
3086 	char bf[1024];
3087 
3088 	(*pr)("  vp %p lblkno 0x%"PRIx64" blkno 0x%"PRIx64" rawblkno 0x%"
3089 	    PRIx64 " dev 0x%x\n",
3090 	    bp->b_vp, bp->b_lblkno, bp->b_blkno, bp->b_rawblkno, bp->b_dev);
3091 
3092 	snprintb(bf, sizeof(bf),
3093 	    buf_flagbits, bp->b_flags | bp->b_oflags | bp->b_cflags);
3094 	(*pr)("  error %d flags 0x%s\n", bp->b_error, bf);
3095 
3096 	(*pr)("  bufsize 0x%lx bcount 0x%lx resid 0x%lx\n",
3097 		  bp->b_bufsize, bp->b_bcount, bp->b_resid);
3098 	(*pr)("  data %p saveaddr %p\n",
3099 		  bp->b_data, bp->b_saveaddr);
3100 	(*pr)("  iodone %p objlock %p\n", bp->b_iodone, bp->b_objlock);
3101 }
3102 
3103 
3104 void
3105 vfs_vnode_print(struct vnode *vp, int full, void (*pr)(const char *, ...))
3106 {
3107 	char bf[256];
3108 
3109 	uvm_object_printit(&vp->v_uobj, full, pr);
3110 	snprintb(bf, sizeof(bf),
3111 	    vnode_flagbits, vp->v_iflag | vp->v_vflag | vp->v_uflag);
3112 	(*pr)("\nVNODE flags %s\n", bf);
3113 	(*pr)("mp %p numoutput %d size 0x%llx writesize 0x%llx\n",
3114 	      vp->v_mount, vp->v_numoutput, vp->v_size, vp->v_writesize);
3115 
3116 	(*pr)("data %p writecount %ld holdcnt %ld\n",
3117 	      vp->v_data, vp->v_writecount, vp->v_holdcnt);
3118 
3119 	(*pr)("tag %s(%d) type %s(%d) mount %p typedata %p\n",
3120 	      ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag,
3121 	      ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type,
3122 	      vp->v_mount, vp->v_mountedhere);
3123 
3124 	(*pr)("v_lock %p v_vnlock %p\n", &vp->v_lock, vp->v_vnlock);
3125 
3126 	if (full) {
3127 		struct buf *bp;
3128 
3129 		(*pr)("clean bufs:\n");
3130 		LIST_FOREACH(bp, &vp->v_cleanblkhd, b_vnbufs) {
3131 			(*pr)(" bp %p\n", bp);
3132 			vfs_buf_print(bp, full, pr);
3133 		}
3134 
3135 		(*pr)("dirty bufs:\n");
3136 		LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
3137 			(*pr)(" bp %p\n", bp);
3138 			vfs_buf_print(bp, full, pr);
3139 		}
3140 	}
3141 }
3142 
3143 void
3144 vfs_mount_print(struct mount *mp, int full, void (*pr)(const char *, ...))
3145 {
3146 	char sbuf[256];
3147 
3148 	(*pr)("vnodecovered = %p syncer = %p data = %p\n",
3149 			mp->mnt_vnodecovered,mp->mnt_syncer,mp->mnt_data);
3150 
3151 	(*pr)("fs_bshift %d dev_bshift = %d\n",
3152 			mp->mnt_fs_bshift,mp->mnt_dev_bshift);
3153 
3154 	snprintb(sbuf, sizeof(sbuf), __MNT_FLAG_BITS, mp->mnt_flag);
3155 	(*pr)("flag = %s\n", sbuf);
3156 
3157 	snprintb(sbuf, sizeof(sbuf), __IMNT_FLAG_BITS, mp->mnt_iflag);
3158 	(*pr)("iflag = %s\n", sbuf);
3159 
3160 	(*pr)("refcnt = %d unmounting @ %p updating @ %p\n", mp->mnt_refcnt,
3161 	    &mp->mnt_unmounting, &mp->mnt_updating);
3162 
3163 	(*pr)("statvfs cache:\n");
3164 	(*pr)("\tbsize = %lu\n",mp->mnt_stat.f_bsize);
3165 	(*pr)("\tfrsize = %lu\n",mp->mnt_stat.f_frsize);
3166 	(*pr)("\tiosize = %lu\n",mp->mnt_stat.f_iosize);
3167 
3168 	(*pr)("\tblocks = %"PRIu64"\n",mp->mnt_stat.f_blocks);
3169 	(*pr)("\tbfree = %"PRIu64"\n",mp->mnt_stat.f_bfree);
3170 	(*pr)("\tbavail = %"PRIu64"\n",mp->mnt_stat.f_bavail);
3171 	(*pr)("\tbresvd = %"PRIu64"\n",mp->mnt_stat.f_bresvd);
3172 
3173 	(*pr)("\tfiles = %"PRIu64"\n",mp->mnt_stat.f_files);
3174 	(*pr)("\tffree = %"PRIu64"\n",mp->mnt_stat.f_ffree);
3175 	(*pr)("\tfavail = %"PRIu64"\n",mp->mnt_stat.f_favail);
3176 	(*pr)("\tfresvd = %"PRIu64"\n",mp->mnt_stat.f_fresvd);
3177 
3178 	(*pr)("\tf_fsidx = { 0x%"PRIx32", 0x%"PRIx32" }\n",
3179 			mp->mnt_stat.f_fsidx.__fsid_val[0],
3180 			mp->mnt_stat.f_fsidx.__fsid_val[1]);
3181 
3182 	(*pr)("\towner = %"PRIu32"\n",mp->mnt_stat.f_owner);
3183 	(*pr)("\tnamemax = %lu\n",mp->mnt_stat.f_namemax);
3184 
3185 	snprintb(sbuf, sizeof(sbuf), __MNT_FLAG_BITS, mp->mnt_stat.f_flag);
3186 
3187 	(*pr)("\tflag = %s\n",sbuf);
3188 	(*pr)("\tsyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_syncwrites);
3189 	(*pr)("\tasyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_asyncwrites);
3190 	(*pr)("\tsyncreads = %" PRIu64 "\n",mp->mnt_stat.f_syncreads);
3191 	(*pr)("\tasyncreads = %" PRIu64 "\n",mp->mnt_stat.f_asyncreads);
3192 	(*pr)("\tfstypename = %s\n",mp->mnt_stat.f_fstypename);
3193 	(*pr)("\tmntonname = %s\n",mp->mnt_stat.f_mntonname);
3194 	(*pr)("\tmntfromname = %s\n",mp->mnt_stat.f_mntfromname);
3195 
3196 	{
3197 		int cnt = 0;
3198 		struct vnode *vp;
3199 		(*pr)("locked vnodes =");
3200 		TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
3201 			if (VOP_ISLOCKED(vp)) {
3202 				if ((++cnt % 6) == 0) {
3203 					(*pr)(" %p,\n\t", vp);
3204 				} else {
3205 					(*pr)(" %p,", vp);
3206 				}
3207 			}
3208 		}
3209 		(*pr)("\n");
3210 	}
3211 
3212 	if (full) {
3213 		int cnt = 0;
3214 		struct vnode *vp;
3215 		(*pr)("all vnodes =");
3216 		TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
3217 			if (!TAILQ_NEXT(vp, v_mntvnodes)) {
3218 				(*pr)(" %p", vp);
3219 			} else if ((++cnt % 6) == 0) {
3220 				(*pr)(" %p,\n\t", vp);
3221 			} else {
3222 				(*pr)(" %p,", vp);
3223 			}
3224 		}
3225 		(*pr)("\n", vp);
3226 	}
3227 }
3228 #endif /* DDB || DEBUGPRINT */
3229 
3230