1 /* $NetBSD: vfs_subr.c,v 1.490 2021/02/04 21:07:06 jdolecek Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1998, 2004, 2005, 2007, 2008, 2019, 2020 5 * The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 10 * NASA Ames Research Center, by Charles M. Hannum, by Andrew Doran, 11 * by Marshall Kirk McKusick and Greg Ganger at the University of Michigan. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 32 * POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 /* 36 * Copyright (c) 1989, 1993 37 * The Regents of the University of California. All rights reserved. 38 * (c) UNIX System Laboratories, Inc. 39 * All or some portions of this file are derived from material licensed 40 * to the University of California by American Telephone and Telegraph 41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 42 * the permission of UNIX System Laboratories, Inc. 43 * 44 * Redistribution and use in source and binary forms, with or without 45 * modification, are permitted provided that the following conditions 46 * are met: 47 * 1. Redistributions of source code must retain the above copyright 48 * notice, this list of conditions and the following disclaimer. 49 * 2. Redistributions in binary form must reproduce the above copyright 50 * notice, this list of conditions and the following disclaimer in the 51 * documentation and/or other materials provided with the distribution. 52 * 3. Neither the name of the University nor the names of its contributors 53 * may be used to endorse or promote products derived from this software 54 * without specific prior written permission. 55 * 56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 66 * SUCH DAMAGE. 67 * 68 * @(#)vfs_subr.c 8.13 (Berkeley) 4/18/94 69 */ 70 71 #include <sys/cdefs.h> 72 __KERNEL_RCSID(0, "$NetBSD: vfs_subr.c,v 1.490 2021/02/04 21:07:06 jdolecek Exp $"); 73 74 #ifdef _KERNEL_OPT 75 #include "opt_ddb.h" 76 #include "opt_compat_netbsd.h" 77 #include "opt_compat_43.h" 78 #endif 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/conf.h> 83 #include <sys/dirent.h> 84 #include <sys/filedesc.h> 85 #include <sys/kernel.h> 86 #include <sys/mount.h> 87 #include <sys/fstrans.h> 88 #include <sys/vnode_impl.h> 89 #include <sys/stat.h> 90 #include <sys/sysctl.h> 91 #include <sys/namei.h> 92 #include <sys/buf.h> 93 #include <sys/errno.h> 94 #include <sys/kmem.h> 95 #include <sys/syscallargs.h> 96 #include <sys/kauth.h> 97 #include <sys/module.h> 98 99 #include <miscfs/genfs/genfs.h> 100 #include <miscfs/specfs/specdev.h> 101 #include <uvm/uvm_ddb.h> 102 103 const enum vtype iftovt_tab[16] = { 104 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 105 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD, 106 }; 107 const int vttoif_tab[9] = { 108 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, 109 S_IFSOCK, S_IFIFO, S_IFMT, 110 }; 111 112 /* 113 * Insq/Remq for the vnode usage lists. 114 */ 115 #define bufinsvn(bp, dp) LIST_INSERT_HEAD(dp, bp, b_vnbufs) 116 #define bufremvn(bp) { \ 117 LIST_REMOVE(bp, b_vnbufs); \ 118 (bp)->b_vnbufs.le_next = NOLIST; \ 119 } 120 121 int doforce = 1; /* 1 => permit forcible unmounting */ 122 123 extern struct mount *dead_rootmount; 124 125 /* 126 * Local declarations. 127 */ 128 129 static void vn_initialize_syncerd(void); 130 131 /* 132 * Initialize the vnode management data structures. 133 */ 134 void 135 vntblinit(void) 136 { 137 138 vn_initialize_syncerd(); 139 vfs_mount_sysinit(); 140 vfs_vnode_sysinit(); 141 } 142 143 /* 144 * Flush out and invalidate all buffers associated with a vnode. 145 * Called with the underlying vnode locked, which should prevent new dirty 146 * buffers from being queued. 147 */ 148 int 149 vinvalbuf(struct vnode *vp, int flags, kauth_cred_t cred, struct lwp *l, 150 bool catch_p, int slptimeo) 151 { 152 struct buf *bp, *nbp; 153 int error; 154 int flushflags = PGO_ALLPAGES | PGO_FREE | PGO_SYNCIO | 155 (flags & V_SAVE ? PGO_CLEANIT | PGO_RECLAIM : 0); 156 157 /* XXXUBC this doesn't look at flags or slp* */ 158 rw_enter(vp->v_uobj.vmobjlock, RW_WRITER); 159 error = VOP_PUTPAGES(vp, 0, 0, flushflags); 160 if (error) { 161 return error; 162 } 163 164 if (flags & V_SAVE) { 165 error = VOP_FSYNC(vp, cred, FSYNC_WAIT|FSYNC_RECLAIM, 0, 0); 166 if (error) 167 return (error); 168 KASSERT(LIST_EMPTY(&vp->v_dirtyblkhd)); 169 } 170 171 mutex_enter(&bufcache_lock); 172 restart: 173 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 174 KASSERT(bp->b_vp == vp); 175 nbp = LIST_NEXT(bp, b_vnbufs); 176 error = bbusy(bp, catch_p, slptimeo, NULL); 177 if (error != 0) { 178 if (error == EPASSTHROUGH) 179 goto restart; 180 mutex_exit(&bufcache_lock); 181 return (error); 182 } 183 brelsel(bp, BC_INVAL | BC_VFLUSH); 184 } 185 186 for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) { 187 KASSERT(bp->b_vp == vp); 188 nbp = LIST_NEXT(bp, b_vnbufs); 189 error = bbusy(bp, catch_p, slptimeo, NULL); 190 if (error != 0) { 191 if (error == EPASSTHROUGH) 192 goto restart; 193 mutex_exit(&bufcache_lock); 194 return (error); 195 } 196 /* 197 * XXX Since there are no node locks for NFS, I believe 198 * there is a slight chance that a delayed write will 199 * occur while sleeping just above, so check for it. 200 */ 201 if ((bp->b_oflags & BO_DELWRI) && (flags & V_SAVE)) { 202 #ifdef DEBUG 203 printf("buffer still DELWRI\n"); 204 #endif 205 bp->b_cflags |= BC_BUSY | BC_VFLUSH; 206 mutex_exit(&bufcache_lock); 207 VOP_BWRITE(bp->b_vp, bp); 208 mutex_enter(&bufcache_lock); 209 goto restart; 210 } 211 brelsel(bp, BC_INVAL | BC_VFLUSH); 212 } 213 214 #ifdef DIAGNOSTIC 215 if (!LIST_EMPTY(&vp->v_cleanblkhd) || !LIST_EMPTY(&vp->v_dirtyblkhd)) 216 panic("vinvalbuf: flush failed, vp %p", vp); 217 #endif 218 219 mutex_exit(&bufcache_lock); 220 221 return (0); 222 } 223 224 /* 225 * Destroy any in core blocks past the truncation length. 226 * Called with the underlying vnode locked, which should prevent new dirty 227 * buffers from being queued. 228 */ 229 int 230 vtruncbuf(struct vnode *vp, daddr_t lbn, bool catch_p, int slptimeo) 231 { 232 struct buf *bp, *nbp; 233 int error; 234 voff_t off; 235 236 off = round_page((voff_t)lbn << vp->v_mount->mnt_fs_bshift); 237 rw_enter(vp->v_uobj.vmobjlock, RW_WRITER); 238 error = VOP_PUTPAGES(vp, off, 0, PGO_FREE | PGO_SYNCIO); 239 if (error) { 240 return error; 241 } 242 243 mutex_enter(&bufcache_lock); 244 restart: 245 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 246 KASSERT(bp->b_vp == vp); 247 nbp = LIST_NEXT(bp, b_vnbufs); 248 if (bp->b_lblkno < lbn) 249 continue; 250 error = bbusy(bp, catch_p, slptimeo, NULL); 251 if (error != 0) { 252 if (error == EPASSTHROUGH) 253 goto restart; 254 mutex_exit(&bufcache_lock); 255 return (error); 256 } 257 brelsel(bp, BC_INVAL | BC_VFLUSH); 258 } 259 260 for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) { 261 KASSERT(bp->b_vp == vp); 262 nbp = LIST_NEXT(bp, b_vnbufs); 263 if (bp->b_lblkno < lbn) 264 continue; 265 error = bbusy(bp, catch_p, slptimeo, NULL); 266 if (error != 0) { 267 if (error == EPASSTHROUGH) 268 goto restart; 269 mutex_exit(&bufcache_lock); 270 return (error); 271 } 272 brelsel(bp, BC_INVAL | BC_VFLUSH); 273 } 274 mutex_exit(&bufcache_lock); 275 276 return (0); 277 } 278 279 /* 280 * Flush all dirty buffers from a vnode. 281 * Called with the underlying vnode locked, which should prevent new dirty 282 * buffers from being queued. 283 */ 284 int 285 vflushbuf(struct vnode *vp, int flags) 286 { 287 struct buf *bp, *nbp; 288 int error, pflags; 289 bool dirty, sync; 290 291 sync = (flags & FSYNC_WAIT) != 0; 292 pflags = PGO_CLEANIT | PGO_ALLPAGES | 293 (sync ? PGO_SYNCIO : 0) | 294 ((flags & FSYNC_LAZY) ? PGO_LAZY : 0); 295 rw_enter(vp->v_uobj.vmobjlock, RW_WRITER); 296 (void) VOP_PUTPAGES(vp, 0, 0, pflags); 297 298 loop: 299 mutex_enter(&bufcache_lock); 300 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 301 KASSERT(bp->b_vp == vp); 302 nbp = LIST_NEXT(bp, b_vnbufs); 303 if ((bp->b_cflags & BC_BUSY)) 304 continue; 305 if ((bp->b_oflags & BO_DELWRI) == 0) 306 panic("vflushbuf: not dirty, bp %p", bp); 307 bp->b_cflags |= BC_BUSY | BC_VFLUSH; 308 mutex_exit(&bufcache_lock); 309 /* 310 * Wait for I/O associated with indirect blocks to complete, 311 * since there is no way to quickly wait for them below. 312 */ 313 if (bp->b_vp == vp || !sync) 314 (void) bawrite(bp); 315 else { 316 error = bwrite(bp); 317 if (error) 318 return error; 319 } 320 goto loop; 321 } 322 mutex_exit(&bufcache_lock); 323 324 if (!sync) 325 return 0; 326 327 mutex_enter(vp->v_interlock); 328 while (vp->v_numoutput != 0) 329 cv_wait(&vp->v_cv, vp->v_interlock); 330 dirty = !LIST_EMPTY(&vp->v_dirtyblkhd); 331 mutex_exit(vp->v_interlock); 332 333 if (dirty) { 334 vprint("vflushbuf: dirty", vp); 335 goto loop; 336 } 337 338 return 0; 339 } 340 341 /* 342 * Create a vnode for a block device. 343 * Used for root filesystem and swap areas. 344 * Also used for memory file system special devices. 345 */ 346 int 347 bdevvp(dev_t dev, vnode_t **vpp) 348 { 349 struct vattr va; 350 351 vattr_null(&va); 352 va.va_type = VBLK; 353 va.va_rdev = dev; 354 355 return vcache_new(dead_rootmount, NULL, &va, NOCRED, NULL, vpp); 356 } 357 358 /* 359 * Create a vnode for a character device. 360 * Used for kernfs and some console handling. 361 */ 362 int 363 cdevvp(dev_t dev, vnode_t **vpp) 364 { 365 struct vattr va; 366 367 vattr_null(&va); 368 va.va_type = VCHR; 369 va.va_rdev = dev; 370 371 return vcache_new(dead_rootmount, NULL, &va, NOCRED, NULL, vpp); 372 } 373 374 /* 375 * Associate a buffer with a vnode. There must already be a hold on 376 * the vnode. 377 */ 378 void 379 bgetvp(struct vnode *vp, struct buf *bp) 380 { 381 382 KASSERT(bp->b_vp == NULL); 383 KASSERT(bp->b_objlock == &buffer_lock); 384 KASSERT(mutex_owned(vp->v_interlock)); 385 KASSERT(mutex_owned(&bufcache_lock)); 386 KASSERT((bp->b_cflags & BC_BUSY) != 0); 387 KASSERT(!cv_has_waiters(&bp->b_done)); 388 389 vholdl(vp); 390 bp->b_vp = vp; 391 if (vp->v_type == VBLK || vp->v_type == VCHR) 392 bp->b_dev = vp->v_rdev; 393 else 394 bp->b_dev = NODEV; 395 396 /* 397 * Insert onto list for new vnode. 398 */ 399 bufinsvn(bp, &vp->v_cleanblkhd); 400 bp->b_objlock = vp->v_interlock; 401 } 402 403 /* 404 * Disassociate a buffer from a vnode. 405 */ 406 void 407 brelvp(struct buf *bp) 408 { 409 struct vnode *vp = bp->b_vp; 410 411 KASSERT(vp != NULL); 412 KASSERT(bp->b_objlock == vp->v_interlock); 413 KASSERT(mutex_owned(vp->v_interlock)); 414 KASSERT(mutex_owned(&bufcache_lock)); 415 KASSERT((bp->b_cflags & BC_BUSY) != 0); 416 KASSERT(!cv_has_waiters(&bp->b_done)); 417 418 /* 419 * Delete from old vnode list, if on one. 420 */ 421 if (LIST_NEXT(bp, b_vnbufs) != NOLIST) 422 bufremvn(bp); 423 424 if ((vp->v_iflag & (VI_ONWORKLST | VI_PAGES)) == VI_ONWORKLST && 425 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) 426 vn_syncer_remove_from_worklist(vp); 427 428 bp->b_objlock = &buffer_lock; 429 bp->b_vp = NULL; 430 holdrelel(vp); 431 } 432 433 /* 434 * Reassign a buffer from one vnode list to another. 435 * The list reassignment must be within the same vnode. 436 * Used to assign file specific control information 437 * (indirect blocks) to the list to which they belong. 438 */ 439 void 440 reassignbuf(struct buf *bp, struct vnode *vp) 441 { 442 struct buflists *listheadp; 443 int delayx; 444 445 KASSERT(mutex_owned(&bufcache_lock)); 446 KASSERT(bp->b_objlock == vp->v_interlock); 447 KASSERT(mutex_owned(vp->v_interlock)); 448 KASSERT((bp->b_cflags & BC_BUSY) != 0); 449 450 /* 451 * Delete from old vnode list, if on one. 452 */ 453 if (LIST_NEXT(bp, b_vnbufs) != NOLIST) 454 bufremvn(bp); 455 456 /* 457 * If dirty, put on list of dirty buffers; 458 * otherwise insert onto list of clean buffers. 459 */ 460 if ((bp->b_oflags & BO_DELWRI) == 0) { 461 listheadp = &vp->v_cleanblkhd; 462 if ((vp->v_iflag & (VI_ONWORKLST | VI_PAGES)) == 463 VI_ONWORKLST && 464 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) 465 vn_syncer_remove_from_worklist(vp); 466 } else { 467 listheadp = &vp->v_dirtyblkhd; 468 if ((vp->v_iflag & VI_ONWORKLST) == 0) { 469 switch (vp->v_type) { 470 case VDIR: 471 delayx = dirdelay; 472 break; 473 case VBLK: 474 if (spec_node_getmountedfs(vp) != NULL) { 475 delayx = metadelay; 476 break; 477 } 478 /* fall through */ 479 default: 480 delayx = filedelay; 481 break; 482 } 483 if (!vp->v_mount || 484 (vp->v_mount->mnt_flag & MNT_ASYNC) == 0) 485 vn_syncer_add_to_worklist(vp, delayx); 486 } 487 } 488 bufinsvn(bp, listheadp); 489 } 490 491 /* 492 * Lookup a vnode by device number and return it referenced. 493 */ 494 int 495 vfinddev(dev_t dev, enum vtype type, vnode_t **vpp) 496 { 497 498 return (spec_node_lookup_by_dev(type, dev, vpp) == 0); 499 } 500 501 /* 502 * Revoke all the vnodes corresponding to the specified minor number 503 * range (endpoints inclusive) of the specified major. 504 */ 505 void 506 vdevgone(int maj, int minl, int minh, enum vtype type) 507 { 508 vnode_t *vp; 509 dev_t dev; 510 int mn; 511 512 for (mn = minl; mn <= minh; mn++) { 513 dev = makedev(maj, mn); 514 while (spec_node_lookup_by_dev(type, dev, &vp) == 0) { 515 VOP_REVOKE(vp, REVOKEALL); 516 vrele(vp); 517 } 518 } 519 } 520 521 /* 522 * The filesystem synchronizer mechanism - syncer. 523 * 524 * It is useful to delay writes of file data and filesystem metadata for 525 * a certain amount of time so that quickly created and deleted files need 526 * not waste disk bandwidth being created and removed. To implement this, 527 * vnodes are appended to a "workitem" queue. 528 * 529 * Most pending metadata should not wait for more than ten seconds. Thus, 530 * mounted on block devices are delayed only about a half the time that file 531 * data is delayed. Similarly, directory updates are more critical, so are 532 * only delayed about a third the time that file data is delayed. 533 * 534 * There are SYNCER_MAXDELAY queues that are processed in a round-robin 535 * manner at a rate of one each second (driven off the filesystem syner 536 * thread). The syncer_delayno variable indicates the next queue that is 537 * to be processed. Items that need to be processed soon are placed in 538 * this queue: 539 * 540 * syncer_workitem_pending[syncer_delayno] 541 * 542 * A delay of e.g. fifteen seconds is done by placing the request fifteen 543 * entries later in the queue: 544 * 545 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask] 546 * 547 * Flag VI_ONWORKLST indicates that vnode is added into the queue. 548 */ 549 550 #define SYNCER_MAXDELAY 32 551 552 typedef TAILQ_HEAD(synclist, vnode_impl) synclist_t; 553 554 static void vn_syncer_add1(struct vnode *, int); 555 static void sysctl_vfs_syncfs_setup(struct sysctllog **); 556 557 /* 558 * Defines and variables for the syncer process. 559 */ 560 int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */ 561 time_t syncdelay = 30; /* max time to delay syncing data */ 562 time_t filedelay = 30; /* time to delay syncing files */ 563 time_t dirdelay = 15; /* time to delay syncing directories */ 564 time_t metadelay = 10; /* time to delay syncing metadata */ 565 time_t lockdelay = 1; /* time to delay if locking fails */ 566 567 static kmutex_t syncer_data_lock; /* short term lock on data structs */ 568 569 static int syncer_delayno = 0; 570 static long syncer_last; 571 static synclist_t * syncer_workitem_pending; 572 573 static void 574 vn_initialize_syncerd(void) 575 { 576 int i; 577 578 syncer_last = SYNCER_MAXDELAY + 2; 579 580 sysctl_vfs_syncfs_setup(NULL); 581 582 syncer_workitem_pending = 583 kmem_alloc(syncer_last * sizeof (struct synclist), KM_SLEEP); 584 585 for (i = 0; i < syncer_last; i++) 586 TAILQ_INIT(&syncer_workitem_pending[i]); 587 588 mutex_init(&syncer_data_lock, MUTEX_DEFAULT, IPL_NONE); 589 } 590 591 /* 592 * Return delay factor appropriate for the given file system. For 593 * WAPBL we use the sync vnode to burst out metadata updates: sync 594 * those file systems more frequently. 595 */ 596 static inline int 597 sync_delay(struct mount *mp) 598 { 599 600 return mp->mnt_wapbl != NULL ? metadelay : syncdelay; 601 } 602 603 /* 604 * Compute the next slot index from delay. 605 */ 606 static inline int 607 sync_delay_slot(int delayx) 608 { 609 610 if (delayx > syncer_maxdelay - 2) 611 delayx = syncer_maxdelay - 2; 612 return (syncer_delayno + delayx) % syncer_last; 613 } 614 615 /* 616 * Add an item to the syncer work queue. 617 */ 618 static void 619 vn_syncer_add1(struct vnode *vp, int delayx) 620 { 621 synclist_t *slp; 622 vnode_impl_t *vip = VNODE_TO_VIMPL(vp); 623 624 KASSERT(mutex_owned(&syncer_data_lock)); 625 626 if (vp->v_iflag & VI_ONWORKLST) { 627 /* 628 * Remove in order to adjust the position of the vnode. 629 * Note: called from sched_sync(), which will not hold 630 * interlock, therefore we cannot modify v_iflag here. 631 */ 632 slp = &syncer_workitem_pending[vip->vi_synclist_slot]; 633 TAILQ_REMOVE(slp, vip, vi_synclist); 634 } else { 635 KASSERT(mutex_owned(vp->v_interlock)); 636 vp->v_iflag |= VI_ONWORKLST; 637 } 638 639 vip->vi_synclist_slot = sync_delay_slot(delayx); 640 641 slp = &syncer_workitem_pending[vip->vi_synclist_slot]; 642 TAILQ_INSERT_TAIL(slp, vip, vi_synclist); 643 } 644 645 void 646 vn_syncer_add_to_worklist(struct vnode *vp, int delayx) 647 { 648 649 KASSERT(mutex_owned(vp->v_interlock)); 650 651 mutex_enter(&syncer_data_lock); 652 vn_syncer_add1(vp, delayx); 653 mutex_exit(&syncer_data_lock); 654 } 655 656 /* 657 * Remove an item from the syncer work queue. 658 */ 659 void 660 vn_syncer_remove_from_worklist(struct vnode *vp) 661 { 662 synclist_t *slp; 663 vnode_impl_t *vip = VNODE_TO_VIMPL(vp); 664 665 KASSERT(mutex_owned(vp->v_interlock)); 666 667 if (vp->v_iflag & VI_ONWORKLST) { 668 mutex_enter(&syncer_data_lock); 669 vp->v_iflag &= ~VI_ONWORKLST; 670 slp = &syncer_workitem_pending[vip->vi_synclist_slot]; 671 TAILQ_REMOVE(slp, vip, vi_synclist); 672 mutex_exit(&syncer_data_lock); 673 } 674 } 675 676 /* 677 * Add this mount point to the syncer. 678 */ 679 void 680 vfs_syncer_add_to_worklist(struct mount *mp) 681 { 682 static int start, incr, next; 683 int vdelay; 684 685 KASSERT(mutex_owned(mp->mnt_updating)); 686 KASSERT((mp->mnt_iflag & IMNT_ONWORKLIST) == 0); 687 688 /* 689 * We attempt to scatter the mount points on the list 690 * so that they will go off at evenly distributed times 691 * even if all the filesystems are mounted at once. 692 */ 693 694 next += incr; 695 if (next == 0 || next > syncer_maxdelay) { 696 start /= 2; 697 incr /= 2; 698 if (start == 0) { 699 start = syncer_maxdelay / 2; 700 incr = syncer_maxdelay; 701 } 702 next = start; 703 } 704 mp->mnt_iflag |= IMNT_ONWORKLIST; 705 vdelay = sync_delay(mp); 706 mp->mnt_synclist_slot = vdelay > 0 ? next % vdelay : 0; 707 } 708 709 /* 710 * Remove the mount point from the syncer. 711 */ 712 void 713 vfs_syncer_remove_from_worklist(struct mount *mp) 714 { 715 716 KASSERT(mutex_owned(mp->mnt_updating)); 717 KASSERT((mp->mnt_iflag & IMNT_ONWORKLIST) != 0); 718 719 mp->mnt_iflag &= ~IMNT_ONWORKLIST; 720 } 721 722 /* 723 * Try lazy sync, return true on success. 724 */ 725 static bool 726 lazy_sync_vnode(struct vnode *vp) 727 { 728 bool synced; 729 730 KASSERT(mutex_owned(&syncer_data_lock)); 731 732 synced = false; 733 if (vcache_tryvget(vp) == 0) { 734 mutex_exit(&syncer_data_lock); 735 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 736 synced = true; 737 (void) VOP_FSYNC(vp, curlwp->l_cred, 738 FSYNC_LAZY, 0, 0); 739 vput(vp); 740 } else 741 vrele(vp); 742 mutex_enter(&syncer_data_lock); 743 } 744 return synced; 745 } 746 747 /* 748 * System filesystem synchronizer daemon. 749 */ 750 void 751 sched_sync(void *arg) 752 { 753 mount_iterator_t *iter; 754 synclist_t *slp; 755 struct vnode_impl *vi; 756 struct vnode *vp; 757 struct mount *mp; 758 time_t starttime; 759 bool synced; 760 761 for (;;) { 762 starttime = time_second; 763 764 /* 765 * Sync mounts whose dirty time has expired. 766 */ 767 mountlist_iterator_init(&iter); 768 while ((mp = mountlist_iterator_trynext(iter)) != NULL) { 769 if ((mp->mnt_iflag & IMNT_ONWORKLIST) == 0 || 770 mp->mnt_synclist_slot != syncer_delayno) { 771 continue; 772 } 773 mp->mnt_synclist_slot = sync_delay_slot(sync_delay(mp)); 774 VFS_SYNC(mp, MNT_LAZY, curlwp->l_cred); 775 } 776 mountlist_iterator_destroy(iter); 777 778 mutex_enter(&syncer_data_lock); 779 780 /* 781 * Push files whose dirty time has expired. 782 */ 783 slp = &syncer_workitem_pending[syncer_delayno]; 784 syncer_delayno += 1; 785 if (syncer_delayno >= syncer_last) 786 syncer_delayno = 0; 787 788 while ((vi = TAILQ_FIRST(slp)) != NULL) { 789 vp = VIMPL_TO_VNODE(vi); 790 synced = lazy_sync_vnode(vp); 791 792 /* 793 * XXX The vnode may have been recycled, in which 794 * case it may have a new identity. 795 */ 796 vi = TAILQ_FIRST(slp); 797 if (vi != NULL && VIMPL_TO_VNODE(vi) == vp) { 798 /* 799 * Put us back on the worklist. The worklist 800 * routine will remove us from our current 801 * position and then add us back in at a later 802 * position. 803 * 804 * Try again sooner rather than later if 805 * we were unable to lock the vnode. Lock 806 * failure should not prevent us from doing 807 * the sync "soon". 808 * 809 * If we locked it yet arrive here, it's 810 * likely that lazy sync is in progress and 811 * so the vnode still has dirty metadata. 812 * syncdelay is mainly to get this vnode out 813 * of the way so we do not consider it again 814 * "soon" in this loop, so the delay time is 815 * not critical as long as it is not "soon". 816 * While write-back strategy is the file 817 * system's domain, we expect write-back to 818 * occur no later than syncdelay seconds 819 * into the future. 820 */ 821 vn_syncer_add1(vp, 822 synced ? syncdelay : lockdelay); 823 } 824 } 825 826 /* 827 * If it has taken us less than a second to process the 828 * current work, then wait. Otherwise start right over 829 * again. We can still lose time if any single round 830 * takes more than two seconds, but it does not really 831 * matter as we are just trying to generally pace the 832 * filesystem activity. 833 */ 834 if (time_second == starttime) { 835 kpause("syncer", false, hz, &syncer_data_lock); 836 } 837 mutex_exit(&syncer_data_lock); 838 } 839 } 840 841 static void 842 sysctl_vfs_syncfs_setup(struct sysctllog **clog) 843 { 844 const struct sysctlnode *rnode, *cnode; 845 846 sysctl_createv(clog, 0, NULL, &rnode, 847 CTLFLAG_PERMANENT, 848 CTLTYPE_NODE, "sync", 849 SYSCTL_DESCR("syncer options"), 850 NULL, 0, NULL, 0, 851 CTL_VFS, CTL_CREATE, CTL_EOL); 852 853 sysctl_createv(clog, 0, &rnode, &cnode, 854 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 855 CTLTYPE_QUAD, "delay", 856 SYSCTL_DESCR("max time to delay syncing data"), 857 NULL, 0, &syncdelay, 0, 858 CTL_CREATE, CTL_EOL); 859 860 sysctl_createv(clog, 0, &rnode, &cnode, 861 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 862 CTLTYPE_QUAD, "filedelay", 863 SYSCTL_DESCR("time to delay syncing files"), 864 NULL, 0, &filedelay, 0, 865 CTL_CREATE, CTL_EOL); 866 867 sysctl_createv(clog, 0, &rnode, &cnode, 868 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 869 CTLTYPE_QUAD, "dirdelay", 870 SYSCTL_DESCR("time to delay syncing directories"), 871 NULL, 0, &dirdelay, 0, 872 CTL_CREATE, CTL_EOL); 873 874 sysctl_createv(clog, 0, &rnode, &cnode, 875 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 876 CTLTYPE_QUAD, "metadelay", 877 SYSCTL_DESCR("time to delay syncing metadata"), 878 NULL, 0, &metadelay, 0, 879 CTL_CREATE, CTL_EOL); 880 } 881 882 /* 883 * sysctl helper routine to return list of supported fstypes 884 */ 885 int 886 sysctl_vfs_generic_fstypes(SYSCTLFN_ARGS) 887 { 888 char bf[sizeof(((struct statvfs *)NULL)->f_fstypename)]; 889 char *where = oldp; 890 struct vfsops *v; 891 size_t needed, left, slen; 892 int error, first; 893 894 if (newp != NULL) 895 return (EPERM); 896 if (namelen != 0) 897 return (EINVAL); 898 899 first = 1; 900 error = 0; 901 needed = 0; 902 left = *oldlenp; 903 904 sysctl_unlock(); 905 mutex_enter(&vfs_list_lock); 906 LIST_FOREACH(v, &vfs_list, vfs_list) { 907 if (where == NULL) 908 needed += strlen(v->vfs_name) + 1; 909 else { 910 memset(bf, 0, sizeof(bf)); 911 if (first) { 912 strncpy(bf, v->vfs_name, sizeof(bf)); 913 first = 0; 914 } else { 915 bf[0] = ' '; 916 strncpy(bf + 1, v->vfs_name, sizeof(bf) - 1); 917 } 918 bf[sizeof(bf)-1] = '\0'; 919 slen = strlen(bf); 920 if (left < slen + 1) 921 break; 922 v->vfs_refcount++; 923 mutex_exit(&vfs_list_lock); 924 /* +1 to copy out the trailing NUL byte */ 925 error = copyout(bf, where, slen + 1); 926 mutex_enter(&vfs_list_lock); 927 v->vfs_refcount--; 928 if (error) 929 break; 930 where += slen; 931 needed += slen; 932 left -= slen; 933 } 934 } 935 mutex_exit(&vfs_list_lock); 936 sysctl_relock(); 937 *oldlenp = needed; 938 return (error); 939 } 940 941 int kinfo_vdebug = 1; 942 int kinfo_vgetfailed; 943 944 #define KINFO_VNODESLOP 10 945 946 /* 947 * Dump vnode list (via sysctl). 948 * Copyout address of vnode followed by vnode. 949 */ 950 int 951 sysctl_kern_vnode(SYSCTLFN_ARGS) 952 { 953 char *where = oldp; 954 size_t *sizep = oldlenp; 955 struct mount *mp; 956 vnode_t *vp, vbuf; 957 mount_iterator_t *iter; 958 struct vnode_iterator *marker; 959 char *bp = where; 960 char *ewhere; 961 int error; 962 963 if (namelen != 0) 964 return (EOPNOTSUPP); 965 if (newp != NULL) 966 return (EPERM); 967 968 #define VPTRSZ sizeof(vnode_t *) 969 #define VNODESZ sizeof(vnode_t) 970 if (where == NULL) { 971 *sizep = (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ); 972 return (0); 973 } 974 ewhere = where + *sizep; 975 976 sysctl_unlock(); 977 mountlist_iterator_init(&iter); 978 while ((mp = mountlist_iterator_next(iter)) != NULL) { 979 vfs_vnode_iterator_init(mp, &marker); 980 while ((vp = vfs_vnode_iterator_next(marker, NULL, NULL))) { 981 if (bp + VPTRSZ + VNODESZ > ewhere) { 982 vrele(vp); 983 vfs_vnode_iterator_destroy(marker); 984 mountlist_iterator_destroy(iter); 985 sysctl_relock(); 986 *sizep = bp - where; 987 return (ENOMEM); 988 } 989 memcpy(&vbuf, vp, VNODESZ); 990 if ((error = copyout(&vp, bp, VPTRSZ)) || 991 (error = copyout(&vbuf, bp + VPTRSZ, VNODESZ))) { 992 vrele(vp); 993 vfs_vnode_iterator_destroy(marker); 994 mountlist_iterator_destroy(iter); 995 sysctl_relock(); 996 return (error); 997 } 998 vrele(vp); 999 bp += VPTRSZ + VNODESZ; 1000 } 1001 vfs_vnode_iterator_destroy(marker); 1002 } 1003 mountlist_iterator_destroy(iter); 1004 sysctl_relock(); 1005 1006 *sizep = bp - where; 1007 return (0); 1008 } 1009 1010 /* 1011 * Set vnode attributes to VNOVAL 1012 */ 1013 void 1014 vattr_null(struct vattr *vap) 1015 { 1016 1017 memset(vap, 0, sizeof(*vap)); 1018 1019 vap->va_type = VNON; 1020 1021 /* 1022 * Assign individually so that it is safe even if size and 1023 * sign of each member are varied. 1024 */ 1025 vap->va_mode = VNOVAL; 1026 vap->va_nlink = VNOVAL; 1027 vap->va_uid = VNOVAL; 1028 vap->va_gid = VNOVAL; 1029 vap->va_fsid = VNOVAL; 1030 vap->va_fileid = VNOVAL; 1031 vap->va_size = VNOVAL; 1032 vap->va_blocksize = VNOVAL; 1033 vap->va_atime.tv_sec = 1034 vap->va_mtime.tv_sec = 1035 vap->va_ctime.tv_sec = 1036 vap->va_birthtime.tv_sec = VNOVAL; 1037 vap->va_atime.tv_nsec = 1038 vap->va_mtime.tv_nsec = 1039 vap->va_ctime.tv_nsec = 1040 vap->va_birthtime.tv_nsec = VNOVAL; 1041 vap->va_gen = VNOVAL; 1042 vap->va_flags = VNOVAL; 1043 vap->va_rdev = VNOVAL; 1044 vap->va_bytes = VNOVAL; 1045 } 1046 1047 /* 1048 * Vnode state to string. 1049 */ 1050 const char * 1051 vstate_name(enum vnode_state state) 1052 { 1053 1054 switch (state) { 1055 case VS_ACTIVE: 1056 return "ACTIVE"; 1057 case VS_MARKER: 1058 return "MARKER"; 1059 case VS_LOADING: 1060 return "LOADING"; 1061 case VS_LOADED: 1062 return "LOADED"; 1063 case VS_BLOCKED: 1064 return "BLOCKED"; 1065 case VS_RECLAIMING: 1066 return "RECLAIMING"; 1067 case VS_RECLAIMED: 1068 return "RECLAIMED"; 1069 default: 1070 return "ILLEGAL"; 1071 } 1072 } 1073 1074 /* 1075 * Print a description of a vnode (common part). 1076 */ 1077 static void 1078 vprint_common(struct vnode *vp, const char *prefix, 1079 void (*pr)(const char *, ...) __printflike(1, 2)) 1080 { 1081 int n; 1082 char bf[96]; 1083 const uint8_t *cp; 1084 vnode_impl_t *vip; 1085 const char * const vnode_tags[] = { VNODE_TAGS }; 1086 const char * const vnode_types[] = { VNODE_TYPES }; 1087 const char vnode_flagbits[] = VNODE_FLAGBITS; 1088 1089 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof(arr[0])) 1090 #define ARRAY_PRINT(idx, arr) \ 1091 ((unsigned int)(idx) < ARRAY_SIZE(arr) ? (arr)[(idx)] : "UNKNOWN") 1092 1093 vip = VNODE_TO_VIMPL(vp); 1094 1095 snprintb(bf, sizeof(bf), 1096 vnode_flagbits, vp->v_iflag | vp->v_vflag | vp->v_uflag); 1097 1098 (*pr)("vnode %p flags %s\n", vp, bf); 1099 (*pr)("%stag %s(%d) type %s(%d) mount %p typedata %p\n", prefix, 1100 ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag, 1101 ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type, 1102 vp->v_mount, vp->v_mountedhere); 1103 (*pr)("%susecount %d writecount %d holdcount %d\n", prefix, 1104 vrefcnt(vp), vp->v_writecount, vp->v_holdcnt); 1105 (*pr)("%ssize %" PRIx64 " writesize %" PRIx64 " numoutput %d\n", 1106 prefix, vp->v_size, vp->v_writesize, vp->v_numoutput); 1107 (*pr)("%sdata %p lock %p\n", prefix, vp->v_data, &vip->vi_lock); 1108 1109 (*pr)("%sstate %s key(%p %zd)", prefix, vstate_name(vip->vi_state), 1110 vip->vi_key.vk_mount, vip->vi_key.vk_key_len); 1111 n = vip->vi_key.vk_key_len; 1112 cp = vip->vi_key.vk_key; 1113 while (n-- > 0) 1114 (*pr)(" %02x", *cp++); 1115 (*pr)("\n"); 1116 (*pr)("%slrulisthd %p\n", prefix, vip->vi_lrulisthd); 1117 1118 #undef ARRAY_PRINT 1119 #undef ARRAY_SIZE 1120 } 1121 1122 /* 1123 * Print out a description of a vnode. 1124 */ 1125 void 1126 vprint(const char *label, struct vnode *vp) 1127 { 1128 1129 if (label != NULL) 1130 printf("%s: ", label); 1131 vprint_common(vp, "\t", printf); 1132 if (vp->v_data != NULL) { 1133 printf("\t"); 1134 VOP_PRINT(vp); 1135 } 1136 } 1137 1138 /* 1139 * Given a file system name, look up the vfsops for that 1140 * file system, or return NULL if file system isn't present 1141 * in the kernel. 1142 */ 1143 struct vfsops * 1144 vfs_getopsbyname(const char *name) 1145 { 1146 struct vfsops *v; 1147 1148 mutex_enter(&vfs_list_lock); 1149 LIST_FOREACH(v, &vfs_list, vfs_list) { 1150 if (strcmp(v->vfs_name, name) == 0) 1151 break; 1152 } 1153 if (v != NULL) 1154 v->vfs_refcount++; 1155 mutex_exit(&vfs_list_lock); 1156 1157 return (v); 1158 } 1159 1160 void 1161 copy_statvfs_info(struct statvfs *sbp, const struct mount *mp) 1162 { 1163 const struct statvfs *mbp; 1164 1165 if (sbp == (mbp = &mp->mnt_stat)) 1166 return; 1167 1168 (void)memcpy(&sbp->f_fsidx, &mbp->f_fsidx, sizeof(sbp->f_fsidx)); 1169 sbp->f_fsid = mbp->f_fsid; 1170 sbp->f_owner = mbp->f_owner; 1171 sbp->f_flag = mbp->f_flag; 1172 sbp->f_syncwrites = mbp->f_syncwrites; 1173 sbp->f_asyncwrites = mbp->f_asyncwrites; 1174 sbp->f_syncreads = mbp->f_syncreads; 1175 sbp->f_asyncreads = mbp->f_asyncreads; 1176 (void)memcpy(sbp->f_spare, mbp->f_spare, sizeof(mbp->f_spare)); 1177 (void)memcpy(sbp->f_fstypename, mbp->f_fstypename, 1178 sizeof(sbp->f_fstypename)); 1179 (void)memcpy(sbp->f_mntonname, mbp->f_mntonname, 1180 sizeof(sbp->f_mntonname)); 1181 (void)memcpy(sbp->f_mntfromname, mp->mnt_stat.f_mntfromname, 1182 sizeof(sbp->f_mntfromname)); 1183 (void)memcpy(sbp->f_mntfromlabel, mp->mnt_stat.f_mntfromlabel, 1184 sizeof(sbp->f_mntfromlabel)); 1185 sbp->f_namemax = mbp->f_namemax; 1186 } 1187 1188 int 1189 set_statvfs_info(const char *onp, int ukon, const char *fromp, int ukfrom, 1190 const char *vfsname, struct mount *mp, struct lwp *l) 1191 { 1192 int error; 1193 size_t size; 1194 struct statvfs *sfs = &mp->mnt_stat; 1195 int (*fun)(const void *, void *, size_t, size_t *); 1196 1197 (void)strlcpy(mp->mnt_stat.f_fstypename, vfsname, 1198 sizeof(mp->mnt_stat.f_fstypename)); 1199 1200 if (onp) { 1201 struct cwdinfo *cwdi = l->l_proc->p_cwdi; 1202 fun = (ukon == UIO_SYSSPACE) ? copystr : copyinstr; 1203 if (cwdi->cwdi_rdir != NULL) { 1204 size_t len; 1205 char *bp; 1206 char *path = PNBUF_GET(); 1207 1208 bp = path + MAXPATHLEN; 1209 *--bp = '\0'; 1210 rw_enter(&cwdi->cwdi_lock, RW_READER); 1211 error = getcwd_common(cwdi->cwdi_rdir, rootvnode, &bp, 1212 path, MAXPATHLEN / 2, 0, l); 1213 rw_exit(&cwdi->cwdi_lock); 1214 if (error) { 1215 PNBUF_PUT(path); 1216 return error; 1217 } 1218 1219 len = strlen(bp); 1220 if (len > sizeof(sfs->f_mntonname) - 1) 1221 len = sizeof(sfs->f_mntonname) - 1; 1222 (void)strncpy(sfs->f_mntonname, bp, len); 1223 PNBUF_PUT(path); 1224 1225 if (len < sizeof(sfs->f_mntonname) - 1) { 1226 error = (*fun)(onp, &sfs->f_mntonname[len], 1227 sizeof(sfs->f_mntonname) - len - 1, &size); 1228 if (error) 1229 return error; 1230 size += len; 1231 } else { 1232 size = len; 1233 } 1234 } else { 1235 error = (*fun)(onp, &sfs->f_mntonname, 1236 sizeof(sfs->f_mntonname) - 1, &size); 1237 if (error) 1238 return error; 1239 } 1240 (void)memset(sfs->f_mntonname + size, 0, 1241 sizeof(sfs->f_mntonname) - size); 1242 } 1243 1244 if (fromp) { 1245 fun = (ukfrom == UIO_SYSSPACE) ? copystr : copyinstr; 1246 error = (*fun)(fromp, sfs->f_mntfromname, 1247 sizeof(sfs->f_mntfromname) - 1, &size); 1248 if (error) 1249 return error; 1250 (void)memset(sfs->f_mntfromname + size, 0, 1251 sizeof(sfs->f_mntfromname) - size); 1252 } 1253 return 0; 1254 } 1255 1256 /* 1257 * Knob to control the precision of file timestamps: 1258 * 1259 * 0 = seconds only; nanoseconds zeroed. 1260 * 1 = seconds and nanoseconds, accurate within 1/HZ. 1261 * 2 = seconds and nanoseconds, truncated to microseconds. 1262 * >=3 = seconds and nanoseconds, maximum precision. 1263 */ 1264 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC }; 1265 1266 int vfs_timestamp_precision __read_mostly = TSP_NSEC; 1267 1268 void 1269 vfs_timestamp(struct timespec *tsp) 1270 { 1271 struct timeval tv; 1272 1273 switch (vfs_timestamp_precision) { 1274 case TSP_SEC: 1275 tsp->tv_sec = time_second; 1276 tsp->tv_nsec = 0; 1277 break; 1278 case TSP_HZ: 1279 getnanotime(tsp); 1280 break; 1281 case TSP_USEC: 1282 microtime(&tv); 1283 TIMEVAL_TO_TIMESPEC(&tv, tsp); 1284 break; 1285 case TSP_NSEC: 1286 default: 1287 nanotime(tsp); 1288 break; 1289 } 1290 } 1291 1292 /* 1293 * The purpose of this routine is to remove granularity from accmode_t, 1294 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE, 1295 * VADMIN and VAPPEND. 1296 * 1297 * If it returns 0, the caller is supposed to continue with the usual 1298 * access checks using 'accmode' as modified by this routine. If it 1299 * returns nonzero value, the caller is supposed to return that value 1300 * as errno. 1301 * 1302 * Note that after this routine runs, accmode may be zero. 1303 */ 1304 int 1305 vfs_unixify_accmode(accmode_t *accmode) 1306 { 1307 /* 1308 * There is no way to specify explicit "deny" rule using 1309 * file mode or POSIX.1e ACLs. 1310 */ 1311 if (*accmode & VEXPLICIT_DENY) { 1312 *accmode = 0; 1313 return (0); 1314 } 1315 1316 /* 1317 * None of these can be translated into usual access bits. 1318 * Also, the common case for NFSv4 ACLs is to not contain 1319 * either of these bits. Caller should check for VWRITE 1320 * on the containing directory instead. 1321 */ 1322 if (*accmode & (VDELETE_CHILD | VDELETE)) 1323 return (EPERM); 1324 1325 if (*accmode & VADMIN_PERMS) { 1326 *accmode &= ~VADMIN_PERMS; 1327 *accmode |= VADMIN; 1328 } 1329 1330 /* 1331 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL 1332 * or VSYNCHRONIZE using file mode or POSIX.1e ACL. 1333 */ 1334 *accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE); 1335 1336 return (0); 1337 } 1338 1339 time_t rootfstime; /* recorded root fs time, if known */ 1340 void 1341 setrootfstime(time_t t) 1342 { 1343 rootfstime = t; 1344 } 1345 1346 static const uint8_t vttodt_tab[ ] = { 1347 [VNON] = DT_UNKNOWN, 1348 [VREG] = DT_REG, 1349 [VDIR] = DT_DIR, 1350 [VBLK] = DT_BLK, 1351 [VCHR] = DT_CHR, 1352 [VLNK] = DT_LNK, 1353 [VSOCK] = DT_SOCK, 1354 [VFIFO] = DT_FIFO, 1355 [VBAD] = DT_UNKNOWN 1356 }; 1357 1358 uint8_t 1359 vtype2dt(enum vtype vt) 1360 { 1361 1362 CTASSERT(VBAD == __arraycount(vttodt_tab) - 1); 1363 return vttodt_tab[vt]; 1364 } 1365 1366 int 1367 VFS_MOUNT(struct mount *mp, const char *a, void *b, size_t *c) 1368 { 1369 int error; 1370 1371 KERNEL_LOCK(1, NULL); 1372 error = (*(mp->mnt_op->vfs_mount))(mp, a, b, c); 1373 KERNEL_UNLOCK_ONE(NULL); 1374 1375 return error; 1376 } 1377 1378 int 1379 VFS_START(struct mount *mp, int a) 1380 { 1381 int error; 1382 1383 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1384 KERNEL_LOCK(1, NULL); 1385 } 1386 error = (*(mp->mnt_op->vfs_start))(mp, a); 1387 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1388 KERNEL_UNLOCK_ONE(NULL); 1389 } 1390 1391 return error; 1392 } 1393 1394 int 1395 VFS_UNMOUNT(struct mount *mp, int a) 1396 { 1397 int error; 1398 1399 KERNEL_LOCK(1, NULL); 1400 error = (*(mp->mnt_op->vfs_unmount))(mp, a); 1401 KERNEL_UNLOCK_ONE(NULL); 1402 1403 return error; 1404 } 1405 1406 int 1407 VFS_ROOT(struct mount *mp, int lktype, struct vnode **a) 1408 { 1409 int error; 1410 1411 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1412 KERNEL_LOCK(1, NULL); 1413 } 1414 error = (*(mp->mnt_op->vfs_root))(mp, lktype, a); 1415 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1416 KERNEL_UNLOCK_ONE(NULL); 1417 } 1418 1419 return error; 1420 } 1421 1422 int 1423 VFS_QUOTACTL(struct mount *mp, struct quotactl_args *args) 1424 { 1425 int error; 1426 1427 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1428 KERNEL_LOCK(1, NULL); 1429 } 1430 error = (*(mp->mnt_op->vfs_quotactl))(mp, args); 1431 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1432 KERNEL_UNLOCK_ONE(NULL); 1433 } 1434 1435 return error; 1436 } 1437 1438 int 1439 VFS_STATVFS(struct mount *mp, struct statvfs *a) 1440 { 1441 int error; 1442 1443 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1444 KERNEL_LOCK(1, NULL); 1445 } 1446 error = (*(mp->mnt_op->vfs_statvfs))(mp, a); 1447 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1448 KERNEL_UNLOCK_ONE(NULL); 1449 } 1450 1451 return error; 1452 } 1453 1454 int 1455 VFS_SYNC(struct mount *mp, int a, struct kauth_cred *b) 1456 { 1457 int error; 1458 1459 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1460 KERNEL_LOCK(1, NULL); 1461 } 1462 error = (*(mp->mnt_op->vfs_sync))(mp, a, b); 1463 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1464 KERNEL_UNLOCK_ONE(NULL); 1465 } 1466 1467 return error; 1468 } 1469 1470 int 1471 VFS_FHTOVP(struct mount *mp, struct fid *a, int b, struct vnode **c) 1472 { 1473 int error; 1474 1475 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1476 KERNEL_LOCK(1, NULL); 1477 } 1478 error = (*(mp->mnt_op->vfs_fhtovp))(mp, a, b, c); 1479 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1480 KERNEL_UNLOCK_ONE(NULL); 1481 } 1482 1483 return error; 1484 } 1485 1486 int 1487 VFS_VPTOFH(struct vnode *vp, struct fid *a, size_t *b) 1488 { 1489 int error; 1490 1491 if ((vp->v_vflag & VV_MPSAFE) == 0) { 1492 KERNEL_LOCK(1, NULL); 1493 } 1494 error = (*(vp->v_mount->mnt_op->vfs_vptofh))(vp, a, b); 1495 if ((vp->v_vflag & VV_MPSAFE) == 0) { 1496 KERNEL_UNLOCK_ONE(NULL); 1497 } 1498 1499 return error; 1500 } 1501 1502 int 1503 VFS_SNAPSHOT(struct mount *mp, struct vnode *a, struct timespec *b) 1504 { 1505 int error; 1506 1507 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1508 KERNEL_LOCK(1, NULL); 1509 } 1510 error = (*(mp->mnt_op->vfs_snapshot))(mp, a, b); 1511 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1512 KERNEL_UNLOCK_ONE(NULL); 1513 } 1514 1515 return error; 1516 } 1517 1518 int 1519 VFS_EXTATTRCTL(struct mount *mp, int a, struct vnode *b, int c, const char *d) 1520 { 1521 int error; 1522 1523 KERNEL_LOCK(1, NULL); /* XXXSMP check ffs */ 1524 error = (*(mp->mnt_op->vfs_extattrctl))(mp, a, b, c, d); 1525 KERNEL_UNLOCK_ONE(NULL); /* XXX */ 1526 1527 return error; 1528 } 1529 1530 int 1531 VFS_SUSPENDCTL(struct mount *mp, int a) 1532 { 1533 int error; 1534 1535 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1536 KERNEL_LOCK(1, NULL); 1537 } 1538 error = (*(mp->mnt_op->vfs_suspendctl))(mp, a); 1539 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1540 KERNEL_UNLOCK_ONE(NULL); 1541 } 1542 1543 return error; 1544 } 1545 1546 #if defined(DDB) || defined(DEBUGPRINT) 1547 static const char buf_flagbits[] = BUF_FLAGBITS; 1548 1549 void 1550 vfs_buf_print(struct buf *bp, int full, void (*pr)(const char *, ...)) 1551 { 1552 char bf[1024]; 1553 1554 (*pr)(" vp %p lblkno 0x%"PRIx64" blkno 0x%"PRIx64" rawblkno 0x%" 1555 PRIx64 " dev 0x%x\n", 1556 bp->b_vp, bp->b_lblkno, bp->b_blkno, bp->b_rawblkno, bp->b_dev); 1557 1558 snprintb(bf, sizeof(bf), 1559 buf_flagbits, bp->b_flags | bp->b_oflags | bp->b_cflags); 1560 (*pr)(" error %d flags %s\n", bp->b_error, bf); 1561 1562 (*pr)(" bufsize 0x%lx bcount 0x%lx resid 0x%lx\n", 1563 bp->b_bufsize, bp->b_bcount, bp->b_resid); 1564 (*pr)(" data %p saveaddr %p\n", 1565 bp->b_data, bp->b_saveaddr); 1566 (*pr)(" iodone %p objlock %p\n", bp->b_iodone, bp->b_objlock); 1567 } 1568 1569 void 1570 vfs_vnode_print(struct vnode *vp, int full, void (*pr)(const char *, ...)) 1571 { 1572 1573 uvm_object_printit(&vp->v_uobj, full, pr); 1574 (*pr)("\n"); 1575 vprint_common(vp, "", pr); 1576 if (full) { 1577 struct buf *bp; 1578 1579 (*pr)("clean bufs:\n"); 1580 LIST_FOREACH(bp, &vp->v_cleanblkhd, b_vnbufs) { 1581 (*pr)(" bp %p\n", bp); 1582 vfs_buf_print(bp, full, pr); 1583 } 1584 1585 (*pr)("dirty bufs:\n"); 1586 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { 1587 (*pr)(" bp %p\n", bp); 1588 vfs_buf_print(bp, full, pr); 1589 } 1590 } 1591 } 1592 1593 void 1594 vfs_vnode_lock_print(void *vlock, int full, void (*pr)(const char *, ...)) 1595 { 1596 struct mount *mp; 1597 vnode_impl_t *vip; 1598 1599 for (mp = _mountlist_next(NULL); mp; mp = _mountlist_next(mp)) { 1600 TAILQ_FOREACH(vip, &mp->mnt_vnodelist, vi_mntvnodes) { 1601 if (&vip->vi_lock == vlock || 1602 VIMPL_TO_VNODE(vip)->v_interlock == vlock) 1603 vfs_vnode_print(VIMPL_TO_VNODE(vip), full, pr); 1604 } 1605 } 1606 } 1607 1608 void 1609 vfs_mount_print_all(int full, void (*pr)(const char *, ...)) 1610 { 1611 struct mount *mp; 1612 for (mp = _mountlist_next(NULL); mp; mp = _mountlist_next(mp)) 1613 vfs_mount_print(mp, full, pr); 1614 } 1615 1616 void 1617 vfs_mount_print(struct mount *mp, int full, void (*pr)(const char *, ...)) 1618 { 1619 char sbuf[256]; 1620 1621 (*pr)("vnodecovered = %p data = %p\n", 1622 mp->mnt_vnodecovered,mp->mnt_data); 1623 1624 (*pr)("fs_bshift %d dev_bshift = %d\n", 1625 mp->mnt_fs_bshift,mp->mnt_dev_bshift); 1626 1627 snprintb(sbuf, sizeof(sbuf), __MNT_FLAG_BITS, mp->mnt_flag); 1628 (*pr)("flag = %s\n", sbuf); 1629 1630 snprintb(sbuf, sizeof(sbuf), __IMNT_FLAG_BITS, mp->mnt_iflag); 1631 (*pr)("iflag = %s\n", sbuf); 1632 1633 (*pr)("refcnt = %d updating @ %p\n", mp->mnt_refcnt, mp->mnt_updating); 1634 1635 (*pr)("statvfs cache:\n"); 1636 (*pr)("\tbsize = %lu\n",mp->mnt_stat.f_bsize); 1637 (*pr)("\tfrsize = %lu\n",mp->mnt_stat.f_frsize); 1638 (*pr)("\tiosize = %lu\n",mp->mnt_stat.f_iosize); 1639 1640 (*pr)("\tblocks = %"PRIu64"\n",mp->mnt_stat.f_blocks); 1641 (*pr)("\tbfree = %"PRIu64"\n",mp->mnt_stat.f_bfree); 1642 (*pr)("\tbavail = %"PRIu64"\n",mp->mnt_stat.f_bavail); 1643 (*pr)("\tbresvd = %"PRIu64"\n",mp->mnt_stat.f_bresvd); 1644 1645 (*pr)("\tfiles = %"PRIu64"\n",mp->mnt_stat.f_files); 1646 (*pr)("\tffree = %"PRIu64"\n",mp->mnt_stat.f_ffree); 1647 (*pr)("\tfavail = %"PRIu64"\n",mp->mnt_stat.f_favail); 1648 (*pr)("\tfresvd = %"PRIu64"\n",mp->mnt_stat.f_fresvd); 1649 1650 (*pr)("\tf_fsidx = { 0x%"PRIx32", 0x%"PRIx32" }\n", 1651 mp->mnt_stat.f_fsidx.__fsid_val[0], 1652 mp->mnt_stat.f_fsidx.__fsid_val[1]); 1653 1654 (*pr)("\towner = %"PRIu32"\n",mp->mnt_stat.f_owner); 1655 (*pr)("\tnamemax = %lu\n",mp->mnt_stat.f_namemax); 1656 1657 snprintb(sbuf, sizeof(sbuf), __MNT_FLAG_BITS, mp->mnt_stat.f_flag); 1658 1659 (*pr)("\tflag = %s\n",sbuf); 1660 (*pr)("\tsyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_syncwrites); 1661 (*pr)("\tasyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_asyncwrites); 1662 (*pr)("\tsyncreads = %" PRIu64 "\n",mp->mnt_stat.f_syncreads); 1663 (*pr)("\tasyncreads = %" PRIu64 "\n",mp->mnt_stat.f_asyncreads); 1664 (*pr)("\tfstypename = %s\n",mp->mnt_stat.f_fstypename); 1665 (*pr)("\tmntonname = %s\n",mp->mnt_stat.f_mntonname); 1666 (*pr)("\tmntfromname = %s\n",mp->mnt_stat.f_mntfromname); 1667 1668 { 1669 int cnt = 0; 1670 vnode_t *vp; 1671 vnode_impl_t *vip; 1672 (*pr)("locked vnodes ="); 1673 TAILQ_FOREACH(vip, &mp->mnt_vnodelist, vi_mntvnodes) { 1674 vp = VIMPL_TO_VNODE(vip); 1675 if (VOP_ISLOCKED(vp)) { 1676 if ((++cnt % 6) == 0) { 1677 (*pr)(" %p,\n\t", vp); 1678 } else { 1679 (*pr)(" %p,", vp); 1680 } 1681 } 1682 } 1683 (*pr)("\n"); 1684 } 1685 1686 if (full) { 1687 int cnt = 0; 1688 vnode_t *vp; 1689 vnode_impl_t *vip; 1690 (*pr)("all vnodes ="); 1691 TAILQ_FOREACH(vip, &mp->mnt_vnodelist, vi_mntvnodes) { 1692 vp = VIMPL_TO_VNODE(vip); 1693 if (!TAILQ_NEXT(vip, vi_mntvnodes)) { 1694 (*pr)(" %p", vp); 1695 } else if ((++cnt % 6) == 0) { 1696 (*pr)(" %p,\n\t", vp); 1697 } else { 1698 (*pr)(" %p,", vp); 1699 } 1700 } 1701 (*pr)("\n"); 1702 } 1703 } 1704 1705 /* 1706 * List all of the locked vnodes in the system. 1707 */ 1708 void printlockedvnodes(void); 1709 1710 void 1711 printlockedvnodes(void) 1712 { 1713 struct mount *mp; 1714 vnode_t *vp; 1715 vnode_impl_t *vip; 1716 1717 printf("Locked vnodes\n"); 1718 for (mp = _mountlist_next(NULL); mp; mp = _mountlist_next(mp)) { 1719 TAILQ_FOREACH(vip, &mp->mnt_vnodelist, vi_mntvnodes) { 1720 vp = VIMPL_TO_VNODE(vip); 1721 if (VOP_ISLOCKED(vp)) 1722 vprint(NULL, vp); 1723 } 1724 } 1725 } 1726 1727 #endif /* DDB || DEBUGPRINT */ 1728