xref: /netbsd-src/sys/kern/vfs_subr.c (revision 0c4ddb1599a0bea866fde8522a74cfbd2f68cd1b)
1 /*	$NetBSD: vfs_subr.c,v 1.353 2008/07/16 20:06:19 pooka Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)vfs_subr.c	8.13 (Berkeley) 4/18/94
67  */
68 
69 /*
70  * Note on v_usecount and locking:
71  *
72  * At nearly all points it is known that v_usecount could be zero, the
73  * vnode interlock will be held.
74  *
75  * To change v_usecount away from zero, the interlock must be held.  To
76  * change from a non-zero value to zero, again the interlock must be
77  * held.
78  *
79  * Changing the usecount from a non-zero value to a non-zero value can
80  * safely be done using atomic operations, without the interlock held.
81  */
82 
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: vfs_subr.c,v 1.353 2008/07/16 20:06:19 pooka Exp $");
85 
86 #include "opt_ddb.h"
87 #include "opt_compat_netbsd.h"
88 #include "opt_compat_43.h"
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/proc.h>
93 #include <sys/kernel.h>
94 #include <sys/mount.h>
95 #include <sys/fcntl.h>
96 #include <sys/vnode.h>
97 #include <sys/stat.h>
98 #include <sys/namei.h>
99 #include <sys/ucred.h>
100 #include <sys/buf.h>
101 #include <sys/errno.h>
102 #include <sys/malloc.h>
103 #include <sys/syscallargs.h>
104 #include <sys/device.h>
105 #include <sys/filedesc.h>
106 #include <sys/kauth.h>
107 #include <sys/atomic.h>
108 #include <sys/kthread.h>
109 
110 #include <miscfs/specfs/specdev.h>
111 #include <miscfs/syncfs/syncfs.h>
112 
113 #include <uvm/uvm.h>
114 #include <uvm/uvm_readahead.h>
115 #include <uvm/uvm_ddb.h>
116 
117 #include <sys/sysctl.h>
118 
119 const enum vtype iftovt_tab[16] = {
120 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
121 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
122 };
123 const int	vttoif_tab[9] = {
124 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
125 	S_IFSOCK, S_IFIFO, S_IFMT,
126 };
127 
128 /*
129  * Insq/Remq for the vnode usage lists.
130  */
131 #define	bufinsvn(bp, dp)	LIST_INSERT_HEAD(dp, bp, b_vnbufs)
132 #define	bufremvn(bp) {							\
133 	LIST_REMOVE(bp, b_vnbufs);					\
134 	(bp)->b_vnbufs.le_next = NOLIST;				\
135 }
136 
137 int doforce = 1;		/* 1 => permit forcible unmounting */
138 int prtactive = 0;		/* 1 => print out reclaim of active vnodes */
139 
140 extern int dovfsusermount;	/* 1 => permit any user to mount filesystems */
141 extern int vfs_magiclinks;	/* 1 => expand "magic" symlinks */
142 
143 static vnodelst_t vnode_free_list = TAILQ_HEAD_INITIALIZER(vnode_free_list);
144 static vnodelst_t vnode_hold_list = TAILQ_HEAD_INITIALIZER(vnode_hold_list);
145 static vnodelst_t vrele_list = TAILQ_HEAD_INITIALIZER(vrele_list);
146 
147 struct mntlist mountlist =			/* mounted filesystem list */
148     CIRCLEQ_HEAD_INITIALIZER(mountlist);
149 
150 u_int numvnodes;
151 static specificdata_domain_t mount_specificdata_domain;
152 
153 static int vrele_pending;
154 static int vrele_gen;
155 static kmutex_t	vrele_lock;
156 static kcondvar_t vrele_cv;
157 static lwp_t *vrele_lwp;
158 
159 kmutex_t mountlist_lock;
160 kmutex_t mntid_lock;
161 kmutex_t mntvnode_lock;
162 kmutex_t vnode_free_list_lock;
163 kmutex_t specfs_lock;
164 kmutex_t vfs_list_lock;
165 
166 static pool_cache_t vnode_cache;
167 
168 MALLOC_DEFINE(M_VNODE, "vnodes", "Dynamically allocated vnodes");
169 
170 /*
171  * These define the root filesystem and device.
172  */
173 struct vnode *rootvnode;
174 struct device *root_device;			/* root device */
175 
176 /*
177  * Local declarations.
178  */
179 
180 static void vrele_thread(void *);
181 static void insmntque(vnode_t *, struct mount *);
182 static int getdevvp(dev_t, vnode_t **, enum vtype);
183 static vnode_t *getcleanvnode(void);;
184 void vpanic(vnode_t *, const char *);
185 
186 #ifdef DEBUG
187 void printlockedvnodes(void);
188 #endif
189 
190 #ifdef DIAGNOSTIC
191 void
192 vpanic(vnode_t *vp, const char *msg)
193 {
194 
195 	vprint(NULL, vp);
196 	panic("%s\n", msg);
197 }
198 #else
199 #define	vpanic(vp, msg)	/* nothing */
200 #endif
201 
202 void
203 vn_init1(void)
204 {
205 
206 	vnode_cache = pool_cache_init(sizeof(struct vnode), 0, 0, 0, "vnodepl",
207 	    NULL, IPL_NONE, NULL, NULL, NULL);
208 	KASSERT(vnode_cache != NULL);
209 
210 	/* Create deferred release thread. */
211 	mutex_init(&vrele_lock, MUTEX_DEFAULT, IPL_NONE);
212 	cv_init(&vrele_cv, "vrele");
213 	if (kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vrele_thread,
214 	    NULL, &vrele_lwp, "vrele"))
215 		panic("fork vrele");
216 }
217 
218 /*
219  * Initialize the vnode management data structures.
220  */
221 void
222 vntblinit(void)
223 {
224 
225 	mutex_init(&mountlist_lock, MUTEX_DEFAULT, IPL_NONE);
226 	mutex_init(&mntid_lock, MUTEX_DEFAULT, IPL_NONE);
227 	mutex_init(&mntvnode_lock, MUTEX_DEFAULT, IPL_NONE);
228 	mutex_init(&vnode_free_list_lock, MUTEX_DEFAULT, IPL_NONE);
229 	mutex_init(&specfs_lock, MUTEX_DEFAULT, IPL_NONE);
230 	mutex_init(&vfs_list_lock, MUTEX_DEFAULT, IPL_NONE);
231 
232 	mount_specificdata_domain = specificdata_domain_create();
233 
234 	/* Initialize the filesystem syncer. */
235 	vn_initialize_syncerd();
236 	vn_init1();
237 }
238 
239 int
240 vfs_drainvnodes(long target, struct lwp *l)
241 {
242 
243 	while (numvnodes > target) {
244 		vnode_t *vp;
245 
246 		mutex_enter(&vnode_free_list_lock);
247 		vp = getcleanvnode();
248 		if (vp == NULL)
249 			return EBUSY; /* give up */
250 		ungetnewvnode(vp);
251 	}
252 
253 	return 0;
254 }
255 
256 /*
257  * Lookup a mount point by filesystem identifier.
258  *
259  * XXX Needs to add a reference to the mount point.
260  */
261 struct mount *
262 vfs_getvfs(fsid_t *fsid)
263 {
264 	struct mount *mp;
265 
266 	mutex_enter(&mountlist_lock);
267 	CIRCLEQ_FOREACH(mp, &mountlist, mnt_list) {
268 		if (mp->mnt_stat.f_fsidx.__fsid_val[0] == fsid->__fsid_val[0] &&
269 		    mp->mnt_stat.f_fsidx.__fsid_val[1] == fsid->__fsid_val[1]) {
270 			mutex_exit(&mountlist_lock);
271 			return (mp);
272 		}
273 	}
274 	mutex_exit(&mountlist_lock);
275 	return ((struct mount *)0);
276 }
277 
278 /*
279  * Drop a reference to a mount structure, freeing if the last reference.
280  */
281 void
282 vfs_destroy(struct mount *mp)
283 {
284 
285 	if (__predict_true(atomic_dec_uint_nv(&mp->mnt_refcnt) > 0)) {
286 		return;
287 	}
288 
289 	/*
290 	 * Nothing else has visibility of the mount: we can now
291 	 * free the data structures.
292 	 */
293 	specificdata_fini(mount_specificdata_domain, &mp->mnt_specdataref);
294 	rw_destroy(&mp->mnt_unmounting);
295 	mutex_destroy(&mp->mnt_updating);
296 	mutex_destroy(&mp->mnt_renamelock);
297 	if (mp->mnt_op != NULL) {
298 		vfs_delref(mp->mnt_op);
299 	}
300 	kmem_free(mp, sizeof(*mp));
301 }
302 
303 /*
304  * grab a vnode from freelist and clean it.
305  */
306 vnode_t *
307 getcleanvnode(void)
308 {
309 	vnode_t *vp;
310 	vnodelst_t *listhd;
311 
312 	KASSERT(mutex_owned(&vnode_free_list_lock));
313 
314 retry:
315 	listhd = &vnode_free_list;
316 try_nextlist:
317 	TAILQ_FOREACH(vp, listhd, v_freelist) {
318 		/*
319 		 * It's safe to test v_usecount and v_iflag
320 		 * without holding the interlock here, since
321 		 * these vnodes should never appear on the
322 		 * lists.
323 		 */
324 		if (vp->v_usecount != 0) {
325 			vpanic(vp, "free vnode isn't");
326 		}
327 		if ((vp->v_iflag & VI_CLEAN) != 0) {
328 			vpanic(vp, "clean vnode on freelist");
329 		}
330 		if (vp->v_freelisthd != listhd) {
331 			printf("vnode sez %p, listhd %p\n", vp->v_freelisthd, listhd);
332 			vpanic(vp, "list head mismatch");
333 		}
334 		if (!mutex_tryenter(&vp->v_interlock))
335 			continue;
336 		/*
337 		 * Our lwp might hold the underlying vnode
338 		 * locked, so don't try to reclaim a VI_LAYER
339 		 * node if it's locked.
340 		 */
341 		if ((vp->v_iflag & VI_XLOCK) == 0 &&
342 		    ((vp->v_iflag & VI_LAYER) == 0 || VOP_ISLOCKED(vp) == 0)) {
343 			break;
344 		}
345 		mutex_exit(&vp->v_interlock);
346 	}
347 
348 	if (vp == NULL) {
349 		if (listhd == &vnode_free_list) {
350 			listhd = &vnode_hold_list;
351 			goto try_nextlist;
352 		}
353 		mutex_exit(&vnode_free_list_lock);
354 		return NULL;
355 	}
356 
357 	/* Remove it from the freelist. */
358 	TAILQ_REMOVE(listhd, vp, v_freelist);
359 	vp->v_freelisthd = NULL;
360 	mutex_exit(&vnode_free_list_lock);
361 
362 	/*
363 	 * The vnode is still associated with a file system, so we must
364 	 * clean it out before reusing it.  We need to add a reference
365 	 * before doing this.  If the vnode gains another reference while
366 	 * being cleaned out then we lose - retry.
367 	 */
368 	atomic_inc_uint(&vp->v_usecount);
369 	vclean(vp, DOCLOSE);
370 	if (vp->v_usecount == 1) {
371 		/* We're about to dirty it. */
372 		vp->v_iflag &= ~VI_CLEAN;
373 		mutex_exit(&vp->v_interlock);
374 		if (vp->v_type == VBLK || vp->v_type == VCHR) {
375 			spec_node_destroy(vp);
376 		}
377 		vp->v_type = VNON;
378 	} else {
379 		/*
380 		 * Don't return to freelist - the holder of the last
381 		 * reference will destroy it.
382 		 */
383 		vrelel(vp, 0); /* releases vp->v_interlock */
384 		mutex_enter(&vnode_free_list_lock);
385 		goto retry;
386 	}
387 
388 	if (vp->v_data != NULL || vp->v_uobj.uo_npages != 0 ||
389 	    !TAILQ_EMPTY(&vp->v_uobj.memq)) {
390 		vpanic(vp, "cleaned vnode isn't");
391 	}
392 	if (vp->v_numoutput != 0) {
393 		vpanic(vp, "clean vnode has pending I/O's");
394 	}
395 	if ((vp->v_iflag & VI_ONWORKLST) != 0) {
396 		vpanic(vp, "clean vnode on syncer list");
397 	}
398 
399 	return vp;
400 }
401 
402 /*
403  * Mark a mount point as busy, and gain a new reference to it.  Used to
404  * prevent the file system from being unmounted during critical sections.
405  *
406  * => The caller must hold a pre-existing reference to the mount.
407  * => Will fail if the file system is being unmounted, or is unmounted.
408  */
409 int
410 vfs_busy(struct mount *mp, struct mount **nextp)
411 {
412 
413 	KASSERT(mp->mnt_refcnt > 0);
414 
415 	if (__predict_false(!rw_tryenter(&mp->mnt_unmounting, RW_READER))) {
416 		if (nextp != NULL) {
417 			KASSERT(mutex_owned(&mountlist_lock));
418 			*nextp = CIRCLEQ_NEXT(mp, mnt_list);
419 		}
420 		return EBUSY;
421 	}
422 	if (__predict_false((mp->mnt_iflag & IMNT_GONE) != 0)) {
423 		rw_exit(&mp->mnt_unmounting);
424 		if (nextp != NULL) {
425 			KASSERT(mutex_owned(&mountlist_lock));
426 			*nextp = CIRCLEQ_NEXT(mp, mnt_list);
427 		}
428 		return ENOENT;
429 	}
430 	if (nextp != NULL) {
431 		mutex_exit(&mountlist_lock);
432 	}
433 	atomic_inc_uint(&mp->mnt_refcnt);
434 	return 0;
435 }
436 
437 /*
438  * Unbusy a busy filesystem.
439  *
440  * => If keepref is true, preserve reference added by vfs_busy().
441  * => If nextp != NULL, acquire mountlist_lock.
442  */
443 void
444 vfs_unbusy(struct mount *mp, bool keepref, struct mount **nextp)
445 {
446 
447 	KASSERT(mp->mnt_refcnt > 0);
448 
449 	if (nextp != NULL) {
450 		mutex_enter(&mountlist_lock);
451 	}
452 	rw_exit(&mp->mnt_unmounting);
453 	if (!keepref) {
454 		vfs_destroy(mp);
455 	}
456 	if (nextp != NULL) {
457 		KASSERT(mutex_owned(&mountlist_lock));
458 		*nextp = CIRCLEQ_NEXT(mp, mnt_list);
459 	}
460 }
461 
462 /*
463  * Lookup a filesystem type, and if found allocate and initialize
464  * a mount structure for it.
465  *
466  * Devname is usually updated by mount(8) after booting.
467  */
468 int
469 vfs_rootmountalloc(const char *fstypename, const char *devname,
470     struct mount **mpp)
471 {
472 	struct vfsops *vfsp = NULL;
473 	struct mount *mp;
474 
475 	mutex_enter(&vfs_list_lock);
476 	LIST_FOREACH(vfsp, &vfs_list, vfs_list)
477 		if (!strncmp(vfsp->vfs_name, fstypename,
478 		    sizeof(mp->mnt_stat.f_fstypename)))
479 			break;
480 	if (vfsp == NULL) {
481 		mutex_exit(&vfs_list_lock);
482 		return (ENODEV);
483 	}
484 	vfsp->vfs_refcount++;
485 	mutex_exit(&vfs_list_lock);
486 
487 	mp = kmem_zalloc(sizeof(*mp), KM_SLEEP);
488 	if (mp == NULL)
489 		return ENOMEM;
490 	mp->mnt_refcnt = 1;
491 	rw_init(&mp->mnt_unmounting);
492 	mutex_init(&mp->mnt_updating, MUTEX_DEFAULT, IPL_NONE);
493 	mutex_init(&mp->mnt_renamelock, MUTEX_DEFAULT, IPL_NONE);
494 	(void)vfs_busy(mp, NULL);
495 	TAILQ_INIT(&mp->mnt_vnodelist);
496 	mp->mnt_op = vfsp;
497 	mp->mnt_flag = MNT_RDONLY;
498 	mp->mnt_vnodecovered = NULL;
499 	(void)strlcpy(mp->mnt_stat.f_fstypename, vfsp->vfs_name,
500 	    sizeof(mp->mnt_stat.f_fstypename));
501 	mp->mnt_stat.f_mntonname[0] = '/';
502 	mp->mnt_stat.f_mntonname[1] = '\0';
503 	mp->mnt_stat.f_mntfromname[sizeof(mp->mnt_stat.f_mntfromname) - 1] =
504 	    '\0';
505 	(void)copystr(devname, mp->mnt_stat.f_mntfromname,
506 	    sizeof(mp->mnt_stat.f_mntfromname) - 1, 0);
507 	mount_initspecific(mp);
508 	*mpp = mp;
509 	return (0);
510 }
511 
512 /*
513  * Routines having to do with the management of the vnode table.
514  */
515 extern int (**dead_vnodeop_p)(void *);
516 
517 /*
518  * Return the next vnode from the free list.
519  */
520 int
521 getnewvnode(enum vtagtype tag, struct mount *mp, int (**vops)(void *),
522 	    vnode_t **vpp)
523 {
524 	struct uvm_object *uobj;
525 	static int toggle;
526 	vnode_t *vp;
527 	int error = 0, tryalloc;
528 
529  try_again:
530 	if (mp != NULL) {
531 		/*
532 		 * Mark filesystem busy while we're creating a
533 		 * vnode.  If unmount is in progress, this will
534 		 * fail.
535 		 */
536 		error = vfs_busy(mp, NULL);
537 		if (error)
538 			return error;
539 	}
540 
541 	/*
542 	 * We must choose whether to allocate a new vnode or recycle an
543 	 * existing one. The criterion for allocating a new one is that
544 	 * the total number of vnodes is less than the number desired or
545 	 * there are no vnodes on either free list. Generally we only
546 	 * want to recycle vnodes that have no buffers associated with
547 	 * them, so we look first on the vnode_free_list. If it is empty,
548 	 * we next consider vnodes with referencing buffers on the
549 	 * vnode_hold_list. The toggle ensures that half the time we
550 	 * will use a buffer from the vnode_hold_list, and half the time
551 	 * we will allocate a new one unless the list has grown to twice
552 	 * the desired size. We are reticent to recycle vnodes from the
553 	 * vnode_hold_list because we will lose the identity of all its
554 	 * referencing buffers.
555 	 */
556 
557 	vp = NULL;
558 
559 	mutex_enter(&vnode_free_list_lock);
560 
561 	toggle ^= 1;
562 	if (numvnodes > 2 * desiredvnodes)
563 		toggle = 0;
564 
565 	tryalloc = numvnodes < desiredvnodes ||
566 	    (TAILQ_FIRST(&vnode_free_list) == NULL &&
567 	     (TAILQ_FIRST(&vnode_hold_list) == NULL || toggle));
568 
569 	if (tryalloc) {
570 		numvnodes++;
571 		mutex_exit(&vnode_free_list_lock);
572 		if ((vp = vnalloc(NULL)) == NULL) {
573 			mutex_enter(&vnode_free_list_lock);
574 			numvnodes--;
575 		} else
576 			vp->v_usecount = 1;
577 	}
578 
579 	if (vp == NULL) {
580 		vp = getcleanvnode();
581 		if (vp == NULL) {
582 			if (mp != NULL) {
583 				vfs_unbusy(mp, false, NULL);
584 			}
585 			if (tryalloc) {
586 				printf("WARNING: unable to allocate new "
587 				    "vnode, retrying...\n");
588 				kpause("newvn", false, hz, NULL);
589 				goto try_again;
590 			}
591 			tablefull("vnode", "increase kern.maxvnodes or NVNODE");
592 			*vpp = 0;
593 			return (ENFILE);
594 		}
595 		vp->v_iflag = 0;
596 		vp->v_vflag = 0;
597 		vp->v_uflag = 0;
598 		vp->v_socket = NULL;
599 	}
600 
601 	KASSERT(vp->v_usecount == 1);
602 	KASSERT(vp->v_freelisthd == NULL);
603 	KASSERT(LIST_EMPTY(&vp->v_nclist));
604 	KASSERT(LIST_EMPTY(&vp->v_dnclist));
605 
606 	vp->v_type = VNON;
607 	vp->v_vnlock = &vp->v_lock;
608 	vp->v_tag = tag;
609 	vp->v_op = vops;
610 	insmntque(vp, mp);
611 	*vpp = vp;
612 	vp->v_data = 0;
613 
614 	/*
615 	 * initialize uvm_object within vnode.
616 	 */
617 
618 	uobj = &vp->v_uobj;
619 	KASSERT(uobj->pgops == &uvm_vnodeops);
620 	KASSERT(uobj->uo_npages == 0);
621 	KASSERT(TAILQ_FIRST(&uobj->memq) == NULL);
622 	vp->v_size = vp->v_writesize = VSIZENOTSET;
623 
624 	if (mp != NULL) {
625 		if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
626 			vp->v_vflag |= VV_MPSAFE;
627 		vfs_unbusy(mp, true, NULL);
628 	}
629 
630 	return (0);
631 }
632 
633 /*
634  * This is really just the reverse of getnewvnode(). Needed for
635  * VFS_VGET functions who may need to push back a vnode in case
636  * of a locking race.
637  */
638 void
639 ungetnewvnode(vnode_t *vp)
640 {
641 
642 	KASSERT(vp->v_usecount == 1);
643 	KASSERT(vp->v_data == NULL);
644 	KASSERT(vp->v_freelisthd == NULL);
645 
646 	mutex_enter(&vp->v_interlock);
647 	vp->v_iflag |= VI_CLEAN;
648 	vrelel(vp, 0);
649 }
650 
651 /*
652  * Allocate a new, uninitialized vnode.  If 'mp' is non-NULL, this is a
653  * marker vnode and we are prepared to wait for the allocation.
654  */
655 vnode_t *
656 vnalloc(struct mount *mp)
657 {
658 	vnode_t *vp;
659 
660 	vp = pool_cache_get(vnode_cache, (mp != NULL ? PR_WAITOK : PR_NOWAIT));
661 	if (vp == NULL) {
662 		return NULL;
663 	}
664 
665 	memset(vp, 0, sizeof(*vp));
666 	UVM_OBJ_INIT(&vp->v_uobj, &uvm_vnodeops, 0);
667 	cv_init(&vp->v_cv, "vnode");
668 	/*
669 	 * done by memset() above.
670 	 *	LIST_INIT(&vp->v_nclist);
671 	 *	LIST_INIT(&vp->v_dnclist);
672 	 */
673 
674 	if (mp != NULL) {
675 		vp->v_mount = mp;
676 		vp->v_type = VBAD;
677 		vp->v_iflag = VI_MARKER;
678 	} else {
679 		rw_init(&vp->v_lock.vl_lock);
680 	}
681 
682 	return vp;
683 }
684 
685 /*
686  * Free an unused, unreferenced vnode.
687  */
688 void
689 vnfree(vnode_t *vp)
690 {
691 
692 	KASSERT(vp->v_usecount == 0);
693 
694 	if ((vp->v_iflag & VI_MARKER) == 0) {
695 		rw_destroy(&vp->v_lock.vl_lock);
696 		mutex_enter(&vnode_free_list_lock);
697 		numvnodes--;
698 		mutex_exit(&vnode_free_list_lock);
699 	}
700 
701 	UVM_OBJ_DESTROY(&vp->v_uobj);
702 	cv_destroy(&vp->v_cv);
703 	pool_cache_put(vnode_cache, vp);
704 }
705 
706 /*
707  * Remove a vnode from its freelist.
708  */
709 static inline void
710 vremfree(vnode_t *vp)
711 {
712 
713 	KASSERT(mutex_owned(&vp->v_interlock));
714 	KASSERT(vp->v_usecount == 0);
715 
716 	/*
717 	 * Note that the reference count must not change until
718 	 * the vnode is removed.
719 	 */
720 	mutex_enter(&vnode_free_list_lock);
721 	if (vp->v_holdcnt > 0) {
722 		KASSERT(vp->v_freelisthd == &vnode_hold_list);
723 	} else {
724 		KASSERT(vp->v_freelisthd == &vnode_free_list);
725 	}
726 	TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
727 	vp->v_freelisthd = NULL;
728 	mutex_exit(&vnode_free_list_lock);
729 }
730 
731 /*
732  * Move a vnode from one mount queue to another.
733  */
734 static void
735 insmntque(vnode_t *vp, struct mount *mp)
736 {
737 	struct mount *omp;
738 
739 #ifdef DIAGNOSTIC
740 	if ((mp != NULL) &&
741 	    (mp->mnt_iflag & IMNT_UNMOUNT) &&
742 	    !(mp->mnt_flag & MNT_SOFTDEP) &&
743 	    vp->v_tag != VT_VFS) {
744 		panic("insmntque into dying filesystem");
745 	}
746 #endif
747 
748 	mutex_enter(&mntvnode_lock);
749 	/*
750 	 * Delete from old mount point vnode list, if on one.
751 	 */
752 	if ((omp = vp->v_mount) != NULL)
753 		TAILQ_REMOVE(&vp->v_mount->mnt_vnodelist, vp, v_mntvnodes);
754 	/*
755 	 * Insert into list of vnodes for the new mount point, if
756 	 * available.  The caller must take a reference on the mount
757 	 * structure and donate to the vnode.
758 	 */
759 	if ((vp->v_mount = mp) != NULL)
760 		TAILQ_INSERT_TAIL(&mp->mnt_vnodelist, vp, v_mntvnodes);
761 	mutex_exit(&mntvnode_lock);
762 
763 	if (omp != NULL) {
764 		/* Release reference to old mount. */
765 		vfs_destroy(omp);
766 	}
767 }
768 
769 /*
770  * Wait for a vnode (typically with VI_XLOCK set) to be cleaned or
771  * recycled.
772  */
773 void
774 vwait(vnode_t *vp, int flags)
775 {
776 
777 	KASSERT(mutex_owned(&vp->v_interlock));
778 	KASSERT(vp->v_usecount != 0);
779 
780 	while ((vp->v_iflag & flags) != 0)
781 		cv_wait(&vp->v_cv, &vp->v_interlock);
782 }
783 
784 /*
785  * Insert a marker vnode into a mount's vnode list, after the
786  * specified vnode.  mntvnode_lock must be held.
787  */
788 void
789 vmark(vnode_t *mvp, vnode_t *vp)
790 {
791 	struct mount *mp;
792 
793 	mp = mvp->v_mount;
794 
795 	KASSERT(mutex_owned(&mntvnode_lock));
796 	KASSERT((mvp->v_iflag & VI_MARKER) != 0);
797 	KASSERT(vp->v_mount == mp);
798 
799 	TAILQ_INSERT_AFTER(&mp->mnt_vnodelist, vp, mvp, v_mntvnodes);
800 }
801 
802 /*
803  * Remove a marker vnode from a mount's vnode list, and return
804  * a pointer to the next vnode in the list.  mntvnode_lock must
805  * be held.
806  */
807 vnode_t *
808 vunmark(vnode_t *mvp)
809 {
810 	vnode_t *vp;
811 	struct mount *mp;
812 
813 	mp = mvp->v_mount;
814 
815 	KASSERT(mutex_owned(&mntvnode_lock));
816 	KASSERT((mvp->v_iflag & VI_MARKER) != 0);
817 
818 	vp = TAILQ_NEXT(mvp, v_mntvnodes);
819 	TAILQ_REMOVE(&mp->mnt_vnodelist, mvp, v_mntvnodes);
820 
821 	KASSERT(vp == NULL || vp->v_mount == mp);
822 
823 	return vp;
824 }
825 
826 /*
827  * Update outstanding I/O count and do wakeup if requested.
828  */
829 void
830 vwakeup(struct buf *bp)
831 {
832 	struct vnode *vp;
833 
834 	if ((vp = bp->b_vp) == NULL)
835 		return;
836 
837 	KASSERT(bp->b_objlock == &vp->v_interlock);
838 	KASSERT(mutex_owned(bp->b_objlock));
839 
840 	if (--vp->v_numoutput < 0)
841 		panic("vwakeup: neg numoutput, vp %p", vp);
842 	if (vp->v_numoutput == 0)
843 		cv_broadcast(&vp->v_cv);
844 }
845 
846 /*
847  * Flush out and invalidate all buffers associated with a vnode.
848  * Called with the underlying vnode locked, which should prevent new dirty
849  * buffers from being queued.
850  */
851 int
852 vinvalbuf(struct vnode *vp, int flags, kauth_cred_t cred, struct lwp *l,
853 	  bool catch, int slptimeo)
854 {
855 	struct buf *bp, *nbp;
856 	int error;
857 	int flushflags = PGO_ALLPAGES | PGO_FREE | PGO_SYNCIO |
858 	    (flags & V_SAVE ? PGO_CLEANIT | PGO_RECLAIM : 0);
859 
860 	/* XXXUBC this doesn't look at flags or slp* */
861 	mutex_enter(&vp->v_interlock);
862 	error = VOP_PUTPAGES(vp, 0, 0, flushflags);
863 	if (error) {
864 		return error;
865 	}
866 
867 	if (flags & V_SAVE) {
868 		error = VOP_FSYNC(vp, cred, FSYNC_WAIT|FSYNC_RECLAIM, 0, 0);
869 		if (error)
870 		        return (error);
871 		KASSERT(LIST_EMPTY(&vp->v_dirtyblkhd));
872 	}
873 
874 	mutex_enter(&bufcache_lock);
875 restart:
876 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
877 		nbp = LIST_NEXT(bp, b_vnbufs);
878 		error = bbusy(bp, catch, slptimeo, NULL);
879 		if (error != 0) {
880 			if (error == EPASSTHROUGH)
881 				goto restart;
882 			mutex_exit(&bufcache_lock);
883 			return (error);
884 		}
885 		brelsel(bp, BC_INVAL | BC_VFLUSH);
886 	}
887 
888 	for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
889 		nbp = LIST_NEXT(bp, b_vnbufs);
890 		error = bbusy(bp, catch, slptimeo, NULL);
891 		if (error != 0) {
892 			if (error == EPASSTHROUGH)
893 				goto restart;
894 			mutex_exit(&bufcache_lock);
895 			return (error);
896 		}
897 		/*
898 		 * XXX Since there are no node locks for NFS, I believe
899 		 * there is a slight chance that a delayed write will
900 		 * occur while sleeping just above, so check for it.
901 		 */
902 		if ((bp->b_oflags & BO_DELWRI) && (flags & V_SAVE)) {
903 #ifdef DEBUG
904 			printf("buffer still DELWRI\n");
905 #endif
906 			bp->b_cflags |= BC_BUSY | BC_VFLUSH;
907 			mutex_exit(&bufcache_lock);
908 			VOP_BWRITE(bp);
909 			mutex_enter(&bufcache_lock);
910 			goto restart;
911 		}
912 		brelsel(bp, BC_INVAL | BC_VFLUSH);
913 	}
914 
915 #ifdef DIAGNOSTIC
916 	if (!LIST_EMPTY(&vp->v_cleanblkhd) || !LIST_EMPTY(&vp->v_dirtyblkhd))
917 		panic("vinvalbuf: flush failed, vp %p", vp);
918 #endif
919 
920 	mutex_exit(&bufcache_lock);
921 
922 	return (0);
923 }
924 
925 /*
926  * Destroy any in core blocks past the truncation length.
927  * Called with the underlying vnode locked, which should prevent new dirty
928  * buffers from being queued.
929  */
930 int
931 vtruncbuf(struct vnode *vp, daddr_t lbn, bool catch, int slptimeo)
932 {
933 	struct buf *bp, *nbp;
934 	int error;
935 	voff_t off;
936 
937 	off = round_page((voff_t)lbn << vp->v_mount->mnt_fs_bshift);
938 	mutex_enter(&vp->v_interlock);
939 	error = VOP_PUTPAGES(vp, off, 0, PGO_FREE | PGO_SYNCIO);
940 	if (error) {
941 		return error;
942 	}
943 
944 	mutex_enter(&bufcache_lock);
945 restart:
946 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
947 		nbp = LIST_NEXT(bp, b_vnbufs);
948 		if (bp->b_lblkno < lbn)
949 			continue;
950 		error = bbusy(bp, catch, slptimeo, NULL);
951 		if (error != 0) {
952 			if (error == EPASSTHROUGH)
953 				goto restart;
954 			mutex_exit(&bufcache_lock);
955 			return (error);
956 		}
957 		brelsel(bp, BC_INVAL | BC_VFLUSH);
958 	}
959 
960 	for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
961 		nbp = LIST_NEXT(bp, b_vnbufs);
962 		if (bp->b_lblkno < lbn)
963 			continue;
964 		error = bbusy(bp, catch, slptimeo, NULL);
965 		if (error != 0) {
966 			if (error == EPASSTHROUGH)
967 				goto restart;
968 			mutex_exit(&bufcache_lock);
969 			return (error);
970 		}
971 		brelsel(bp, BC_INVAL | BC_VFLUSH);
972 	}
973 	mutex_exit(&bufcache_lock);
974 
975 	return (0);
976 }
977 
978 /*
979  * Flush all dirty buffers from a vnode.
980  * Called with the underlying vnode locked, which should prevent new dirty
981  * buffers from being queued.
982  */
983 void
984 vflushbuf(struct vnode *vp, int sync)
985 {
986 	struct buf *bp, *nbp;
987 	int flags = PGO_CLEANIT | PGO_ALLPAGES | (sync ? PGO_SYNCIO : 0);
988 	bool dirty;
989 
990 	mutex_enter(&vp->v_interlock);
991 	(void) VOP_PUTPAGES(vp, 0, 0, flags);
992 
993 loop:
994 	mutex_enter(&bufcache_lock);
995 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
996 		nbp = LIST_NEXT(bp, b_vnbufs);
997 		if ((bp->b_cflags & BC_BUSY))
998 			continue;
999 		if ((bp->b_oflags & BO_DELWRI) == 0)
1000 			panic("vflushbuf: not dirty, bp %p", bp);
1001 		bp->b_cflags |= BC_BUSY | BC_VFLUSH;
1002 		mutex_exit(&bufcache_lock);
1003 		/*
1004 		 * Wait for I/O associated with indirect blocks to complete,
1005 		 * since there is no way to quickly wait for them below.
1006 		 */
1007 		if (bp->b_vp == vp || sync == 0)
1008 			(void) bawrite(bp);
1009 		else
1010 			(void) bwrite(bp);
1011 		goto loop;
1012 	}
1013 	mutex_exit(&bufcache_lock);
1014 
1015 	if (sync == 0)
1016 		return;
1017 
1018 	mutex_enter(&vp->v_interlock);
1019 	while (vp->v_numoutput != 0)
1020 		cv_wait(&vp->v_cv, &vp->v_interlock);
1021 	dirty = !LIST_EMPTY(&vp->v_dirtyblkhd);
1022 	mutex_exit(&vp->v_interlock);
1023 
1024 	if (dirty) {
1025 		vprint("vflushbuf: dirty", vp);
1026 		goto loop;
1027 	}
1028 }
1029 
1030 /*
1031  * Create a vnode for a block device.
1032  * Used for root filesystem and swap areas.
1033  * Also used for memory file system special devices.
1034  */
1035 int
1036 bdevvp(dev_t dev, vnode_t **vpp)
1037 {
1038 
1039 	return (getdevvp(dev, vpp, VBLK));
1040 }
1041 
1042 /*
1043  * Create a vnode for a character device.
1044  * Used for kernfs and some console handling.
1045  */
1046 int
1047 cdevvp(dev_t dev, vnode_t **vpp)
1048 {
1049 
1050 	return (getdevvp(dev, vpp, VCHR));
1051 }
1052 
1053 /*
1054  * Associate a buffer with a vnode.  There must already be a hold on
1055  * the vnode.
1056  */
1057 void
1058 bgetvp(struct vnode *vp, struct buf *bp)
1059 {
1060 
1061 	KASSERT(bp->b_vp == NULL);
1062 	KASSERT(bp->b_objlock == &buffer_lock);
1063 	KASSERT(mutex_owned(&vp->v_interlock));
1064 	KASSERT(mutex_owned(&bufcache_lock));
1065 	KASSERT((bp->b_cflags & BC_BUSY) != 0);
1066 	KASSERT(!cv_has_waiters(&bp->b_done));
1067 
1068 	vholdl(vp);
1069 	bp->b_vp = vp;
1070 	if (vp->v_type == VBLK || vp->v_type == VCHR)
1071 		bp->b_dev = vp->v_rdev;
1072 	else
1073 		bp->b_dev = NODEV;
1074 
1075 	/*
1076 	 * Insert onto list for new vnode.
1077 	 */
1078 	bufinsvn(bp, &vp->v_cleanblkhd);
1079 	bp->b_objlock = &vp->v_interlock;
1080 }
1081 
1082 /*
1083  * Disassociate a buffer from a vnode.
1084  */
1085 void
1086 brelvp(struct buf *bp)
1087 {
1088 	struct vnode *vp = bp->b_vp;
1089 
1090 	KASSERT(vp != NULL);
1091 	KASSERT(bp->b_objlock == &vp->v_interlock);
1092 	KASSERT(mutex_owned(&vp->v_interlock));
1093 	KASSERT(mutex_owned(&bufcache_lock));
1094 	KASSERT((bp->b_cflags & BC_BUSY) != 0);
1095 	KASSERT(!cv_has_waiters(&bp->b_done));
1096 
1097 	/*
1098 	 * Delete from old vnode list, if on one.
1099 	 */
1100 	if (LIST_NEXT(bp, b_vnbufs) != NOLIST)
1101 		bufremvn(bp);
1102 
1103 	if (TAILQ_EMPTY(&vp->v_uobj.memq) && (vp->v_iflag & VI_ONWORKLST) &&
1104 	    LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1105 		vp->v_iflag &= ~VI_WRMAPDIRTY;
1106 		vn_syncer_remove_from_worklist(vp);
1107 	}
1108 
1109 	bp->b_objlock = &buffer_lock;
1110 	bp->b_vp = NULL;
1111 	holdrelel(vp);
1112 }
1113 
1114 /*
1115  * Reassign a buffer from one vnode list to another.
1116  * The list reassignment must be within the same vnode.
1117  * Used to assign file specific control information
1118  * (indirect blocks) to the list to which they belong.
1119  */
1120 void
1121 reassignbuf(struct buf *bp, struct vnode *vp)
1122 {
1123 	struct buflists *listheadp;
1124 	int delayx;
1125 
1126 	KASSERT(mutex_owned(&bufcache_lock));
1127 	KASSERT(bp->b_objlock == &vp->v_interlock);
1128 	KASSERT(mutex_owned(&vp->v_interlock));
1129 	KASSERT((bp->b_cflags & BC_BUSY) != 0);
1130 
1131 	/*
1132 	 * Delete from old vnode list, if on one.
1133 	 */
1134 	if (LIST_NEXT(bp, b_vnbufs) != NOLIST)
1135 		bufremvn(bp);
1136 
1137 	/*
1138 	 * If dirty, put on list of dirty buffers;
1139 	 * otherwise insert onto list of clean buffers.
1140 	 */
1141 	if ((bp->b_oflags & BO_DELWRI) == 0) {
1142 		listheadp = &vp->v_cleanblkhd;
1143 		if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
1144 		    (vp->v_iflag & VI_ONWORKLST) &&
1145 		    LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1146 			vp->v_iflag &= ~VI_WRMAPDIRTY;
1147 			vn_syncer_remove_from_worklist(vp);
1148 		}
1149 	} else {
1150 		listheadp = &vp->v_dirtyblkhd;
1151 		if ((vp->v_iflag & VI_ONWORKLST) == 0) {
1152 			switch (vp->v_type) {
1153 			case VDIR:
1154 				delayx = dirdelay;
1155 				break;
1156 			case VBLK:
1157 				if (vp->v_specmountpoint != NULL) {
1158 					delayx = metadelay;
1159 					break;
1160 				}
1161 				/* fall through */
1162 			default:
1163 				delayx = filedelay;
1164 				break;
1165 			}
1166 			if (!vp->v_mount ||
1167 			    (vp->v_mount->mnt_flag & MNT_ASYNC) == 0)
1168 				vn_syncer_add_to_worklist(vp, delayx);
1169 		}
1170 	}
1171 	bufinsvn(bp, listheadp);
1172 }
1173 
1174 /*
1175  * Create a vnode for a device.
1176  * Used by bdevvp (block device) for root file system etc.,
1177  * and by cdevvp (character device) for console and kernfs.
1178  */
1179 static int
1180 getdevvp(dev_t dev, vnode_t **vpp, enum vtype type)
1181 {
1182 	vnode_t *vp;
1183 	vnode_t *nvp;
1184 	int error;
1185 
1186 	if (dev == NODEV) {
1187 		*vpp = NULL;
1188 		return (0);
1189 	}
1190 	error = getnewvnode(VT_NON, NULL, spec_vnodeop_p, &nvp);
1191 	if (error) {
1192 		*vpp = NULL;
1193 		return (error);
1194 	}
1195 	vp = nvp;
1196 	vp->v_type = type;
1197 	vp->v_vflag |= VV_MPSAFE;
1198 	uvm_vnp_setsize(vp, 0);
1199 	spec_node_init(vp, dev);
1200 	*vpp = vp;
1201 	return (0);
1202 }
1203 
1204 /*
1205  * Try to gain a reference to a vnode, without acquiring its interlock.
1206  * The caller must hold a lock that will prevent the vnode from being
1207  * recycled or freed.
1208  */
1209 bool
1210 vtryget(vnode_t *vp)
1211 {
1212 	u_int use, next;
1213 
1214 	/*
1215 	 * If the vnode is being freed, don't make life any harder
1216 	 * for vclean() by adding another reference without waiting.
1217 	 * This is not strictly necessary, but we'll do it anyway.
1218 	 */
1219 	if (__predict_false((vp->v_iflag & (VI_XLOCK | VI_FREEING)) != 0)) {
1220 		return false;
1221 	}
1222 	for (use = vp->v_usecount;; use = next) {
1223 		if (use == 0) {
1224 			/* Need interlock held if first reference. */
1225 			return false;
1226 		}
1227 		next = atomic_cas_uint(&vp->v_usecount, use, use + 1);
1228 		if (__predict_true(next == use)) {
1229 			return true;
1230 		}
1231 	}
1232 }
1233 
1234 /*
1235  * Grab a particular vnode from the free list, increment its
1236  * reference count and lock it. If the vnode lock bit is set the
1237  * vnode is being eliminated in vgone. In that case, we can not
1238  * grab the vnode, so the process is awakened when the transition is
1239  * completed, and an error returned to indicate that the vnode is no
1240  * longer usable (possibly having been changed to a new file system type).
1241  */
1242 int
1243 vget(vnode_t *vp, int flags)
1244 {
1245 	int error;
1246 
1247 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1248 
1249 	if ((flags & LK_INTERLOCK) == 0)
1250 		mutex_enter(&vp->v_interlock);
1251 
1252 	/*
1253 	 * Before adding a reference, we must remove the vnode
1254 	 * from its freelist.
1255 	 */
1256 	if (vp->v_usecount == 0) {
1257 		vremfree(vp);
1258 		vp->v_usecount = 1;
1259 	} else {
1260 		atomic_inc_uint(&vp->v_usecount);
1261 	}
1262 
1263 	/*
1264 	 * If the vnode is in the process of being cleaned out for
1265 	 * another use, we wait for the cleaning to finish and then
1266 	 * return failure.  Cleaning is determined by checking if
1267 	 * the VI_XLOCK or VI_FREEING flags are set.
1268 	 */
1269 	if ((vp->v_iflag & (VI_XLOCK | VI_FREEING)) != 0) {
1270 		if ((flags & LK_NOWAIT) != 0) {
1271 			vrelel(vp, 0);
1272 			return EBUSY;
1273 		}
1274 		vwait(vp, VI_XLOCK | VI_FREEING);
1275 		vrelel(vp, 0);
1276 		return ENOENT;
1277 	}
1278 	if (flags & LK_TYPE_MASK) {
1279 		error = vn_lock(vp, flags | LK_INTERLOCK);
1280 		if (error != 0) {
1281 			vrele(vp);
1282 		}
1283 		return error;
1284 	}
1285 	mutex_exit(&vp->v_interlock);
1286 	return 0;
1287 }
1288 
1289 /*
1290  * vput(), just unlock and vrele()
1291  */
1292 void
1293 vput(vnode_t *vp)
1294 {
1295 
1296 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1297 
1298 	VOP_UNLOCK(vp, 0);
1299 	vrele(vp);
1300 }
1301 
1302 /*
1303  * Try to drop reference on a vnode.  Abort if we are releasing the
1304  * last reference.
1305  */
1306 static inline bool
1307 vtryrele(vnode_t *vp)
1308 {
1309 	u_int use, next;
1310 
1311 	for (use = vp->v_usecount;; use = next) {
1312 		if (use == 1) {
1313 			return false;
1314 		}
1315 		next = atomic_cas_uint(&vp->v_usecount, use, use - 1);
1316 		if (__predict_true(next == use)) {
1317 			return true;
1318 		}
1319 	}
1320 }
1321 
1322 /*
1323  * Vnode release.  If reference count drops to zero, call inactive
1324  * routine and either return to freelist or free to the pool.
1325  */
1326 void
1327 vrelel(vnode_t *vp, int flags)
1328 {
1329 	bool recycle, defer;
1330 	int error;
1331 
1332 	KASSERT(mutex_owned(&vp->v_interlock));
1333 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1334 	KASSERT(vp->v_freelisthd == NULL);
1335 
1336 	if (vp->v_op == dead_vnodeop_p && (vp->v_iflag & VI_CLEAN) == 0) {
1337 		vpanic(vp, "dead but not clean");
1338 	}
1339 
1340 	/*
1341 	 * If not the last reference, just drop the reference count
1342 	 * and unlock.
1343 	 */
1344 	if (vtryrele(vp)) {
1345 		vp->v_iflag |= VI_INACTREDO;
1346 		mutex_exit(&vp->v_interlock);
1347 		return;
1348 	}
1349 	if (vp->v_usecount <= 0 || vp->v_writecount != 0) {
1350 		vpanic(vp, "vput: bad ref count");
1351 	}
1352 
1353 	/*
1354 	 * If not clean, deactivate the vnode, but preserve
1355 	 * our reference across the call to VOP_INACTIVE().
1356 	 */
1357  retry:
1358 	if ((vp->v_iflag & VI_CLEAN) == 0) {
1359 		recycle = false;
1360 		vp->v_iflag |= VI_INACTNOW;
1361 
1362 		/*
1363 		 * XXX This ugly block can be largely eliminated if
1364 		 * locking is pushed down into the file systems.
1365 		 */
1366 		if (curlwp == uvm.pagedaemon_lwp) {
1367 			/* The pagedaemon can't wait around; defer. */
1368 			defer = true;
1369 		} else if (curlwp == vrele_lwp) {
1370 			/* We have to try harder. */
1371 			vp->v_iflag &= ~VI_INACTREDO;
1372 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK |
1373 			    LK_RETRY);
1374 			if (error != 0) {
1375 				/* XXX */
1376 				vpanic(vp, "vrele: unable to lock %p");
1377 			}
1378 			defer = false;
1379 		} else if ((vp->v_iflag & VI_LAYER) != 0) {
1380 			/*
1381 			 * Acquiring the stack's lock in vclean() even
1382 			 * for an honest vput/vrele is dangerous because
1383 			 * our caller may hold other vnode locks; defer.
1384 			 */
1385 			defer = true;
1386 		} else {
1387 			/* If we can't acquire the lock, then defer. */
1388 			vp->v_iflag &= ~VI_INACTREDO;
1389 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK |
1390 			    LK_NOWAIT);
1391 			if (error != 0) {
1392 				defer = true;
1393 				mutex_enter(&vp->v_interlock);
1394 			} else {
1395 				defer = false;
1396 			}
1397 		}
1398 
1399 		if (defer) {
1400 			/*
1401 			 * Defer reclaim to the kthread; it's not safe to
1402 			 * clean it here.  We donate it our last reference.
1403 			 */
1404 			KASSERT(mutex_owned(&vp->v_interlock));
1405 			KASSERT((vp->v_iflag & VI_INACTPEND) == 0);
1406 			vp->v_iflag &= ~VI_INACTNOW;
1407 			vp->v_iflag |= VI_INACTPEND;
1408 			mutex_enter(&vrele_lock);
1409 			TAILQ_INSERT_TAIL(&vrele_list, vp, v_freelist);
1410 			if (++vrele_pending > (desiredvnodes >> 8))
1411 				cv_signal(&vrele_cv);
1412 			mutex_exit(&vrele_lock);
1413 			mutex_exit(&vp->v_interlock);
1414 			return;
1415 		}
1416 
1417 #ifdef DIAGNOSTIC
1418 		if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
1419 		    vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) {
1420 			vprint("vrelel: missing VOP_CLOSE()", vp);
1421 		}
1422 #endif
1423 
1424 		/*
1425 		 * The vnode can gain another reference while being
1426 		 * deactivated.  If VOP_INACTIVE() indicates that
1427 		 * the described file has been deleted, then recycle
1428 		 * the vnode irrespective of additional references.
1429 		 * Another thread may be waiting to re-use the on-disk
1430 		 * inode.
1431 		 *
1432 		 * Note that VOP_INACTIVE() will drop the vnode lock.
1433 		 */
1434 		VOP_INACTIVE(vp, &recycle);
1435 		mutex_enter(&vp->v_interlock);
1436 		vp->v_iflag &= ~VI_INACTNOW;
1437 		if (!recycle) {
1438 			if (vtryrele(vp)) {
1439 				mutex_exit(&vp->v_interlock);
1440 				return;
1441 			}
1442 
1443 			/*
1444 			 * If we grew another reference while
1445 			 * VOP_INACTIVE() was underway, retry.
1446 			 */
1447 			if ((vp->v_iflag & VI_INACTREDO) != 0) {
1448 				goto retry;
1449 			}
1450 		}
1451 
1452 		/* Take care of space accounting. */
1453 		if (vp->v_iflag & VI_EXECMAP) {
1454 			atomic_add_int(&uvmexp.execpages,
1455 			    -vp->v_uobj.uo_npages);
1456 			atomic_add_int(&uvmexp.filepages,
1457 			    vp->v_uobj.uo_npages);
1458 		}
1459 		vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP);
1460 		vp->v_vflag &= ~VV_MAPPED;
1461 
1462 		/*
1463 		 * Recycle the vnode if the file is now unused (unlinked),
1464 		 * otherwise just free it.
1465 		 */
1466 		if (recycle) {
1467 			vclean(vp, DOCLOSE);
1468 		}
1469 		KASSERT(vp->v_usecount > 0);
1470 	}
1471 
1472 	if (atomic_dec_uint_nv(&vp->v_usecount) != 0) {
1473 		/* Gained another reference while being reclaimed. */
1474 		mutex_exit(&vp->v_interlock);
1475 		return;
1476 	}
1477 
1478 	if ((vp->v_iflag & VI_CLEAN) != 0) {
1479 		/*
1480 		 * It's clean so destroy it.  It isn't referenced
1481 		 * anywhere since it has been reclaimed.
1482 		 */
1483 		KASSERT(vp->v_holdcnt == 0);
1484 		KASSERT(vp->v_writecount == 0);
1485 		mutex_exit(&vp->v_interlock);
1486 		insmntque(vp, NULL);
1487 		if (vp->v_type == VBLK || vp->v_type == VCHR) {
1488 			spec_node_destroy(vp);
1489 		}
1490 		vnfree(vp);
1491 	} else {
1492 		/*
1493 		 * Otherwise, put it back onto the freelist.  It
1494 		 * can't be destroyed while still associated with
1495 		 * a file system.
1496 		 */
1497 		mutex_enter(&vnode_free_list_lock);
1498 		if (vp->v_holdcnt > 0) {
1499 			vp->v_freelisthd = &vnode_hold_list;
1500 		} else {
1501 			vp->v_freelisthd = &vnode_free_list;
1502 		}
1503 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
1504 		mutex_exit(&vnode_free_list_lock);
1505 		mutex_exit(&vp->v_interlock);
1506 	}
1507 }
1508 
1509 void
1510 vrele(vnode_t *vp)
1511 {
1512 
1513 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1514 
1515 	if ((vp->v_iflag & VI_INACTNOW) == 0 && vtryrele(vp)) {
1516 		return;
1517 	}
1518 	mutex_enter(&vp->v_interlock);
1519 	vrelel(vp, 0);
1520 }
1521 
1522 static void
1523 vrele_thread(void *cookie)
1524 {
1525 	vnode_t *vp;
1526 
1527 	for (;;) {
1528 		mutex_enter(&vrele_lock);
1529 		while (TAILQ_EMPTY(&vrele_list)) {
1530 			vrele_gen++;
1531 			cv_broadcast(&vrele_cv);
1532 			cv_timedwait(&vrele_cv, &vrele_lock, hz);
1533 		}
1534 		vp = TAILQ_FIRST(&vrele_list);
1535 		TAILQ_REMOVE(&vrele_list, vp, v_freelist);
1536 		vrele_pending--;
1537 		mutex_exit(&vrele_lock);
1538 
1539 		/*
1540 		 * If not the last reference, then ignore the vnode
1541 		 * and look for more work.
1542 		 */
1543 		mutex_enter(&vp->v_interlock);
1544 		KASSERT((vp->v_iflag & VI_INACTPEND) != 0);
1545 		vp->v_iflag &= ~VI_INACTPEND;
1546 		vrelel(vp, 0);
1547 	}
1548 }
1549 
1550 /*
1551  * Page or buffer structure gets a reference.
1552  * Called with v_interlock held.
1553  */
1554 void
1555 vholdl(vnode_t *vp)
1556 {
1557 
1558 	KASSERT(mutex_owned(&vp->v_interlock));
1559 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1560 
1561 	if (vp->v_holdcnt++ == 0 && vp->v_usecount == 0) {
1562 		mutex_enter(&vnode_free_list_lock);
1563 		KASSERT(vp->v_freelisthd == &vnode_free_list);
1564 		TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
1565 		vp->v_freelisthd = &vnode_hold_list;
1566 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
1567 		mutex_exit(&vnode_free_list_lock);
1568 	}
1569 }
1570 
1571 /*
1572  * Page or buffer structure frees a reference.
1573  * Called with v_interlock held.
1574  */
1575 void
1576 holdrelel(vnode_t *vp)
1577 {
1578 
1579 	KASSERT(mutex_owned(&vp->v_interlock));
1580 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1581 
1582 	if (vp->v_holdcnt <= 0) {
1583 		vpanic(vp, "holdrelel: holdcnt vp %p");
1584 	}
1585 
1586 	vp->v_holdcnt--;
1587 	if (vp->v_holdcnt == 0 && vp->v_usecount == 0) {
1588 		mutex_enter(&vnode_free_list_lock);
1589 		KASSERT(vp->v_freelisthd == &vnode_hold_list);
1590 		TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
1591 		vp->v_freelisthd = &vnode_free_list;
1592 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
1593 		mutex_exit(&vnode_free_list_lock);
1594 	}
1595 }
1596 
1597 /*
1598  * Vnode reference, where a reference is already held by some other
1599  * object (for example, a file structure).
1600  */
1601 void
1602 vref(vnode_t *vp)
1603 {
1604 
1605 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1606 	KASSERT(vp->v_usecount != 0);
1607 
1608 	atomic_inc_uint(&vp->v_usecount);
1609 }
1610 
1611 /*
1612  * Remove any vnodes in the vnode table belonging to mount point mp.
1613  *
1614  * If FORCECLOSE is not specified, there should not be any active ones,
1615  * return error if any are found (nb: this is a user error, not a
1616  * system error). If FORCECLOSE is specified, detach any active vnodes
1617  * that are found.
1618  *
1619  * If WRITECLOSE is set, only flush out regular file vnodes open for
1620  * writing.
1621  *
1622  * SKIPSYSTEM causes any vnodes marked V_SYSTEM to be skipped.
1623  */
1624 #ifdef DEBUG
1625 int busyprt = 0;	/* print out busy vnodes */
1626 struct ctldebug debug1 = { "busyprt", &busyprt };
1627 #endif
1628 
1629 static vnode_t *
1630 vflushnext(vnode_t *mvp, int *when)
1631 {
1632 
1633 	if (hardclock_ticks > *when) {
1634 		mutex_exit(&mntvnode_lock);
1635 		yield();
1636 		mutex_enter(&mntvnode_lock);
1637 		*when = hardclock_ticks + hz / 10;
1638 	}
1639 
1640 	return vunmark(mvp);
1641 }
1642 
1643 int
1644 vflush(struct mount *mp, vnode_t *skipvp, int flags)
1645 {
1646 	vnode_t *vp, *mvp;
1647 	int busy = 0, when = 0, gen;
1648 
1649 	/*
1650 	 * First, flush out any vnode references from vrele_list.
1651 	 */
1652 	mutex_enter(&vrele_lock);
1653 	gen = vrele_gen;
1654 	while (vrele_pending && gen == vrele_gen) {
1655 		cv_broadcast(&vrele_cv);
1656 		cv_wait(&vrele_cv, &vrele_lock);
1657 	}
1658 	mutex_exit(&vrele_lock);
1659 
1660 	/* Allocate a marker vnode. */
1661 	if ((mvp = vnalloc(mp)) == NULL)
1662 		return (ENOMEM);
1663 
1664 	/*
1665 	 * NOTE: not using the TAILQ_FOREACH here since in this loop vgone()
1666 	 * and vclean() are called
1667 	 */
1668 	mutex_enter(&mntvnode_lock);
1669 	for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp != NULL;
1670 	    vp = vflushnext(mvp, &when)) {
1671 		vmark(mvp, vp);
1672 		if (vp->v_mount != mp || vismarker(vp))
1673 			continue;
1674 		/*
1675 		 * Skip over a selected vnode.
1676 		 */
1677 		if (vp == skipvp)
1678 			continue;
1679 		mutex_enter(&vp->v_interlock);
1680 		/*
1681 		 * Ignore clean but still referenced vnodes.
1682 		 */
1683 		if ((vp->v_iflag & VI_CLEAN) != 0) {
1684 			mutex_exit(&vp->v_interlock);
1685 			continue;
1686 		}
1687 		/*
1688 		 * Skip over a vnodes marked VSYSTEM.
1689 		 */
1690 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
1691 			mutex_exit(&vp->v_interlock);
1692 			continue;
1693 		}
1694 		/*
1695 		 * If WRITECLOSE is set, only flush out regular file
1696 		 * vnodes open for writing.
1697 		 */
1698 		if ((flags & WRITECLOSE) &&
1699 		    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1700 			mutex_exit(&vp->v_interlock);
1701 			continue;
1702 		}
1703 		/*
1704 		 * With v_usecount == 0, all we need to do is clear
1705 		 * out the vnode data structures and we are done.
1706 		 */
1707 		if (vp->v_usecount == 0) {
1708 			mutex_exit(&mntvnode_lock);
1709 			vremfree(vp);
1710 			vp->v_usecount = 1;
1711 			vclean(vp, DOCLOSE);
1712 			vrelel(vp, 0);
1713 			mutex_enter(&mntvnode_lock);
1714 			continue;
1715 		}
1716 		/*
1717 		 * If FORCECLOSE is set, forcibly close the vnode.
1718 		 * For block or character devices, revert to an
1719 		 * anonymous device.  For all other files, just
1720 		 * kill them.
1721 		 */
1722 		if (flags & FORCECLOSE) {
1723 			mutex_exit(&mntvnode_lock);
1724 			atomic_inc_uint(&vp->v_usecount);
1725 			if (vp->v_type != VBLK && vp->v_type != VCHR) {
1726 				vclean(vp, DOCLOSE);
1727 				vrelel(vp, 0);
1728 			} else {
1729 				vclean(vp, 0);
1730 				vp->v_op = spec_vnodeop_p; /* XXXSMP */
1731 				mutex_exit(&vp->v_interlock);
1732 				/*
1733 				 * The vnode isn't clean, but still resides
1734 				 * on the mount list.  Remove it. XXX This
1735 				 * is a bit dodgy.
1736 				 */
1737 				insmntque(vp, NULL);
1738 				vrele(vp);
1739 			}
1740 			mutex_enter(&mntvnode_lock);
1741 			continue;
1742 		}
1743 #ifdef DEBUG
1744 		if (busyprt)
1745 			vprint("vflush: busy vnode", vp);
1746 #endif
1747 		mutex_exit(&vp->v_interlock);
1748 		busy++;
1749 	}
1750 	mutex_exit(&mntvnode_lock);
1751 	vnfree(mvp);
1752 	if (busy)
1753 		return (EBUSY);
1754 	return (0);
1755 }
1756 
1757 /*
1758  * Disassociate the underlying file system from a vnode.
1759  *
1760  * Must be called with the interlock held, and will return with it held.
1761  */
1762 void
1763 vclean(vnode_t *vp, int flags)
1764 {
1765 	lwp_t *l = curlwp;
1766 	bool recycle, active;
1767 	int error;
1768 
1769 	KASSERT(mutex_owned(&vp->v_interlock));
1770 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1771 	KASSERT(vp->v_usecount != 0);
1772 
1773 	/* If cleaning is already in progress wait until done and return. */
1774 	if (vp->v_iflag & VI_XLOCK) {
1775 		vwait(vp, VI_XLOCK);
1776 		return;
1777 	}
1778 
1779 	/* If already clean, nothing to do. */
1780 	if ((vp->v_iflag & VI_CLEAN) != 0) {
1781 		return;
1782 	}
1783 
1784 	/*
1785 	 * Prevent the vnode from being recycled or brought into use
1786 	 * while we clean it out.
1787 	 */
1788 	vp->v_iflag |= VI_XLOCK;
1789 	if (vp->v_iflag & VI_EXECMAP) {
1790 		atomic_add_int(&uvmexp.execpages, -vp->v_uobj.uo_npages);
1791 		atomic_add_int(&uvmexp.filepages, vp->v_uobj.uo_npages);
1792 	}
1793 	vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP);
1794 	active = (vp->v_usecount > 1);
1795 
1796 	/* XXXAD should not lock vnode under layer */
1797 	VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
1798 
1799 	/*
1800 	 * Clean out any cached data associated with the vnode.
1801 	 * If purging an active vnode, it must be closed and
1802 	 * deactivated before being reclaimed. Note that the
1803 	 * VOP_INACTIVE will unlock the vnode.
1804 	 */
1805 	if (flags & DOCLOSE) {
1806 		error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0);
1807 		if (error != 0)
1808 			error = vinvalbuf(vp, 0, NOCRED, l, 0, 0);
1809 		KASSERT(error == 0);
1810 		KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1811 		if (active && (vp->v_type == VBLK || vp->v_type == VCHR)) {
1812 			 spec_node_revoke(vp);
1813 		}
1814 	}
1815 	if (active) {
1816 		VOP_INACTIVE(vp, &recycle);
1817 	} else {
1818 		/*
1819 		 * Any other processes trying to obtain this lock must first
1820 		 * wait for VI_XLOCK to clear, then call the new lock operation.
1821 		 */
1822 		VOP_UNLOCK(vp, 0);
1823 	}
1824 
1825 	/* Disassociate the underlying file system from the vnode. */
1826 	if (VOP_RECLAIM(vp)) {
1827 		vpanic(vp, "vclean: cannot reclaim");
1828 	}
1829 
1830 	KASSERT(vp->v_uobj.uo_npages == 0);
1831 	if (vp->v_type == VREG && vp->v_ractx != NULL) {
1832 		uvm_ra_freectx(vp->v_ractx);
1833 		vp->v_ractx = NULL;
1834 	}
1835 	cache_purge(vp);
1836 
1837 	/* Done with purge, notify sleepers of the grim news. */
1838 	vp->v_op = dead_vnodeop_p;
1839 	vp->v_tag = VT_NON;
1840 	mutex_enter(&vp->v_interlock);
1841 	vp->v_vnlock = &vp->v_lock;
1842 	KNOTE(&vp->v_klist, NOTE_REVOKE);
1843 	vp->v_iflag &= ~(VI_XLOCK | VI_FREEING);
1844 	vp->v_vflag &= ~VV_LOCKSWORK;
1845 	if ((flags & DOCLOSE) != 0) {
1846 		vp->v_iflag |= VI_CLEAN;
1847 	}
1848 	cv_broadcast(&vp->v_cv);
1849 
1850 	KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1851 }
1852 
1853 /*
1854  * Recycle an unused vnode to the front of the free list.
1855  * Release the passed interlock if the vnode will be recycled.
1856  */
1857 int
1858 vrecycle(vnode_t *vp, kmutex_t *inter_lkp, struct lwp *l)
1859 {
1860 
1861 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
1862 
1863 	mutex_enter(&vp->v_interlock);
1864 	if (vp->v_usecount != 0) {
1865 		mutex_exit(&vp->v_interlock);
1866 		return (0);
1867 	}
1868 	if (inter_lkp)
1869 		mutex_exit(inter_lkp);
1870 	vremfree(vp);
1871 	vp->v_usecount = 1;
1872 	vclean(vp, DOCLOSE);
1873 	vrelel(vp, 0);
1874 	return (1);
1875 }
1876 
1877 /*
1878  * Eliminate all activity associated with a vnode in preparation for
1879  * reuse.  Drops a reference from the vnode.
1880  */
1881 void
1882 vgone(vnode_t *vp)
1883 {
1884 
1885 	mutex_enter(&vp->v_interlock);
1886 	vclean(vp, DOCLOSE);
1887 	vrelel(vp, 0);
1888 }
1889 
1890 /*
1891  * Lookup a vnode by device number.
1892  */
1893 int
1894 vfinddev(dev_t dev, enum vtype type, vnode_t **vpp)
1895 {
1896 	vnode_t *vp;
1897 	int rc = 0;
1898 
1899 	mutex_enter(&specfs_lock);
1900 	for (vp = specfs_hash[SPECHASH(dev)]; vp; vp = vp->v_specnext) {
1901 		if (dev != vp->v_rdev || type != vp->v_type)
1902 			continue;
1903 		*vpp = vp;
1904 		rc = 1;
1905 		break;
1906 	}
1907 	mutex_exit(&specfs_lock);
1908 	return (rc);
1909 }
1910 
1911 /*
1912  * Revoke all the vnodes corresponding to the specified minor number
1913  * range (endpoints inclusive) of the specified major.
1914  */
1915 void
1916 vdevgone(int maj, int minl, int minh, enum vtype type)
1917 {
1918 	vnode_t *vp, **vpp;
1919 	dev_t dev;
1920 	int mn;
1921 
1922 	vp = NULL;	/* XXX gcc */
1923 
1924 	mutex_enter(&specfs_lock);
1925 	for (mn = minl; mn <= minh; mn++) {
1926 		dev = makedev(maj, mn);
1927 		vpp = &specfs_hash[SPECHASH(dev)];
1928 		for (vp = *vpp; vp != NULL;) {
1929 			mutex_enter(&vp->v_interlock);
1930 			if ((vp->v_iflag & VI_CLEAN) != 0 ||
1931 			    dev != vp->v_rdev || type != vp->v_type) {
1932 				mutex_exit(&vp->v_interlock);
1933 				vp = vp->v_specnext;
1934 				continue;
1935 			}
1936 			mutex_exit(&specfs_lock);
1937 			if (vget(vp, LK_INTERLOCK) == 0) {
1938 				VOP_REVOKE(vp, REVOKEALL);
1939 				vrele(vp);
1940 			}
1941 			mutex_enter(&specfs_lock);
1942 			vp = *vpp;
1943 		}
1944 	}
1945 	mutex_exit(&specfs_lock);
1946 }
1947 
1948 /*
1949  * Calculate the total number of references to a special device.
1950  */
1951 int
1952 vcount(vnode_t *vp)
1953 {
1954 	int count;
1955 
1956 	mutex_enter(&specfs_lock);
1957 	mutex_enter(&vp->v_interlock);
1958 	if (vp->v_specnode == NULL) {
1959 		count = vp->v_usecount - ((vp->v_iflag & VI_INACTPEND) != 0);
1960 		mutex_exit(&vp->v_interlock);
1961 		mutex_exit(&specfs_lock);
1962 		return (count);
1963 	}
1964 	mutex_exit(&vp->v_interlock);
1965 	count = vp->v_specnode->sn_dev->sd_opencnt;
1966 	mutex_exit(&specfs_lock);
1967 	return (count);
1968 }
1969 
1970 /*
1971  * Eliminate all activity associated with the requested vnode
1972  * and with all vnodes aliased to the requested vnode.
1973  */
1974 void
1975 vrevoke(vnode_t *vp)
1976 {
1977 	vnode_t *vq, **vpp;
1978 	enum vtype type;
1979 	dev_t dev;
1980 
1981 	KASSERT(vp->v_usecount > 0);
1982 
1983 	mutex_enter(&vp->v_interlock);
1984 	if ((vp->v_iflag & VI_CLEAN) != 0) {
1985 		mutex_exit(&vp->v_interlock);
1986 		return;
1987 	} else {
1988 		dev = vp->v_rdev;
1989 		type = vp->v_type;
1990 		mutex_exit(&vp->v_interlock);
1991 	}
1992 
1993 	vpp = &specfs_hash[SPECHASH(dev)];
1994 	mutex_enter(&specfs_lock);
1995 	for (vq = *vpp; vq != NULL;) {
1996 		/* If clean or being cleaned, then ignore it. */
1997 		mutex_enter(&vq->v_interlock);
1998 		if ((vq->v_iflag & (VI_CLEAN | VI_XLOCK)) != 0 ||
1999 		    vq->v_rdev != dev || vq->v_type != type) {
2000 			mutex_exit(&vq->v_interlock);
2001 			vq = vq->v_specnext;
2002 			continue;
2003 		}
2004 		mutex_exit(&specfs_lock);
2005 		if (vq->v_usecount == 0) {
2006 			vremfree(vq);
2007 			vq->v_usecount = 1;
2008 		} else {
2009 			atomic_inc_uint(&vq->v_usecount);
2010 		}
2011 		vclean(vq, DOCLOSE);
2012 		vrelel(vq, 0);
2013 		mutex_enter(&specfs_lock);
2014 		vq = *vpp;
2015 	}
2016 	mutex_exit(&specfs_lock);
2017 }
2018 
2019 /*
2020  * sysctl helper routine to return list of supported fstypes
2021  */
2022 static int
2023 sysctl_vfs_generic_fstypes(SYSCTLFN_ARGS)
2024 {
2025 	char bf[sizeof(((struct statvfs *)NULL)->f_fstypename)];
2026 	char *where = oldp;
2027 	struct vfsops *v;
2028 	size_t needed, left, slen;
2029 	int error, first;
2030 
2031 	if (newp != NULL)
2032 		return (EPERM);
2033 	if (namelen != 0)
2034 		return (EINVAL);
2035 
2036 	first = 1;
2037 	error = 0;
2038 	needed = 0;
2039 	left = *oldlenp;
2040 
2041 	sysctl_unlock();
2042 	mutex_enter(&vfs_list_lock);
2043 	LIST_FOREACH(v, &vfs_list, vfs_list) {
2044 		if (where == NULL)
2045 			needed += strlen(v->vfs_name) + 1;
2046 		else {
2047 			memset(bf, 0, sizeof(bf));
2048 			if (first) {
2049 				strncpy(bf, v->vfs_name, sizeof(bf));
2050 				first = 0;
2051 			} else {
2052 				bf[0] = ' ';
2053 				strncpy(bf + 1, v->vfs_name, sizeof(bf) - 1);
2054 			}
2055 			bf[sizeof(bf)-1] = '\0';
2056 			slen = strlen(bf);
2057 			if (left < slen + 1)
2058 				break;
2059 			/* +1 to copy out the trailing NUL byte */
2060 			v->vfs_refcount++;
2061 			mutex_exit(&vfs_list_lock);
2062 			error = copyout(bf, where, slen + 1);
2063 			mutex_enter(&vfs_list_lock);
2064 			v->vfs_refcount--;
2065 			if (error)
2066 				break;
2067 			where += slen;
2068 			needed += slen;
2069 			left -= slen;
2070 		}
2071 	}
2072 	mutex_exit(&vfs_list_lock);
2073 	sysctl_relock();
2074 	*oldlenp = needed;
2075 	return (error);
2076 }
2077 
2078 /*
2079  * Top level filesystem related information gathering.
2080  */
2081 SYSCTL_SETUP(sysctl_vfs_setup, "sysctl vfs subtree setup")
2082 {
2083 	sysctl_createv(clog, 0, NULL, NULL,
2084 		       CTLFLAG_PERMANENT,
2085 		       CTLTYPE_NODE, "vfs", NULL,
2086 		       NULL, 0, NULL, 0,
2087 		       CTL_VFS, CTL_EOL);
2088 	sysctl_createv(clog, 0, NULL, NULL,
2089 		       CTLFLAG_PERMANENT,
2090 		       CTLTYPE_NODE, "generic",
2091 		       SYSCTL_DESCR("Non-specific vfs related information"),
2092 		       NULL, 0, NULL, 0,
2093 		       CTL_VFS, VFS_GENERIC, CTL_EOL);
2094 	sysctl_createv(clog, 0, NULL, NULL,
2095 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2096 		       CTLTYPE_INT, "usermount",
2097 		       SYSCTL_DESCR("Whether unprivileged users may mount "
2098 				    "filesystems"),
2099 		       NULL, 0, &dovfsusermount, 0,
2100 		       CTL_VFS, VFS_GENERIC, VFS_USERMOUNT, CTL_EOL);
2101 	sysctl_createv(clog, 0, NULL, NULL,
2102 		       CTLFLAG_PERMANENT,
2103 		       CTLTYPE_STRING, "fstypes",
2104 		       SYSCTL_DESCR("List of file systems present"),
2105 		       sysctl_vfs_generic_fstypes, 0, NULL, 0,
2106 		       CTL_VFS, VFS_GENERIC, CTL_CREATE, CTL_EOL);
2107 	sysctl_createv(clog, 0, NULL, NULL,
2108 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2109 		       CTLTYPE_INT, "magiclinks",
2110 		       SYSCTL_DESCR("Whether \"magic\" symlinks are expanded"),
2111 		       NULL, 0, &vfs_magiclinks, 0,
2112 		       CTL_VFS, VFS_GENERIC, VFS_MAGICLINKS, CTL_EOL);
2113 }
2114 
2115 
2116 int kinfo_vdebug = 1;
2117 int kinfo_vgetfailed;
2118 #define KINFO_VNODESLOP	10
2119 /*
2120  * Dump vnode list (via sysctl).
2121  * Copyout address of vnode followed by vnode.
2122  */
2123 /* ARGSUSED */
2124 int
2125 sysctl_kern_vnode(SYSCTLFN_ARGS)
2126 {
2127 	char *where = oldp;
2128 	size_t *sizep = oldlenp;
2129 	struct mount *mp, *nmp;
2130 	vnode_t *vp, *mvp, vbuf;
2131 	char *bp = where, *savebp;
2132 	char *ewhere;
2133 	int error;
2134 
2135 	if (namelen != 0)
2136 		return (EOPNOTSUPP);
2137 	if (newp != NULL)
2138 		return (EPERM);
2139 
2140 #define VPTRSZ	sizeof(vnode_t *)
2141 #define VNODESZ	sizeof(vnode_t)
2142 	if (where == NULL) {
2143 		*sizep = (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ);
2144 		return (0);
2145 	}
2146 	ewhere = where + *sizep;
2147 
2148 	sysctl_unlock();
2149 	mutex_enter(&mountlist_lock);
2150 	for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
2151 	     mp = nmp) {
2152 		if (vfs_busy(mp, &nmp)) {
2153 			continue;
2154 		}
2155 		savebp = bp;
2156 		/* Allocate a marker vnode. */
2157 		if ((mvp = vnalloc(mp)) == NULL) {
2158 			sysctl_relock();
2159 			return (ENOMEM);
2160 		}
2161 		mutex_enter(&mntvnode_lock);
2162 		for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = vunmark(mvp)) {
2163 			vmark(mvp, vp);
2164 			/*
2165 			 * Check that the vp is still associated with
2166 			 * this filesystem.  RACE: could have been
2167 			 * recycled onto the same filesystem.
2168 			 */
2169 			if (vp->v_mount != mp || vismarker(vp))
2170 				continue;
2171 			if (bp + VPTRSZ + VNODESZ > ewhere) {
2172 				(void)vunmark(mvp);
2173 				mutex_exit(&mntvnode_lock);
2174 				vnfree(mvp);
2175 				sysctl_relock();
2176 				*sizep = bp - where;
2177 				return (ENOMEM);
2178 			}
2179 			memcpy(&vbuf, vp, VNODESZ);
2180 			mutex_exit(&mntvnode_lock);
2181 			if ((error = copyout(vp, bp, VPTRSZ)) ||
2182 			   (error = copyout(&vbuf, bp + VPTRSZ, VNODESZ))) {
2183 			   	mutex_enter(&mntvnode_lock);
2184 				(void)vunmark(mvp);
2185 				mutex_exit(&mntvnode_lock);
2186 				vnfree(mvp);
2187 				sysctl_relock();
2188 				return (error);
2189 			}
2190 			bp += VPTRSZ + VNODESZ;
2191 			mutex_enter(&mntvnode_lock);
2192 		}
2193 		mutex_exit(&mntvnode_lock);
2194 		vnfree(mvp);
2195 		vfs_unbusy(mp, false, &nmp);
2196 	}
2197 	mutex_exit(&mountlist_lock);
2198 	sysctl_relock();
2199 
2200 	*sizep = bp - where;
2201 	return (0);
2202 }
2203 
2204 /*
2205  * Remove clean vnodes from a mountpoint's vnode list.
2206  */
2207 void
2208 vfs_scrubvnlist(struct mount *mp)
2209 {
2210 	vnode_t *vp, *nvp;
2211 
2212  retry:
2213 	mutex_enter(&mntvnode_lock);
2214 	for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
2215 		nvp = TAILQ_NEXT(vp, v_mntvnodes);
2216 		mutex_enter(&vp->v_interlock);
2217 		if ((vp->v_iflag & VI_CLEAN) != 0) {
2218 			TAILQ_REMOVE(&mp->mnt_vnodelist, vp, v_mntvnodes);
2219 			vp->v_mount = NULL;
2220 			mutex_exit(&mntvnode_lock);
2221 			mutex_exit(&vp->v_interlock);
2222 			vfs_destroy(mp);
2223 			goto retry;
2224 		}
2225 		mutex_exit(&vp->v_interlock);
2226 	}
2227 	mutex_exit(&mntvnode_lock);
2228 }
2229 
2230 /*
2231  * Check to see if a filesystem is mounted on a block device.
2232  */
2233 int
2234 vfs_mountedon(vnode_t *vp)
2235 {
2236 	vnode_t *vq;
2237 	int error = 0;
2238 
2239 	if (vp->v_type != VBLK)
2240 		return ENOTBLK;
2241 	if (vp->v_specmountpoint != NULL)
2242 		return (EBUSY);
2243 	mutex_enter(&specfs_lock);
2244 	for (vq = specfs_hash[SPECHASH(vp->v_rdev)]; vq != NULL;
2245 	    vq = vq->v_specnext) {
2246 		if (vq->v_rdev != vp->v_rdev || vq->v_type != vp->v_type)
2247 			continue;
2248 		if (vq->v_specmountpoint != NULL) {
2249 			error = EBUSY;
2250 			break;
2251 		}
2252 	}
2253 	mutex_exit(&specfs_lock);
2254 	return (error);
2255 }
2256 
2257 /*
2258  * Unmount all file systems.
2259  * We traverse the list in reverse order under the assumption that doing so
2260  * will avoid needing to worry about dependencies.
2261  */
2262 void
2263 vfs_unmountall(struct lwp *l)
2264 {
2265 	struct mount *mp, *nmp;
2266 	int allerror, error;
2267 
2268 	printf("unmounting file systems...");
2269 	for (allerror = 0, mp = CIRCLEQ_LAST(&mountlist);
2270 	     !CIRCLEQ_EMPTY(&mountlist);
2271 	     mp = nmp) {
2272 		nmp = CIRCLEQ_PREV(mp, mnt_list);
2273 #ifdef DEBUG
2274 		printf("\nunmounting %s (%s)...",
2275 		    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_mntfromname);
2276 #endif
2277 		atomic_inc_uint(&mp->mnt_refcnt);
2278 		if ((error = dounmount(mp, MNT_FORCE, l)) != 0) {
2279 			printf("unmount of %s failed with error %d\n",
2280 			    mp->mnt_stat.f_mntonname, error);
2281 			allerror = 1;
2282 		}
2283 	}
2284 	printf(" done\n");
2285 	if (allerror)
2286 		printf("WARNING: some file systems would not unmount\n");
2287 }
2288 
2289 /*
2290  * Sync and unmount file systems before shutting down.
2291  */
2292 void
2293 vfs_shutdown(void)
2294 {
2295 	struct lwp *l;
2296 
2297 	/* XXX we're certainly not running in lwp0's context! */
2298 	l = curlwp;
2299 	if (l == NULL)
2300 		l = &lwp0;
2301 
2302 	printf("syncing disks... ");
2303 
2304 	/* remove user processes from run queue */
2305 	suspendsched();
2306 	(void) spl0();
2307 
2308 	/* avoid coming back this way again if we panic. */
2309 	doing_shutdown = 1;
2310 
2311 	sys_sync(l, NULL, NULL);
2312 
2313 	/* Wait for sync to finish. */
2314 	if (buf_syncwait() != 0) {
2315 #if defined(DDB) && defined(DEBUG_HALT_BUSY)
2316 		Debugger();
2317 #endif
2318 		printf("giving up\n");
2319 		return;
2320 	} else
2321 		printf("done\n");
2322 
2323 	/*
2324 	 * If we've panic'd, don't make the situation potentially
2325 	 * worse by unmounting the file systems.
2326 	 */
2327 	if (panicstr != NULL)
2328 		return;
2329 
2330 	/* Release inodes held by texts before update. */
2331 #ifdef notdef
2332 	vnshutdown();
2333 #endif
2334 	/* Unmount file systems. */
2335 	vfs_unmountall(l);
2336 }
2337 
2338 /*
2339  * Mount the root file system.  If the operator didn't specify a
2340  * file system to use, try all possible file systems until one
2341  * succeeds.
2342  */
2343 int
2344 vfs_mountroot(void)
2345 {
2346 	struct vfsops *v;
2347 	int error = ENODEV;
2348 
2349 	if (root_device == NULL)
2350 		panic("vfs_mountroot: root device unknown");
2351 
2352 	switch (device_class(root_device)) {
2353 	case DV_IFNET:
2354 		if (rootdev != NODEV)
2355 			panic("vfs_mountroot: rootdev set for DV_IFNET "
2356 			    "(0x%08x -> %d,%d)", rootdev,
2357 			    major(rootdev), minor(rootdev));
2358 		break;
2359 
2360 	case DV_DISK:
2361 		if (rootdev == NODEV)
2362 			panic("vfs_mountroot: rootdev not set for DV_DISK");
2363 	        if (bdevvp(rootdev, &rootvp))
2364 	                panic("vfs_mountroot: can't get vnode for rootdev");
2365 		error = VOP_OPEN(rootvp, FREAD, FSCRED);
2366 		if (error) {
2367 			printf("vfs_mountroot: can't open root device\n");
2368 			return (error);
2369 		}
2370 		break;
2371 
2372 	default:
2373 		printf("%s: inappropriate for root file system\n",
2374 		    device_xname(root_device));
2375 		return (ENODEV);
2376 	}
2377 
2378 	/*
2379 	 * If user specified a file system, use it.
2380 	 */
2381 	if (mountroot != NULL) {
2382 		error = (*mountroot)();
2383 		goto done;
2384 	}
2385 
2386 	/*
2387 	 * Try each file system currently configured into the kernel.
2388 	 */
2389 	mutex_enter(&vfs_list_lock);
2390 	LIST_FOREACH(v, &vfs_list, vfs_list) {
2391 		if (v->vfs_mountroot == NULL)
2392 			continue;
2393 #ifdef DEBUG
2394 		aprint_normal("mountroot: trying %s...\n", v->vfs_name);
2395 #endif
2396 		v->vfs_refcount++;
2397 		mutex_exit(&vfs_list_lock);
2398 		error = (*v->vfs_mountroot)();
2399 		mutex_enter(&vfs_list_lock);
2400 		v->vfs_refcount--;
2401 		if (!error) {
2402 			aprint_normal("root file system type: %s\n",
2403 			    v->vfs_name);
2404 			break;
2405 		}
2406 	}
2407 	mutex_exit(&vfs_list_lock);
2408 
2409 	if (v == NULL) {
2410 		printf("no file system for %s", device_xname(root_device));
2411 		if (device_class(root_device) == DV_DISK)
2412 			printf(" (dev 0x%x)", rootdev);
2413 		printf("\n");
2414 		error = EFTYPE;
2415 	}
2416 
2417 done:
2418 	if (error && device_class(root_device) == DV_DISK) {
2419 		VOP_CLOSE(rootvp, FREAD, FSCRED);
2420 		vrele(rootvp);
2421 	}
2422 	return (error);
2423 }
2424 
2425 /*
2426  * Get a new unique fsid
2427  */
2428 void
2429 vfs_getnewfsid(struct mount *mp)
2430 {
2431 	static u_short xxxfs_mntid;
2432 	fsid_t tfsid;
2433 	int mtype;
2434 
2435 	mutex_enter(&mntid_lock);
2436 	mtype = makefstype(mp->mnt_op->vfs_name);
2437 	mp->mnt_stat.f_fsidx.__fsid_val[0] = makedev(mtype, 0);
2438 	mp->mnt_stat.f_fsidx.__fsid_val[1] = mtype;
2439 	mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
2440 	if (xxxfs_mntid == 0)
2441 		++xxxfs_mntid;
2442 	tfsid.__fsid_val[0] = makedev(mtype & 0xff, xxxfs_mntid);
2443 	tfsid.__fsid_val[1] = mtype;
2444 	if (!CIRCLEQ_EMPTY(&mountlist)) {
2445 		while (vfs_getvfs(&tfsid)) {
2446 			tfsid.__fsid_val[0]++;
2447 			xxxfs_mntid++;
2448 		}
2449 	}
2450 	mp->mnt_stat.f_fsidx.__fsid_val[0] = tfsid.__fsid_val[0];
2451 	mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
2452 	mutex_exit(&mntid_lock);
2453 }
2454 
2455 /*
2456  * Make a 'unique' number from a mount type name.
2457  */
2458 long
2459 makefstype(const char *type)
2460 {
2461 	long rv;
2462 
2463 	for (rv = 0; *type; type++) {
2464 		rv <<= 2;
2465 		rv ^= *type;
2466 	}
2467 	return rv;
2468 }
2469 
2470 /*
2471  * Set vnode attributes to VNOVAL
2472  */
2473 void
2474 vattr_null(struct vattr *vap)
2475 {
2476 
2477 	vap->va_type = VNON;
2478 
2479 	/*
2480 	 * Assign individually so that it is safe even if size and
2481 	 * sign of each member are varied.
2482 	 */
2483 	vap->va_mode = VNOVAL;
2484 	vap->va_nlink = VNOVAL;
2485 	vap->va_uid = VNOVAL;
2486 	vap->va_gid = VNOVAL;
2487 	vap->va_fsid = VNOVAL;
2488 	vap->va_fileid = VNOVAL;
2489 	vap->va_size = VNOVAL;
2490 	vap->va_blocksize = VNOVAL;
2491 	vap->va_atime.tv_sec =
2492 	    vap->va_mtime.tv_sec =
2493 	    vap->va_ctime.tv_sec =
2494 	    vap->va_birthtime.tv_sec = VNOVAL;
2495 	vap->va_atime.tv_nsec =
2496 	    vap->va_mtime.tv_nsec =
2497 	    vap->va_ctime.tv_nsec =
2498 	    vap->va_birthtime.tv_nsec = VNOVAL;
2499 	vap->va_gen = VNOVAL;
2500 	vap->va_flags = VNOVAL;
2501 	vap->va_rdev = VNOVAL;
2502 	vap->va_bytes = VNOVAL;
2503 	vap->va_vaflags = 0;
2504 }
2505 
2506 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof(arr[0]))
2507 #define ARRAY_PRINT(idx, arr) \
2508     ((idx) > 0 && (idx) < ARRAY_SIZE(arr) ? (arr)[(idx)] : "UNKNOWN")
2509 
2510 const char * const vnode_tags[] = { VNODE_TAGS };
2511 const char * const vnode_types[] = { VNODE_TYPES };
2512 const char vnode_flagbits[] = VNODE_FLAGBITS;
2513 
2514 /*
2515  * Print out a description of a vnode.
2516  */
2517 void
2518 vprint(const char *label, struct vnode *vp)
2519 {
2520 	struct vnlock *vl;
2521 	char bf[96];
2522 	int flag;
2523 
2524 	vl = (vp->v_vnlock != NULL ? vp->v_vnlock : &vp->v_lock);
2525 	flag = vp->v_iflag | vp->v_vflag | vp->v_uflag;
2526 	bitmask_snprintf(flag, vnode_flagbits, bf, sizeof(bf));
2527 
2528 	if (label != NULL)
2529 		printf("%s: ", label);
2530 	printf("vnode @ %p, flags (%s)\n\ttag %s(%d), type %s(%d), "
2531 	    "usecount %d, writecount %d, holdcount %d\n"
2532 	    "\tfreelisthd %p, mount %p, data %p lock %p recursecnt %d\n",
2533 	    vp, bf, ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag,
2534 	    ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type,
2535 	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt,
2536 	    vp->v_freelisthd, vp->v_mount, vp->v_data, vl, vl->vl_recursecnt);
2537 	if (vp->v_data != NULL) {
2538 		printf("\t");
2539 		VOP_PRINT(vp);
2540 	}
2541 }
2542 
2543 #ifdef DEBUG
2544 /*
2545  * List all of the locked vnodes in the system.
2546  * Called when debugging the kernel.
2547  */
2548 void
2549 printlockedvnodes(void)
2550 {
2551 	struct mount *mp, *nmp;
2552 	struct vnode *vp;
2553 
2554 	printf("Locked vnodes\n");
2555 	mutex_enter(&mountlist_lock);
2556 	for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
2557 	     mp = nmp) {
2558 		if (vfs_busy(mp, &nmp)) {
2559 			continue;
2560 		}
2561 		TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2562 			if (VOP_ISLOCKED(vp))
2563 				vprint(NULL, vp);
2564 		}
2565 		mutex_enter(&mountlist_lock);
2566 		vfs_unbusy(mp, false, &nmp);
2567 	}
2568 	mutex_exit(&mountlist_lock);
2569 }
2570 #endif
2571 
2572 /*
2573  * Do the usual access checking.
2574  * file_mode, uid and gid are from the vnode in question,
2575  * while acc_mode and cred are from the VOP_ACCESS parameter list
2576  */
2577 int
2578 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid,
2579     mode_t acc_mode, kauth_cred_t cred)
2580 {
2581 	mode_t mask;
2582 	int error, ismember;
2583 
2584 	/*
2585 	 * Super-user always gets read/write access, but execute access depends
2586 	 * on at least one execute bit being set.
2587 	 */
2588 	if (kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) == 0) {
2589 		if ((acc_mode & VEXEC) && type != VDIR &&
2590 		    (file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)
2591 			return (EACCES);
2592 		return (0);
2593 	}
2594 
2595 	mask = 0;
2596 
2597 	/* Otherwise, check the owner. */
2598 	if (kauth_cred_geteuid(cred) == uid) {
2599 		if (acc_mode & VEXEC)
2600 			mask |= S_IXUSR;
2601 		if (acc_mode & VREAD)
2602 			mask |= S_IRUSR;
2603 		if (acc_mode & VWRITE)
2604 			mask |= S_IWUSR;
2605 		return ((file_mode & mask) == mask ? 0 : EACCES);
2606 	}
2607 
2608 	/* Otherwise, check the groups. */
2609 	error = kauth_cred_ismember_gid(cred, gid, &ismember);
2610 	if (error)
2611 		return (error);
2612 	if (kauth_cred_getegid(cred) == gid || ismember) {
2613 		if (acc_mode & VEXEC)
2614 			mask |= S_IXGRP;
2615 		if (acc_mode & VREAD)
2616 			mask |= S_IRGRP;
2617 		if (acc_mode & VWRITE)
2618 			mask |= S_IWGRP;
2619 		return ((file_mode & mask) == mask ? 0 : EACCES);
2620 	}
2621 
2622 	/* Otherwise, check everyone else. */
2623 	if (acc_mode & VEXEC)
2624 		mask |= S_IXOTH;
2625 	if (acc_mode & VREAD)
2626 		mask |= S_IROTH;
2627 	if (acc_mode & VWRITE)
2628 		mask |= S_IWOTH;
2629 	return ((file_mode & mask) == mask ? 0 : EACCES);
2630 }
2631 
2632 /*
2633  * Given a file system name, look up the vfsops for that
2634  * file system, or return NULL if file system isn't present
2635  * in the kernel.
2636  */
2637 struct vfsops *
2638 vfs_getopsbyname(const char *name)
2639 {
2640 	struct vfsops *v;
2641 
2642 	mutex_enter(&vfs_list_lock);
2643 	LIST_FOREACH(v, &vfs_list, vfs_list) {
2644 		if (strcmp(v->vfs_name, name) == 0)
2645 			break;
2646 	}
2647 	if (v != NULL)
2648 		v->vfs_refcount++;
2649 	mutex_exit(&vfs_list_lock);
2650 
2651 	return (v);
2652 }
2653 
2654 void
2655 copy_statvfs_info(struct statvfs *sbp, const struct mount *mp)
2656 {
2657 	const struct statvfs *mbp;
2658 
2659 	if (sbp == (mbp = &mp->mnt_stat))
2660 		return;
2661 
2662 	(void)memcpy(&sbp->f_fsidx, &mbp->f_fsidx, sizeof(sbp->f_fsidx));
2663 	sbp->f_fsid = mbp->f_fsid;
2664 	sbp->f_owner = mbp->f_owner;
2665 	sbp->f_flag = mbp->f_flag;
2666 	sbp->f_syncwrites = mbp->f_syncwrites;
2667 	sbp->f_asyncwrites = mbp->f_asyncwrites;
2668 	sbp->f_syncreads = mbp->f_syncreads;
2669 	sbp->f_asyncreads = mbp->f_asyncreads;
2670 	(void)memcpy(sbp->f_spare, mbp->f_spare, sizeof(mbp->f_spare));
2671 	(void)memcpy(sbp->f_fstypename, mbp->f_fstypename,
2672 	    sizeof(sbp->f_fstypename));
2673 	(void)memcpy(sbp->f_mntonname, mbp->f_mntonname,
2674 	    sizeof(sbp->f_mntonname));
2675 	(void)memcpy(sbp->f_mntfromname, mp->mnt_stat.f_mntfromname,
2676 	    sizeof(sbp->f_mntfromname));
2677 	sbp->f_namemax = mbp->f_namemax;
2678 }
2679 
2680 int
2681 set_statvfs_info(const char *onp, int ukon, const char *fromp, int ukfrom,
2682     const char *vfsname, struct mount *mp, struct lwp *l)
2683 {
2684 	int error;
2685 	size_t size;
2686 	struct statvfs *sfs = &mp->mnt_stat;
2687 	int (*fun)(const void *, void *, size_t, size_t *);
2688 
2689 	(void)strlcpy(mp->mnt_stat.f_fstypename, vfsname,
2690 	    sizeof(mp->mnt_stat.f_fstypename));
2691 
2692 	if (onp) {
2693 		struct cwdinfo *cwdi = l->l_proc->p_cwdi;
2694 		fun = (ukon == UIO_SYSSPACE) ? copystr : copyinstr;
2695 		if (cwdi->cwdi_rdir != NULL) {
2696 			size_t len;
2697 			char *bp;
2698 			char *path = PNBUF_GET();
2699 
2700 			bp = path + MAXPATHLEN;
2701 			*--bp = '\0';
2702 			rw_enter(&cwdi->cwdi_lock, RW_READER);
2703 			error = getcwd_common(cwdi->cwdi_rdir, rootvnode, &bp,
2704 			    path, MAXPATHLEN / 2, 0, l);
2705 			rw_exit(&cwdi->cwdi_lock);
2706 			if (error) {
2707 				PNBUF_PUT(path);
2708 				return error;
2709 			}
2710 
2711 			len = strlen(bp);
2712 			if (len > sizeof(sfs->f_mntonname) - 1)
2713 				len = sizeof(sfs->f_mntonname) - 1;
2714 			(void)strncpy(sfs->f_mntonname, bp, len);
2715 			PNBUF_PUT(path);
2716 
2717 			if (len < sizeof(sfs->f_mntonname) - 1) {
2718 				error = (*fun)(onp, &sfs->f_mntonname[len],
2719 				    sizeof(sfs->f_mntonname) - len - 1, &size);
2720 				if (error)
2721 					return error;
2722 				size += len;
2723 			} else {
2724 				size = len;
2725 			}
2726 		} else {
2727 			error = (*fun)(onp, &sfs->f_mntonname,
2728 			    sizeof(sfs->f_mntonname) - 1, &size);
2729 			if (error)
2730 				return error;
2731 		}
2732 		(void)memset(sfs->f_mntonname + size, 0,
2733 		    sizeof(sfs->f_mntonname) - size);
2734 	}
2735 
2736 	if (fromp) {
2737 		fun = (ukfrom == UIO_SYSSPACE) ? copystr : copyinstr;
2738 		error = (*fun)(fromp, sfs->f_mntfromname,
2739 		    sizeof(sfs->f_mntfromname) - 1, &size);
2740 		if (error)
2741 			return error;
2742 		(void)memset(sfs->f_mntfromname + size, 0,
2743 		    sizeof(sfs->f_mntfromname) - size);
2744 	}
2745 	return 0;
2746 }
2747 
2748 void
2749 vfs_timestamp(struct timespec *ts)
2750 {
2751 
2752 	nanotime(ts);
2753 }
2754 
2755 time_t	rootfstime;			/* recorded root fs time, if known */
2756 void
2757 setrootfstime(time_t t)
2758 {
2759 	rootfstime = t;
2760 }
2761 
2762 /*
2763  * Sham lock manager for vnodes.  This is a temporary measure.
2764  */
2765 int
2766 vlockmgr(struct vnlock *vl, int flags)
2767 {
2768 
2769 	KASSERT((flags & ~(LK_CANRECURSE | LK_NOWAIT | LK_TYPE_MASK)) == 0);
2770 
2771 	switch (flags & LK_TYPE_MASK) {
2772 	case LK_SHARED:
2773 		if (rw_tryenter(&vl->vl_lock, RW_READER)) {
2774 			return 0;
2775 		}
2776 		if ((flags & LK_NOWAIT) != 0) {
2777 			return EBUSY;
2778 		}
2779 		rw_enter(&vl->vl_lock, RW_READER);
2780 		return 0;
2781 
2782 	case LK_EXCLUSIVE:
2783 		if (rw_tryenter(&vl->vl_lock, RW_WRITER)) {
2784 			return 0;
2785 		}
2786 		if ((vl->vl_canrecurse || (flags & LK_CANRECURSE) != 0) &&
2787 		    rw_write_held(&vl->vl_lock)) {
2788 			vl->vl_recursecnt++;
2789 			return 0;
2790 		}
2791 		if ((flags & LK_NOWAIT) != 0) {
2792 			return EBUSY;
2793 		}
2794 		rw_enter(&vl->vl_lock, RW_WRITER);
2795 		return 0;
2796 
2797 	case LK_RELEASE:
2798 		if (vl->vl_recursecnt != 0) {
2799 			KASSERT(rw_write_held(&vl->vl_lock));
2800 			vl->vl_recursecnt--;
2801 			return 0;
2802 		}
2803 		rw_exit(&vl->vl_lock);
2804 		return 0;
2805 
2806 	default:
2807 		panic("vlockmgr: flags %x", flags);
2808 	}
2809 }
2810 
2811 int
2812 vlockstatus(struct vnlock *vl)
2813 {
2814 
2815 	if (rw_write_held(&vl->vl_lock)) {
2816 		return LK_EXCLUSIVE;
2817 	}
2818 	if (rw_read_held(&vl->vl_lock)) {
2819 		return LK_SHARED;
2820 	}
2821 	return 0;
2822 }
2823 
2824 /*
2825  * mount_specific_key_create --
2826  *	Create a key for subsystem mount-specific data.
2827  */
2828 int
2829 mount_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
2830 {
2831 
2832 	return (specificdata_key_create(mount_specificdata_domain, keyp, dtor));
2833 }
2834 
2835 /*
2836  * mount_specific_key_delete --
2837  *	Delete a key for subsystem mount-specific data.
2838  */
2839 void
2840 mount_specific_key_delete(specificdata_key_t key)
2841 {
2842 
2843 	specificdata_key_delete(mount_specificdata_domain, key);
2844 }
2845 
2846 /*
2847  * mount_initspecific --
2848  *	Initialize a mount's specificdata container.
2849  */
2850 void
2851 mount_initspecific(struct mount *mp)
2852 {
2853 	int error;
2854 
2855 	error = specificdata_init(mount_specificdata_domain,
2856 				  &mp->mnt_specdataref);
2857 	KASSERT(error == 0);
2858 }
2859 
2860 /*
2861  * mount_finispecific --
2862  *	Finalize a mount's specificdata container.
2863  */
2864 void
2865 mount_finispecific(struct mount *mp)
2866 {
2867 
2868 	specificdata_fini(mount_specificdata_domain, &mp->mnt_specdataref);
2869 }
2870 
2871 /*
2872  * mount_getspecific --
2873  *	Return mount-specific data corresponding to the specified key.
2874  */
2875 void *
2876 mount_getspecific(struct mount *mp, specificdata_key_t key)
2877 {
2878 
2879 	return (specificdata_getspecific(mount_specificdata_domain,
2880 					 &mp->mnt_specdataref, key));
2881 }
2882 
2883 /*
2884  * mount_setspecific --
2885  *	Set mount-specific data corresponding to the specified key.
2886  */
2887 void
2888 mount_setspecific(struct mount *mp, specificdata_key_t key, void *data)
2889 {
2890 
2891 	specificdata_setspecific(mount_specificdata_domain,
2892 				 &mp->mnt_specdataref, key, data);
2893 }
2894 
2895 int
2896 VFS_MOUNT(struct mount *mp, const char *a, void *b, size_t *c)
2897 {
2898 	int error;
2899 
2900 	KERNEL_LOCK(1, NULL);
2901 	error = (*(mp->mnt_op->vfs_mount))(mp, a, b, c);
2902 	KERNEL_UNLOCK_ONE(NULL);
2903 
2904 	return error;
2905 }
2906 
2907 int
2908 VFS_START(struct mount *mp, int a)
2909 {
2910 	int error;
2911 
2912 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2913 		KERNEL_LOCK(1, NULL);
2914 	}
2915 	error = (*(mp->mnt_op->vfs_start))(mp, a);
2916 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2917 		KERNEL_UNLOCK_ONE(NULL);
2918 	}
2919 
2920 	return error;
2921 }
2922 
2923 int
2924 VFS_UNMOUNT(struct mount *mp, int a)
2925 {
2926 	int error;
2927 
2928 	KERNEL_LOCK(1, NULL);
2929 	error = (*(mp->mnt_op->vfs_unmount))(mp, a);
2930 	KERNEL_UNLOCK_ONE(NULL);
2931 
2932 	return error;
2933 }
2934 
2935 int
2936 VFS_ROOT(struct mount *mp, struct vnode **a)
2937 {
2938 	int error;
2939 
2940 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2941 		KERNEL_LOCK(1, NULL);
2942 	}
2943 	error = (*(mp->mnt_op->vfs_root))(mp, a);
2944 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2945 		KERNEL_UNLOCK_ONE(NULL);
2946 	}
2947 
2948 	return error;
2949 }
2950 
2951 int
2952 VFS_QUOTACTL(struct mount *mp, int a, uid_t b, void *c)
2953 {
2954 	int error;
2955 
2956 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2957 		KERNEL_LOCK(1, NULL);
2958 	}
2959 	error = (*(mp->mnt_op->vfs_quotactl))(mp, a, b, c);
2960 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2961 		KERNEL_UNLOCK_ONE(NULL);
2962 	}
2963 
2964 	return error;
2965 }
2966 
2967 int
2968 VFS_STATVFS(struct mount *mp, struct statvfs *a)
2969 {
2970 	int error;
2971 
2972 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2973 		KERNEL_LOCK(1, NULL);
2974 	}
2975 	error = (*(mp->mnt_op->vfs_statvfs))(mp, a);
2976 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2977 		KERNEL_UNLOCK_ONE(NULL);
2978 	}
2979 
2980 	return error;
2981 }
2982 
2983 int
2984 VFS_SYNC(struct mount *mp, int a, struct kauth_cred *b)
2985 {
2986 	int error;
2987 
2988 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2989 		KERNEL_LOCK(1, NULL);
2990 	}
2991 	error = (*(mp->mnt_op->vfs_sync))(mp, a, b);
2992 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
2993 		KERNEL_UNLOCK_ONE(NULL);
2994 	}
2995 
2996 	return error;
2997 }
2998 
2999 int
3000 VFS_FHTOVP(struct mount *mp, struct fid *a, struct vnode **b)
3001 {
3002 	int error;
3003 
3004 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3005 		KERNEL_LOCK(1, NULL);
3006 	}
3007 	error = (*(mp->mnt_op->vfs_fhtovp))(mp, a, b);
3008 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3009 		KERNEL_UNLOCK_ONE(NULL);
3010 	}
3011 
3012 	return error;
3013 }
3014 
3015 int
3016 VFS_VPTOFH(struct vnode *vp, struct fid *a, size_t *b)
3017 {
3018 	int error;
3019 
3020 	if ((vp->v_vflag & VV_MPSAFE) == 0) {
3021 		KERNEL_LOCK(1, NULL);
3022 	}
3023 	error = (*(vp->v_mount->mnt_op->vfs_vptofh))(vp, a, b);
3024 	if ((vp->v_vflag & VV_MPSAFE) == 0) {
3025 		KERNEL_UNLOCK_ONE(NULL);
3026 	}
3027 
3028 	return error;
3029 }
3030 
3031 int
3032 VFS_SNAPSHOT(struct mount *mp, struct vnode *a, struct timespec *b)
3033 {
3034 	int error;
3035 
3036 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3037 		KERNEL_LOCK(1, NULL);
3038 	}
3039 	error = (*(mp->mnt_op->vfs_snapshot))(mp, a, b);
3040 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3041 		KERNEL_UNLOCK_ONE(NULL);
3042 	}
3043 
3044 	return error;
3045 }
3046 
3047 int
3048 VFS_EXTATTRCTL(struct mount *mp, int a, struct vnode *b, int c, const char *d)
3049 {
3050 	int error;
3051 
3052 	KERNEL_LOCK(1, NULL);		/* XXXSMP check ffs */
3053 	error = (*(mp->mnt_op->vfs_extattrctl))(mp, a, b, c, d);
3054 	KERNEL_UNLOCK_ONE(NULL);	/* XXX */
3055 
3056 	return error;
3057 }
3058 
3059 int
3060 VFS_SUSPENDCTL(struct mount *mp, int a)
3061 {
3062 	int error;
3063 
3064 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3065 		KERNEL_LOCK(1, NULL);
3066 	}
3067 	error = (*(mp->mnt_op->vfs_suspendctl))(mp, a);
3068 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3069 		KERNEL_UNLOCK_ONE(NULL);
3070 	}
3071 
3072 	return error;
3073 }
3074 
3075 #ifdef DDB
3076 static const char buf_flagbits[] = BUF_FLAGBITS;
3077 
3078 void
3079 vfs_buf_print(struct buf *bp, int full, void (*pr)(const char *, ...))
3080 {
3081 	char bf[1024];
3082 
3083 	(*pr)("  vp %p lblkno 0x%"PRIx64" blkno 0x%"PRIx64" rawblkno 0x%"
3084 	    PRIx64 " dev 0x%x\n",
3085 	    bp->b_vp, bp->b_lblkno, bp->b_blkno, bp->b_rawblkno, bp->b_dev);
3086 
3087 	bitmask_snprintf(bp->b_flags | bp->b_oflags | bp->b_cflags,
3088 	    buf_flagbits, bf, sizeof(bf));
3089 	(*pr)("  error %d flags 0x%s\n", bp->b_error, bf);
3090 
3091 	(*pr)("  bufsize 0x%lx bcount 0x%lx resid 0x%lx\n",
3092 		  bp->b_bufsize, bp->b_bcount, bp->b_resid);
3093 	(*pr)("  data %p saveaddr %p dep %p\n",
3094 		  bp->b_data, bp->b_saveaddr, LIST_FIRST(&bp->b_dep));
3095 	(*pr)("  iodone %p objlock %p\n", bp->b_iodone, bp->b_objlock);
3096 }
3097 
3098 
3099 void
3100 vfs_vnode_print(struct vnode *vp, int full, void (*pr)(const char *, ...))
3101 {
3102 	char bf[256];
3103 
3104 	uvm_object_printit(&vp->v_uobj, full, pr);
3105 	bitmask_snprintf(vp->v_iflag | vp->v_vflag | vp->v_uflag,
3106 	    vnode_flagbits, bf, sizeof(bf));
3107 	(*pr)("\nVNODE flags %s\n", bf);
3108 	(*pr)("mp %p numoutput %d size 0x%llx writesize 0x%llx\n",
3109 	      vp->v_mount, vp->v_numoutput, vp->v_size, vp->v_writesize);
3110 
3111 	(*pr)("data %p writecount %ld holdcnt %ld\n",
3112 	      vp->v_data, vp->v_writecount, vp->v_holdcnt);
3113 
3114 	(*pr)("tag %s(%d) type %s(%d) mount %p typedata %p\n",
3115 	      ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag,
3116 	      ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type,
3117 	      vp->v_mount, vp->v_mountedhere);
3118 
3119 	(*pr)("v_lock %p v_vnlock %p\n", &vp->v_lock, vp->v_vnlock);
3120 
3121 	if (full) {
3122 		struct buf *bp;
3123 
3124 		(*pr)("clean bufs:\n");
3125 		LIST_FOREACH(bp, &vp->v_cleanblkhd, b_vnbufs) {
3126 			(*pr)(" bp %p\n", bp);
3127 			vfs_buf_print(bp, full, pr);
3128 		}
3129 
3130 		(*pr)("dirty bufs:\n");
3131 		LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
3132 			(*pr)(" bp %p\n", bp);
3133 			vfs_buf_print(bp, full, pr);
3134 		}
3135 	}
3136 }
3137 
3138 void
3139 vfs_mount_print(struct mount *mp, int full, void (*pr)(const char *, ...))
3140 {
3141 	char sbuf[256];
3142 
3143 	(*pr)("vnodecovered = %p syncer = %p data = %p\n",
3144 			mp->mnt_vnodecovered,mp->mnt_syncer,mp->mnt_data);
3145 
3146 	(*pr)("fs_bshift %d dev_bshift = %d\n",
3147 			mp->mnt_fs_bshift,mp->mnt_dev_bshift);
3148 
3149 	bitmask_snprintf(mp->mnt_flag, __MNT_FLAG_BITS, sbuf, sizeof(sbuf));
3150 	(*pr)("flag = %s\n", sbuf);
3151 
3152 	bitmask_snprintf(mp->mnt_iflag, __IMNT_FLAG_BITS, sbuf, sizeof(sbuf));
3153 	(*pr)("iflag = %s\n", sbuf);
3154 
3155 	(*pr)("refcnt = %d unmounting @ %p updating @ %p\n", mp->mnt_refcnt,
3156 	    &mp->mnt_unmounting, &mp->mnt_updating);
3157 
3158 	(*pr)("statvfs cache:\n");
3159 	(*pr)("\tbsize = %lu\n",mp->mnt_stat.f_bsize);
3160 	(*pr)("\tfrsize = %lu\n",mp->mnt_stat.f_frsize);
3161 	(*pr)("\tiosize = %lu\n",mp->mnt_stat.f_iosize);
3162 
3163 	(*pr)("\tblocks = %"PRIu64"\n",mp->mnt_stat.f_blocks);
3164 	(*pr)("\tbfree = %"PRIu64"\n",mp->mnt_stat.f_bfree);
3165 	(*pr)("\tbavail = %"PRIu64"\n",mp->mnt_stat.f_bavail);
3166 	(*pr)("\tbresvd = %"PRIu64"\n",mp->mnt_stat.f_bresvd);
3167 
3168 	(*pr)("\tfiles = %"PRIu64"\n",mp->mnt_stat.f_files);
3169 	(*pr)("\tffree = %"PRIu64"\n",mp->mnt_stat.f_ffree);
3170 	(*pr)("\tfavail = %"PRIu64"\n",mp->mnt_stat.f_favail);
3171 	(*pr)("\tfresvd = %"PRIu64"\n",mp->mnt_stat.f_fresvd);
3172 
3173 	(*pr)("\tf_fsidx = { 0x%"PRIx32", 0x%"PRIx32" }\n",
3174 			mp->mnt_stat.f_fsidx.__fsid_val[0],
3175 			mp->mnt_stat.f_fsidx.__fsid_val[1]);
3176 
3177 	(*pr)("\towner = %"PRIu32"\n",mp->mnt_stat.f_owner);
3178 	(*pr)("\tnamemax = %lu\n",mp->mnt_stat.f_namemax);
3179 
3180 	bitmask_snprintf(mp->mnt_stat.f_flag, __MNT_FLAG_BITS, sbuf,
3181 	    sizeof(sbuf));
3182 	(*pr)("\tflag = %s\n",sbuf);
3183 	(*pr)("\tsyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_syncwrites);
3184 	(*pr)("\tasyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_asyncwrites);
3185 	(*pr)("\tsyncreads = %" PRIu64 "\n",mp->mnt_stat.f_syncreads);
3186 	(*pr)("\tasyncreads = %" PRIu64 "\n",mp->mnt_stat.f_asyncreads);
3187 	(*pr)("\tfstypename = %s\n",mp->mnt_stat.f_fstypename);
3188 	(*pr)("\tmntonname = %s\n",mp->mnt_stat.f_mntonname);
3189 	(*pr)("\tmntfromname = %s\n",mp->mnt_stat.f_mntfromname);
3190 
3191 	{
3192 		int cnt = 0;
3193 		struct vnode *vp;
3194 		(*pr)("locked vnodes =");
3195 		TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
3196 			if (VOP_ISLOCKED(vp)) {
3197 				if ((++cnt % 6) == 0) {
3198 					(*pr)(" %p,\n\t", vp);
3199 				} else {
3200 					(*pr)(" %p,", vp);
3201 				}
3202 			}
3203 		}
3204 		(*pr)("\n");
3205 	}
3206 
3207 	if (full) {
3208 		int cnt = 0;
3209 		struct vnode *vp;
3210 		(*pr)("all vnodes =");
3211 		TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
3212 			if (!TAILQ_NEXT(vp, v_mntvnodes)) {
3213 				(*pr)(" %p", vp);
3214 			} else if ((++cnt % 6) == 0) {
3215 				(*pr)(" %p,\n\t", vp);
3216 			} else {
3217 				(*pr)(" %p,", vp);
3218 			}
3219 		}
3220 		(*pr)("\n", vp);
3221 	}
3222 }
3223 #endif /* DDB */
3224