1 /* $NetBSD: vfs_subr.c,v 1.447 2015/06/23 10:42:34 hannken Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1998, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center, by Charles M. Hannum, by Andrew Doran, 10 * by Marshall Kirk McKusick and Greg Ganger at the University of Michigan. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * Copyright (c) 1989, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. Neither the name of the University nor the names of its contributors 52 * may be used to endorse or promote products derived from this software 53 * without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * SUCH DAMAGE. 66 * 67 * @(#)vfs_subr.c 8.13 (Berkeley) 4/18/94 68 */ 69 70 #include <sys/cdefs.h> 71 __KERNEL_RCSID(0, "$NetBSD: vfs_subr.c,v 1.447 2015/06/23 10:42:34 hannken Exp $"); 72 73 #include "opt_ddb.h" 74 #include "opt_compat_netbsd.h" 75 #include "opt_compat_43.h" 76 77 #include <sys/param.h> 78 #include <sys/systm.h> 79 #include <sys/conf.h> 80 #include <sys/dirent.h> 81 #include <sys/filedesc.h> 82 #include <sys/kernel.h> 83 #include <sys/mount.h> 84 #include <sys/vnode.h> 85 #include <sys/stat.h> 86 #include <sys/sysctl.h> 87 #include <sys/namei.h> 88 #include <sys/buf.h> 89 #include <sys/errno.h> 90 #include <sys/kmem.h> 91 #include <sys/syscallargs.h> 92 #include <sys/kauth.h> 93 #include <sys/module.h> 94 95 #include <miscfs/genfs/genfs.h> 96 #include <miscfs/specfs/specdev.h> 97 #include <uvm/uvm_ddb.h> 98 99 const enum vtype iftovt_tab[16] = { 100 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 101 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD, 102 }; 103 const int vttoif_tab[9] = { 104 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, 105 S_IFSOCK, S_IFIFO, S_IFMT, 106 }; 107 108 /* 109 * Insq/Remq for the vnode usage lists. 110 */ 111 #define bufinsvn(bp, dp) LIST_INSERT_HEAD(dp, bp, b_vnbufs) 112 #define bufremvn(bp) { \ 113 LIST_REMOVE(bp, b_vnbufs); \ 114 (bp)->b_vnbufs.le_next = NOLIST; \ 115 } 116 117 int doforce = 1; /* 1 => permit forcible unmounting */ 118 int prtactive = 0; /* 1 => print out reclaim of active vnodes */ 119 120 extern struct mount *dead_rootmount; 121 122 /* 123 * Local declarations. 124 */ 125 126 static void vn_initialize_syncerd(void); 127 128 /* 129 * Initialize the vnode management data structures. 130 */ 131 void 132 vntblinit(void) 133 { 134 135 vn_initialize_syncerd(); 136 vfs_mount_sysinit(); 137 vfs_vnode_sysinit(); 138 } 139 140 /* 141 * Flush out and invalidate all buffers associated with a vnode. 142 * Called with the underlying vnode locked, which should prevent new dirty 143 * buffers from being queued. 144 */ 145 int 146 vinvalbuf(struct vnode *vp, int flags, kauth_cred_t cred, struct lwp *l, 147 bool catch_p, int slptimeo) 148 { 149 struct buf *bp, *nbp; 150 int error; 151 int flushflags = PGO_ALLPAGES | PGO_FREE | PGO_SYNCIO | 152 (flags & V_SAVE ? PGO_CLEANIT | PGO_RECLAIM : 0); 153 154 /* XXXUBC this doesn't look at flags or slp* */ 155 mutex_enter(vp->v_interlock); 156 error = VOP_PUTPAGES(vp, 0, 0, flushflags); 157 if (error) { 158 return error; 159 } 160 161 if (flags & V_SAVE) { 162 error = VOP_FSYNC(vp, cred, FSYNC_WAIT|FSYNC_RECLAIM, 0, 0); 163 if (error) 164 return (error); 165 KASSERT(LIST_EMPTY(&vp->v_dirtyblkhd)); 166 } 167 168 mutex_enter(&bufcache_lock); 169 restart: 170 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 171 KASSERT(bp->b_vp == vp); 172 nbp = LIST_NEXT(bp, b_vnbufs); 173 error = bbusy(bp, catch_p, slptimeo, NULL); 174 if (error != 0) { 175 if (error == EPASSTHROUGH) 176 goto restart; 177 mutex_exit(&bufcache_lock); 178 return (error); 179 } 180 brelsel(bp, BC_INVAL | BC_VFLUSH); 181 } 182 183 for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) { 184 KASSERT(bp->b_vp == vp); 185 nbp = LIST_NEXT(bp, b_vnbufs); 186 error = bbusy(bp, catch_p, slptimeo, NULL); 187 if (error != 0) { 188 if (error == EPASSTHROUGH) 189 goto restart; 190 mutex_exit(&bufcache_lock); 191 return (error); 192 } 193 /* 194 * XXX Since there are no node locks for NFS, I believe 195 * there is a slight chance that a delayed write will 196 * occur while sleeping just above, so check for it. 197 */ 198 if ((bp->b_oflags & BO_DELWRI) && (flags & V_SAVE)) { 199 #ifdef DEBUG 200 printf("buffer still DELWRI\n"); 201 #endif 202 bp->b_cflags |= BC_BUSY | BC_VFLUSH; 203 mutex_exit(&bufcache_lock); 204 VOP_BWRITE(bp->b_vp, bp); 205 mutex_enter(&bufcache_lock); 206 goto restart; 207 } 208 brelsel(bp, BC_INVAL | BC_VFLUSH); 209 } 210 211 #ifdef DIAGNOSTIC 212 if (!LIST_EMPTY(&vp->v_cleanblkhd) || !LIST_EMPTY(&vp->v_dirtyblkhd)) 213 panic("vinvalbuf: flush failed, vp %p", vp); 214 #endif 215 216 mutex_exit(&bufcache_lock); 217 218 return (0); 219 } 220 221 /* 222 * Destroy any in core blocks past the truncation length. 223 * Called with the underlying vnode locked, which should prevent new dirty 224 * buffers from being queued. 225 */ 226 int 227 vtruncbuf(struct vnode *vp, daddr_t lbn, bool catch_p, int slptimeo) 228 { 229 struct buf *bp, *nbp; 230 int error; 231 voff_t off; 232 233 off = round_page((voff_t)lbn << vp->v_mount->mnt_fs_bshift); 234 mutex_enter(vp->v_interlock); 235 error = VOP_PUTPAGES(vp, off, 0, PGO_FREE | PGO_SYNCIO); 236 if (error) { 237 return error; 238 } 239 240 mutex_enter(&bufcache_lock); 241 restart: 242 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 243 KASSERT(bp->b_vp == vp); 244 nbp = LIST_NEXT(bp, b_vnbufs); 245 if (bp->b_lblkno < lbn) 246 continue; 247 error = bbusy(bp, catch_p, slptimeo, NULL); 248 if (error != 0) { 249 if (error == EPASSTHROUGH) 250 goto restart; 251 mutex_exit(&bufcache_lock); 252 return (error); 253 } 254 brelsel(bp, BC_INVAL | BC_VFLUSH); 255 } 256 257 for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) { 258 KASSERT(bp->b_vp == vp); 259 nbp = LIST_NEXT(bp, b_vnbufs); 260 if (bp->b_lblkno < lbn) 261 continue; 262 error = bbusy(bp, catch_p, slptimeo, NULL); 263 if (error != 0) { 264 if (error == EPASSTHROUGH) 265 goto restart; 266 mutex_exit(&bufcache_lock); 267 return (error); 268 } 269 brelsel(bp, BC_INVAL | BC_VFLUSH); 270 } 271 mutex_exit(&bufcache_lock); 272 273 return (0); 274 } 275 276 /* 277 * Flush all dirty buffers from a vnode. 278 * Called with the underlying vnode locked, which should prevent new dirty 279 * buffers from being queued. 280 */ 281 int 282 vflushbuf(struct vnode *vp, int flags) 283 { 284 struct buf *bp, *nbp; 285 int error, pflags; 286 bool dirty, sync; 287 288 sync = (flags & FSYNC_WAIT) != 0; 289 pflags = PGO_CLEANIT | PGO_ALLPAGES | 290 (sync ? PGO_SYNCIO : 0) | 291 ((flags & FSYNC_LAZY) ? PGO_LAZY : 0); 292 mutex_enter(vp->v_interlock); 293 (void) VOP_PUTPAGES(vp, 0, 0, pflags); 294 295 loop: 296 mutex_enter(&bufcache_lock); 297 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 298 KASSERT(bp->b_vp == vp); 299 nbp = LIST_NEXT(bp, b_vnbufs); 300 if ((bp->b_cflags & BC_BUSY)) 301 continue; 302 if ((bp->b_oflags & BO_DELWRI) == 0) 303 panic("vflushbuf: not dirty, bp %p", bp); 304 bp->b_cflags |= BC_BUSY | BC_VFLUSH; 305 mutex_exit(&bufcache_lock); 306 /* 307 * Wait for I/O associated with indirect blocks to complete, 308 * since there is no way to quickly wait for them below. 309 */ 310 if (bp->b_vp == vp || !sync) 311 (void) bawrite(bp); 312 else { 313 error = bwrite(bp); 314 if (error) 315 return error; 316 } 317 goto loop; 318 } 319 mutex_exit(&bufcache_lock); 320 321 if (!sync) 322 return 0; 323 324 mutex_enter(vp->v_interlock); 325 while (vp->v_numoutput != 0) 326 cv_wait(&vp->v_cv, vp->v_interlock); 327 dirty = !LIST_EMPTY(&vp->v_dirtyblkhd); 328 mutex_exit(vp->v_interlock); 329 330 if (dirty) { 331 vprint("vflushbuf: dirty", vp); 332 goto loop; 333 } 334 335 return 0; 336 } 337 338 /* 339 * Create a vnode for a block device. 340 * Used for root filesystem and swap areas. 341 * Also used for memory file system special devices. 342 */ 343 int 344 bdevvp(dev_t dev, vnode_t **vpp) 345 { 346 struct vattr va; 347 348 vattr_null(&va); 349 va.va_type = VBLK; 350 va.va_rdev = dev; 351 352 return vcache_new(dead_rootmount, NULL, &va, NOCRED, vpp); 353 } 354 355 /* 356 * Create a vnode for a character device. 357 * Used for kernfs and some console handling. 358 */ 359 int 360 cdevvp(dev_t dev, vnode_t **vpp) 361 { 362 struct vattr va; 363 364 vattr_null(&va); 365 va.va_type = VCHR; 366 va.va_rdev = dev; 367 368 return vcache_new(dead_rootmount, NULL, &va, NOCRED, vpp); 369 } 370 371 /* 372 * Associate a buffer with a vnode. There must already be a hold on 373 * the vnode. 374 */ 375 void 376 bgetvp(struct vnode *vp, struct buf *bp) 377 { 378 379 KASSERT(bp->b_vp == NULL); 380 KASSERT(bp->b_objlock == &buffer_lock); 381 KASSERT(mutex_owned(vp->v_interlock)); 382 KASSERT(mutex_owned(&bufcache_lock)); 383 KASSERT((bp->b_cflags & BC_BUSY) != 0); 384 KASSERT(!cv_has_waiters(&bp->b_done)); 385 386 vholdl(vp); 387 bp->b_vp = vp; 388 if (vp->v_type == VBLK || vp->v_type == VCHR) 389 bp->b_dev = vp->v_rdev; 390 else 391 bp->b_dev = NODEV; 392 393 /* 394 * Insert onto list for new vnode. 395 */ 396 bufinsvn(bp, &vp->v_cleanblkhd); 397 bp->b_objlock = vp->v_interlock; 398 } 399 400 /* 401 * Disassociate a buffer from a vnode. 402 */ 403 void 404 brelvp(struct buf *bp) 405 { 406 struct vnode *vp = bp->b_vp; 407 408 KASSERT(vp != NULL); 409 KASSERT(bp->b_objlock == vp->v_interlock); 410 KASSERT(mutex_owned(vp->v_interlock)); 411 KASSERT(mutex_owned(&bufcache_lock)); 412 KASSERT((bp->b_cflags & BC_BUSY) != 0); 413 KASSERT(!cv_has_waiters(&bp->b_done)); 414 415 /* 416 * Delete from old vnode list, if on one. 417 */ 418 if (LIST_NEXT(bp, b_vnbufs) != NOLIST) 419 bufremvn(bp); 420 421 if (vp->v_uobj.uo_npages == 0 && (vp->v_iflag & VI_ONWORKLST) && 422 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { 423 vp->v_iflag &= ~VI_WRMAPDIRTY; 424 vn_syncer_remove_from_worklist(vp); 425 } 426 427 bp->b_objlock = &buffer_lock; 428 bp->b_vp = NULL; 429 holdrelel(vp); 430 } 431 432 /* 433 * Reassign a buffer from one vnode list to another. 434 * The list reassignment must be within the same vnode. 435 * Used to assign file specific control information 436 * (indirect blocks) to the list to which they belong. 437 */ 438 void 439 reassignbuf(struct buf *bp, struct vnode *vp) 440 { 441 struct buflists *listheadp; 442 int delayx; 443 444 KASSERT(mutex_owned(&bufcache_lock)); 445 KASSERT(bp->b_objlock == vp->v_interlock); 446 KASSERT(mutex_owned(vp->v_interlock)); 447 KASSERT((bp->b_cflags & BC_BUSY) != 0); 448 449 /* 450 * Delete from old vnode list, if on one. 451 */ 452 if (LIST_NEXT(bp, b_vnbufs) != NOLIST) 453 bufremvn(bp); 454 455 /* 456 * If dirty, put on list of dirty buffers; 457 * otherwise insert onto list of clean buffers. 458 */ 459 if ((bp->b_oflags & BO_DELWRI) == 0) { 460 listheadp = &vp->v_cleanblkhd; 461 if (vp->v_uobj.uo_npages == 0 && 462 (vp->v_iflag & VI_ONWORKLST) && 463 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { 464 vp->v_iflag &= ~VI_WRMAPDIRTY; 465 vn_syncer_remove_from_worklist(vp); 466 } 467 } else { 468 listheadp = &vp->v_dirtyblkhd; 469 if ((vp->v_iflag & VI_ONWORKLST) == 0) { 470 switch (vp->v_type) { 471 case VDIR: 472 delayx = dirdelay; 473 break; 474 case VBLK: 475 if (spec_node_getmountedfs(vp) != NULL) { 476 delayx = metadelay; 477 break; 478 } 479 /* fall through */ 480 default: 481 delayx = filedelay; 482 break; 483 } 484 if (!vp->v_mount || 485 (vp->v_mount->mnt_flag & MNT_ASYNC) == 0) 486 vn_syncer_add_to_worklist(vp, delayx); 487 } 488 } 489 bufinsvn(bp, listheadp); 490 } 491 492 /* 493 * Lookup a vnode by device number and return it referenced. 494 */ 495 int 496 vfinddev(dev_t dev, enum vtype type, vnode_t **vpp) 497 { 498 499 return (spec_node_lookup_by_dev(type, dev, vpp) == 0); 500 } 501 502 /* 503 * Revoke all the vnodes corresponding to the specified minor number 504 * range (endpoints inclusive) of the specified major. 505 */ 506 void 507 vdevgone(int maj, int minl, int minh, enum vtype type) 508 { 509 vnode_t *vp; 510 dev_t dev; 511 int mn; 512 513 for (mn = minl; mn <= minh; mn++) { 514 dev = makedev(maj, mn); 515 while (spec_node_lookup_by_dev(type, dev, &vp) == 0) { 516 VOP_REVOKE(vp, REVOKEALL); 517 vrele(vp); 518 } 519 } 520 } 521 522 /* 523 * The filesystem synchronizer mechanism - syncer. 524 * 525 * It is useful to delay writes of file data and filesystem metadata for 526 * a certain amount of time so that quickly created and deleted files need 527 * not waste disk bandwidth being created and removed. To implement this, 528 * vnodes are appended to a "workitem" queue. 529 * 530 * Most pending metadata should not wait for more than ten seconds. Thus, 531 * mounted on block devices are delayed only about a half the time that file 532 * data is delayed. Similarly, directory updates are more critical, so are 533 * only delayed about a third the time that file data is delayed. 534 * 535 * There are SYNCER_MAXDELAY queues that are processed in a round-robin 536 * manner at a rate of one each second (driven off the filesystem syner 537 * thread). The syncer_delayno variable indicates the next queue that is 538 * to be processed. Items that need to be processed soon are placed in 539 * this queue: 540 * 541 * syncer_workitem_pending[syncer_delayno] 542 * 543 * A delay of e.g. fifteen seconds is done by placing the request fifteen 544 * entries later in the queue: 545 * 546 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask] 547 * 548 * Flag VI_ONWORKLST indicates that vnode is added into the queue. 549 */ 550 551 #define SYNCER_MAXDELAY 32 552 553 typedef TAILQ_HEAD(synclist, vnode) synclist_t; 554 555 static void vn_syncer_add1(struct vnode *, int); 556 static void sysctl_vfs_syncfs_setup(struct sysctllog **); 557 558 /* 559 * Defines and variables for the syncer process. 560 */ 561 int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */ 562 time_t syncdelay = 30; /* max time to delay syncing data */ 563 time_t filedelay = 30; /* time to delay syncing files */ 564 time_t dirdelay = 15; /* time to delay syncing directories */ 565 time_t metadelay = 10; /* time to delay syncing metadata */ 566 time_t lockdelay = 1; /* time to delay if locking fails */ 567 568 kmutex_t syncer_mutex; /* used to freeze syncer, long term */ 569 static kmutex_t syncer_data_lock; /* short term lock on data structs */ 570 571 static int syncer_delayno = 0; 572 static long syncer_last; 573 static synclist_t * syncer_workitem_pending; 574 575 static void 576 vn_initialize_syncerd(void) 577 { 578 int i; 579 580 syncer_last = SYNCER_MAXDELAY + 2; 581 582 sysctl_vfs_syncfs_setup(NULL); 583 584 syncer_workitem_pending = 585 kmem_alloc(syncer_last * sizeof (struct synclist), KM_SLEEP); 586 587 for (i = 0; i < syncer_last; i++) 588 TAILQ_INIT(&syncer_workitem_pending[i]); 589 590 mutex_init(&syncer_mutex, MUTEX_DEFAULT, IPL_NONE); 591 mutex_init(&syncer_data_lock, MUTEX_DEFAULT, IPL_NONE); 592 } 593 594 /* 595 * Return delay factor appropriate for the given file system. For 596 * WAPBL we use the sync vnode to burst out metadata updates: sync 597 * those file systems more frequently. 598 */ 599 static inline int 600 sync_delay(struct mount *mp) 601 { 602 603 return mp->mnt_wapbl != NULL ? metadelay : syncdelay; 604 } 605 606 /* 607 * Compute the next slot index from delay. 608 */ 609 static inline int 610 sync_delay_slot(int delayx) 611 { 612 613 if (delayx > syncer_maxdelay - 2) 614 delayx = syncer_maxdelay - 2; 615 return (syncer_delayno + delayx) % syncer_last; 616 } 617 618 /* 619 * Add an item to the syncer work queue. 620 */ 621 static void 622 vn_syncer_add1(struct vnode *vp, int delayx) 623 { 624 synclist_t *slp; 625 626 KASSERT(mutex_owned(&syncer_data_lock)); 627 628 if (vp->v_iflag & VI_ONWORKLST) { 629 /* 630 * Remove in order to adjust the position of the vnode. 631 * Note: called from sched_sync(), which will not hold 632 * interlock, therefore we cannot modify v_iflag here. 633 */ 634 slp = &syncer_workitem_pending[vp->v_synclist_slot]; 635 TAILQ_REMOVE(slp, vp, v_synclist); 636 } else { 637 KASSERT(mutex_owned(vp->v_interlock)); 638 vp->v_iflag |= VI_ONWORKLST; 639 } 640 641 vp->v_synclist_slot = sync_delay_slot(delayx); 642 643 slp = &syncer_workitem_pending[vp->v_synclist_slot]; 644 TAILQ_INSERT_TAIL(slp, vp, v_synclist); 645 } 646 647 void 648 vn_syncer_add_to_worklist(struct vnode *vp, int delayx) 649 { 650 651 KASSERT(mutex_owned(vp->v_interlock)); 652 653 mutex_enter(&syncer_data_lock); 654 vn_syncer_add1(vp, delayx); 655 mutex_exit(&syncer_data_lock); 656 } 657 658 /* 659 * Remove an item from the syncer work queue. 660 */ 661 void 662 vn_syncer_remove_from_worklist(struct vnode *vp) 663 { 664 synclist_t *slp; 665 666 KASSERT(mutex_owned(vp->v_interlock)); 667 668 mutex_enter(&syncer_data_lock); 669 if (vp->v_iflag & VI_ONWORKLST) { 670 vp->v_iflag &= ~VI_ONWORKLST; 671 slp = &syncer_workitem_pending[vp->v_synclist_slot]; 672 TAILQ_REMOVE(slp, vp, v_synclist); 673 } 674 mutex_exit(&syncer_data_lock); 675 } 676 677 /* 678 * Add this mount point to the syncer. 679 */ 680 void 681 vfs_syncer_add_to_worklist(struct mount *mp) 682 { 683 static int start, incr, next; 684 int vdelay; 685 686 KASSERT(mutex_owned(&mp->mnt_updating)); 687 KASSERT((mp->mnt_iflag & IMNT_ONWORKLIST) == 0); 688 689 /* 690 * We attempt to scatter the mount points on the list 691 * so that they will go off at evenly distributed times 692 * even if all the filesystems are mounted at once. 693 */ 694 695 next += incr; 696 if (next == 0 || next > syncer_maxdelay) { 697 start /= 2; 698 incr /= 2; 699 if (start == 0) { 700 start = syncer_maxdelay / 2; 701 incr = syncer_maxdelay; 702 } 703 next = start; 704 } 705 mp->mnt_iflag |= IMNT_ONWORKLIST; 706 vdelay = sync_delay(mp); 707 mp->mnt_synclist_slot = vdelay > 0 ? next % vdelay : 0; 708 } 709 710 /* 711 * Remove the mount point from the syncer. 712 */ 713 void 714 vfs_syncer_remove_from_worklist(struct mount *mp) 715 { 716 717 KASSERT(mutex_owned(&mp->mnt_updating)); 718 KASSERT((mp->mnt_iflag & IMNT_ONWORKLIST) != 0); 719 720 mp->mnt_iflag &= ~IMNT_ONWORKLIST; 721 } 722 723 /* 724 * Try lazy sync, return true on success. 725 */ 726 static bool 727 lazy_sync_vnode(struct vnode *vp) 728 { 729 bool synced; 730 731 KASSERT(mutex_owned(&syncer_data_lock)); 732 733 synced = false; 734 /* We are locking in the wrong direction. */ 735 if (mutex_tryenter(vp->v_interlock)) { 736 mutex_exit(&syncer_data_lock); 737 if (vget(vp, LK_NOWAIT, false /* !wait */) == 0) { 738 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 739 synced = true; 740 (void) VOP_FSYNC(vp, curlwp->l_cred, 741 FSYNC_LAZY, 0, 0); 742 vput(vp); 743 } else 744 vrele(vp); 745 } 746 mutex_enter(&syncer_data_lock); 747 } 748 return synced; 749 } 750 751 /* 752 * System filesystem synchronizer daemon. 753 */ 754 void 755 sched_sync(void *arg) 756 { 757 synclist_t *slp; 758 struct vnode *vp; 759 struct mount *mp, *nmp; 760 time_t starttime; 761 bool synced; 762 763 for (;;) { 764 mutex_enter(&syncer_mutex); 765 766 starttime = time_second; 767 768 /* 769 * Sync mounts whose dirty time has expired. 770 */ 771 mutex_enter(&mountlist_lock); 772 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 773 if ((mp->mnt_iflag & IMNT_ONWORKLIST) == 0 || 774 mp->mnt_synclist_slot != syncer_delayno) { 775 nmp = TAILQ_NEXT(mp, mnt_list); 776 continue; 777 } 778 mp->mnt_synclist_slot = sync_delay_slot(sync_delay(mp)); 779 if (vfs_busy(mp, &nmp)) 780 continue; 781 VFS_SYNC(mp, MNT_LAZY, curlwp->l_cred); 782 vfs_unbusy(mp, false, &nmp); 783 } 784 mutex_exit(&mountlist_lock); 785 786 mutex_enter(&syncer_data_lock); 787 788 /* 789 * Push files whose dirty time has expired. 790 */ 791 slp = &syncer_workitem_pending[syncer_delayno]; 792 syncer_delayno += 1; 793 if (syncer_delayno >= syncer_last) 794 syncer_delayno = 0; 795 796 while ((vp = TAILQ_FIRST(slp)) != NULL) { 797 synced = lazy_sync_vnode(vp); 798 799 /* 800 * XXX The vnode may have been recycled, in which 801 * case it may have a new identity. 802 */ 803 if (TAILQ_FIRST(slp) == vp) { 804 /* 805 * Put us back on the worklist. The worklist 806 * routine will remove us from our current 807 * position and then add us back in at a later 808 * position. 809 * 810 * Try again sooner rather than later if 811 * we were unable to lock the vnode. Lock 812 * failure should not prevent us from doing 813 * the sync "soon". 814 * 815 * If we locked it yet arrive here, it's 816 * likely that lazy sync is in progress and 817 * so the vnode still has dirty metadata. 818 * syncdelay is mainly to get this vnode out 819 * of the way so we do not consider it again 820 * "soon" in this loop, so the delay time is 821 * not critical as long as it is not "soon". 822 * While write-back strategy is the file 823 * system's domain, we expect write-back to 824 * occur no later than syncdelay seconds 825 * into the future. 826 */ 827 vn_syncer_add1(vp, 828 synced ? syncdelay : lockdelay); 829 } 830 } 831 mutex_exit(&syncer_mutex); 832 833 /* 834 * If it has taken us less than a second to process the 835 * current work, then wait. Otherwise start right over 836 * again. We can still lose time if any single round 837 * takes more than two seconds, but it does not really 838 * matter as we are just trying to generally pace the 839 * filesystem activity. 840 */ 841 if (time_second == starttime) { 842 kpause("syncer", false, hz, &syncer_data_lock); 843 } 844 mutex_exit(&syncer_data_lock); 845 } 846 } 847 848 static void 849 sysctl_vfs_syncfs_setup(struct sysctllog **clog) 850 { 851 const struct sysctlnode *rnode, *cnode; 852 853 sysctl_createv(clog, 0, NULL, &rnode, 854 CTLFLAG_PERMANENT, 855 CTLTYPE_NODE, "sync", 856 SYSCTL_DESCR("syncer options"), 857 NULL, 0, NULL, 0, 858 CTL_VFS, CTL_CREATE, CTL_EOL); 859 860 sysctl_createv(clog, 0, &rnode, &cnode, 861 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 862 CTLTYPE_QUAD, "delay", 863 SYSCTL_DESCR("max time to delay syncing data"), 864 NULL, 0, &syncdelay, 0, 865 CTL_CREATE, CTL_EOL); 866 867 sysctl_createv(clog, 0, &rnode, &cnode, 868 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 869 CTLTYPE_QUAD, "filedelay", 870 SYSCTL_DESCR("time to delay syncing files"), 871 NULL, 0, &filedelay, 0, 872 CTL_CREATE, CTL_EOL); 873 874 sysctl_createv(clog, 0, &rnode, &cnode, 875 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 876 CTLTYPE_QUAD, "dirdelay", 877 SYSCTL_DESCR("time to delay syncing directories"), 878 NULL, 0, &dirdelay, 0, 879 CTL_CREATE, CTL_EOL); 880 881 sysctl_createv(clog, 0, &rnode, &cnode, 882 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 883 CTLTYPE_QUAD, "metadelay", 884 SYSCTL_DESCR("time to delay syncing metadata"), 885 NULL, 0, &metadelay, 0, 886 CTL_CREATE, CTL_EOL); 887 } 888 889 /* 890 * sysctl helper routine to return list of supported fstypes 891 */ 892 int 893 sysctl_vfs_generic_fstypes(SYSCTLFN_ARGS) 894 { 895 char bf[sizeof(((struct statvfs *)NULL)->f_fstypename)]; 896 char *where = oldp; 897 struct vfsops *v; 898 size_t needed, left, slen; 899 int error, first; 900 901 if (newp != NULL) 902 return (EPERM); 903 if (namelen != 0) 904 return (EINVAL); 905 906 first = 1; 907 error = 0; 908 needed = 0; 909 left = *oldlenp; 910 911 sysctl_unlock(); 912 mutex_enter(&vfs_list_lock); 913 LIST_FOREACH(v, &vfs_list, vfs_list) { 914 if (where == NULL) 915 needed += strlen(v->vfs_name) + 1; 916 else { 917 memset(bf, 0, sizeof(bf)); 918 if (first) { 919 strncpy(bf, v->vfs_name, sizeof(bf)); 920 first = 0; 921 } else { 922 bf[0] = ' '; 923 strncpy(bf + 1, v->vfs_name, sizeof(bf) - 1); 924 } 925 bf[sizeof(bf)-1] = '\0'; 926 slen = strlen(bf); 927 if (left < slen + 1) 928 break; 929 v->vfs_refcount++; 930 mutex_exit(&vfs_list_lock); 931 /* +1 to copy out the trailing NUL byte */ 932 error = copyout(bf, where, slen + 1); 933 mutex_enter(&vfs_list_lock); 934 v->vfs_refcount--; 935 if (error) 936 break; 937 where += slen; 938 needed += slen; 939 left -= slen; 940 } 941 } 942 mutex_exit(&vfs_list_lock); 943 sysctl_relock(); 944 *oldlenp = needed; 945 return (error); 946 } 947 948 int kinfo_vdebug = 1; 949 int kinfo_vgetfailed; 950 951 #define KINFO_VNODESLOP 10 952 953 /* 954 * Dump vnode list (via sysctl). 955 * Copyout address of vnode followed by vnode. 956 */ 957 int 958 sysctl_kern_vnode(SYSCTLFN_ARGS) 959 { 960 char *where = oldp; 961 size_t *sizep = oldlenp; 962 struct mount *mp, *nmp; 963 vnode_t *vp, vbuf; 964 struct vnode_iterator *marker; 965 char *bp = where; 966 char *ewhere; 967 int error; 968 969 if (namelen != 0) 970 return (EOPNOTSUPP); 971 if (newp != NULL) 972 return (EPERM); 973 974 #define VPTRSZ sizeof(vnode_t *) 975 #define VNODESZ sizeof(vnode_t) 976 if (where == NULL) { 977 *sizep = (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ); 978 return (0); 979 } 980 ewhere = where + *sizep; 981 982 sysctl_unlock(); 983 mutex_enter(&mountlist_lock); 984 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 985 if (vfs_busy(mp, &nmp)) { 986 continue; 987 } 988 vfs_vnode_iterator_init(mp, &marker); 989 while ((vp = vfs_vnode_iterator_next(marker, NULL, NULL))) { 990 if (bp + VPTRSZ + VNODESZ > ewhere) { 991 vrele(vp); 992 vfs_vnode_iterator_destroy(marker); 993 vfs_unbusy(mp, false, NULL); 994 sysctl_relock(); 995 *sizep = bp - where; 996 return (ENOMEM); 997 } 998 memcpy(&vbuf, vp, VNODESZ); 999 if ((error = copyout(&vp, bp, VPTRSZ)) || 1000 (error = copyout(&vbuf, bp + VPTRSZ, VNODESZ))) { 1001 vrele(vp); 1002 vfs_vnode_iterator_destroy(marker); 1003 vfs_unbusy(mp, false, NULL); 1004 sysctl_relock(); 1005 return (error); 1006 } 1007 vrele(vp); 1008 bp += VPTRSZ + VNODESZ; 1009 } 1010 vfs_vnode_iterator_destroy(marker); 1011 vfs_unbusy(mp, false, &nmp); 1012 } 1013 mutex_exit(&mountlist_lock); 1014 sysctl_relock(); 1015 1016 *sizep = bp - where; 1017 return (0); 1018 } 1019 1020 /* 1021 * Set vnode attributes to VNOVAL 1022 */ 1023 void 1024 vattr_null(struct vattr *vap) 1025 { 1026 1027 memset(vap, 0, sizeof(*vap)); 1028 1029 vap->va_type = VNON; 1030 1031 /* 1032 * Assign individually so that it is safe even if size and 1033 * sign of each member are varied. 1034 */ 1035 vap->va_mode = VNOVAL; 1036 vap->va_nlink = VNOVAL; 1037 vap->va_uid = VNOVAL; 1038 vap->va_gid = VNOVAL; 1039 vap->va_fsid = VNOVAL; 1040 vap->va_fileid = VNOVAL; 1041 vap->va_size = VNOVAL; 1042 vap->va_blocksize = VNOVAL; 1043 vap->va_atime.tv_sec = 1044 vap->va_mtime.tv_sec = 1045 vap->va_ctime.tv_sec = 1046 vap->va_birthtime.tv_sec = VNOVAL; 1047 vap->va_atime.tv_nsec = 1048 vap->va_mtime.tv_nsec = 1049 vap->va_ctime.tv_nsec = 1050 vap->va_birthtime.tv_nsec = VNOVAL; 1051 vap->va_gen = VNOVAL; 1052 vap->va_flags = VNOVAL; 1053 vap->va_rdev = VNOVAL; 1054 vap->va_bytes = VNOVAL; 1055 } 1056 1057 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof(arr[0])) 1058 #define ARRAY_PRINT(idx, arr) \ 1059 ((unsigned int)(idx) < ARRAY_SIZE(arr) ? (arr)[(idx)] : "UNKNOWN") 1060 1061 const char * const vnode_tags[] = { VNODE_TAGS }; 1062 const char * const vnode_types[] = { VNODE_TYPES }; 1063 const char vnode_flagbits[] = VNODE_FLAGBITS; 1064 1065 /* 1066 * Print out a description of a vnode. 1067 */ 1068 void 1069 vprint(const char *label, struct vnode *vp) 1070 { 1071 char bf[96]; 1072 int flag; 1073 1074 flag = vp->v_iflag | vp->v_vflag | vp->v_uflag; 1075 snprintb(bf, sizeof(bf), vnode_flagbits, flag); 1076 1077 if (label != NULL) 1078 printf("%s: ", label); 1079 printf("vnode @ %p, flags (%s)\n\ttag %s(%d), type %s(%d), " 1080 "usecount %d, writecount %d, holdcount %d\n" 1081 "\tfreelisthd %p, mount %p, data %p lock %p\n", 1082 vp, bf, ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag, 1083 ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type, 1084 vp->v_usecount, vp->v_writecount, vp->v_holdcnt, 1085 vp->v_freelisthd, vp->v_mount, vp->v_data, &vp->v_lock); 1086 if (vp->v_data != NULL) { 1087 printf("\t"); 1088 VOP_PRINT(vp); 1089 } 1090 } 1091 1092 /* Deprecated. Kept for KPI compatibility. */ 1093 int 1094 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid, 1095 mode_t acc_mode, kauth_cred_t cred) 1096 { 1097 1098 #ifdef DIAGNOSTIC 1099 printf("vaccess: deprecated interface used.\n"); 1100 #endif /* DIAGNOSTIC */ 1101 1102 return kauth_authorize_vnode(cred, KAUTH_ACCESS_ACTION(acc_mode, 1103 type, file_mode), NULL /* This may panic. */, NULL, 1104 genfs_can_access(type, file_mode, uid, gid, acc_mode, cred)); 1105 } 1106 1107 /* 1108 * Given a file system name, look up the vfsops for that 1109 * file system, or return NULL if file system isn't present 1110 * in the kernel. 1111 */ 1112 struct vfsops * 1113 vfs_getopsbyname(const char *name) 1114 { 1115 struct vfsops *v; 1116 1117 mutex_enter(&vfs_list_lock); 1118 LIST_FOREACH(v, &vfs_list, vfs_list) { 1119 if (strcmp(v->vfs_name, name) == 0) 1120 break; 1121 } 1122 if (v != NULL) 1123 v->vfs_refcount++; 1124 mutex_exit(&vfs_list_lock); 1125 1126 return (v); 1127 } 1128 1129 void 1130 copy_statvfs_info(struct statvfs *sbp, const struct mount *mp) 1131 { 1132 const struct statvfs *mbp; 1133 1134 if (sbp == (mbp = &mp->mnt_stat)) 1135 return; 1136 1137 (void)memcpy(&sbp->f_fsidx, &mbp->f_fsidx, sizeof(sbp->f_fsidx)); 1138 sbp->f_fsid = mbp->f_fsid; 1139 sbp->f_owner = mbp->f_owner; 1140 sbp->f_flag = mbp->f_flag; 1141 sbp->f_syncwrites = mbp->f_syncwrites; 1142 sbp->f_asyncwrites = mbp->f_asyncwrites; 1143 sbp->f_syncreads = mbp->f_syncreads; 1144 sbp->f_asyncreads = mbp->f_asyncreads; 1145 (void)memcpy(sbp->f_spare, mbp->f_spare, sizeof(mbp->f_spare)); 1146 (void)memcpy(sbp->f_fstypename, mbp->f_fstypename, 1147 sizeof(sbp->f_fstypename)); 1148 (void)memcpy(sbp->f_mntonname, mbp->f_mntonname, 1149 sizeof(sbp->f_mntonname)); 1150 (void)memcpy(sbp->f_mntfromname, mp->mnt_stat.f_mntfromname, 1151 sizeof(sbp->f_mntfromname)); 1152 sbp->f_namemax = mbp->f_namemax; 1153 } 1154 1155 int 1156 set_statvfs_info(const char *onp, int ukon, const char *fromp, int ukfrom, 1157 const char *vfsname, struct mount *mp, struct lwp *l) 1158 { 1159 int error; 1160 size_t size; 1161 struct statvfs *sfs = &mp->mnt_stat; 1162 int (*fun)(const void *, void *, size_t, size_t *); 1163 1164 (void)strlcpy(mp->mnt_stat.f_fstypename, vfsname, 1165 sizeof(mp->mnt_stat.f_fstypename)); 1166 1167 if (onp) { 1168 struct cwdinfo *cwdi = l->l_proc->p_cwdi; 1169 fun = (ukon == UIO_SYSSPACE) ? copystr : copyinstr; 1170 if (cwdi->cwdi_rdir != NULL) { 1171 size_t len; 1172 char *bp; 1173 char *path = PNBUF_GET(); 1174 1175 bp = path + MAXPATHLEN; 1176 *--bp = '\0'; 1177 rw_enter(&cwdi->cwdi_lock, RW_READER); 1178 error = getcwd_common(cwdi->cwdi_rdir, rootvnode, &bp, 1179 path, MAXPATHLEN / 2, 0, l); 1180 rw_exit(&cwdi->cwdi_lock); 1181 if (error) { 1182 PNBUF_PUT(path); 1183 return error; 1184 } 1185 1186 len = strlen(bp); 1187 if (len > sizeof(sfs->f_mntonname) - 1) 1188 len = sizeof(sfs->f_mntonname) - 1; 1189 (void)strncpy(sfs->f_mntonname, bp, len); 1190 PNBUF_PUT(path); 1191 1192 if (len < sizeof(sfs->f_mntonname) - 1) { 1193 error = (*fun)(onp, &sfs->f_mntonname[len], 1194 sizeof(sfs->f_mntonname) - len - 1, &size); 1195 if (error) 1196 return error; 1197 size += len; 1198 } else { 1199 size = len; 1200 } 1201 } else { 1202 error = (*fun)(onp, &sfs->f_mntonname, 1203 sizeof(sfs->f_mntonname) - 1, &size); 1204 if (error) 1205 return error; 1206 } 1207 (void)memset(sfs->f_mntonname + size, 0, 1208 sizeof(sfs->f_mntonname) - size); 1209 } 1210 1211 if (fromp) { 1212 fun = (ukfrom == UIO_SYSSPACE) ? copystr : copyinstr; 1213 error = (*fun)(fromp, sfs->f_mntfromname, 1214 sizeof(sfs->f_mntfromname) - 1, &size); 1215 if (error) 1216 return error; 1217 (void)memset(sfs->f_mntfromname + size, 0, 1218 sizeof(sfs->f_mntfromname) - size); 1219 } 1220 return 0; 1221 } 1222 1223 void 1224 vfs_timestamp(struct timespec *ts) 1225 { 1226 1227 nanotime(ts); 1228 } 1229 1230 time_t rootfstime; /* recorded root fs time, if known */ 1231 void 1232 setrootfstime(time_t t) 1233 { 1234 rootfstime = t; 1235 } 1236 1237 static const uint8_t vttodt_tab[ ] = { 1238 [VNON] = DT_UNKNOWN, 1239 [VREG] = DT_REG, 1240 [VDIR] = DT_DIR, 1241 [VBLK] = DT_BLK, 1242 [VCHR] = DT_CHR, 1243 [VLNK] = DT_LNK, 1244 [VSOCK] = DT_SOCK, 1245 [VFIFO] = DT_FIFO, 1246 [VBAD] = DT_UNKNOWN 1247 }; 1248 1249 uint8_t 1250 vtype2dt(enum vtype vt) 1251 { 1252 1253 CTASSERT(VBAD == __arraycount(vttodt_tab) - 1); 1254 return vttodt_tab[vt]; 1255 } 1256 1257 int 1258 VFS_MOUNT(struct mount *mp, const char *a, void *b, size_t *c) 1259 { 1260 int error; 1261 1262 KERNEL_LOCK(1, NULL); 1263 error = (*(mp->mnt_op->vfs_mount))(mp, a, b, c); 1264 KERNEL_UNLOCK_ONE(NULL); 1265 1266 return error; 1267 } 1268 1269 int 1270 VFS_START(struct mount *mp, int a) 1271 { 1272 int error; 1273 1274 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1275 KERNEL_LOCK(1, NULL); 1276 } 1277 error = (*(mp->mnt_op->vfs_start))(mp, a); 1278 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1279 KERNEL_UNLOCK_ONE(NULL); 1280 } 1281 1282 return error; 1283 } 1284 1285 int 1286 VFS_UNMOUNT(struct mount *mp, int a) 1287 { 1288 int error; 1289 1290 KERNEL_LOCK(1, NULL); 1291 error = (*(mp->mnt_op->vfs_unmount))(mp, a); 1292 KERNEL_UNLOCK_ONE(NULL); 1293 1294 return error; 1295 } 1296 1297 int 1298 VFS_ROOT(struct mount *mp, struct vnode **a) 1299 { 1300 int error; 1301 1302 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1303 KERNEL_LOCK(1, NULL); 1304 } 1305 error = (*(mp->mnt_op->vfs_root))(mp, a); 1306 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1307 KERNEL_UNLOCK_ONE(NULL); 1308 } 1309 1310 return error; 1311 } 1312 1313 int 1314 VFS_QUOTACTL(struct mount *mp, struct quotactl_args *args) 1315 { 1316 int error; 1317 1318 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1319 KERNEL_LOCK(1, NULL); 1320 } 1321 error = (*(mp->mnt_op->vfs_quotactl))(mp, args); 1322 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1323 KERNEL_UNLOCK_ONE(NULL); 1324 } 1325 1326 return error; 1327 } 1328 1329 int 1330 VFS_STATVFS(struct mount *mp, struct statvfs *a) 1331 { 1332 int error; 1333 1334 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1335 KERNEL_LOCK(1, NULL); 1336 } 1337 error = (*(mp->mnt_op->vfs_statvfs))(mp, a); 1338 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1339 KERNEL_UNLOCK_ONE(NULL); 1340 } 1341 1342 return error; 1343 } 1344 1345 int 1346 VFS_SYNC(struct mount *mp, int a, struct kauth_cred *b) 1347 { 1348 int error; 1349 1350 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1351 KERNEL_LOCK(1, NULL); 1352 } 1353 error = (*(mp->mnt_op->vfs_sync))(mp, a, b); 1354 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1355 KERNEL_UNLOCK_ONE(NULL); 1356 } 1357 1358 return error; 1359 } 1360 1361 int 1362 VFS_FHTOVP(struct mount *mp, struct fid *a, struct vnode **b) 1363 { 1364 int error; 1365 1366 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1367 KERNEL_LOCK(1, NULL); 1368 } 1369 error = (*(mp->mnt_op->vfs_fhtovp))(mp, a, b); 1370 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1371 KERNEL_UNLOCK_ONE(NULL); 1372 } 1373 1374 return error; 1375 } 1376 1377 int 1378 VFS_VPTOFH(struct vnode *vp, struct fid *a, size_t *b) 1379 { 1380 int error; 1381 1382 if ((vp->v_vflag & VV_MPSAFE) == 0) { 1383 KERNEL_LOCK(1, NULL); 1384 } 1385 error = (*(vp->v_mount->mnt_op->vfs_vptofh))(vp, a, b); 1386 if ((vp->v_vflag & VV_MPSAFE) == 0) { 1387 KERNEL_UNLOCK_ONE(NULL); 1388 } 1389 1390 return error; 1391 } 1392 1393 int 1394 VFS_SNAPSHOT(struct mount *mp, struct vnode *a, struct timespec *b) 1395 { 1396 int error; 1397 1398 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1399 KERNEL_LOCK(1, NULL); 1400 } 1401 error = (*(mp->mnt_op->vfs_snapshot))(mp, a, b); 1402 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1403 KERNEL_UNLOCK_ONE(NULL); 1404 } 1405 1406 return error; 1407 } 1408 1409 int 1410 VFS_EXTATTRCTL(struct mount *mp, int a, struct vnode *b, int c, const char *d) 1411 { 1412 int error; 1413 1414 KERNEL_LOCK(1, NULL); /* XXXSMP check ffs */ 1415 error = (*(mp->mnt_op->vfs_extattrctl))(mp, a, b, c, d); 1416 KERNEL_UNLOCK_ONE(NULL); /* XXX */ 1417 1418 return error; 1419 } 1420 1421 int 1422 VFS_SUSPENDCTL(struct mount *mp, int a) 1423 { 1424 int error; 1425 1426 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1427 KERNEL_LOCK(1, NULL); 1428 } 1429 error = (*(mp->mnt_op->vfs_suspendctl))(mp, a); 1430 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { 1431 KERNEL_UNLOCK_ONE(NULL); 1432 } 1433 1434 return error; 1435 } 1436 1437 #if defined(DDB) || defined(DEBUGPRINT) 1438 static const char buf_flagbits[] = BUF_FLAGBITS; 1439 1440 void 1441 vfs_buf_print(struct buf *bp, int full, void (*pr)(const char *, ...)) 1442 { 1443 char bf[1024]; 1444 1445 (*pr)(" vp %p lblkno 0x%"PRIx64" blkno 0x%"PRIx64" rawblkno 0x%" 1446 PRIx64 " dev 0x%x\n", 1447 bp->b_vp, bp->b_lblkno, bp->b_blkno, bp->b_rawblkno, bp->b_dev); 1448 1449 snprintb(bf, sizeof(bf), 1450 buf_flagbits, bp->b_flags | bp->b_oflags | bp->b_cflags); 1451 (*pr)(" error %d flags 0x%s\n", bp->b_error, bf); 1452 1453 (*pr)(" bufsize 0x%lx bcount 0x%lx resid 0x%lx\n", 1454 bp->b_bufsize, bp->b_bcount, bp->b_resid); 1455 (*pr)(" data %p saveaddr %p\n", 1456 bp->b_data, bp->b_saveaddr); 1457 (*pr)(" iodone %p objlock %p\n", bp->b_iodone, bp->b_objlock); 1458 } 1459 1460 void 1461 vfs_vnode_print(struct vnode *vp, int full, void (*pr)(const char *, ...)) 1462 { 1463 char bf[256]; 1464 1465 uvm_object_printit(&vp->v_uobj, full, pr); 1466 snprintb(bf, sizeof(bf), 1467 vnode_flagbits, vp->v_iflag | vp->v_vflag | vp->v_uflag); 1468 (*pr)("\nVNODE flags %s\n", bf); 1469 (*pr)("mp %p numoutput %d size 0x%llx writesize 0x%llx\n", 1470 vp->v_mount, vp->v_numoutput, vp->v_size, vp->v_writesize); 1471 1472 (*pr)("data %p writecount %ld holdcnt %ld\n", 1473 vp->v_data, vp->v_writecount, vp->v_holdcnt); 1474 1475 (*pr)("tag %s(%d) type %s(%d) mount %p typedata %p\n", 1476 ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag, 1477 ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type, 1478 vp->v_mount, vp->v_mountedhere); 1479 1480 (*pr)("v_lock %p\n", &vp->v_lock); 1481 1482 if (full) { 1483 struct buf *bp; 1484 1485 (*pr)("clean bufs:\n"); 1486 LIST_FOREACH(bp, &vp->v_cleanblkhd, b_vnbufs) { 1487 (*pr)(" bp %p\n", bp); 1488 vfs_buf_print(bp, full, pr); 1489 } 1490 1491 (*pr)("dirty bufs:\n"); 1492 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { 1493 (*pr)(" bp %p\n", bp); 1494 vfs_buf_print(bp, full, pr); 1495 } 1496 } 1497 } 1498 1499 void 1500 vfs_mount_print(struct mount *mp, int full, void (*pr)(const char *, ...)) 1501 { 1502 char sbuf[256]; 1503 1504 (*pr)("vnodecovered = %p data = %p\n", 1505 mp->mnt_vnodecovered,mp->mnt_data); 1506 1507 (*pr)("fs_bshift %d dev_bshift = %d\n", 1508 mp->mnt_fs_bshift,mp->mnt_dev_bshift); 1509 1510 snprintb(sbuf, sizeof(sbuf), __MNT_FLAG_BITS, mp->mnt_flag); 1511 (*pr)("flag = %s\n", sbuf); 1512 1513 snprintb(sbuf, sizeof(sbuf), __IMNT_FLAG_BITS, mp->mnt_iflag); 1514 (*pr)("iflag = %s\n", sbuf); 1515 1516 (*pr)("refcnt = %d unmounting @ %p updating @ %p\n", mp->mnt_refcnt, 1517 &mp->mnt_unmounting, &mp->mnt_updating); 1518 1519 (*pr)("statvfs cache:\n"); 1520 (*pr)("\tbsize = %lu\n",mp->mnt_stat.f_bsize); 1521 (*pr)("\tfrsize = %lu\n",mp->mnt_stat.f_frsize); 1522 (*pr)("\tiosize = %lu\n",mp->mnt_stat.f_iosize); 1523 1524 (*pr)("\tblocks = %"PRIu64"\n",mp->mnt_stat.f_blocks); 1525 (*pr)("\tbfree = %"PRIu64"\n",mp->mnt_stat.f_bfree); 1526 (*pr)("\tbavail = %"PRIu64"\n",mp->mnt_stat.f_bavail); 1527 (*pr)("\tbresvd = %"PRIu64"\n",mp->mnt_stat.f_bresvd); 1528 1529 (*pr)("\tfiles = %"PRIu64"\n",mp->mnt_stat.f_files); 1530 (*pr)("\tffree = %"PRIu64"\n",mp->mnt_stat.f_ffree); 1531 (*pr)("\tfavail = %"PRIu64"\n",mp->mnt_stat.f_favail); 1532 (*pr)("\tfresvd = %"PRIu64"\n",mp->mnt_stat.f_fresvd); 1533 1534 (*pr)("\tf_fsidx = { 0x%"PRIx32", 0x%"PRIx32" }\n", 1535 mp->mnt_stat.f_fsidx.__fsid_val[0], 1536 mp->mnt_stat.f_fsidx.__fsid_val[1]); 1537 1538 (*pr)("\towner = %"PRIu32"\n",mp->mnt_stat.f_owner); 1539 (*pr)("\tnamemax = %lu\n",mp->mnt_stat.f_namemax); 1540 1541 snprintb(sbuf, sizeof(sbuf), __MNT_FLAG_BITS, mp->mnt_stat.f_flag); 1542 1543 (*pr)("\tflag = %s\n",sbuf); 1544 (*pr)("\tsyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_syncwrites); 1545 (*pr)("\tasyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_asyncwrites); 1546 (*pr)("\tsyncreads = %" PRIu64 "\n",mp->mnt_stat.f_syncreads); 1547 (*pr)("\tasyncreads = %" PRIu64 "\n",mp->mnt_stat.f_asyncreads); 1548 (*pr)("\tfstypename = %s\n",mp->mnt_stat.f_fstypename); 1549 (*pr)("\tmntonname = %s\n",mp->mnt_stat.f_mntonname); 1550 (*pr)("\tmntfromname = %s\n",mp->mnt_stat.f_mntfromname); 1551 1552 { 1553 int cnt = 0; 1554 struct vnode *vp; 1555 (*pr)("locked vnodes ="); 1556 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) { 1557 if (VOP_ISLOCKED(vp)) { 1558 if ((++cnt % 6) == 0) { 1559 (*pr)(" %p,\n\t", vp); 1560 } else { 1561 (*pr)(" %p,", vp); 1562 } 1563 } 1564 } 1565 (*pr)("\n"); 1566 } 1567 1568 if (full) { 1569 int cnt = 0; 1570 struct vnode *vp; 1571 (*pr)("all vnodes ="); 1572 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) { 1573 if (!TAILQ_NEXT(vp, v_mntvnodes)) { 1574 (*pr)(" %p", vp); 1575 } else if ((++cnt % 6) == 0) { 1576 (*pr)(" %p,\n\t", vp); 1577 } else { 1578 (*pr)(" %p,", vp); 1579 } 1580 } 1581 (*pr)("\n", vp); 1582 } 1583 } 1584 1585 /* 1586 * List all of the locked vnodes in the system. 1587 */ 1588 void printlockedvnodes(void); 1589 1590 void 1591 printlockedvnodes(void) 1592 { 1593 struct mount *mp, *nmp; 1594 struct vnode *vp; 1595 1596 printf("Locked vnodes\n"); 1597 mutex_enter(&mountlist_lock); 1598 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 1599 if (vfs_busy(mp, &nmp)) { 1600 continue; 1601 } 1602 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) { 1603 if (VOP_ISLOCKED(vp)) 1604 vprint(NULL, vp); 1605 } 1606 mutex_enter(&mountlist_lock); 1607 vfs_unbusy(mp, false, &nmp); 1608 } 1609 mutex_exit(&mountlist_lock); 1610 } 1611 1612 #endif /* DDB || DEBUGPRINT */ 1613