1 /* $NetBSD: vfs_subr.c,v 1.448 2015/08/24 22:50:32 pooka Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1998, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center, by Charles M. Hannum, by Andrew Doran, 10 * by Marshall Kirk McKusick and Greg Ganger at the University of Michigan. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * Copyright (c) 1989, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. Neither the name of the University nor the names of its contributors 52 * may be used to endorse or promote products derived from this software 53 * without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * SUCH DAMAGE. 66 * 67 * @(#)vfs_subr.c 8.13 (Berkeley) 4/18/94 68 */ 69 70 #include <sys/cdefs.h> 71 __KERNEL_RCSID(0, "$NetBSD: vfs_subr.c,v 1.448 2015/08/24 22:50:32 pooka Exp $"); 72 73 #ifdef _KERNEL_OPT 74 #include "opt_ddb.h" 75 #include "opt_compat_netbsd.h" 76 #include "opt_compat_43.h" 77 #endif 78 79 #include <sys/param.h> 80 #include <sys/systm.h> 81 #include <sys/conf.h> 82 #include <sys/dirent.h> 83 #include <sys/filedesc.h> 84 #include <sys/kernel.h> 85 #include <sys/mount.h> 86 #include <sys/vnode.h> 87 #include <sys/stat.h> 88 #include <sys/sysctl.h> 89 #include <sys/namei.h> 90 #include <sys/buf.h> 91 #include <sys/errno.h> 92 #include <sys/kmem.h> 93 #include <sys/syscallargs.h> 94 #include <sys/kauth.h> 95 #include <sys/module.h> 96 97 #include <miscfs/genfs/genfs.h> 98 #include <miscfs/specfs/specdev.h> 99 #include <uvm/uvm_ddb.h> 100 101 const enum vtype iftovt_tab[16] = { 102 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 103 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD, 104 }; 105 const int vttoif_tab[9] = { 106 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, 107 S_IFSOCK, S_IFIFO, S_IFMT, 108 }; 109 110 /* 111 * Insq/Remq for the vnode usage lists. 112 */ 113 #define bufinsvn(bp, dp) LIST_INSERT_HEAD(dp, bp, b_vnbufs) 114 #define bufremvn(bp) { \ 115 LIST_REMOVE(bp, b_vnbufs); \ 116 (bp)->b_vnbufs.le_next = NOLIST; \ 117 } 118 119 int doforce = 1; /* 1 => permit forcible unmounting */ 120 int prtactive = 0; /* 1 => print out reclaim of active vnodes */ 121 122 extern struct mount *dead_rootmount; 123 124 /* 125 * Local declarations. 126 */ 127 128 static void vn_initialize_syncerd(void); 129 130 /* 131 * Initialize the vnode management data structures. 132 */ 133 void 134 vntblinit(void) 135 { 136 137 vn_initialize_syncerd(); 138 vfs_mount_sysinit(); 139 vfs_vnode_sysinit(); 140 } 141 142 /* 143 * Flush out and invalidate all buffers associated with a vnode. 144 * Called with the underlying vnode locked, which should prevent new dirty 145 * buffers from being queued. 146 */ 147 int 148 vinvalbuf(struct vnode *vp, int flags, kauth_cred_t cred, struct lwp *l, 149 bool catch_p, int slptimeo) 150 { 151 struct buf *bp, *nbp; 152 int error; 153 int flushflags = PGO_ALLPAGES | PGO_FREE | PGO_SYNCIO | 154 (flags & V_SAVE ? PGO_CLEANIT | PGO_RECLAIM : 0); 155 156 /* XXXUBC this doesn't look at flags or slp* */ 157 mutex_enter(vp->v_interlock); 158 error = VOP_PUTPAGES(vp, 0, 0, flushflags); 159 if (error) { 160 return error; 161 } 162 163 if (flags & V_SAVE) { 164 error = VOP_FSYNC(vp, cred, FSYNC_WAIT|FSYNC_RECLAIM, 0, 0); 165 if (error) 166 return (error); 167 KASSERT(LIST_EMPTY(&vp->v_dirtyblkhd)); 168 } 169 170 mutex_enter(&bufcache_lock); 171 restart: 172 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 173 KASSERT(bp->b_vp == vp); 174 nbp = LIST_NEXT(bp, b_vnbufs); 175 error = bbusy(bp, catch_p, slptimeo, NULL); 176 if (error != 0) { 177 if (error == EPASSTHROUGH) 178 goto restart; 179 mutex_exit(&bufcache_lock); 180 return (error); 181 } 182 brelsel(bp, BC_INVAL | BC_VFLUSH); 183 } 184 185 for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) { 186 KASSERT(bp->b_vp == vp); 187 nbp = LIST_NEXT(bp, b_vnbufs); 188 error = bbusy(bp, catch_p, slptimeo, NULL); 189 if (error != 0) { 190 if (error == EPASSTHROUGH) 191 goto restart; 192 mutex_exit(&bufcache_lock); 193 return (error); 194 } 195 /* 196 * XXX Since there are no node locks for NFS, I believe 197 * there is a slight chance that a delayed write will 198 * occur while sleeping just above, so check for it. 199 */ 200 if ((bp->b_oflags & BO_DELWRI) && (flags & V_SAVE)) { 201 #ifdef DEBUG 202 printf("buffer still DELWRI\n"); 203 #endif 204 bp->b_cflags |= BC_BUSY | BC_VFLUSH; 205 mutex_exit(&bufcache_lock); 206 VOP_BWRITE(bp->b_vp, bp); 207 mutex_enter(&bufcache_lock); 208 goto restart; 209 } 210 brelsel(bp, BC_INVAL | BC_VFLUSH); 211 } 212 213 #ifdef DIAGNOSTIC 214 if (!LIST_EMPTY(&vp->v_cleanblkhd) || !LIST_EMPTY(&vp->v_dirtyblkhd)) 215 panic("vinvalbuf: flush failed, vp %p", vp); 216 #endif 217 218 mutex_exit(&bufcache_lock); 219 220 return (0); 221 } 222 223 /* 224 * Destroy any in core blocks past the truncation length. 225 * Called with the underlying vnode locked, which should prevent new dirty 226 * buffers from being queued. 227 */ 228 int 229 vtruncbuf(struct vnode *vp, daddr_t lbn, bool catch_p, int slptimeo) 230 { 231 struct buf *bp, *nbp; 232 int error; 233 voff_t off; 234 235 off = round_page((voff_t)lbn << vp->v_mount->mnt_fs_bshift); 236 mutex_enter(vp->v_interlock); 237 error = VOP_PUTPAGES(vp, off, 0, PGO_FREE | PGO_SYNCIO); 238 if (error) { 239 return error; 240 } 241 242 mutex_enter(&bufcache_lock); 243 restart: 244 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 245 KASSERT(bp->b_vp == vp); 246 nbp = LIST_NEXT(bp, b_vnbufs); 247 if (bp->b_lblkno < lbn) 248 continue; 249 error = bbusy(bp, catch_p, slptimeo, NULL); 250 if (error != 0) { 251 if (error == EPASSTHROUGH) 252 goto restart; 253 mutex_exit(&bufcache_lock); 254 return (error); 255 } 256 brelsel(bp, BC_INVAL | BC_VFLUSH); 257 } 258 259 for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) { 260 KASSERT(bp->b_vp == vp); 261 nbp = LIST_NEXT(bp, b_vnbufs); 262 if (bp->b_lblkno < lbn) 263 continue; 264 error = bbusy(bp, catch_p, slptimeo, NULL); 265 if (error != 0) { 266 if (error == EPASSTHROUGH) 267 goto restart; 268 mutex_exit(&bufcache_lock); 269 return (error); 270 } 271 brelsel(bp, BC_INVAL | BC_VFLUSH); 272 } 273 mutex_exit(&bufcache_lock); 274 275 return (0); 276 } 277 278 /* 279 * Flush all dirty buffers from a vnode. 280 * Called with the underlying vnode locked, which should prevent new dirty 281 * buffers from being queued. 282 */ 283 int 284 vflushbuf(struct vnode *vp, int flags) 285 { 286 struct buf *bp, *nbp; 287 int error, pflags; 288 bool dirty, sync; 289 290 sync = (flags & FSYNC_WAIT) != 0; 291 pflags = PGO_CLEANIT | PGO_ALLPAGES | 292 (sync ? PGO_SYNCIO : 0) | 293 ((flags & FSYNC_LAZY) ? PGO_LAZY : 0); 294 mutex_enter(vp->v_interlock); 295 (void) VOP_PUTPAGES(vp, 0, 0, pflags); 296 297 loop: 298 mutex_enter(&bufcache_lock); 299 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 300 KASSERT(bp->b_vp == vp); 301 nbp = LIST_NEXT(bp, b_vnbufs); 302 if ((bp->b_cflags & BC_BUSY)) 303 continue; 304 if ((bp->b_oflags & BO_DELWRI) == 0) 305 panic("vflushbuf: not dirty, bp %p", bp); 306 bp->b_cflags |= BC_BUSY | BC_VFLUSH; 307 mutex_exit(&bufcache_lock); 308 /* 309 * Wait for I/O associated with indirect blocks to complete, 310 * since there is no way to quickly wait for them below. 311 */ 312 if (bp->b_vp == vp || !sync) 313 (void) bawrite(bp); 314 else { 315 error = bwrite(bp); 316 if (error) 317 return error; 318 } 319 goto loop; 320 } 321 mutex_exit(&bufcache_lock); 322 323 if (!sync) 324 return 0; 325 326 mutex_enter(vp->v_interlock); 327 while (vp->v_numoutput != 0) 328 cv_wait(&vp->v_cv, vp->v_interlock); 329 dirty = !LIST_EMPTY(&vp->v_dirtyblkhd); 330 mutex_exit(vp->v_interlock); 331 332 if (dirty) { 333 vprint("vflushbuf: dirty", vp); 334 goto loop; 335 } 336 337 return 0; 338 } 339 340 /* 341 * Create a vnode for a block device. 342 * Used for root filesystem and swap areas. 343 * Also used for memory file system special devices. 344 */ 345 int 346 bdevvp(dev_t dev, vnode_t **vpp) 347 { 348 struct vattr va; 349 350 vattr_null(&va); 351 va.va_type = VBLK; 352 va.va_rdev = dev; 353 354 return vcache_new(dead_rootmount, NULL, &va, NOCRED, vpp); 355 } 356 357 /* 358 * Create a vnode for a character device. 359 * Used for kernfs and some console handling. 360 */ 361 int 362 cdevvp(dev_t dev, vnode_t **vpp) 363 { 364 struct vattr va; 365 366 vattr_null(&va); 367 va.va_type = VCHR; 368 va.va_rdev = dev; 369 370 return vcache_new(dead_rootmount, NULL, &va, NOCRED, vpp); 371 } 372 373 /* 374 * Associate a buffer with a vnode. There must already be a hold on 375 * the vnode. 376 */ 377 void 378 bgetvp(struct vnode *vp, struct buf *bp) 379 { 380 381 KASSERT(bp->b_vp == NULL); 382 KASSERT(bp->b_objlock == &buffer_lock); 383 KASSERT(mutex_owned(vp->v_interlock)); 384 KASSERT(mutex_owned(&bufcache_lock)); 385 KASSERT((bp->b_cflags & BC_BUSY) != 0); 386 KASSERT(!cv_has_waiters(&bp->b_done)); 387 388 vholdl(vp); 389 bp->b_vp = vp; 390 if (vp->v_type == VBLK || vp->v_type == VCHR) 391 bp->b_dev = vp->v_rdev; 392 else 393 bp->b_dev = NODEV; 394 395 /* 396 * Insert onto list for new vnode. 397 */ 398 bufinsvn(bp, &vp->v_cleanblkhd); 399 bp->b_objlock = vp->v_interlock; 400 } 401 402 /* 403 * Disassociate a buffer from a vnode. 404 */ 405 void 406 brelvp(struct buf *bp) 407 { 408 struct vnode *vp = bp->b_vp; 409 410 KASSERT(vp != NULL); 411 KASSERT(bp->b_objlock == vp->v_interlock); 412 KASSERT(mutex_owned(vp->v_interlock)); 413 KASSERT(mutex_owned(&bufcache_lock)); 414 KASSERT((bp->b_cflags & BC_BUSY) != 0); 415 KASSERT(!cv_has_waiters(&bp->b_done)); 416 417 /* 418 * Delete from old vnode list, if on one. 419 */ 420 if (LIST_NEXT(bp, b_vnbufs) != NOLIST) 421 bufremvn(bp); 422 423 if (vp->v_uobj.uo_npages == 0 && (vp->v_iflag & VI_ONWORKLST) && 424 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { 425 vp->v_iflag &= ~VI_WRMAPDIRTY; 426 vn_syncer_remove_from_worklist(vp); 427 } 428 429 bp->b_objlock = &buffer_lock; 430 bp->b_vp = NULL; 431 holdrelel(vp); 432 } 433 434 /* 435 * Reassign a buffer from one vnode list to another. 436 * The list reassignment must be within the same vnode. 437 * Used to assign file specific control information 438 * (indirect blocks) to the list to which they belong. 439 */ 440 void 441 reassignbuf(struct buf *bp, struct vnode *vp) 442 { 443 struct buflists *listheadp; 444 int delayx; 445 446 KASSERT(mutex_owned(&bufcache_lock)); 447 KASSERT(bp->b_objlock == vp->v_interlock); 448 KASSERT(mutex_owned(vp->v_interlock)); 449 KASSERT((bp->b_cflags & BC_BUSY) != 0); 450 451 /* 452 * Delete from old vnode list, if on one. 453 */ 454 if (LIST_NEXT(bp, b_vnbufs) != NOLIST) 455 bufremvn(bp); 456 457 /* 458 * If dirty, put on list of dirty buffers; 459 * otherwise insert onto list of clean buffers. 460 */ 461 if ((bp->b_oflags & BO_DELWRI) == 0) { 462 listheadp = &vp->v_cleanblkhd; 463 if (vp->v_uobj.uo_npages == 0 && 464 (vp->v_iflag & VI_ONWORKLST) && 465 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { 466 vp->v_iflag &= ~VI_WRMAPDIRTY; 467 vn_syncer_remove_from_worklist(vp); 468 } 469 } else { 470 listheadp = &vp->v_dirtyblkhd; 471 if ((vp->v_iflag & VI_ONWORKLST) == 0) { 472 switch (vp->v_type) { 473 case VDIR: 474 delayx = dirdelay; 475 break; 476 case VBLK: 477 if (spec_node_getmountedfs(vp) != NULL) { 478 delayx = metadelay; 479 break; 480 } 481 /* fall through */ 482 default: 483 delayx = filedelay; 484 break; 485 } 486 if (!vp->v_mount || 487 (vp->v_mount->mnt_flag & MNT_ASYNC) == 0) 488 vn_syncer_add_to_worklist(vp, delayx); 489 } 490 } 491 bufinsvn(bp, listheadp); 492 } 493 494 /* 495 * Lookup a vnode by device number and return it referenced. 496 */ 497 int 498 vfinddev(dev_t dev, enum vtype type, vnode_t **vpp) 499 { 500 501 return (spec_node_lookup_by_dev(type, dev, vpp) == 0); 502 } 503 504 /* 505 * Revoke all the vnodes corresponding to the specified minor number 506 * range (endpoints inclusive) of the specified major. 507 */ 508 void 509 vdevgone(int maj, int minl, int minh, enum vtype type) 510 { 511 vnode_t *vp; 512 dev_t dev; 513 int mn; 514 515 for (mn = minl; mn <= minh; mn++) { 516 dev = makedev(maj, mn); 517 while (spec_node_lookup_by_dev(type, dev, &vp) == 0) { 518 VOP_REVOKE(vp, REVOKEALL); 519 vrele(vp); 520 } 521 } 522 } 523 524 /* 525 * The filesystem synchronizer mechanism - syncer. 526 * 527 * It is useful to delay writes of file data and filesystem metadata for 528 * a certain amount of time so that quickly created and deleted files need 529 * not waste disk bandwidth being created and removed. To implement this, 530 * vnodes are appended to a "workitem" queue. 531 * 532 * Most pending metadata should not wait for more than ten seconds. Thus, 533 * mounted on block devices are delayed only about a half the time that file 534 * data is delayed. Similarly, directory updates are more critical, so are 535 * only delayed about a third the time that file data is delayed. 536 * 537 * There are SYNCER_MAXDELAY queues that are processed in a round-robin 538 * manner at a rate of one each second (driven off the filesystem syner 539 * thread). The syncer_delayno variable indicates the next queue that is 540 * to be processed. Items that need to be processed soon are placed in 541 * this queue: 542 * 543 * syncer_workitem_pending[syncer_delayno] 544 * 545 * A delay of e.g. fifteen seconds is done by placing the request fifteen 546 * entries later in the queue: 547 * 548 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask] 549 * 550 * Flag VI_ONWORKLST indicates that vnode is added into the queue. 551 */ 552 553 #define SYNCER_MAXDELAY 32 554 555 typedef TAILQ_HEAD(synclist, vnode) synclist_t; 556 557 static void vn_syncer_add1(struct vnode *, int); 558 static void sysctl_vfs_syncfs_setup(struct sysctllog **); 559 560 /* 561 * Defines and variables for the syncer process. 562 */ 563 int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */ 564 time_t syncdelay = 30; /* max time to delay syncing data */ 565 time_t filedelay = 30; /* time to delay syncing files */ 566 time_t dirdelay = 15; /* time to delay syncing directories */ 567 time_t metadelay = 10; /* time to delay syncing metadata */ 568 time_t lockdelay = 1; /* time to delay if locking fails */ 569 570 kmutex_t syncer_mutex; /* used to freeze syncer, long term */ 571 static kmutex_t syncer_data_lock; /* short term lock on data structs */ 572 573 static int syncer_delayno = 0; 574 static long syncer_last; 575 static synclist_t * syncer_workitem_pending; 576 577 static void 578 vn_initialize_syncerd(void) 579 { 580 int i; 581 582 syncer_last = SYNCER_MAXDELAY + 2; 583 584 sysctl_vfs_syncfs_setup(NULL); 585 586 syncer_workitem_pending = 587 kmem_alloc(syncer_last * sizeof (struct synclist), KM_SLEEP); 588 589 for (i = 0; i < syncer_last; i++) 590 TAILQ_INIT(&syncer_workitem_pending[i]); 591 592 mutex_init(&syncer_mutex, MUTEX_DEFAULT, IPL_NONE); 593 mutex_init(&syncer_data_lock, MUTEX_DEFAULT, IPL_NONE); 594 } 595 596 /* 597 * Return delay factor appropriate for the given file system. For 598 * WAPBL we use the sync vnode to burst out metadata updates: sync 599 * those file systems more frequently. 600 */ 601 static inline int 602 sync_delay(struct mount *mp) 603 { 604 605 return mp->mnt_wapbl != NULL ? metadelay : syncdelay; 606 } 607 608 /* 609 * Compute the next slot index from delay. 610 */ 611 static inline int 612 sync_delay_slot(int delayx) 613 { 614 615 if (delayx > syncer_maxdelay - 2) 616 delayx = syncer_maxdelay - 2; 617 return (syncer_delayno + delayx) % syncer_last; 618 } 619 620 /* 621 * Add an item to the syncer work queue. 622 */ 623 static void 624 vn_syncer_add1(struct vnode *vp, int delayx) 625 { 626 synclist_t *slp; 627 628 KASSERT(mutex_owned(&syncer_data_lock)); 629 630 if (vp->v_iflag & VI_ONWORKLST) { 631 /* 632 * Remove in order to adjust the position of the vnode. 633 * Note: called from sched_sync(), which will not hold 634 * interlock, therefore we cannot modify v_iflag here. 635 */ 636 slp = &syncer_workitem_pending[vp->v_synclist_slot]; 637 TAILQ_REMOVE(slp, vp, v_synclist); 638 } else { 639 KASSERT(mutex_owned(vp->v_interlock)); 640 vp->v_iflag |= VI_ONWORKLST; 641 } 642 643 vp->v_synclist_slot = sync_delay_slot(delayx); 644 645 slp = &syncer_workitem_pending[vp->v_synclist_slot]; 646 TAILQ_INSERT_TAIL(slp, vp, v_synclist); 647 } 648 649 void 650 vn_syncer_add_to_worklist(struct vnode *vp, int delayx) 651 { 652 653 KASSERT(mutex_owned(vp->v_interlock)); 654 655 mutex_enter(&syncer_data_lock); 656 vn_syncer_add1(vp, delayx); 657 mutex_exit(&syncer_data_lock); 658 } 659 660 /* 661 * Remove an item from the syncer work queue. 662 */ 663 void 664 vn_syncer_remove_from_worklist(struct vnode *vp) 665 { 666 synclist_t *slp; 667 668 KASSERT(mutex_owned(vp->v_interlock)); 669 670 mutex_enter(&syncer_data_lock); 671 if (vp->v_iflag & VI_ONWORKLST) { 672 vp->v_iflag &= ~VI_ONWORKLST; 673 slp = &syncer_workitem_pending[vp->v_synclist_slot]; 674 TAILQ_REMOVE(slp, vp, v_synclist); 675 } 676 mutex_exit(&syncer_data_lock); 677 } 678 679 /* 680 * Add this mount point to the syncer. 681 */ 682 void 683 vfs_syncer_add_to_worklist(struct mount *mp) 684 { 685 static int start, incr, next; 686 int vdelay; 687 688 KASSERT(mutex_owned(&mp->mnt_updating)); 689 KASSERT((mp->mnt_iflag & IMNT_ONWORKLIST) == 0); 690 691 /* 692 * We attempt to scatter the mount points on the list 693 * so that they will go off at evenly distributed times 694 * even if all the filesystems are mounted at once. 695 */ 696 697 next += incr; 698 if (next == 0 || next > syncer_maxdelay) { 699 start /= 2; 700 incr /= 2; 701 if (start == 0) { 702 start = syncer_maxdelay / 2; 703 incr = syncer_maxdelay; 704 } 705 next = start; 706 } 707 mp->mnt_iflag |= IMNT_ONWORKLIST; 708 vdelay = sync_delay(mp); 709 mp->mnt_synclist_slot = vdelay > 0 ? next % vdelay : 0; 710 } 711 712 /* 713 * Remove the mount point from the syncer. 714 */ 715 void 716 vfs_syncer_remove_from_worklist(struct mount *mp) 717 { 718 719 KASSERT(mutex_owned(&mp->mnt_updating)); 720 KASSERT((mp->mnt_iflag & IMNT_ONWORKLIST) != 0); 721 722 mp->mnt_iflag &= ~IMNT_ONWORKLIST; 723 } 724 725 /* 726 * Try lazy sync, return true on success. 727 */ 728 static bool 729 lazy_sync_vnode(struct vnode *vp) 730 { 731 bool synced; 732 733 KASSERT(mutex_owned(&syncer_data_lock)); 734 735 synced = false; 736 /* We are locking in the wrong direction. */ 737 if (mutex_tryenter(vp->v_interlock)) { 738 mutex_exit(&syncer_data_lock); 739 if (vget(vp, LK_NOWAIT, false /* !wait */) == 0) { 740 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 741 synced = true; 742 (void) VOP_FSYNC(vp, curlwp->l_cred, 743 FSYNC_LAZY, 0, 0); 744 vput(vp); 745 } else 746 vrele(vp); 747 } 748 mutex_enter(&syncer_data_lock); 749 } 750 return synced; 751 } 752 753 /* 754 * System filesystem synchronizer daemon. 755 */ 756 void 757 sched_sync(void *arg) 758 { 759 synclist_t *slp; 760 struct vnode *vp; 761 struct mount *mp, *nmp; 762 time_t starttime; 763 bool synced; 764 765 for (;;) { 766 mutex_enter(&syncer_mutex); 767 768 starttime = time_second; 769 770 /* 771 * Sync mounts whose dirty time has expired. 772 */ 773 mutex_enter(&mountlist_lock); 774 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 775 if ((mp->mnt_iflag & IMNT_ONWORKLIST) == 0 || 776 mp->mnt_synclist_slot != syncer_delayno) { 777 nmp = TAILQ_NEXT(mp, mnt_list); 778 continue; 779 } 780 mp->mnt_synclist_slot = sync_delay_slot(sync_delay(mp)); 781 if (vfs_busy(mp, &nmp)) 782 continue; 783 VFS_SYNC(mp, MNT_LAZY, curlwp->l_cred); 784 vfs_unbusy(mp, false, &nmp); 785 } 786 mutex_exit(&mountlist_lock); 787 788 mutex_enter(&syncer_data_lock); 789 790 /* 791 * Push files whose dirty time has expired. 792 */ 793 slp = &syncer_workitem_pending[syncer_delayno]; 794 syncer_delayno += 1; 795 if (syncer_delayno >= syncer_last) 796 syncer_delayno = 0; 797 798 while ((vp = TAILQ_FIRST(slp)) != NULL) { 799 synced = lazy_sync_vnode(vp); 800 801 /* 802 * XXX The vnode may have been recycled, in which 803 * case it may have a new identity. 804 */ 805 if (TAILQ_FIRST(slp) == vp) { 806 /* 807 * Put us back on the worklist. The worklist 808 * routine will remove us from our current 809 * position and then add us back in at a later 810 * position. 811 * 812 * Try again sooner rather than later if 813 * we were unable to lock the vnode. Lock 814 * failure should not prevent us from doing 815 * the sync "soon". 816 * 817 * If we locked it yet arrive here, it's 818 * likely that lazy sync is in progress and 819 * so the vnode still has dirty metadata. 820 * syncdelay is mainly to get this vnode out 821 * of the way so we do not consider it again 822 * "soon" in this loop, so the delay time is 823 * not critical as long as it is not "soon". 824 * While write-back strategy is the file 825 * system's domain, we expect write-back to 826 * occur no later than syncdelay seconds 827 * into the future. 828 */ 829 vn_syncer_add1(vp, 830 synced ? syncdelay : lockdelay); 831 } 832 } 833 mutex_exit(&syncer_mutex); 834 835 /* 836 * If it has taken us less than a second to process the 837 * current work, then wait. Otherwise start right over 838 * again. We can still lose time if any single round 839 * takes more than two seconds, but it does not really 840 * matter as we are just trying to generally pace the 841 * filesystem activity. 842 */ 843 if (time_second == starttime) { 844 kpause("syncer", false, hz, &syncer_data_lock); 845 } 846 mutex_exit(&syncer_data_lock); 847 } 848 } 849 850 static void 851 sysctl_vfs_syncfs_setup(struct sysctllog **clog) 852 { 853 const struct sysctlnode *rnode, *cnode; 854 855 sysctl_createv(clog, 0, NULL, &rnode, 856 CTLFLAG_PERMANENT, 857 CTLTYPE_NODE, "sync", 858 SYSCTL_DESCR("syncer options"), 859 NULL, 0, NULL, 0, 860 CTL_VFS, CTL_CREATE, CTL_EOL); 861 862 sysctl_createv(clog, 0, &rnode, &cnode, 863 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 864 CTLTYPE_QUAD, "delay", 865 SYSCTL_DESCR("max time to delay syncing data"), 866 NULL, 0, &syncdelay, 0, 867 CTL_CREATE, CTL_EOL); 868 869 sysctl_createv(clog, 0, &rnode, &cnode, 870 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 871 CTLTYPE_QUAD, "filedelay", 872 SYSCTL_DESCR("time to delay syncing files"), 873 NULL, 0, &filedelay, 0, 874 CTL_CREATE, CTL_EOL); 875 876 sysctl_createv(clog, 0, &rnode, &cnode, 877 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 878 CTLTYPE_QUAD, "dirdelay", 879 SYSCTL_DESCR("time to delay syncing directories"), 880 NULL, 0, &dirdelay, 0, 881 CTL_CREATE, CTL_EOL); 882 883 sysctl_createv(clog, 0, &rnode, &cnode, 884 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 885 CTLTYPE_QUAD, "metadelay", 886 SYSCTL_DESCR("time to delay syncing metadata"), 887 NULL, 0, &metadelay, 0, 888 CTL_CREATE, CTL_EOL); 889 } 890 891 /* 892 * sysctl helper routine to return list of supported fstypes 893 */ 894 int 895 sysctl_vfs_generic_fstypes(SYSCTLFN_ARGS) 896 { 897 char bf[sizeof(((struct statvfs *)NULL)->f_fstypename)]; 898 char *where = oldp; 899 struct vfsops *v; 900 size_t needed, left, slen; 901 int error, first; 902 903 if (newp != NULL) 904 return (EPERM); 905 if (namelen != 0) 906 return (EINVAL); 907 908 first = 1; 909 error = 0; 910 needed = 0; 911 left = *oldlenp; 912 913 sysctl_unlock(); 914 mutex_enter(&vfs_list_lock); 915 LIST_FOREACH(v, &vfs_list, vfs_list) { 916 if (where == NULL) 917 needed += strlen(v->vfs_name) + 1; 918 else { 919 memset(bf, 0, sizeof(bf)); 920 if (first) { 921 strncpy(bf, v->vfs_name, sizeof(bf)); 922 first = 0; 923 } else { 924 bf[0] = ' '; 925 strncpy(bf + 1, v->vfs_name, sizeof(bf) - 1); 926 } 927 bf[sizeof(bf)-1] = '\0'; 928 slen = strlen(bf); 929 if (left < slen + 1) 930 break; 931 v->vfs_refcount++; 932 mutex_exit(&vfs_list_lock); 933 /* +1 to copy out the trailing NUL byte */ 934 error = copyout(bf, where, slen + 1); 935 mutex_enter(&vfs_list_lock); 936 v->vfs_refcount--; 937 if (error) 938 break; 939 where += slen; 940 needed += slen; 941 left -= slen; 942 } 943 } 944 mutex_exit(&vfs_list_lock); 945 sysctl_relock(); 946 *oldlenp = needed; 947 return (error); 948 } 949 950 int kinfo_vdebug = 1; 951 int kinfo_vgetfailed; 952 953 #define KINFO_VNODESLOP 10 954 955 /* 956 * Dump vnode list (via sysctl). 957 * Copyout address of vnode followed by vnode. 958 */ 959 int 960 sysctl_kern_vnode(SYSCTLFN_ARGS) 961 { 962 char *where = oldp; 963 size_t *sizep = oldlenp; 964 struct mount *mp, *nmp; 965 vnode_t *vp, vbuf; 966 struct vnode_iterator *marker; 967 char *bp = where; 968 char *ewhere; 969 int error; 970 971 if (namelen != 0) 972 return (EOPNOTSUPP); 973 if (newp != NULL) 974 return (EPERM); 975 976 #define VPTRSZ sizeof(vnode_t *) 977 #define VNODESZ sizeof(vnode_t) 978 if (where == NULL) { 979 *sizep = (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ); 980 return (0); 981 } 982 ewhere = where + *sizep; 983 984 sysctl_unlock(); 985 mutex_enter(&mountlist_lock); 986 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 987 if (vfs_busy(mp, &nmp)) { 988 continue; 989 } 990 vfs_vnode_iterator_init(mp, &marker); 991 while ((vp = vfs_vnode_iterator_next(marker, NULL, NULL))) { 992 if (bp + VPTRSZ + VNODESZ > ewhere) { 993 vrele(vp); 994 vfs_vnode_iterator_destroy(marker); 995 vfs_unbusy(mp, false, NULL); 996 sysctl_relock(); 997 *sizep = bp - where; 998 return (ENOMEM); 999 } 1000 memcpy(&vbuf, vp, VNODESZ); 1001 if ((error = copyout(&vp, bp, VPTRSZ)) || 1002 (error = copyout(&vbuf, bp + VPTRSZ, VNODESZ))) { 1003 vrele(vp); 1004 vfs_vnode_iterator_destroy(marker); 1005 vfs_unbusy(mp, false, NULL); 1006 sysctl_relock(); 1007 return (error); 1008 } 1009 vrele(vp); 1010 bp += VPTRSZ + VNODESZ; 1011 } 1012 vfs_vnode_iterator_destroy(marker); 1013 vfs_unbusy(mp, false, &nmp); 1014 } 1015 mutex_exit(&mountlist_lock); 1016 sysctl_relock(); 1017 1018 *sizep = bp - where; 1019 return (0); 1020 } 1021 1022 /* 1023 * Set vnode attributes to VNOVAL 1024 */ 1025 void 1026 vattr_null(struct vattr *vap) 1027 { 1028 1029 memset(vap, 0, sizeof(*vap)); 1030 1031 vap->va_type = VNON; 1032 1033 /* 1034 * Assign individually so that it is safe even if size and 1035 * sign of each member are varied. 1036 */ 1037 vap->va_mode = VNOVAL; 1038 vap->va_nlink = VNOVAL; 1039 vap->va_uid = VNOVAL; 1040 vap->va_gid = VNOVAL; 1041 vap->va_fsid = VNOVAL; 1042 vap->va_fileid = VNOVAL; 1043 vap->va_size = VNOVAL; 1044 vap->va_blocksize = VNOVAL; 1045 vap->va_atime.tv_sec = 1046 vap->va_mtime.tv_sec = 1047 vap->va_ctime.tv_sec = 1048 vap->va_birthtime.tv_sec = VNOVAL; 1049 vap->va_atime.tv_nsec = 1050 vap->va_mtime.tv_nsec = 1051 vap->va_ctime.tv_nsec = 1052 vap->va_birthtime.tv_nsec = VNOVAL; 1053 vap->va_gen = VNOVAL; 1054 vap->va_flags = VNOVAL; 1055 vap->va_rdev = VNOVAL; 1056 vap->va_bytes = VNOVAL; 1057 } 1058 1059 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof(arr[0])) 1060 #define ARRAY_PRINT(idx, arr) \ 1061 ((unsigned int)(idx) < ARRAY_SIZE(arr) ? (arr)[(idx)] : "UNKNOWN") 1062 1063 const char * const vnode_tags[] = { VNODE_TAGS }; 1064 const char * const vnode_types[] = { VNODE_TYPES }; 1065 const char vnode_flagbits[] = VNODE_FLAGBITS; 1066 1067 /* 1068 * Print out a description of a vnode. 1069 */ 1070 void 1071 vprint(const char *label, struct vnode *vp) 1072 { 1073 char bf[96]; 1074 int flag; 1075 1076 flag = vp->v_iflag | vp->v_vflag | vp->v_uflag; 1077 snprintb(bf, sizeof(bf), vnode_flagbits, flag); 1078 1079 if (label != NULL) 1080 printf("%s: ", label); 1081 printf("vnode @ %p, flags (%s)\n\ttag %s(%d), type %s(%d), " 1082 "usecount %d, writecount %d, holdcount %d\n" 1083 "\tfreelisthd %p, mount %p, data %p lock %p\n", 1084 vp, bf, ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag, 1085 ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type, 1086 vp->v_usecount, vp->v_writecount, vp->v_holdcnt, 1087 vp->v_freelisthd, vp->v_mount, vp->v_data, &vp->v_lock); 1088 if (vp->v_data != NULL) { 1089 printf("\t"); 1090 VOP_PRINT(vp); 1091 } 1092 } 1093 1094 /* Deprecated. Kept for KPI compatibility. */ 1095 int 1096 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid, 1097 mode_t acc_mode, kauth_cred_t cred) 1098 { 1099 1100 #ifdef DIAGNOSTIC 1101 printf("vaccess: deprecated interface used.\n"); 1102 #endif /* DIAGNOSTIC */ 1103 1104 return kauth_authorize_vnode(cred, KAUTH_ACCESS_ACTION(acc_mode, 1105 type, file_mode), NULL /* This may panic. */, NULL, 1106 genfs_can_access(type, file_mode, uid, gid, acc_mode, cred)); 1107 } 1108 1109 /* 1110 * Given a file system name, look up the vfsops for that 1111 * file system, or return NULL if file system isn't present 1112 * in the kernel. 1113 */ 1114 struct vfsops * 1115 vfs_getopsbyname(const char *name) 1116 { 1117 struct vfsops *v; 1118 1119 mutex_enter(&vfs_list_lock); 1120 LIST_FOREACH(v, &vfs_list, vfs_list) { 1121 if (strcmp(v->vfs_name, name) == 0) 1122 break; 1123 } 1124 if (v != NULL) 1125 v->vfs_refcount++; 1126 mutex_exit(&vfs_list_lock); 1127 1128 return (v); 1129 } 1130 1131 void 1132 copy_statvfs_info(struct statvfs *sbp, const struct mount *mp) 1133 { 1134 const struct statvfs *mbp; 1135 1136 if (sbp == (mbp = &mp->mnt_stat)) 1137 return; 1138 1139 (void)memcpy(&sbp->f_fsidx, &mbp->f_fsidx, sizeof(sbp->f_fsidx)); 1140 sbp->f_fsid = mbp->f_fsid; 1141 sbp->f_owner = mbp->f_owner; 1142 sbp->f_flag = mbp->f_flag; 1143 sbp->f_syncwrites = mbp->f_syncwrites; 1144 sbp->f_asyncwrites = mbp->f_asyncwrites; 1145 sbp->f_syncreads = mbp->f_syncreads; 1146 sbp->f_asyncreads = mbp->f_asyncreads; 1147 (void)memcpy(sbp->f_spare, mbp->f_spare, sizeof(mbp->f_spare)); 1148 (void)memcpy(sbp->f_fstypename, mbp->f_fstypename, 1149 sizeof(sbp->f_fstypename)); 1150 (void)memcpy(sbp->f_mntonname, mbp->f_mntonname, 1151 sizeof(sbp->f_mntonname)); 1152 (void)memcpy(sbp->f_mntfromname, mp->mnt_stat.f_mntfromname, 1153 sizeof(sbp->f_mntfromname)); 1154 sbp->f_namemax = mbp->f_namemax; 1155 } 1156 1157 int 1158 set_statvfs_info(const char *onp, int ukon, const char *fromp, int ukfrom, 1159 const char *vfsname, struct mount *mp, struct lwp *l) 1160 { 1161 int error; 1162 size_t size; 1163 struct statvfs *sfs = &mp->mnt_stat; 1164 int (*fun)(const void *, void *, size_t, size_t *); 1165 1166 (void)strlcpy(mp->mnt_stat.f_fstypename, vfsname, 1167 sizeof(mp->mnt_stat.f_fstypename)); 1168 1169 if (onp) { 1170 struct cwdinfo *cwdi = l->l_proc->p_cwdi; 1171 fun = (ukon == UIO_SYSSPACE) ? copystr : copyinstr; 1172 if (cwdi->cwdi_rdir != NULL) { 1173 size_t len; 1174 char *bp; 1175 char *path = PNBUF_GET(); 1176 1177 bp = path + MAXPATHLEN; 1178 *--bp = '\0'; 1179 rw_enter(&cwdi->cwdi_lock, RW_READER); 1180 error = getcwd_common(cwdi->cwdi_rdir, rootvnode, &bp, 1181 path, MAXPATHLEN / 2, 0, l); 1182 rw_exit(&cwdi->cwdi_lock); 1183 if (error) { 1184 PNBUF_PUT(path); 1185 return error; 1186 } 1187 1188 len = strlen(bp); 1189 if (len > sizeof(sfs->f_mntonname) - 1) 1190 len = sizeof(sfs->f_mntonname) - 1; 1191 (void)strncpy(sfs->f_mntonname, bp, len); 1192 PNBUF_PUT(path); 1193 1194 if (len < sizeof(sfs->f_mntonname) - 1) { 1195 error = (*fun)(onp, &sfs->f_mntonname[len], 1196 sizeof(sfs->f_mntonname) - len - 1, &size); 1197 if (error) 1198 return error; 1199 size += len; 1200 } else { 1201 size = len; 1202 } 1203 } else { 1204 error = (*fun)(onp, &sfs->f_mntonname, 1205 sizeof(sfs->f_mntonname) - 1, &size); 1206 if (error) 1207 return error; 1208 } 1209 (void)memset(sfs->f_mntonname + size, 0, 1210 sizeof(sfs->f_mntonname) - size); 1211 } 1212 1213 if (fromp) { 1214 fun = (ukfrom == UIO_SYSSPACE) ? copystr : copyinstr; 1215 error = (*fun)(fromp, sfs->f_mntfromname, 1216 sizeof(sfs->f_mntfromname) - 1, &size); 1217 if (error) 1218 return error; 1219 (void)memset(sfs->f_mntfromname + size, 0, 1220 sizeof(sfs->f_mntfromname) - size); 1221 } 1222 return 0; 1223 } 1224 1225 void 1226 vfs_timestamp(struct timespec *ts) 1227 { 1228 1229 nanotime(ts); 1230 } 1231 1232 time_t rootfstime; /* recorded root fs time, if known */ 1233 void 1234 setrootfstime(time_t t) 1235 { 1236 rootfstime = t; 1237 } 1238 1239 static const uint8_t vttodt_tab[ ] = { 1240 [VNON] = DT_UNKNOWN, 1241 [VREG] = DT_REG, 1242 [VDIR] = DT_DIR, 1243 [VBLK] = DT_BLK, 1244 [VCHR] = DT_CHR, 1245 [VLNK] = DT_LNK, 1246 [VSOCK] = DT_SOCK, 1247 [VFIFO] = DT_FIFO, 1248 [VBAD] = DT_UNKNOWN 1249 }; 1250 1251 uint8_t 1252 vtype2dt(enum vtype vt) 1253 { 1254 1255 CTASSERT(VBAD == __arraycount(vttodt_tab) - 1); 1256 return vttodt_tab[vt]; 1257 } 1258 1259 int 1260 VFS_MOUNT(struct mount *mp, const char *a, void *b, size_t *c) 1261 { 1262 int error; 1263 1264 KERNEL_LOCK(1, NULL); 1265 error = (*(mp->mnt_op->vfs_mount))(mp, a, b, c); 1266 KERNEL_UNLOCK_ONE(NULL); 1267 1268 return error; 1269 } 1270 1271 int 1272 VFS_START(struct mount *mp, int a) 1273 { 1274 int error; 1275 1276 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1277 KERNEL_LOCK(1, NULL); 1278 } 1279 error = (*(mp->mnt_op->vfs_start))(mp, a); 1280 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1281 KERNEL_UNLOCK_ONE(NULL); 1282 } 1283 1284 return error; 1285 } 1286 1287 int 1288 VFS_UNMOUNT(struct mount *mp, int a) 1289 { 1290 int error; 1291 1292 KERNEL_LOCK(1, NULL); 1293 error = (*(mp->mnt_op->vfs_unmount))(mp, a); 1294 KERNEL_UNLOCK_ONE(NULL); 1295 1296 return error; 1297 } 1298 1299 int 1300 VFS_ROOT(struct mount *mp, struct vnode **a) 1301 { 1302 int error; 1303 1304 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1305 KERNEL_LOCK(1, NULL); 1306 } 1307 error = (*(mp->mnt_op->vfs_root))(mp, a); 1308 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1309 KERNEL_UNLOCK_ONE(NULL); 1310 } 1311 1312 return error; 1313 } 1314 1315 int 1316 VFS_QUOTACTL(struct mount *mp, struct quotactl_args *args) 1317 { 1318 int error; 1319 1320 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1321 KERNEL_LOCK(1, NULL); 1322 } 1323 error = (*(mp->mnt_op->vfs_quotactl))(mp, args); 1324 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1325 KERNEL_UNLOCK_ONE(NULL); 1326 } 1327 1328 return error; 1329 } 1330 1331 int 1332 VFS_STATVFS(struct mount *mp, struct statvfs *a) 1333 { 1334 int error; 1335 1336 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1337 KERNEL_LOCK(1, NULL); 1338 } 1339 error = (*(mp->mnt_op->vfs_statvfs))(mp, a); 1340 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1341 KERNEL_UNLOCK_ONE(NULL); 1342 } 1343 1344 return error; 1345 } 1346 1347 int 1348 VFS_SYNC(struct mount *mp, int a, struct kauth_cred *b) 1349 { 1350 int error; 1351 1352 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1353 KERNEL_LOCK(1, NULL); 1354 } 1355 error = (*(mp->mnt_op->vfs_sync))(mp, a, b); 1356 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1357 KERNEL_UNLOCK_ONE(NULL); 1358 } 1359 1360 return error; 1361 } 1362 1363 int 1364 VFS_FHTOVP(struct mount *mp, struct fid *a, struct vnode **b) 1365 { 1366 int error; 1367 1368 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1369 KERNEL_LOCK(1, NULL); 1370 } 1371 error = (*(mp->mnt_op->vfs_fhtovp))(mp, a, b); 1372 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1373 KERNEL_UNLOCK_ONE(NULL); 1374 } 1375 1376 return error; 1377 } 1378 1379 int 1380 VFS_VPTOFH(struct vnode *vp, struct fid *a, size_t *b) 1381 { 1382 int error; 1383 1384 if ((vp->v_vflag & VV_MPSAFE) == 0) { 1385 KERNEL_LOCK(1, NULL); 1386 } 1387 error = (*(vp->v_mount->mnt_op->vfs_vptofh))(vp, a, b); 1388 if ((vp->v_vflag & VV_MPSAFE) == 0) { 1389 KERNEL_UNLOCK_ONE(NULL); 1390 } 1391 1392 return error; 1393 } 1394 1395 int 1396 VFS_SNAPSHOT(struct mount *mp, struct vnode *a, struct timespec *b) 1397 { 1398 int error; 1399 1400 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1401 KERNEL_LOCK(1, NULL); 1402 } 1403 error = (*(mp->mnt_op->vfs_snapshot))(mp, a, b); 1404 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1405 KERNEL_UNLOCK_ONE(NULL); 1406 } 1407 1408 return error; 1409 } 1410 1411 int 1412 VFS_EXTATTRCTL(struct mount *mp, int a, struct vnode *b, int c, const char *d) 1413 { 1414 int error; 1415 1416 KERNEL_LOCK(1, NULL); /* XXXSMP check ffs */ 1417 error = (*(mp->mnt_op->vfs_extattrctl))(mp, a, b, c, d); 1418 KERNEL_UNLOCK_ONE(NULL); /* XXX */ 1419 1420 return error; 1421 } 1422 1423 int 1424 VFS_SUSPENDCTL(struct mount *mp, int a) 1425 { 1426 int error; 1427 1428 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1429 KERNEL_LOCK(1, NULL); 1430 } 1431 error = (*(mp->mnt_op->vfs_suspendctl))(mp, a); 1432 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1433 KERNEL_UNLOCK_ONE(NULL); 1434 } 1435 1436 return error; 1437 } 1438 1439 #if defined(DDB) || defined(DEBUGPRINT) 1440 static const char buf_flagbits[] = BUF_FLAGBITS; 1441 1442 void 1443 vfs_buf_print(struct buf *bp, int full, void (*pr)(const char *, ...)) 1444 { 1445 char bf[1024]; 1446 1447 (*pr)(" vp %p lblkno 0x%"PRIx64" blkno 0x%"PRIx64" rawblkno 0x%" 1448 PRIx64 " dev 0x%x\n", 1449 bp->b_vp, bp->b_lblkno, bp->b_blkno, bp->b_rawblkno, bp->b_dev); 1450 1451 snprintb(bf, sizeof(bf), 1452 buf_flagbits, bp->b_flags | bp->b_oflags | bp->b_cflags); 1453 (*pr)(" error %d flags 0x%s\n", bp->b_error, bf); 1454 1455 (*pr)(" bufsize 0x%lx bcount 0x%lx resid 0x%lx\n", 1456 bp->b_bufsize, bp->b_bcount, bp->b_resid); 1457 (*pr)(" data %p saveaddr %p\n", 1458 bp->b_data, bp->b_saveaddr); 1459 (*pr)(" iodone %p objlock %p\n", bp->b_iodone, bp->b_objlock); 1460 } 1461 1462 void 1463 vfs_vnode_print(struct vnode *vp, int full, void (*pr)(const char *, ...)) 1464 { 1465 char bf[256]; 1466 1467 uvm_object_printit(&vp->v_uobj, full, pr); 1468 snprintb(bf, sizeof(bf), 1469 vnode_flagbits, vp->v_iflag | vp->v_vflag | vp->v_uflag); 1470 (*pr)("\nVNODE flags %s\n", bf); 1471 (*pr)("mp %p numoutput %d size 0x%llx writesize 0x%llx\n", 1472 vp->v_mount, vp->v_numoutput, vp->v_size, vp->v_writesize); 1473 1474 (*pr)("data %p writecount %ld holdcnt %ld\n", 1475 vp->v_data, vp->v_writecount, vp->v_holdcnt); 1476 1477 (*pr)("tag %s(%d) type %s(%d) mount %p typedata %p\n", 1478 ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag, 1479 ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type, 1480 vp->v_mount, vp->v_mountedhere); 1481 1482 (*pr)("v_lock %p\n", &vp->v_lock); 1483 1484 if (full) { 1485 struct buf *bp; 1486 1487 (*pr)("clean bufs:\n"); 1488 LIST_FOREACH(bp, &vp->v_cleanblkhd, b_vnbufs) { 1489 (*pr)(" bp %p\n", bp); 1490 vfs_buf_print(bp, full, pr); 1491 } 1492 1493 (*pr)("dirty bufs:\n"); 1494 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { 1495 (*pr)(" bp %p\n", bp); 1496 vfs_buf_print(bp, full, pr); 1497 } 1498 } 1499 } 1500 1501 void 1502 vfs_mount_print(struct mount *mp, int full, void (*pr)(const char *, ...)) 1503 { 1504 char sbuf[256]; 1505 1506 (*pr)("vnodecovered = %p data = %p\n", 1507 mp->mnt_vnodecovered,mp->mnt_data); 1508 1509 (*pr)("fs_bshift %d dev_bshift = %d\n", 1510 mp->mnt_fs_bshift,mp->mnt_dev_bshift); 1511 1512 snprintb(sbuf, sizeof(sbuf), __MNT_FLAG_BITS, mp->mnt_flag); 1513 (*pr)("flag = %s\n", sbuf); 1514 1515 snprintb(sbuf, sizeof(sbuf), __IMNT_FLAG_BITS, mp->mnt_iflag); 1516 (*pr)("iflag = %s\n", sbuf); 1517 1518 (*pr)("refcnt = %d unmounting @ %p updating @ %p\n", mp->mnt_refcnt, 1519 &mp->mnt_unmounting, &mp->mnt_updating); 1520 1521 (*pr)("statvfs cache:\n"); 1522 (*pr)("\tbsize = %lu\n",mp->mnt_stat.f_bsize); 1523 (*pr)("\tfrsize = %lu\n",mp->mnt_stat.f_frsize); 1524 (*pr)("\tiosize = %lu\n",mp->mnt_stat.f_iosize); 1525 1526 (*pr)("\tblocks = %"PRIu64"\n",mp->mnt_stat.f_blocks); 1527 (*pr)("\tbfree = %"PRIu64"\n",mp->mnt_stat.f_bfree); 1528 (*pr)("\tbavail = %"PRIu64"\n",mp->mnt_stat.f_bavail); 1529 (*pr)("\tbresvd = %"PRIu64"\n",mp->mnt_stat.f_bresvd); 1530 1531 (*pr)("\tfiles = %"PRIu64"\n",mp->mnt_stat.f_files); 1532 (*pr)("\tffree = %"PRIu64"\n",mp->mnt_stat.f_ffree); 1533 (*pr)("\tfavail = %"PRIu64"\n",mp->mnt_stat.f_favail); 1534 (*pr)("\tfresvd = %"PRIu64"\n",mp->mnt_stat.f_fresvd); 1535 1536 (*pr)("\tf_fsidx = { 0x%"PRIx32", 0x%"PRIx32" }\n", 1537 mp->mnt_stat.f_fsidx.__fsid_val[0], 1538 mp->mnt_stat.f_fsidx.__fsid_val[1]); 1539 1540 (*pr)("\towner = %"PRIu32"\n",mp->mnt_stat.f_owner); 1541 (*pr)("\tnamemax = %lu\n",mp->mnt_stat.f_namemax); 1542 1543 snprintb(sbuf, sizeof(sbuf), __MNT_FLAG_BITS, mp->mnt_stat.f_flag); 1544 1545 (*pr)("\tflag = %s\n",sbuf); 1546 (*pr)("\tsyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_syncwrites); 1547 (*pr)("\tasyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_asyncwrites); 1548 (*pr)("\tsyncreads = %" PRIu64 "\n",mp->mnt_stat.f_syncreads); 1549 (*pr)("\tasyncreads = %" PRIu64 "\n",mp->mnt_stat.f_asyncreads); 1550 (*pr)("\tfstypename = %s\n",mp->mnt_stat.f_fstypename); 1551 (*pr)("\tmntonname = %s\n",mp->mnt_stat.f_mntonname); 1552 (*pr)("\tmntfromname = %s\n",mp->mnt_stat.f_mntfromname); 1553 1554 { 1555 int cnt = 0; 1556 struct vnode *vp; 1557 (*pr)("locked vnodes ="); 1558 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) { 1559 if (VOP_ISLOCKED(vp)) { 1560 if ((++cnt % 6) == 0) { 1561 (*pr)(" %p,\n\t", vp); 1562 } else { 1563 (*pr)(" %p,", vp); 1564 } 1565 } 1566 } 1567 (*pr)("\n"); 1568 } 1569 1570 if (full) { 1571 int cnt = 0; 1572 struct vnode *vp; 1573 (*pr)("all vnodes ="); 1574 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) { 1575 if (!TAILQ_NEXT(vp, v_mntvnodes)) { 1576 (*pr)(" %p", vp); 1577 } else if ((++cnt % 6) == 0) { 1578 (*pr)(" %p,\n\t", vp); 1579 } else { 1580 (*pr)(" %p,", vp); 1581 } 1582 } 1583 (*pr)("\n", vp); 1584 } 1585 } 1586 1587 /* 1588 * List all of the locked vnodes in the system. 1589 */ 1590 void printlockedvnodes(void); 1591 1592 void 1593 printlockedvnodes(void) 1594 { 1595 struct mount *mp, *nmp; 1596 struct vnode *vp; 1597 1598 printf("Locked vnodes\n"); 1599 mutex_enter(&mountlist_lock); 1600 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 1601 if (vfs_busy(mp, &nmp)) { 1602 continue; 1603 } 1604 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) { 1605 if (VOP_ISLOCKED(vp)) 1606 vprint(NULL, vp); 1607 } 1608 mutex_enter(&mountlist_lock); 1609 vfs_unbusy(mp, false, &nmp); 1610 } 1611 mutex_exit(&mountlist_lock); 1612 } 1613 1614 #endif /* DDB || DEBUGPRINT */ 1615