1 /* $NetBSD: vfs_subr.c,v 1.474 2019/11/16 10:05:44 maxv Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1998, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center, by Charles M. Hannum, by Andrew Doran, 10 * by Marshall Kirk McKusick and Greg Ganger at the University of Michigan. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * Copyright (c) 1989, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. Neither the name of the University nor the names of its contributors 52 * may be used to endorse or promote products derived from this software 53 * without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * SUCH DAMAGE. 66 * 67 * @(#)vfs_subr.c 8.13 (Berkeley) 4/18/94 68 */ 69 70 #include <sys/cdefs.h> 71 __KERNEL_RCSID(0, "$NetBSD: vfs_subr.c,v 1.474 2019/11/16 10:05:44 maxv Exp $"); 72 73 #ifdef _KERNEL_OPT 74 #include "opt_ddb.h" 75 #include "opt_compat_netbsd.h" 76 #include "opt_compat_43.h" 77 #endif 78 79 #include <sys/param.h> 80 #include <sys/systm.h> 81 #include <sys/conf.h> 82 #include <sys/dirent.h> 83 #include <sys/filedesc.h> 84 #include <sys/kernel.h> 85 #include <sys/mount.h> 86 #include <sys/fstrans.h> 87 #include <sys/vnode_impl.h> 88 #include <sys/stat.h> 89 #include <sys/sysctl.h> 90 #include <sys/namei.h> 91 #include <sys/buf.h> 92 #include <sys/errno.h> 93 #include <sys/kmem.h> 94 #include <sys/syscallargs.h> 95 #include <sys/kauth.h> 96 #include <sys/module.h> 97 98 #include <miscfs/genfs/genfs.h> 99 #include <miscfs/specfs/specdev.h> 100 #include <uvm/uvm_ddb.h> 101 102 const enum vtype iftovt_tab[16] = { 103 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 104 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD, 105 }; 106 const int vttoif_tab[9] = { 107 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, 108 S_IFSOCK, S_IFIFO, S_IFMT, 109 }; 110 111 /* 112 * Insq/Remq for the vnode usage lists. 113 */ 114 #define bufinsvn(bp, dp) LIST_INSERT_HEAD(dp, bp, b_vnbufs) 115 #define bufremvn(bp) { \ 116 LIST_REMOVE(bp, b_vnbufs); \ 117 (bp)->b_vnbufs.le_next = NOLIST; \ 118 } 119 120 int doforce = 1; /* 1 => permit forcible unmounting */ 121 122 extern struct mount *dead_rootmount; 123 124 /* 125 * Local declarations. 126 */ 127 128 static void vn_initialize_syncerd(void); 129 130 /* 131 * Initialize the vnode management data structures. 132 */ 133 void 134 vntblinit(void) 135 { 136 137 vn_initialize_syncerd(); 138 vfs_mount_sysinit(); 139 vfs_vnode_sysinit(); 140 } 141 142 /* 143 * Flush out and invalidate all buffers associated with a vnode. 144 * Called with the underlying vnode locked, which should prevent new dirty 145 * buffers from being queued. 146 */ 147 int 148 vinvalbuf(struct vnode *vp, int flags, kauth_cred_t cred, struct lwp *l, 149 bool catch_p, int slptimeo) 150 { 151 struct buf *bp, *nbp; 152 int error; 153 int flushflags = PGO_ALLPAGES | PGO_FREE | PGO_SYNCIO | 154 (flags & V_SAVE ? PGO_CLEANIT | PGO_RECLAIM : 0); 155 156 /* XXXUBC this doesn't look at flags or slp* */ 157 mutex_enter(vp->v_interlock); 158 error = VOP_PUTPAGES(vp, 0, 0, flushflags); 159 if (error) { 160 return error; 161 } 162 163 if (flags & V_SAVE) { 164 error = VOP_FSYNC(vp, cred, FSYNC_WAIT|FSYNC_RECLAIM, 0, 0); 165 if (error) 166 return (error); 167 KASSERT(LIST_EMPTY(&vp->v_dirtyblkhd)); 168 } 169 170 mutex_enter(&bufcache_lock); 171 restart: 172 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 173 KASSERT(bp->b_vp == vp); 174 nbp = LIST_NEXT(bp, b_vnbufs); 175 error = bbusy(bp, catch_p, slptimeo, NULL); 176 if (error != 0) { 177 if (error == EPASSTHROUGH) 178 goto restart; 179 mutex_exit(&bufcache_lock); 180 return (error); 181 } 182 brelsel(bp, BC_INVAL | BC_VFLUSH); 183 } 184 185 for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) { 186 KASSERT(bp->b_vp == vp); 187 nbp = LIST_NEXT(bp, b_vnbufs); 188 error = bbusy(bp, catch_p, slptimeo, NULL); 189 if (error != 0) { 190 if (error == EPASSTHROUGH) 191 goto restart; 192 mutex_exit(&bufcache_lock); 193 return (error); 194 } 195 /* 196 * XXX Since there are no node locks for NFS, I believe 197 * there is a slight chance that a delayed write will 198 * occur while sleeping just above, so check for it. 199 */ 200 if ((bp->b_oflags & BO_DELWRI) && (flags & V_SAVE)) { 201 #ifdef DEBUG 202 printf("buffer still DELWRI\n"); 203 #endif 204 bp->b_cflags |= BC_BUSY | BC_VFLUSH; 205 mutex_exit(&bufcache_lock); 206 VOP_BWRITE(bp->b_vp, bp); 207 mutex_enter(&bufcache_lock); 208 goto restart; 209 } 210 brelsel(bp, BC_INVAL | BC_VFLUSH); 211 } 212 213 #ifdef DIAGNOSTIC 214 if (!LIST_EMPTY(&vp->v_cleanblkhd) || !LIST_EMPTY(&vp->v_dirtyblkhd)) 215 panic("vinvalbuf: flush failed, vp %p", vp); 216 #endif 217 218 mutex_exit(&bufcache_lock); 219 220 return (0); 221 } 222 223 /* 224 * Destroy any in core blocks past the truncation length. 225 * Called with the underlying vnode locked, which should prevent new dirty 226 * buffers from being queued. 227 */ 228 int 229 vtruncbuf(struct vnode *vp, daddr_t lbn, bool catch_p, int slptimeo) 230 { 231 struct buf *bp, *nbp; 232 int error; 233 voff_t off; 234 235 off = round_page((voff_t)lbn << vp->v_mount->mnt_fs_bshift); 236 mutex_enter(vp->v_interlock); 237 error = VOP_PUTPAGES(vp, off, 0, PGO_FREE | PGO_SYNCIO); 238 if (error) { 239 return error; 240 } 241 242 mutex_enter(&bufcache_lock); 243 restart: 244 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 245 KASSERT(bp->b_vp == vp); 246 nbp = LIST_NEXT(bp, b_vnbufs); 247 if (bp->b_lblkno < lbn) 248 continue; 249 error = bbusy(bp, catch_p, slptimeo, NULL); 250 if (error != 0) { 251 if (error == EPASSTHROUGH) 252 goto restart; 253 mutex_exit(&bufcache_lock); 254 return (error); 255 } 256 brelsel(bp, BC_INVAL | BC_VFLUSH); 257 } 258 259 for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) { 260 KASSERT(bp->b_vp == vp); 261 nbp = LIST_NEXT(bp, b_vnbufs); 262 if (bp->b_lblkno < lbn) 263 continue; 264 error = bbusy(bp, catch_p, slptimeo, NULL); 265 if (error != 0) { 266 if (error == EPASSTHROUGH) 267 goto restart; 268 mutex_exit(&bufcache_lock); 269 return (error); 270 } 271 brelsel(bp, BC_INVAL | BC_VFLUSH); 272 } 273 mutex_exit(&bufcache_lock); 274 275 return (0); 276 } 277 278 /* 279 * Flush all dirty buffers from a vnode. 280 * Called with the underlying vnode locked, which should prevent new dirty 281 * buffers from being queued. 282 */ 283 int 284 vflushbuf(struct vnode *vp, int flags) 285 { 286 struct buf *bp, *nbp; 287 int error, pflags; 288 bool dirty, sync; 289 290 sync = (flags & FSYNC_WAIT) != 0; 291 pflags = PGO_CLEANIT | PGO_ALLPAGES | 292 (sync ? PGO_SYNCIO : 0) | 293 ((flags & FSYNC_LAZY) ? PGO_LAZY : 0); 294 mutex_enter(vp->v_interlock); 295 (void) VOP_PUTPAGES(vp, 0, 0, pflags); 296 297 loop: 298 mutex_enter(&bufcache_lock); 299 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 300 KASSERT(bp->b_vp == vp); 301 nbp = LIST_NEXT(bp, b_vnbufs); 302 if ((bp->b_cflags & BC_BUSY)) 303 continue; 304 if ((bp->b_oflags & BO_DELWRI) == 0) 305 panic("vflushbuf: not dirty, bp %p", bp); 306 bp->b_cflags |= BC_BUSY | BC_VFLUSH; 307 mutex_exit(&bufcache_lock); 308 /* 309 * Wait for I/O associated with indirect blocks to complete, 310 * since there is no way to quickly wait for them below. 311 */ 312 if (bp->b_vp == vp || !sync) 313 (void) bawrite(bp); 314 else { 315 error = bwrite(bp); 316 if (error) 317 return error; 318 } 319 goto loop; 320 } 321 mutex_exit(&bufcache_lock); 322 323 if (!sync) 324 return 0; 325 326 mutex_enter(vp->v_interlock); 327 while (vp->v_numoutput != 0) 328 cv_wait(&vp->v_cv, vp->v_interlock); 329 dirty = !LIST_EMPTY(&vp->v_dirtyblkhd); 330 mutex_exit(vp->v_interlock); 331 332 if (dirty) { 333 vprint("vflushbuf: dirty", vp); 334 goto loop; 335 } 336 337 return 0; 338 } 339 340 /* 341 * Create a vnode for a block device. 342 * Used for root filesystem and swap areas. 343 * Also used for memory file system special devices. 344 */ 345 int 346 bdevvp(dev_t dev, vnode_t **vpp) 347 { 348 struct vattr va; 349 350 vattr_null(&va); 351 va.va_type = VBLK; 352 va.va_rdev = dev; 353 354 return vcache_new(dead_rootmount, NULL, &va, NOCRED, NULL, vpp); 355 } 356 357 /* 358 * Create a vnode for a character device. 359 * Used for kernfs and some console handling. 360 */ 361 int 362 cdevvp(dev_t dev, vnode_t **vpp) 363 { 364 struct vattr va; 365 366 vattr_null(&va); 367 va.va_type = VCHR; 368 va.va_rdev = dev; 369 370 return vcache_new(dead_rootmount, NULL, &va, NOCRED, NULL, vpp); 371 } 372 373 /* 374 * Associate a buffer with a vnode. There must already be a hold on 375 * the vnode. 376 */ 377 void 378 bgetvp(struct vnode *vp, struct buf *bp) 379 { 380 381 KASSERT(bp->b_vp == NULL); 382 KASSERT(bp->b_objlock == &buffer_lock); 383 KASSERT(mutex_owned(vp->v_interlock)); 384 KASSERT(mutex_owned(&bufcache_lock)); 385 KASSERT((bp->b_cflags & BC_BUSY) != 0); 386 KASSERT(!cv_has_waiters(&bp->b_done)); 387 388 vholdl(vp); 389 bp->b_vp = vp; 390 if (vp->v_type == VBLK || vp->v_type == VCHR) 391 bp->b_dev = vp->v_rdev; 392 else 393 bp->b_dev = NODEV; 394 395 /* 396 * Insert onto list for new vnode. 397 */ 398 bufinsvn(bp, &vp->v_cleanblkhd); 399 bp->b_objlock = vp->v_interlock; 400 } 401 402 /* 403 * Disassociate a buffer from a vnode. 404 */ 405 void 406 brelvp(struct buf *bp) 407 { 408 struct vnode *vp = bp->b_vp; 409 410 KASSERT(vp != NULL); 411 KASSERT(bp->b_objlock == vp->v_interlock); 412 KASSERT(mutex_owned(vp->v_interlock)); 413 KASSERT(mutex_owned(&bufcache_lock)); 414 KASSERT((bp->b_cflags & BC_BUSY) != 0); 415 KASSERT(!cv_has_waiters(&bp->b_done)); 416 417 /* 418 * Delete from old vnode list, if on one. 419 */ 420 if (LIST_NEXT(bp, b_vnbufs) != NOLIST) 421 bufremvn(bp); 422 423 if (vp->v_uobj.uo_npages == 0 && (vp->v_iflag & VI_ONWORKLST) && 424 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { 425 vp->v_iflag &= ~VI_WRMAPDIRTY; 426 vn_syncer_remove_from_worklist(vp); 427 } 428 429 bp->b_objlock = &buffer_lock; 430 bp->b_vp = NULL; 431 holdrelel(vp); 432 } 433 434 /* 435 * Reassign a buffer from one vnode list to another. 436 * The list reassignment must be within the same vnode. 437 * Used to assign file specific control information 438 * (indirect blocks) to the list to which they belong. 439 */ 440 void 441 reassignbuf(struct buf *bp, struct vnode *vp) 442 { 443 struct buflists *listheadp; 444 int delayx; 445 446 KASSERT(mutex_owned(&bufcache_lock)); 447 KASSERT(bp->b_objlock == vp->v_interlock); 448 KASSERT(mutex_owned(vp->v_interlock)); 449 KASSERT((bp->b_cflags & BC_BUSY) != 0); 450 451 /* 452 * Delete from old vnode list, if on one. 453 */ 454 if (LIST_NEXT(bp, b_vnbufs) != NOLIST) 455 bufremvn(bp); 456 457 /* 458 * If dirty, put on list of dirty buffers; 459 * otherwise insert onto list of clean buffers. 460 */ 461 if ((bp->b_oflags & BO_DELWRI) == 0) { 462 listheadp = &vp->v_cleanblkhd; 463 if (vp->v_uobj.uo_npages == 0 && 464 (vp->v_iflag & VI_ONWORKLST) && 465 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { 466 vp->v_iflag &= ~VI_WRMAPDIRTY; 467 vn_syncer_remove_from_worklist(vp); 468 } 469 } else { 470 listheadp = &vp->v_dirtyblkhd; 471 if ((vp->v_iflag & VI_ONWORKLST) == 0) { 472 switch (vp->v_type) { 473 case VDIR: 474 delayx = dirdelay; 475 break; 476 case VBLK: 477 if (spec_node_getmountedfs(vp) != NULL) { 478 delayx = metadelay; 479 break; 480 } 481 /* fall through */ 482 default: 483 delayx = filedelay; 484 break; 485 } 486 if (!vp->v_mount || 487 (vp->v_mount->mnt_flag & MNT_ASYNC) == 0) 488 vn_syncer_add_to_worklist(vp, delayx); 489 } 490 } 491 bufinsvn(bp, listheadp); 492 } 493 494 /* 495 * Lookup a vnode by device number and return it referenced. 496 */ 497 int 498 vfinddev(dev_t dev, enum vtype type, vnode_t **vpp) 499 { 500 501 return (spec_node_lookup_by_dev(type, dev, vpp) == 0); 502 } 503 504 /* 505 * Revoke all the vnodes corresponding to the specified minor number 506 * range (endpoints inclusive) of the specified major. 507 */ 508 void 509 vdevgone(int maj, int minl, int minh, enum vtype type) 510 { 511 vnode_t *vp; 512 dev_t dev; 513 int mn; 514 515 for (mn = minl; mn <= minh; mn++) { 516 dev = makedev(maj, mn); 517 while (spec_node_lookup_by_dev(type, dev, &vp) == 0) { 518 VOP_REVOKE(vp, REVOKEALL); 519 vrele(vp); 520 } 521 } 522 } 523 524 /* 525 * The filesystem synchronizer mechanism - syncer. 526 * 527 * It is useful to delay writes of file data and filesystem metadata for 528 * a certain amount of time so that quickly created and deleted files need 529 * not waste disk bandwidth being created and removed. To implement this, 530 * vnodes are appended to a "workitem" queue. 531 * 532 * Most pending metadata should not wait for more than ten seconds. Thus, 533 * mounted on block devices are delayed only about a half the time that file 534 * data is delayed. Similarly, directory updates are more critical, so are 535 * only delayed about a third the time that file data is delayed. 536 * 537 * There are SYNCER_MAXDELAY queues that are processed in a round-robin 538 * manner at a rate of one each second (driven off the filesystem syner 539 * thread). The syncer_delayno variable indicates the next queue that is 540 * to be processed. Items that need to be processed soon are placed in 541 * this queue: 542 * 543 * syncer_workitem_pending[syncer_delayno] 544 * 545 * A delay of e.g. fifteen seconds is done by placing the request fifteen 546 * entries later in the queue: 547 * 548 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask] 549 * 550 * Flag VI_ONWORKLST indicates that vnode is added into the queue. 551 */ 552 553 #define SYNCER_MAXDELAY 32 554 555 typedef TAILQ_HEAD(synclist, vnode_impl) synclist_t; 556 557 static void vn_syncer_add1(struct vnode *, int); 558 static void sysctl_vfs_syncfs_setup(struct sysctllog **); 559 560 /* 561 * Defines and variables for the syncer process. 562 */ 563 int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */ 564 time_t syncdelay = 30; /* max time to delay syncing data */ 565 time_t filedelay = 30; /* time to delay syncing files */ 566 time_t dirdelay = 15; /* time to delay syncing directories */ 567 time_t metadelay = 10; /* time to delay syncing metadata */ 568 time_t lockdelay = 1; /* time to delay if locking fails */ 569 570 static kmutex_t syncer_data_lock; /* short term lock on data structs */ 571 572 static int syncer_delayno = 0; 573 static long syncer_last; 574 static synclist_t * syncer_workitem_pending; 575 576 static void 577 vn_initialize_syncerd(void) 578 { 579 int i; 580 581 syncer_last = SYNCER_MAXDELAY + 2; 582 583 sysctl_vfs_syncfs_setup(NULL); 584 585 syncer_workitem_pending = 586 kmem_alloc(syncer_last * sizeof (struct synclist), KM_SLEEP); 587 588 for (i = 0; i < syncer_last; i++) 589 TAILQ_INIT(&syncer_workitem_pending[i]); 590 591 mutex_init(&syncer_data_lock, MUTEX_DEFAULT, IPL_NONE); 592 } 593 594 /* 595 * Return delay factor appropriate for the given file system. For 596 * WAPBL we use the sync vnode to burst out metadata updates: sync 597 * those file systems more frequently. 598 */ 599 static inline int 600 sync_delay(struct mount *mp) 601 { 602 603 return mp->mnt_wapbl != NULL ? metadelay : syncdelay; 604 } 605 606 /* 607 * Compute the next slot index from delay. 608 */ 609 static inline int 610 sync_delay_slot(int delayx) 611 { 612 613 if (delayx > syncer_maxdelay - 2) 614 delayx = syncer_maxdelay - 2; 615 return (syncer_delayno + delayx) % syncer_last; 616 } 617 618 /* 619 * Add an item to the syncer work queue. 620 */ 621 static void 622 vn_syncer_add1(struct vnode *vp, int delayx) 623 { 624 synclist_t *slp; 625 vnode_impl_t *vip = VNODE_TO_VIMPL(vp); 626 627 KASSERT(mutex_owned(&syncer_data_lock)); 628 629 if (vp->v_iflag & VI_ONWORKLST) { 630 /* 631 * Remove in order to adjust the position of the vnode. 632 * Note: called from sched_sync(), which will not hold 633 * interlock, therefore we cannot modify v_iflag here. 634 */ 635 slp = &syncer_workitem_pending[vip->vi_synclist_slot]; 636 TAILQ_REMOVE(slp, vip, vi_synclist); 637 } else { 638 KASSERT(mutex_owned(vp->v_interlock)); 639 vp->v_iflag |= VI_ONWORKLST; 640 } 641 642 vip->vi_synclist_slot = sync_delay_slot(delayx); 643 644 slp = &syncer_workitem_pending[vip->vi_synclist_slot]; 645 TAILQ_INSERT_TAIL(slp, vip, vi_synclist); 646 } 647 648 void 649 vn_syncer_add_to_worklist(struct vnode *vp, int delayx) 650 { 651 652 KASSERT(mutex_owned(vp->v_interlock)); 653 654 mutex_enter(&syncer_data_lock); 655 vn_syncer_add1(vp, delayx); 656 mutex_exit(&syncer_data_lock); 657 } 658 659 /* 660 * Remove an item from the syncer work queue. 661 */ 662 void 663 vn_syncer_remove_from_worklist(struct vnode *vp) 664 { 665 synclist_t *slp; 666 vnode_impl_t *vip = VNODE_TO_VIMPL(vp); 667 668 KASSERT(mutex_owned(vp->v_interlock)); 669 670 mutex_enter(&syncer_data_lock); 671 if (vp->v_iflag & VI_ONWORKLST) { 672 vp->v_iflag &= ~VI_ONWORKLST; 673 slp = &syncer_workitem_pending[vip->vi_synclist_slot]; 674 TAILQ_REMOVE(slp, vip, vi_synclist); 675 } 676 mutex_exit(&syncer_data_lock); 677 } 678 679 /* 680 * Add this mount point to the syncer. 681 */ 682 void 683 vfs_syncer_add_to_worklist(struct mount *mp) 684 { 685 static int start, incr, next; 686 int vdelay; 687 688 KASSERT(mutex_owned(&mp->mnt_updating)); 689 KASSERT((mp->mnt_iflag & IMNT_ONWORKLIST) == 0); 690 691 /* 692 * We attempt to scatter the mount points on the list 693 * so that they will go off at evenly distributed times 694 * even if all the filesystems are mounted at once. 695 */ 696 697 next += incr; 698 if (next == 0 || next > syncer_maxdelay) { 699 start /= 2; 700 incr /= 2; 701 if (start == 0) { 702 start = syncer_maxdelay / 2; 703 incr = syncer_maxdelay; 704 } 705 next = start; 706 } 707 mp->mnt_iflag |= IMNT_ONWORKLIST; 708 vdelay = sync_delay(mp); 709 mp->mnt_synclist_slot = vdelay > 0 ? next % vdelay : 0; 710 } 711 712 /* 713 * Remove the mount point from the syncer. 714 */ 715 void 716 vfs_syncer_remove_from_worklist(struct mount *mp) 717 { 718 719 KASSERT(mutex_owned(&mp->mnt_updating)); 720 KASSERT((mp->mnt_iflag & IMNT_ONWORKLIST) != 0); 721 722 mp->mnt_iflag &= ~IMNT_ONWORKLIST; 723 } 724 725 /* 726 * Try lazy sync, return true on success. 727 */ 728 static bool 729 lazy_sync_vnode(struct vnode *vp) 730 { 731 bool synced; 732 733 KASSERT(mutex_owned(&syncer_data_lock)); 734 735 synced = false; 736 /* We are locking in the wrong direction. */ 737 if (mutex_tryenter(vp->v_interlock)) { 738 mutex_exit(&syncer_data_lock); 739 if (vcache_tryvget(vp) == 0) { 740 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 741 synced = true; 742 (void) VOP_FSYNC(vp, curlwp->l_cred, 743 FSYNC_LAZY, 0, 0); 744 vput(vp); 745 } else 746 vrele(vp); 747 } 748 mutex_enter(&syncer_data_lock); 749 } 750 return synced; 751 } 752 753 /* 754 * System filesystem synchronizer daemon. 755 */ 756 void 757 sched_sync(void *arg) 758 { 759 mount_iterator_t *iter; 760 synclist_t *slp; 761 struct vnode_impl *vi; 762 struct vnode *vp; 763 struct mount *mp; 764 time_t starttime; 765 bool synced; 766 767 for (;;) { 768 starttime = time_second; 769 770 /* 771 * Sync mounts whose dirty time has expired. 772 */ 773 mountlist_iterator_init(&iter); 774 while ((mp = mountlist_iterator_trynext(iter)) != NULL) { 775 if ((mp->mnt_iflag & IMNT_ONWORKLIST) == 0 || 776 mp->mnt_synclist_slot != syncer_delayno) { 777 continue; 778 } 779 mp->mnt_synclist_slot = sync_delay_slot(sync_delay(mp)); 780 VFS_SYNC(mp, MNT_LAZY, curlwp->l_cred); 781 } 782 mountlist_iterator_destroy(iter); 783 784 mutex_enter(&syncer_data_lock); 785 786 /* 787 * Push files whose dirty time has expired. 788 */ 789 slp = &syncer_workitem_pending[syncer_delayno]; 790 syncer_delayno += 1; 791 if (syncer_delayno >= syncer_last) 792 syncer_delayno = 0; 793 794 while ((vi = TAILQ_FIRST(slp)) != NULL) { 795 vp = VIMPL_TO_VNODE(vi); 796 synced = lazy_sync_vnode(vp); 797 798 /* 799 * XXX The vnode may have been recycled, in which 800 * case it may have a new identity. 801 */ 802 vi = TAILQ_FIRST(slp); 803 if (vi != NULL && VIMPL_TO_VNODE(vi) == vp) { 804 /* 805 * Put us back on the worklist. The worklist 806 * routine will remove us from our current 807 * position and then add us back in at a later 808 * position. 809 * 810 * Try again sooner rather than later if 811 * we were unable to lock the vnode. Lock 812 * failure should not prevent us from doing 813 * the sync "soon". 814 * 815 * If we locked it yet arrive here, it's 816 * likely that lazy sync is in progress and 817 * so the vnode still has dirty metadata. 818 * syncdelay is mainly to get this vnode out 819 * of the way so we do not consider it again 820 * "soon" in this loop, so the delay time is 821 * not critical as long as it is not "soon". 822 * While write-back strategy is the file 823 * system's domain, we expect write-back to 824 * occur no later than syncdelay seconds 825 * into the future. 826 */ 827 vn_syncer_add1(vp, 828 synced ? syncdelay : lockdelay); 829 } 830 } 831 832 /* 833 * If it has taken us less than a second to process the 834 * current work, then wait. Otherwise start right over 835 * again. We can still lose time if any single round 836 * takes more than two seconds, but it does not really 837 * matter as we are just trying to generally pace the 838 * filesystem activity. 839 */ 840 if (time_second == starttime) { 841 kpause("syncer", false, hz, &syncer_data_lock); 842 } 843 mutex_exit(&syncer_data_lock); 844 } 845 } 846 847 static void 848 sysctl_vfs_syncfs_setup(struct sysctllog **clog) 849 { 850 const struct sysctlnode *rnode, *cnode; 851 852 sysctl_createv(clog, 0, NULL, &rnode, 853 CTLFLAG_PERMANENT, 854 CTLTYPE_NODE, "sync", 855 SYSCTL_DESCR("syncer options"), 856 NULL, 0, NULL, 0, 857 CTL_VFS, CTL_CREATE, CTL_EOL); 858 859 sysctl_createv(clog, 0, &rnode, &cnode, 860 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 861 CTLTYPE_QUAD, "delay", 862 SYSCTL_DESCR("max time to delay syncing data"), 863 NULL, 0, &syncdelay, 0, 864 CTL_CREATE, CTL_EOL); 865 866 sysctl_createv(clog, 0, &rnode, &cnode, 867 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 868 CTLTYPE_QUAD, "filedelay", 869 SYSCTL_DESCR("time to delay syncing files"), 870 NULL, 0, &filedelay, 0, 871 CTL_CREATE, CTL_EOL); 872 873 sysctl_createv(clog, 0, &rnode, &cnode, 874 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 875 CTLTYPE_QUAD, "dirdelay", 876 SYSCTL_DESCR("time to delay syncing directories"), 877 NULL, 0, &dirdelay, 0, 878 CTL_CREATE, CTL_EOL); 879 880 sysctl_createv(clog, 0, &rnode, &cnode, 881 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 882 CTLTYPE_QUAD, "metadelay", 883 SYSCTL_DESCR("time to delay syncing metadata"), 884 NULL, 0, &metadelay, 0, 885 CTL_CREATE, CTL_EOL); 886 } 887 888 /* 889 * sysctl helper routine to return list of supported fstypes 890 */ 891 int 892 sysctl_vfs_generic_fstypes(SYSCTLFN_ARGS) 893 { 894 char bf[sizeof(((struct statvfs *)NULL)->f_fstypename)]; 895 char *where = oldp; 896 struct vfsops *v; 897 size_t needed, left, slen; 898 int error, first; 899 900 if (newp != NULL) 901 return (EPERM); 902 if (namelen != 0) 903 return (EINVAL); 904 905 first = 1; 906 error = 0; 907 needed = 0; 908 left = *oldlenp; 909 910 sysctl_unlock(); 911 mutex_enter(&vfs_list_lock); 912 LIST_FOREACH(v, &vfs_list, vfs_list) { 913 if (where == NULL) 914 needed += strlen(v->vfs_name) + 1; 915 else { 916 memset(bf, 0, sizeof(bf)); 917 if (first) { 918 strncpy(bf, v->vfs_name, sizeof(bf)); 919 first = 0; 920 } else { 921 bf[0] = ' '; 922 strncpy(bf + 1, v->vfs_name, sizeof(bf) - 1); 923 } 924 bf[sizeof(bf)-1] = '\0'; 925 slen = strlen(bf); 926 if (left < slen + 1) 927 break; 928 v->vfs_refcount++; 929 mutex_exit(&vfs_list_lock); 930 /* +1 to copy out the trailing NUL byte */ 931 error = copyout(bf, where, slen + 1); 932 mutex_enter(&vfs_list_lock); 933 v->vfs_refcount--; 934 if (error) 935 break; 936 where += slen; 937 needed += slen; 938 left -= slen; 939 } 940 } 941 mutex_exit(&vfs_list_lock); 942 sysctl_relock(); 943 *oldlenp = needed; 944 return (error); 945 } 946 947 int kinfo_vdebug = 1; 948 int kinfo_vgetfailed; 949 950 #define KINFO_VNODESLOP 10 951 952 /* 953 * Dump vnode list (via sysctl). 954 * Copyout address of vnode followed by vnode. 955 */ 956 int 957 sysctl_kern_vnode(SYSCTLFN_ARGS) 958 { 959 char *where = oldp; 960 size_t *sizep = oldlenp; 961 struct mount *mp; 962 vnode_t *vp, vbuf; 963 mount_iterator_t *iter; 964 struct vnode_iterator *marker; 965 char *bp = where; 966 char *ewhere; 967 int error; 968 969 if (namelen != 0) 970 return (EOPNOTSUPP); 971 if (newp != NULL) 972 return (EPERM); 973 974 #define VPTRSZ sizeof(vnode_t *) 975 #define VNODESZ sizeof(vnode_t) 976 if (where == NULL) { 977 *sizep = (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ); 978 return (0); 979 } 980 ewhere = where + *sizep; 981 982 sysctl_unlock(); 983 mountlist_iterator_init(&iter); 984 while ((mp = mountlist_iterator_next(iter)) != NULL) { 985 vfs_vnode_iterator_init(mp, &marker); 986 while ((vp = vfs_vnode_iterator_next(marker, NULL, NULL))) { 987 if (bp + VPTRSZ + VNODESZ > ewhere) { 988 vrele(vp); 989 vfs_vnode_iterator_destroy(marker); 990 mountlist_iterator_destroy(iter); 991 sysctl_relock(); 992 *sizep = bp - where; 993 return (ENOMEM); 994 } 995 memcpy(&vbuf, vp, VNODESZ); 996 if ((error = copyout(&vp, bp, VPTRSZ)) || 997 (error = copyout(&vbuf, bp + VPTRSZ, VNODESZ))) { 998 vrele(vp); 999 vfs_vnode_iterator_destroy(marker); 1000 mountlist_iterator_destroy(iter); 1001 sysctl_relock(); 1002 return (error); 1003 } 1004 vrele(vp); 1005 bp += VPTRSZ + VNODESZ; 1006 } 1007 vfs_vnode_iterator_destroy(marker); 1008 } 1009 mountlist_iterator_destroy(iter); 1010 sysctl_relock(); 1011 1012 *sizep = bp - where; 1013 return (0); 1014 } 1015 1016 /* 1017 * Set vnode attributes to VNOVAL 1018 */ 1019 void 1020 vattr_null(struct vattr *vap) 1021 { 1022 1023 memset(vap, 0, sizeof(*vap)); 1024 1025 vap->va_type = VNON; 1026 1027 /* 1028 * Assign individually so that it is safe even if size and 1029 * sign of each member are varied. 1030 */ 1031 vap->va_mode = VNOVAL; 1032 vap->va_nlink = VNOVAL; 1033 vap->va_uid = VNOVAL; 1034 vap->va_gid = VNOVAL; 1035 vap->va_fsid = VNOVAL; 1036 vap->va_fileid = VNOVAL; 1037 vap->va_size = VNOVAL; 1038 vap->va_blocksize = VNOVAL; 1039 vap->va_atime.tv_sec = 1040 vap->va_mtime.tv_sec = 1041 vap->va_ctime.tv_sec = 1042 vap->va_birthtime.tv_sec = VNOVAL; 1043 vap->va_atime.tv_nsec = 1044 vap->va_mtime.tv_nsec = 1045 vap->va_ctime.tv_nsec = 1046 vap->va_birthtime.tv_nsec = VNOVAL; 1047 vap->va_gen = VNOVAL; 1048 vap->va_flags = VNOVAL; 1049 vap->va_rdev = VNOVAL; 1050 vap->va_bytes = VNOVAL; 1051 } 1052 1053 /* 1054 * Vnode state to string. 1055 */ 1056 const char * 1057 vstate_name(enum vnode_state state) 1058 { 1059 1060 switch (state) { 1061 case VS_ACTIVE: 1062 return "ACTIVE"; 1063 case VS_MARKER: 1064 return "MARKER"; 1065 case VS_LOADING: 1066 return "LOADING"; 1067 case VS_LOADED: 1068 return "LOADED"; 1069 case VS_BLOCKED: 1070 return "BLOCKED"; 1071 case VS_RECLAIMING: 1072 return "RECLAIMING"; 1073 case VS_RECLAIMED: 1074 return "RECLAIMED"; 1075 default: 1076 return "ILLEGAL"; 1077 } 1078 } 1079 1080 /* 1081 * Print a description of a vnode (common part). 1082 */ 1083 static void 1084 vprint_common(struct vnode *vp, const char *prefix, 1085 void (*pr)(const char *, ...) __printflike(1, 2)) 1086 { 1087 int n; 1088 char bf[96]; 1089 const uint8_t *cp; 1090 vnode_impl_t *vip; 1091 const char * const vnode_tags[] = { VNODE_TAGS }; 1092 const char * const vnode_types[] = { VNODE_TYPES }; 1093 const char vnode_flagbits[] = VNODE_FLAGBITS; 1094 1095 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof(arr[0])) 1096 #define ARRAY_PRINT(idx, arr) \ 1097 ((unsigned int)(idx) < ARRAY_SIZE(arr) ? (arr)[(idx)] : "UNKNOWN") 1098 1099 vip = VNODE_TO_VIMPL(vp); 1100 1101 snprintb(bf, sizeof(bf), 1102 vnode_flagbits, vp->v_iflag | vp->v_vflag | vp->v_uflag); 1103 1104 (*pr)("vnode %p flags %s\n", vp, bf); 1105 (*pr)("%stag %s(%d) type %s(%d) mount %p typedata %p\n", prefix, 1106 ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag, 1107 ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type, 1108 vp->v_mount, vp->v_mountedhere); 1109 (*pr)("%susecount %d writecount %d holdcount %d\n", prefix, 1110 vp->v_usecount, vp->v_writecount, vp->v_holdcnt); 1111 (*pr)("%ssize %" PRIx64 " writesize %" PRIx64 " numoutput %d\n", 1112 prefix, vp->v_size, vp->v_writesize, vp->v_numoutput); 1113 (*pr)("%sdata %p lock %p\n", prefix, vp->v_data, &vip->vi_lock); 1114 1115 (*pr)("%sstate %s key(%p %zd)", prefix, vstate_name(vip->vi_state), 1116 vip->vi_key.vk_mount, vip->vi_key.vk_key_len); 1117 n = vip->vi_key.vk_key_len; 1118 cp = vip->vi_key.vk_key; 1119 while (n-- > 0) 1120 (*pr)(" %02x", *cp++); 1121 (*pr)("\n"); 1122 (*pr)("%slrulisthd %p\n", prefix, vip->vi_lrulisthd); 1123 1124 #undef ARRAY_PRINT 1125 #undef ARRAY_SIZE 1126 } 1127 1128 /* 1129 * Print out a description of a vnode. 1130 */ 1131 void 1132 vprint(const char *label, struct vnode *vp) 1133 { 1134 1135 if (label != NULL) 1136 printf("%s: ", label); 1137 vprint_common(vp, "\t", printf); 1138 if (vp->v_data != NULL) { 1139 printf("\t"); 1140 VOP_PRINT(vp); 1141 } 1142 } 1143 1144 /* Deprecated. Kept for KPI compatibility. */ 1145 int 1146 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid, 1147 mode_t acc_mode, kauth_cred_t cred) 1148 { 1149 1150 #ifdef DIAGNOSTIC 1151 printf("vaccess: deprecated interface used.\n"); 1152 #endif /* DIAGNOSTIC */ 1153 1154 return kauth_authorize_vnode(cred, KAUTH_ACCESS_ACTION(acc_mode, 1155 type, file_mode), NULL /* This may panic. */, NULL, 1156 genfs_can_access(type, file_mode, uid, gid, acc_mode, cred)); 1157 } 1158 1159 /* 1160 * Given a file system name, look up the vfsops for that 1161 * file system, or return NULL if file system isn't present 1162 * in the kernel. 1163 */ 1164 struct vfsops * 1165 vfs_getopsbyname(const char *name) 1166 { 1167 struct vfsops *v; 1168 1169 mutex_enter(&vfs_list_lock); 1170 LIST_FOREACH(v, &vfs_list, vfs_list) { 1171 if (strcmp(v->vfs_name, name) == 0) 1172 break; 1173 } 1174 if (v != NULL) 1175 v->vfs_refcount++; 1176 mutex_exit(&vfs_list_lock); 1177 1178 return (v); 1179 } 1180 1181 void 1182 copy_statvfs_info(struct statvfs *sbp, const struct mount *mp) 1183 { 1184 const struct statvfs *mbp; 1185 1186 if (sbp == (mbp = &mp->mnt_stat)) 1187 return; 1188 1189 (void)memcpy(&sbp->f_fsidx, &mbp->f_fsidx, sizeof(sbp->f_fsidx)); 1190 sbp->f_fsid = mbp->f_fsid; 1191 sbp->f_owner = mbp->f_owner; 1192 sbp->f_flag = mbp->f_flag; 1193 sbp->f_syncwrites = mbp->f_syncwrites; 1194 sbp->f_asyncwrites = mbp->f_asyncwrites; 1195 sbp->f_syncreads = mbp->f_syncreads; 1196 sbp->f_asyncreads = mbp->f_asyncreads; 1197 (void)memcpy(sbp->f_spare, mbp->f_spare, sizeof(mbp->f_spare)); 1198 (void)memcpy(sbp->f_fstypename, mbp->f_fstypename, 1199 sizeof(sbp->f_fstypename)); 1200 (void)memcpy(sbp->f_mntonname, mbp->f_mntonname, 1201 sizeof(sbp->f_mntonname)); 1202 (void)memcpy(sbp->f_mntfromname, mp->mnt_stat.f_mntfromname, 1203 sizeof(sbp->f_mntfromname)); 1204 (void)memcpy(sbp->f_mntfromlabel, mp->mnt_stat.f_mntfromlabel, 1205 sizeof(sbp->f_mntfromlabel)); 1206 sbp->f_namemax = mbp->f_namemax; 1207 } 1208 1209 int 1210 set_statvfs_info(const char *onp, int ukon, const char *fromp, int ukfrom, 1211 const char *vfsname, struct mount *mp, struct lwp *l) 1212 { 1213 int error; 1214 size_t size; 1215 struct statvfs *sfs = &mp->mnt_stat; 1216 int (*fun)(const void *, void *, size_t, size_t *); 1217 1218 (void)strlcpy(mp->mnt_stat.f_fstypename, vfsname, 1219 sizeof(mp->mnt_stat.f_fstypename)); 1220 1221 if (onp) { 1222 struct cwdinfo *cwdi = l->l_proc->p_cwdi; 1223 fun = (ukon == UIO_SYSSPACE) ? copystr : copyinstr; 1224 if (cwdi->cwdi_rdir != NULL) { 1225 size_t len; 1226 char *bp; 1227 char *path = PNBUF_GET(); 1228 1229 bp = path + MAXPATHLEN; 1230 *--bp = '\0'; 1231 rw_enter(&cwdi->cwdi_lock, RW_READER); 1232 error = getcwd_common(cwdi->cwdi_rdir, rootvnode, &bp, 1233 path, MAXPATHLEN / 2, 0, l); 1234 rw_exit(&cwdi->cwdi_lock); 1235 if (error) { 1236 PNBUF_PUT(path); 1237 return error; 1238 } 1239 1240 len = strlen(bp); 1241 if (len > sizeof(sfs->f_mntonname) - 1) 1242 len = sizeof(sfs->f_mntonname) - 1; 1243 (void)strncpy(sfs->f_mntonname, bp, len); 1244 PNBUF_PUT(path); 1245 1246 if (len < sizeof(sfs->f_mntonname) - 1) { 1247 error = (*fun)(onp, &sfs->f_mntonname[len], 1248 sizeof(sfs->f_mntonname) - len - 1, &size); 1249 if (error) 1250 return error; 1251 size += len; 1252 } else { 1253 size = len; 1254 } 1255 } else { 1256 error = (*fun)(onp, &sfs->f_mntonname, 1257 sizeof(sfs->f_mntonname) - 1, &size); 1258 if (error) 1259 return error; 1260 } 1261 (void)memset(sfs->f_mntonname + size, 0, 1262 sizeof(sfs->f_mntonname) - size); 1263 } 1264 1265 if (fromp) { 1266 fun = (ukfrom == UIO_SYSSPACE) ? copystr : copyinstr; 1267 error = (*fun)(fromp, sfs->f_mntfromname, 1268 sizeof(sfs->f_mntfromname) - 1, &size); 1269 if (error) 1270 return error; 1271 (void)memset(sfs->f_mntfromname + size, 0, 1272 sizeof(sfs->f_mntfromname) - size); 1273 } 1274 return 0; 1275 } 1276 1277 void 1278 vfs_timestamp(struct timespec *ts) 1279 { 1280 1281 nanotime(ts); 1282 } 1283 1284 time_t rootfstime; /* recorded root fs time, if known */ 1285 void 1286 setrootfstime(time_t t) 1287 { 1288 rootfstime = t; 1289 } 1290 1291 static const uint8_t vttodt_tab[ ] = { 1292 [VNON] = DT_UNKNOWN, 1293 [VREG] = DT_REG, 1294 [VDIR] = DT_DIR, 1295 [VBLK] = DT_BLK, 1296 [VCHR] = DT_CHR, 1297 [VLNK] = DT_LNK, 1298 [VSOCK] = DT_SOCK, 1299 [VFIFO] = DT_FIFO, 1300 [VBAD] = DT_UNKNOWN 1301 }; 1302 1303 uint8_t 1304 vtype2dt(enum vtype vt) 1305 { 1306 1307 CTASSERT(VBAD == __arraycount(vttodt_tab) - 1); 1308 return vttodt_tab[vt]; 1309 } 1310 1311 int 1312 VFS_MOUNT(struct mount *mp, const char *a, void *b, size_t *c) 1313 { 1314 int error; 1315 1316 KERNEL_LOCK(1, NULL); 1317 error = (*(mp->mnt_op->vfs_mount))(mp, a, b, c); 1318 KERNEL_UNLOCK_ONE(NULL); 1319 1320 return error; 1321 } 1322 1323 int 1324 VFS_START(struct mount *mp, int a) 1325 { 1326 int error; 1327 1328 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1329 KERNEL_LOCK(1, NULL); 1330 } 1331 error = (*(mp->mnt_op->vfs_start))(mp, a); 1332 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1333 KERNEL_UNLOCK_ONE(NULL); 1334 } 1335 1336 return error; 1337 } 1338 1339 int 1340 VFS_UNMOUNT(struct mount *mp, int a) 1341 { 1342 int error; 1343 1344 KERNEL_LOCK(1, NULL); 1345 error = (*(mp->mnt_op->vfs_unmount))(mp, a); 1346 KERNEL_UNLOCK_ONE(NULL); 1347 1348 return error; 1349 } 1350 1351 int 1352 VFS_ROOT(struct mount *mp, struct vnode **a) 1353 { 1354 int error; 1355 1356 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1357 KERNEL_LOCK(1, NULL); 1358 } 1359 error = (*(mp->mnt_op->vfs_root))(mp, a); 1360 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1361 KERNEL_UNLOCK_ONE(NULL); 1362 } 1363 1364 return error; 1365 } 1366 1367 int 1368 VFS_QUOTACTL(struct mount *mp, struct quotactl_args *args) 1369 { 1370 int error; 1371 1372 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1373 KERNEL_LOCK(1, NULL); 1374 } 1375 error = (*(mp->mnt_op->vfs_quotactl))(mp, args); 1376 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1377 KERNEL_UNLOCK_ONE(NULL); 1378 } 1379 1380 return error; 1381 } 1382 1383 int 1384 VFS_STATVFS(struct mount *mp, struct statvfs *a) 1385 { 1386 int error; 1387 1388 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1389 KERNEL_LOCK(1, NULL); 1390 } 1391 error = (*(mp->mnt_op->vfs_statvfs))(mp, a); 1392 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1393 KERNEL_UNLOCK_ONE(NULL); 1394 } 1395 1396 return error; 1397 } 1398 1399 int 1400 VFS_SYNC(struct mount *mp, int a, struct kauth_cred *b) 1401 { 1402 int error; 1403 1404 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1405 KERNEL_LOCK(1, NULL); 1406 } 1407 error = (*(mp->mnt_op->vfs_sync))(mp, a, b); 1408 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1409 KERNEL_UNLOCK_ONE(NULL); 1410 } 1411 1412 return error; 1413 } 1414 1415 int 1416 VFS_FHTOVP(struct mount *mp, struct fid *a, struct vnode **b) 1417 { 1418 int error; 1419 1420 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1421 KERNEL_LOCK(1, NULL); 1422 } 1423 error = (*(mp->mnt_op->vfs_fhtovp))(mp, a, b); 1424 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1425 KERNEL_UNLOCK_ONE(NULL); 1426 } 1427 1428 return error; 1429 } 1430 1431 int 1432 VFS_VPTOFH(struct vnode *vp, struct fid *a, size_t *b) 1433 { 1434 int error; 1435 1436 if ((vp->v_vflag & VV_MPSAFE) == 0) { 1437 KERNEL_LOCK(1, NULL); 1438 } 1439 error = (*(vp->v_mount->mnt_op->vfs_vptofh))(vp, a, b); 1440 if ((vp->v_vflag & VV_MPSAFE) == 0) { 1441 KERNEL_UNLOCK_ONE(NULL); 1442 } 1443 1444 return error; 1445 } 1446 1447 int 1448 VFS_SNAPSHOT(struct mount *mp, struct vnode *a, struct timespec *b) 1449 { 1450 int error; 1451 1452 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1453 KERNEL_LOCK(1, NULL); 1454 } 1455 error = (*(mp->mnt_op->vfs_snapshot))(mp, a, b); 1456 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1457 KERNEL_UNLOCK_ONE(NULL); 1458 } 1459 1460 return error; 1461 } 1462 1463 int 1464 VFS_EXTATTRCTL(struct mount *mp, int a, struct vnode *b, int c, const char *d) 1465 { 1466 int error; 1467 1468 KERNEL_LOCK(1, NULL); /* XXXSMP check ffs */ 1469 error = (*(mp->mnt_op->vfs_extattrctl))(mp, a, b, c, d); 1470 KERNEL_UNLOCK_ONE(NULL); /* XXX */ 1471 1472 return error; 1473 } 1474 1475 int 1476 VFS_SUSPENDCTL(struct mount *mp, int a) 1477 { 1478 int error; 1479 1480 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1481 KERNEL_LOCK(1, NULL); 1482 } 1483 error = (*(mp->mnt_op->vfs_suspendctl))(mp, a); 1484 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1485 KERNEL_UNLOCK_ONE(NULL); 1486 } 1487 1488 return error; 1489 } 1490 1491 #if defined(DDB) || defined(DEBUGPRINT) 1492 static const char buf_flagbits[] = BUF_FLAGBITS; 1493 1494 void 1495 vfs_buf_print(struct buf *bp, int full, void (*pr)(const char *, ...)) 1496 { 1497 char bf[1024]; 1498 1499 (*pr)(" vp %p lblkno 0x%"PRIx64" blkno 0x%"PRIx64" rawblkno 0x%" 1500 PRIx64 " dev 0x%x\n", 1501 bp->b_vp, bp->b_lblkno, bp->b_blkno, bp->b_rawblkno, bp->b_dev); 1502 1503 snprintb(bf, sizeof(bf), 1504 buf_flagbits, bp->b_flags | bp->b_oflags | bp->b_cflags); 1505 (*pr)(" error %d flags %s\n", bp->b_error, bf); 1506 1507 (*pr)(" bufsize 0x%lx bcount 0x%lx resid 0x%lx\n", 1508 bp->b_bufsize, bp->b_bcount, bp->b_resid); 1509 (*pr)(" data %p saveaddr %p\n", 1510 bp->b_data, bp->b_saveaddr); 1511 (*pr)(" iodone %p objlock %p\n", bp->b_iodone, bp->b_objlock); 1512 } 1513 1514 void 1515 vfs_vnode_print(struct vnode *vp, int full, void (*pr)(const char *, ...)) 1516 { 1517 1518 uvm_object_printit(&vp->v_uobj, full, pr); 1519 (*pr)("\n"); 1520 vprint_common(vp, "", printf); 1521 if (full) { 1522 struct buf *bp; 1523 1524 (*pr)("clean bufs:\n"); 1525 LIST_FOREACH(bp, &vp->v_cleanblkhd, b_vnbufs) { 1526 (*pr)(" bp %p\n", bp); 1527 vfs_buf_print(bp, full, pr); 1528 } 1529 1530 (*pr)("dirty bufs:\n"); 1531 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { 1532 (*pr)(" bp %p\n", bp); 1533 vfs_buf_print(bp, full, pr); 1534 } 1535 } 1536 } 1537 1538 void 1539 vfs_vnode_lock_print(void *vlock, int full, void (*pr)(const char *, ...)) 1540 { 1541 struct mount *mp; 1542 vnode_impl_t *vip; 1543 1544 for (mp = _mountlist_next(NULL); mp; mp = _mountlist_next(mp)) { 1545 TAILQ_FOREACH(vip, &mp->mnt_vnodelist, vi_mntvnodes) { 1546 if (&vip->vi_lock != vlock) 1547 continue; 1548 vfs_vnode_print(VIMPL_TO_VNODE(vip), full, pr); 1549 } 1550 } 1551 } 1552 1553 void 1554 vfs_mount_print(struct mount *mp, int full, void (*pr)(const char *, ...)) 1555 { 1556 char sbuf[256]; 1557 1558 (*pr)("vnodecovered = %p data = %p\n", 1559 mp->mnt_vnodecovered,mp->mnt_data); 1560 1561 (*pr)("fs_bshift %d dev_bshift = %d\n", 1562 mp->mnt_fs_bshift,mp->mnt_dev_bshift); 1563 1564 snprintb(sbuf, sizeof(sbuf), __MNT_FLAG_BITS, mp->mnt_flag); 1565 (*pr)("flag = %s\n", sbuf); 1566 1567 snprintb(sbuf, sizeof(sbuf), __IMNT_FLAG_BITS, mp->mnt_iflag); 1568 (*pr)("iflag = %s\n", sbuf); 1569 1570 (*pr)("refcnt = %d updating @ %p\n", mp->mnt_refcnt, &mp->mnt_updating); 1571 1572 (*pr)("statvfs cache:\n"); 1573 (*pr)("\tbsize = %lu\n",mp->mnt_stat.f_bsize); 1574 (*pr)("\tfrsize = %lu\n",mp->mnt_stat.f_frsize); 1575 (*pr)("\tiosize = %lu\n",mp->mnt_stat.f_iosize); 1576 1577 (*pr)("\tblocks = %"PRIu64"\n",mp->mnt_stat.f_blocks); 1578 (*pr)("\tbfree = %"PRIu64"\n",mp->mnt_stat.f_bfree); 1579 (*pr)("\tbavail = %"PRIu64"\n",mp->mnt_stat.f_bavail); 1580 (*pr)("\tbresvd = %"PRIu64"\n",mp->mnt_stat.f_bresvd); 1581 1582 (*pr)("\tfiles = %"PRIu64"\n",mp->mnt_stat.f_files); 1583 (*pr)("\tffree = %"PRIu64"\n",mp->mnt_stat.f_ffree); 1584 (*pr)("\tfavail = %"PRIu64"\n",mp->mnt_stat.f_favail); 1585 (*pr)("\tfresvd = %"PRIu64"\n",mp->mnt_stat.f_fresvd); 1586 1587 (*pr)("\tf_fsidx = { 0x%"PRIx32", 0x%"PRIx32" }\n", 1588 mp->mnt_stat.f_fsidx.__fsid_val[0], 1589 mp->mnt_stat.f_fsidx.__fsid_val[1]); 1590 1591 (*pr)("\towner = %"PRIu32"\n",mp->mnt_stat.f_owner); 1592 (*pr)("\tnamemax = %lu\n",mp->mnt_stat.f_namemax); 1593 1594 snprintb(sbuf, sizeof(sbuf), __MNT_FLAG_BITS, mp->mnt_stat.f_flag); 1595 1596 (*pr)("\tflag = %s\n",sbuf); 1597 (*pr)("\tsyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_syncwrites); 1598 (*pr)("\tasyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_asyncwrites); 1599 (*pr)("\tsyncreads = %" PRIu64 "\n",mp->mnt_stat.f_syncreads); 1600 (*pr)("\tasyncreads = %" PRIu64 "\n",mp->mnt_stat.f_asyncreads); 1601 (*pr)("\tfstypename = %s\n",mp->mnt_stat.f_fstypename); 1602 (*pr)("\tmntonname = %s\n",mp->mnt_stat.f_mntonname); 1603 (*pr)("\tmntfromname = %s\n",mp->mnt_stat.f_mntfromname); 1604 1605 { 1606 int cnt = 0; 1607 vnode_t *vp; 1608 vnode_impl_t *vip; 1609 (*pr)("locked vnodes ="); 1610 TAILQ_FOREACH(vip, &mp->mnt_vnodelist, vi_mntvnodes) { 1611 vp = VIMPL_TO_VNODE(vip); 1612 if (VOP_ISLOCKED(vp)) { 1613 if ((++cnt % 6) == 0) { 1614 (*pr)(" %p,\n\t", vp); 1615 } else { 1616 (*pr)(" %p,", vp); 1617 } 1618 } 1619 } 1620 (*pr)("\n"); 1621 } 1622 1623 if (full) { 1624 int cnt = 0; 1625 vnode_t *vp; 1626 vnode_impl_t *vip; 1627 (*pr)("all vnodes ="); 1628 TAILQ_FOREACH(vip, &mp->mnt_vnodelist, vi_mntvnodes) { 1629 vp = VIMPL_TO_VNODE(vip); 1630 if (!TAILQ_NEXT(vip, vi_mntvnodes)) { 1631 (*pr)(" %p", vp); 1632 } else if ((++cnt % 6) == 0) { 1633 (*pr)(" %p,\n\t", vp); 1634 } else { 1635 (*pr)(" %p,", vp); 1636 } 1637 } 1638 (*pr)("\n"); 1639 } 1640 } 1641 1642 /* 1643 * List all of the locked vnodes in the system. 1644 */ 1645 void printlockedvnodes(void); 1646 1647 void 1648 printlockedvnodes(void) 1649 { 1650 struct mount *mp; 1651 vnode_t *vp; 1652 vnode_impl_t *vip; 1653 1654 printf("Locked vnodes\n"); 1655 for (mp = _mountlist_next(NULL); mp; mp = _mountlist_next(mp)) { 1656 TAILQ_FOREACH(vip, &mp->mnt_vnodelist, vi_mntvnodes) { 1657 vp = VIMPL_TO_VNODE(vip); 1658 if (VOP_ISLOCKED(vp)) 1659 vprint(NULL, vp); 1660 } 1661 } 1662 } 1663 1664 #endif /* DDB || DEBUGPRINT */ 1665