1 /* $NetBSD: vfs_cache.c,v 1.136 2020/03/30 19:15:28 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 2008, 2019, 2020 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1989, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)vfs_cache.c 8.3 (Berkeley) 8/22/94 61 */ 62 63 /* 64 * Name caching: 65 * 66 * Names found by directory scans are retained in a cache for future 67 * reference. It is managed LRU, so frequently used names will hang 68 * around. The cache is indexed by hash value obtained from the name. 69 * 70 * The name cache is the brainchild of Robert Elz and was introduced in 71 * 4.3BSD. See "Using gprof to Tune the 4.2BSD Kernel", Marshall Kirk 72 * McKusick, May 21 1984. 73 * 74 * Data structures: 75 * 76 * Most Unix namecaches very sensibly use a global hash table to index 77 * names. The global hash table works well, but can cause concurrency 78 * headaches for the kernel hacker. In the NetBSD 10.0 implementation 79 * we are not sensible, and use a per-directory data structure to index 80 * names, but the cache otherwise functions the same. 81 * 82 * The index is a red-black tree. There are no special concurrency 83 * requirements placed on it, because it's per-directory and protected 84 * by the namecache's per-directory locks. It should therefore not be 85 * difficult to experiment with other types of index. 86 * 87 * Each cached name is stored in a struct namecache, along with a 88 * pointer to the associated vnode (nc_vp). Names longer than a 89 * maximum length of NCHNAMLEN are allocated with kmem_alloc(); they 90 * occur infrequently, and names shorter than this are stored directly 91 * in struct namecache. If it is a "negative" entry, (i.e. for a name 92 * that is known NOT to exist) the vnode pointer will be NULL. 93 * 94 * For a directory with 3 cached names for 3 distinct vnodes, the 95 * various vnodes and namecache structs would be connected like this 96 * (the root is at the bottom of the diagram): 97 * 98 * ... 99 * ^ 100 * |- vi_nc_tree 101 * | 102 * +----o----+ +---------+ +---------+ 103 * | VDIR | | VCHR | | VREG | 104 * | vnode o-----+ | vnode o-----+ | vnode o------+ 105 * +---------+ | +---------+ | +---------+ | 106 * ^ | ^ | ^ | 107 * |- nc_vp |- vi_nc_list |- nc_vp |- vi_nc_list |- nc_vp | 108 * | | | | | | 109 * +----o----+ | +----o----+ | +----o----+ | 110 * +---onamecache|<----+ +---onamecache|<----+ +---onamecache|<-----+ 111 * | +---------+ | +---------+ | +---------+ 112 * | ^ | ^ | ^ 113 * | | | | | | 114 * | | +----------------------+ | | 115 * |-nc_dvp | +-------------------------------------------------+ 116 * | |/- vi_nc_tree | | 117 * | | |- nc_dvp |- nc_dvp 118 * | +----o----+ | | 119 * +-->| VDIR |<----------+ | 120 * | vnode |<------------------------------------+ 121 * +---------+ 122 * 123 * START HERE 124 * 125 * Replacement: 126 * 127 * As the cache becomes full, old and unused entries are purged as new 128 * entries are added. The synchronization overhead in maintaining a 129 * strict ordering would be prohibitive, so the VM system's "clock" or 130 * "second chance" page replacement algorithm is aped here. New 131 * entries go to the tail of the active list. After they age out and 132 * reach the head of the list, they are moved to the tail of the 133 * inactive list. Any use of the deactivated cache entry reactivates 134 * it, saving it from impending doom; if not reactivated, the entry 135 * eventually reaches the head of the inactive list and is purged. 136 * 137 * Concurrency: 138 * 139 * From a performance perspective, cache_lookup(nameiop == LOOKUP) is 140 * what really matters; insertion of new entries with cache_enter() is 141 * comparatively infrequent, and overshadowed by the cost of expensive 142 * file system metadata operations (which may involve disk I/O). We 143 * therefore want to make everything simplest in the lookup path. 144 * 145 * struct namecache is mostly stable except for list and tree related 146 * entries, changes to which don't affect the cached name or vnode. 147 * For changes to name+vnode, entries are purged in preference to 148 * modifying them. 149 * 150 * Read access to namecache entries is made via tree, list, or LRU 151 * list. A lock corresponding to the direction of access should be 152 * held. See definition of "struct namecache" in src/sys/namei.src, 153 * and the definition of "struct vnode" for the particulars. 154 * 155 * Per-CPU statistics, and LRU list totals are read unlocked, since 156 * an approximate value is OK. We maintain 32-bit sized per-CPU 157 * counters and 64-bit global counters under the theory that 32-bit 158 * sized counters are less likely to be hosed by nonatomic increment 159 * (on 32-bit platforms). 160 * 161 * The lock order is: 162 * 163 * 1) vi->vi_nc_lock (tree or parent -> child direction, 164 * used during forward lookup) 165 * 166 * 2) vi->vi_nc_listlock (list or child -> parent direction, 167 * used during reverse lookup) 168 * 169 * 3) cache_lru_lock (LRU list direction, used during reclaim) 170 * 171 * 4) vp->v_interlock (what the cache entry points to) 172 */ 173 174 #include <sys/cdefs.h> 175 __KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.136 2020/03/30 19:15:28 ad Exp $"); 176 177 #define __NAMECACHE_PRIVATE 178 #ifdef _KERNEL_OPT 179 #include "opt_ddb.h" 180 #include "opt_dtrace.h" 181 #endif 182 183 #include <sys/types.h> 184 #include <sys/atomic.h> 185 #include <sys/callout.h> 186 #include <sys/cpu.h> 187 #include <sys/errno.h> 188 #include <sys/evcnt.h> 189 #include <sys/hash.h> 190 #include <sys/kernel.h> 191 #include <sys/mount.h> 192 #include <sys/mutex.h> 193 #include <sys/namei.h> 194 #include <sys/param.h> 195 #include <sys/pool.h> 196 #include <sys/sdt.h> 197 #include <sys/sysctl.h> 198 #include <sys/systm.h> 199 #include <sys/time.h> 200 #include <sys/vnode_impl.h> 201 202 #include <miscfs/genfs/genfs.h> 203 204 static void cache_activate(struct namecache *); 205 static void cache_update_stats(void *); 206 static int cache_compare_nodes(void *, const void *, const void *); 207 static void cache_deactivate(void); 208 static void cache_reclaim(void); 209 static int cache_stat_sysctl(SYSCTLFN_ARGS); 210 211 /* 212 * Global pool cache. 213 */ 214 static pool_cache_t cache_pool __read_mostly; 215 216 /* 217 * LRU replacement. 218 */ 219 enum cache_lru_id { 220 LRU_ACTIVE, 221 LRU_INACTIVE, 222 LRU_COUNT 223 }; 224 225 static struct { 226 TAILQ_HEAD(, namecache) list[LRU_COUNT]; 227 u_int count[LRU_COUNT]; 228 } cache_lru __cacheline_aligned; 229 230 static kmutex_t cache_lru_lock __cacheline_aligned; 231 232 /* 233 * Cache effectiveness statistics. nchstats holds system-wide total. 234 */ 235 struct nchstats nchstats; 236 struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t); 237 struct nchcpu { 238 struct nchstats_percpu cur; 239 struct nchstats_percpu last; 240 }; 241 static callout_t cache_stat_callout; 242 static kmutex_t cache_stat_lock __cacheline_aligned; 243 244 #define COUNT(f) do { \ 245 lwp_t *l = curlwp; \ 246 KPREEMPT_DISABLE(l); \ 247 ((struct nchstats_percpu *)curcpu()->ci_data.cpu_nch)->f++; \ 248 KPREEMPT_ENABLE(l); \ 249 } while (/* CONSTCOND */ 0); 250 251 #define UPDATE(nchcpu, f) do { \ 252 uint32_t cur = atomic_load_relaxed(&nchcpu->cur.f); \ 253 nchstats.f += (uint32_t)(cur - nchcpu->last.f); \ 254 nchcpu->last.f = cur; \ 255 } while (/* CONSTCOND */ 0) 256 257 /* 258 * Tunables. cache_maxlen replaces the historical doingcache: 259 * set it zero to disable caching for debugging purposes. 260 */ 261 int cache_lru_maxdeact __read_mostly = 2; /* max # to deactivate */ 262 int cache_lru_maxscan __read_mostly = 64; /* max # to scan/reclaim */ 263 int cache_maxlen __read_mostly = USHRT_MAX; /* max name length to cache */ 264 int cache_stat_interval __read_mostly = 300; /* in seconds */ 265 266 /* 267 * sysctl stuff. 268 */ 269 static struct sysctllog *cache_sysctllog; 270 271 /* 272 * Red-black tree stuff. 273 */ 274 static const rb_tree_ops_t cache_rbtree_ops = { 275 .rbto_compare_nodes = cache_compare_nodes, 276 .rbto_compare_key = cache_compare_nodes, 277 .rbto_node_offset = offsetof(struct namecache, nc_tree), 278 .rbto_context = NULL 279 }; 280 281 /* 282 * dtrace probes. 283 */ 284 SDT_PROVIDER_DEFINE(vfs); 285 286 SDT_PROBE_DEFINE1(vfs, namecache, invalidate, done, "struct vnode *"); 287 SDT_PROBE_DEFINE1(vfs, namecache, purge, parents, "struct vnode *"); 288 SDT_PROBE_DEFINE1(vfs, namecache, purge, children, "struct vnode *"); 289 SDT_PROBE_DEFINE2(vfs, namecache, purge, name, "char *", "size_t"); 290 SDT_PROBE_DEFINE1(vfs, namecache, purge, vfs, "struct mount *"); 291 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", 292 "char *", "size_t"); 293 SDT_PROBE_DEFINE3(vfs, namecache, lookup, miss, "struct vnode *", 294 "char *", "size_t"); 295 SDT_PROBE_DEFINE3(vfs, namecache, lookup, toolong, "struct vnode *", 296 "char *", "size_t"); 297 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, success, "struct vnode *", 298 "struct vnode *"); 299 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, fail, "struct vnode *", 300 "int"); 301 SDT_PROBE_DEFINE2(vfs, namecache, prune, done, "int", "int"); 302 SDT_PROBE_DEFINE3(vfs, namecache, enter, toolong, "struct vnode *", 303 "char *", "size_t"); 304 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", 305 "char *", "size_t"); 306 307 /* 308 * rbtree: compare two nodes. 309 */ 310 static int 311 cache_compare_nodes(void *context, const void *n1, const void *n2) 312 { 313 const struct namecache *nc1 = n1; 314 const struct namecache *nc2 = n2; 315 316 if (nc1->nc_key < nc2->nc_key) { 317 return -1; 318 } 319 if (nc1->nc_key > nc2->nc_key) { 320 return 1; 321 } 322 KASSERT(nc1->nc_nlen == nc2->nc_nlen); 323 return memcmp(nc1->nc_name, nc2->nc_name, nc1->nc_nlen); 324 } 325 326 /* 327 * Compute a key value for the given name. The name length is encoded in 328 * the key value to try and improve uniqueness, and so that length doesn't 329 * need to be compared separately for string comparisons. 330 */ 331 static inline uint64_t 332 cache_key(const char *name, size_t nlen) 333 { 334 uint64_t key; 335 336 KASSERT(nlen <= USHRT_MAX); 337 338 key = hash32_buf(name, nlen, HASH32_STR_INIT); 339 return (key << 32) | nlen; 340 } 341 342 /* 343 * Remove an entry from the cache. vi_nc_lock must be held, and if dir2node 344 * is true, then we're locking in the conventional direction and the list 345 * lock will be acquired when removing the entry from the vnode list. 346 */ 347 static void 348 cache_remove(struct namecache *ncp, const bool dir2node) 349 { 350 struct vnode *vp, *dvp = ncp->nc_dvp; 351 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 352 353 KASSERT(rw_write_held(&dvi->vi_nc_lock)); 354 KASSERT(cache_key(ncp->nc_name, ncp->nc_nlen) == ncp->nc_key); 355 KASSERT(rb_tree_find_node(&dvi->vi_nc_tree, ncp) == ncp); 356 357 SDT_PROBE(vfs, namecache, invalidate, done, ncp, 358 0, 0, 0, 0); 359 360 /* 361 * Remove from the vnode's list. This excludes cache_revlookup(), 362 * and then it's safe to remove from the LRU lists. 363 */ 364 if ((vp = ncp->nc_vp) != NULL) { 365 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 366 if (__predict_true(dir2node)) { 367 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 368 TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list); 369 rw_exit(&vi->vi_nc_listlock); 370 } else { 371 TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list); 372 } 373 } 374 375 /* Remove from the directory's rbtree. */ 376 rb_tree_remove_node(&dvi->vi_nc_tree, ncp); 377 378 /* Remove from the LRU lists. */ 379 mutex_enter(&cache_lru_lock); 380 TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru); 381 cache_lru.count[ncp->nc_lrulist]--; 382 mutex_exit(&cache_lru_lock); 383 384 /* Finally, free it. */ 385 if (ncp->nc_nlen > NCHNAMLEN) { 386 size_t sz = offsetof(struct namecache, nc_name[ncp->nc_nlen]); 387 kmem_free(ncp, sz); 388 } else { 389 pool_cache_put(cache_pool, ncp); 390 } 391 } 392 393 /* 394 * Find a single cache entry and return it. vi_nc_lock must be held. 395 */ 396 static struct namecache * __noinline 397 cache_lookup_entry(struct vnode *dvp, const char *name, size_t namelen, 398 uint64_t key) 399 { 400 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 401 struct rb_node *node = dvi->vi_nc_tree.rbt_root; 402 struct namecache *ncp; 403 int lrulist, diff; 404 405 KASSERT(rw_lock_held(&dvi->vi_nc_lock)); 406 407 /* 408 * Search the RB tree for the key. This is an inlined lookup 409 * tailored for exactly what's needed here (64-bit key and so on) 410 * that is quite a bit faster than using rb_tree_find_node(). 411 * 412 * For a matching key memcmp() needs to be called once to confirm 413 * that the correct name has been found. Very rarely there will be 414 * a key value collision and the search will continue. 415 */ 416 for (;;) { 417 if (__predict_false(RB_SENTINEL_P(node))) { 418 return NULL; 419 } 420 KASSERT((void *)&ncp->nc_tree == (void *)ncp); 421 ncp = (struct namecache *)node; 422 KASSERT(ncp->nc_dvp == dvp); 423 if (__predict_false(ncp->nc_key == key)) { 424 KASSERT(ncp->nc_nlen == namelen); 425 diff = memcmp(ncp->nc_name, name, namelen); 426 if (__predict_true(diff == 0)) { 427 break; 428 } 429 node = node->rb_nodes[diff < 0]; 430 } else { 431 node = node->rb_nodes[ncp->nc_key < key]; 432 } 433 } 434 435 /* 436 * If the entry is on the wrong LRU list, requeue it. This is an 437 * unlocked check, but it will rarely be wrong and even then there 438 * will be no harm caused. 439 */ 440 lrulist = atomic_load_relaxed(&ncp->nc_lrulist); 441 if (__predict_false(lrulist != LRU_ACTIVE)) { 442 cache_activate(ncp); 443 } 444 return ncp; 445 } 446 447 /* 448 * Look for a the name in the cache. We don't do this 449 * if the segment name is long, simply so the cache can avoid 450 * holding long names (which would either waste space, or 451 * add greatly to the complexity). 452 * 453 * Lookup is called with DVP pointing to the directory to search, 454 * and CNP providing the name of the entry being sought: cn_nameptr 455 * is the name, cn_namelen is its length, and cn_flags is the flags 456 * word from the namei operation. 457 * 458 * DVP must be locked. 459 * 460 * There are three possible non-error return states: 461 * 1. Nothing was found in the cache. Nothing is known about 462 * the requested name. 463 * 2. A negative entry was found in the cache, meaning that the 464 * requested name definitely does not exist. 465 * 3. A positive entry was found in the cache, meaning that the 466 * requested name does exist and that we are providing the 467 * vnode. 468 * In these cases the results are: 469 * 1. 0 returned; VN is set to NULL. 470 * 2. 1 returned; VN is set to NULL. 471 * 3. 1 returned; VN is set to the vnode found. 472 * 473 * The additional result argument ISWHT is set to zero, unless a 474 * negative entry is found that was entered as a whiteout, in which 475 * case ISWHT is set to one. 476 * 477 * The ISWHT_RET argument pointer may be null. In this case an 478 * assertion is made that the whiteout flag is not set. File systems 479 * that do not support whiteouts can/should do this. 480 * 481 * Filesystems that do support whiteouts should add ISWHITEOUT to 482 * cnp->cn_flags if ISWHT comes back nonzero. 483 * 484 * When a vnode is returned, it is locked, as per the vnode lookup 485 * locking protocol. 486 * 487 * There is no way for this function to fail, in the sense of 488 * generating an error that requires aborting the namei operation. 489 * 490 * (Prior to October 2012, this function returned an integer status, 491 * and a vnode, and mucked with the flags word in CNP for whiteouts. 492 * The integer status was -1 for "nothing found", ENOENT for "a 493 * negative entry found", 0 for "a positive entry found", and possibly 494 * other errors, and the value of VN might or might not have been set 495 * depending on what error occurred.) 496 */ 497 bool 498 cache_lookup(struct vnode *dvp, const char *name, size_t namelen, 499 uint32_t nameiop, uint32_t cnflags, 500 int *iswht_ret, struct vnode **vn_ret) 501 { 502 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 503 struct namecache *ncp; 504 struct vnode *vp; 505 uint64_t key; 506 int error; 507 bool hit; 508 krw_t op; 509 510 /* Establish default result values */ 511 if (iswht_ret != NULL) { 512 *iswht_ret = 0; 513 } 514 *vn_ret = NULL; 515 516 if (__predict_false(namelen > cache_maxlen)) { 517 SDT_PROBE(vfs, namecache, lookup, toolong, dvp, 518 name, namelen, 0, 0); 519 COUNT(ncs_long); 520 return false; 521 } 522 523 /* Compute the key up front - don't need the lock. */ 524 key = cache_key(name, namelen); 525 526 /* Could the entry be purged below? */ 527 if ((cnflags & ISLASTCN) != 0 && 528 ((cnflags & MAKEENTRY) == 0 || nameiop == CREATE)) { 529 op = RW_WRITER; 530 } else { 531 op = RW_READER; 532 } 533 534 /* Now look for the name. */ 535 rw_enter(&dvi->vi_nc_lock, op); 536 ncp = cache_lookup_entry(dvp, name, namelen, key); 537 if (__predict_false(ncp == NULL)) { 538 rw_exit(&dvi->vi_nc_lock); 539 COUNT(ncs_miss); 540 SDT_PROBE(vfs, namecache, lookup, miss, dvp, 541 name, namelen, 0, 0); 542 return false; 543 } 544 if (__predict_false((cnflags & MAKEENTRY) == 0)) { 545 /* 546 * Last component and we are renaming or deleting, 547 * the cache entry is invalid, or otherwise don't 548 * want cache entry to exist. 549 */ 550 KASSERT((cnflags & ISLASTCN) != 0); 551 cache_remove(ncp, true); 552 rw_exit(&dvi->vi_nc_lock); 553 COUNT(ncs_badhits); 554 return false; 555 } 556 if (ncp->nc_vp == NULL) { 557 if (iswht_ret != NULL) { 558 /* 559 * Restore the ISWHITEOUT flag saved earlier. 560 */ 561 *iswht_ret = ncp->nc_whiteout; 562 } else { 563 KASSERT(!ncp->nc_whiteout); 564 } 565 if (nameiop == CREATE && (cnflags & ISLASTCN) != 0) { 566 /* 567 * Last component and we are preparing to create 568 * the named object, so flush the negative cache 569 * entry. 570 */ 571 COUNT(ncs_badhits); 572 cache_remove(ncp, true); 573 hit = false; 574 } else { 575 COUNT(ncs_neghits); 576 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, 577 namelen, 0, 0); 578 /* found neg entry; vn is already null from above */ 579 hit = true; 580 } 581 rw_exit(&dvi->vi_nc_lock); 582 return hit; 583 } 584 vp = ncp->nc_vp; 585 mutex_enter(vp->v_interlock); 586 rw_exit(&dvi->vi_nc_lock); 587 588 /* 589 * Unlocked except for the vnode interlock. Call vcache_tryvget(). 590 */ 591 error = vcache_tryvget(vp); 592 if (error) { 593 KASSERT(error == EBUSY); 594 /* 595 * This vnode is being cleaned out. 596 * XXX badhits? 597 */ 598 COUNT(ncs_falsehits); 599 return false; 600 } 601 602 COUNT(ncs_goodhits); 603 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0); 604 /* found it */ 605 *vn_ret = vp; 606 return true; 607 } 608 609 /* 610 * Version of the above without the nameiop argument, for NFS. 611 */ 612 bool 613 cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen, 614 uint32_t cnflags, 615 int *iswht_ret, struct vnode **vn_ret) 616 { 617 618 return cache_lookup(dvp, name, namelen, LOOKUP, cnflags | MAKEENTRY, 619 iswht_ret, vn_ret); 620 } 621 622 /* 623 * Used by namei() to walk down a path, component by component by looking up 624 * names in the cache. The node locks are chained along the way: a parent's 625 * lock is not dropped until the child's is acquired. 626 */ 627 #ifdef notyet 628 bool 629 cache_lookup_linked(struct vnode *dvp, const char *name, size_t namelen, 630 struct vnode **vn_ret, krwlock_t **plock, 631 kauth_cred_t cred) 632 { 633 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 634 struct namecache *ncp; 635 uint64_t key; 636 int error; 637 638 /* Establish default results. */ 639 *vn_ret = NULL; 640 641 /* If disabled, or file system doesn't support this, bail out. */ 642 if (__predict_false((dvp->v_mount->mnt_iflag & IMNT_NCLOOKUP) == 0)) { 643 return false; 644 } 645 646 if (__predict_false(namelen > cache_maxlen)) { 647 COUNT(ncs_long); 648 return false; 649 } 650 651 /* Compute the key up front - don't need the lock. */ 652 key = cache_key(name, namelen); 653 654 /* 655 * Acquire the directory lock. Once we have that, we can drop the 656 * previous one (if any). 657 * 658 * The two lock holds mean that the directory can't go away while 659 * here: the directory must be purged with cache_purge() before 660 * being freed, and both parent & child's vi_nc_lock must be taken 661 * before that point is passed. 662 * 663 * However if there's no previous lock, like at the root of the 664 * chain, then "dvp" must be referenced to prevent dvp going away 665 * before we get its lock. 666 * 667 * Note that the two locks can be the same if looking up a dot, for 668 * example: /usr/bin/. 669 */ 670 if (*plock != &dvi->vi_nc_lock) { 671 rw_enter(&dvi->vi_nc_lock, RW_READER); 672 if (*plock != NULL) { 673 rw_exit(*plock); 674 } 675 *plock = &dvi->vi_nc_lock; 676 } else if (*plock == NULL) { 677 KASSERT(dvp->v_usecount > 0); 678 } 679 680 /* 681 * First up check if the user is allowed to look up files in this 682 * directory. 683 */ 684 KASSERT(dvi->vi_nc_mode != VNOVAL && dvi->vi_nc_uid != VNOVAL && 685 dvi->vi_nc_gid != VNOVAL); 686 error = kauth_authorize_vnode(cred, KAUTH_ACCESS_ACTION(VEXEC, 687 dvp->v_type, dvi->vi_nc_mode & ALLPERMS), dvp, NULL, 688 genfs_can_access(dvp->v_type, dvi->vi_nc_mode & ALLPERMS, 689 dvi->vi_nc_uid, dvi->vi_nc_gid, VEXEC, cred)); 690 if (error != 0) { 691 COUNT(ncs_denied); 692 return false; 693 } 694 695 /* 696 * Now look for a matching cache entry. 697 */ 698 ncp = cache_lookup_entry(dvp, name, namelen, key); 699 if (__predict_false(ncp == NULL)) { 700 COUNT(ncs_miss); 701 SDT_PROBE(vfs, namecache, lookup, miss, dvp, 702 name, namelen, 0, 0); 703 return false; 704 } 705 if (ncp->nc_vp == NULL) { 706 /* found negative entry; vn is already null from above */ 707 COUNT(ncs_neghits); 708 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0); 709 return true; 710 } 711 712 COUNT(ncs_goodhits); /* XXX can be "badhits" */ 713 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0); 714 715 /* 716 * Return with the directory lock still held. It will either be 717 * returned to us with another call to cache_lookup_linked() when 718 * looking up the next component, or the caller will release it 719 * manually when finished. 720 */ 721 *vn_ret = ncp->nc_vp; 722 return true; 723 } 724 #endif /* notyet */ 725 726 /* 727 * Scan cache looking for name of directory entry pointing at vp. 728 * Will not search for "." or "..". 729 * 730 * If the lookup succeeds the vnode is referenced and stored in dvpp. 731 * 732 * If bufp is non-NULL, also place the name in the buffer which starts 733 * at bufp, immediately before *bpp, and move bpp backwards to point 734 * at the start of it. (Yes, this is a little baroque, but it's done 735 * this way to cater to the whims of getcwd). 736 * 737 * Returns 0 on success, -1 on cache miss, positive errno on failure. 738 */ 739 int 740 cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp, 741 bool checkaccess, int perms) 742 { 743 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 744 struct namecache *ncp; 745 struct vnode *dvp; 746 int error, nlen, lrulist; 747 char *bp; 748 749 KASSERT(vp != NULL); 750 751 if (cache_maxlen == 0) 752 goto out; 753 754 rw_enter(&vi->vi_nc_listlock, RW_READER); 755 if (checkaccess) { 756 /* 757 * Check if the user is allowed to see. NOTE: this is 758 * checking for access on the "wrong" directory. getcwd() 759 * wants to see that there is access on every component 760 * along the way, not that there is access to any individual 761 * component. Don't use this to check you can look in vp. 762 * 763 * I don't like it, I didn't come up with it, don't blame me! 764 */ 765 KASSERT(vi->vi_nc_mode != VNOVAL && vi->vi_nc_uid != VNOVAL && 766 vi->vi_nc_gid != VNOVAL); 767 error = kauth_authorize_vnode(curlwp->l_cred, 768 KAUTH_ACCESS_ACTION(VEXEC, vp->v_type, vi->vi_nc_mode & 769 ALLPERMS), vp, NULL, genfs_can_access(vp->v_type, 770 vi->vi_nc_mode & ALLPERMS, vi->vi_nc_uid, vi->vi_nc_gid, 771 perms, curlwp->l_cred)); 772 if (error != 0) { 773 rw_exit(&vi->vi_nc_listlock); 774 COUNT(ncs_denied); 775 return EACCES; 776 } 777 } 778 TAILQ_FOREACH(ncp, &vi->vi_nc_list, nc_list) { 779 KASSERT(ncp->nc_vp == vp); 780 KASSERT(ncp->nc_dvp != NULL); 781 nlen = ncp->nc_nlen; 782 783 /* 784 * The queue is partially sorted. Once we hit dots, nothing 785 * else remains but dots and dotdots, so bail out. 786 */ 787 if (ncp->nc_name[0] == '.') { 788 if (nlen == 1 || 789 (nlen == 2 && ncp->nc_name[1] == '.')) { 790 break; 791 } 792 } 793 794 /* 795 * Record a hit on the entry. This is an unlocked read but 796 * even if wrong it doesn't matter too much. 797 */ 798 lrulist = atomic_load_relaxed(&ncp->nc_lrulist); 799 if (lrulist != LRU_ACTIVE) { 800 cache_activate(ncp); 801 } 802 803 if (bufp) { 804 bp = *bpp; 805 bp -= nlen; 806 if (bp <= bufp) { 807 *dvpp = NULL; 808 rw_exit(&vi->vi_nc_listlock); 809 SDT_PROBE(vfs, namecache, revlookup, 810 fail, vp, ERANGE, 0, 0, 0); 811 return (ERANGE); 812 } 813 memcpy(bp, ncp->nc_name, nlen); 814 *bpp = bp; 815 } 816 817 dvp = ncp->nc_dvp; 818 mutex_enter(dvp->v_interlock); 819 rw_exit(&vi->vi_nc_listlock); 820 error = vcache_tryvget(dvp); 821 if (error) { 822 KASSERT(error == EBUSY); 823 if (bufp) 824 (*bpp) += nlen; 825 *dvpp = NULL; 826 SDT_PROBE(vfs, namecache, revlookup, fail, vp, 827 error, 0, 0, 0); 828 return -1; 829 } 830 *dvpp = dvp; 831 SDT_PROBE(vfs, namecache, revlookup, success, vp, dvp, 832 0, 0, 0); 833 COUNT(ncs_revhits); 834 return (0); 835 } 836 rw_exit(&vi->vi_nc_listlock); 837 COUNT(ncs_revmiss); 838 out: 839 *dvpp = NULL; 840 return (-1); 841 } 842 843 /* 844 * Add an entry to the cache. 845 */ 846 void 847 cache_enter(struct vnode *dvp, struct vnode *vp, 848 const char *name, size_t namelen, uint32_t cnflags) 849 { 850 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 851 struct namecache *ncp, *oncp; 852 int total; 853 854 /* First, check whether we can/should add a cache entry. */ 855 if ((cnflags & MAKEENTRY) == 0 || 856 __predict_false(namelen > cache_maxlen)) { 857 SDT_PROBE(vfs, namecache, enter, toolong, vp, name, namelen, 858 0, 0); 859 return; 860 } 861 862 SDT_PROBE(vfs, namecache, enter, done, vp, name, namelen, 0, 0); 863 864 /* 865 * Reclaim some entries if over budget. This is an unlocked check, 866 * but it doesn't matter. Just need to catch up with things 867 * eventually: it doesn't matter if we go over temporarily. 868 */ 869 total = atomic_load_relaxed(&cache_lru.count[LRU_ACTIVE]); 870 total += atomic_load_relaxed(&cache_lru.count[LRU_INACTIVE]); 871 if (__predict_false(total > desiredvnodes)) { 872 cache_reclaim(); 873 } 874 875 /* Now allocate a fresh entry. */ 876 if (__predict_true(namelen <= NCHNAMLEN)) { 877 ncp = pool_cache_get(cache_pool, PR_WAITOK); 878 } else { 879 size_t sz = offsetof(struct namecache, nc_name[namelen]); 880 ncp = kmem_alloc(sz, KM_SLEEP); 881 } 882 883 /* 884 * Fill in cache info. For negative hits, save the ISWHITEOUT flag 885 * so we can restore it later when the cache entry is used again. 886 */ 887 ncp->nc_vp = vp; 888 ncp->nc_dvp = dvp; 889 ncp->nc_key = cache_key(name, namelen); 890 ncp->nc_nlen = namelen; 891 ncp->nc_whiteout = ((cnflags & ISWHITEOUT) != 0); 892 memcpy(ncp->nc_name, name, namelen); 893 894 /* 895 * Insert to the directory. Concurrent lookups may race for a cache 896 * entry. If there's a entry there already, purge it. 897 */ 898 rw_enter(&dvi->vi_nc_lock, RW_WRITER); 899 oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp); 900 if (oncp != ncp) { 901 KASSERT(oncp->nc_key == ncp->nc_key); 902 KASSERT(oncp->nc_nlen == ncp->nc_nlen); 903 KASSERT(memcmp(oncp->nc_name, name, namelen) == 0); 904 cache_remove(oncp, true); 905 oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp); 906 KASSERT(oncp == ncp); 907 } 908 909 /* 910 * With the directory lock still held, insert to the tail of the 911 * ACTIVE LRU list (new) and take the opportunity to incrementally 912 * balance the lists. 913 */ 914 mutex_enter(&cache_lru_lock); 915 ncp->nc_lrulist = LRU_ACTIVE; 916 cache_lru.count[LRU_ACTIVE]++; 917 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru); 918 cache_deactivate(); 919 mutex_exit(&cache_lru_lock); 920 921 /* 922 * Finally, insert to the vnode and unlock. With everything set up 923 * it's safe to let cache_revlookup() see the entry. Partially sort 924 * the per-vnode list: dots go to back so cache_revlookup() doesn't 925 * have to consider them. 926 */ 927 if (vp != NULL) { 928 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 929 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 930 if ((namelen == 1 && name[0] == '.') || 931 (namelen == 2 && name[0] == '.' && name[1] == '.')) { 932 TAILQ_INSERT_TAIL(&vi->vi_nc_list, ncp, nc_list); 933 } else { 934 TAILQ_INSERT_HEAD(&vi->vi_nc_list, ncp, nc_list); 935 } 936 rw_exit(&vi->vi_nc_listlock); 937 } 938 rw_exit(&dvi->vi_nc_lock); 939 } 940 941 /* 942 * Set identity info in cache for a vnode. We only care about directories 943 * so ignore other updates. 944 */ 945 void 946 cache_enter_id(struct vnode *vp, mode_t mode, uid_t uid, gid_t gid) 947 { 948 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 949 950 if (vp->v_type == VDIR) { 951 /* Grab both locks, for forward & reverse lookup. */ 952 rw_enter(&vi->vi_nc_lock, RW_WRITER); 953 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 954 vi->vi_nc_mode = mode; 955 vi->vi_nc_uid = uid; 956 vi->vi_nc_gid = gid; 957 rw_exit(&vi->vi_nc_listlock); 958 rw_exit(&vi->vi_nc_lock); 959 } 960 } 961 962 /* 963 * Return true if we have identity for the given vnode, and use as an 964 * opportunity to confirm that everything squares up. 965 * 966 * Because of shared code, some file systems could provide partial 967 * information, missing some updates, so always check the mount flag 968 * instead of looking for !VNOVAL. 969 */ 970 #ifdef notyet 971 bool 972 cache_have_id(struct vnode *vp) 973 { 974 975 if (vp->v_type == VDIR && 976 (vp->v_mount->mnt_iflag & IMNT_NCLOOKUP) != 0) { 977 KASSERT(VNODE_TO_VIMPL(vp)->vi_nc_mode != VNOVAL); 978 KASSERT(VNODE_TO_VIMPL(vp)->vi_nc_uid != VNOVAL); 979 KASSERT(VNODE_TO_VIMPL(vp)->vi_nc_gid != VNOVAL); 980 return true; 981 } else { 982 return false; 983 } 984 } 985 #endif /* notyet */ 986 987 /* 988 * Name cache initialization, from vfs_init() when the system is booting. 989 */ 990 void 991 nchinit(void) 992 { 993 994 cache_pool = pool_cache_init(sizeof(struct namecache), 995 coherency_unit, 0, 0, "namecache", NULL, IPL_NONE, NULL, 996 NULL, NULL); 997 KASSERT(cache_pool != NULL); 998 999 mutex_init(&cache_lru_lock, MUTEX_DEFAULT, IPL_NONE); 1000 TAILQ_INIT(&cache_lru.list[LRU_ACTIVE]); 1001 TAILQ_INIT(&cache_lru.list[LRU_INACTIVE]); 1002 1003 mutex_init(&cache_stat_lock, MUTEX_DEFAULT, IPL_NONE); 1004 callout_init(&cache_stat_callout, CALLOUT_MPSAFE); 1005 callout_setfunc(&cache_stat_callout, cache_update_stats, NULL); 1006 callout_schedule(&cache_stat_callout, cache_stat_interval * hz); 1007 1008 KASSERT(cache_sysctllog == NULL); 1009 sysctl_createv(&cache_sysctllog, 0, NULL, NULL, 1010 CTLFLAG_PERMANENT, 1011 CTLTYPE_STRUCT, "namecache_stats", 1012 SYSCTL_DESCR("namecache statistics"), 1013 cache_stat_sysctl, 0, NULL, 0, 1014 CTL_VFS, CTL_CREATE, CTL_EOL); 1015 } 1016 1017 /* 1018 * Called once for each CPU in the system as attached. 1019 */ 1020 void 1021 cache_cpu_init(struct cpu_info *ci) 1022 { 1023 void *p; 1024 size_t sz; 1025 1026 sz = roundup2(sizeof(struct nchstats_percpu), coherency_unit) + 1027 coherency_unit; 1028 p = kmem_zalloc(sz, KM_SLEEP); 1029 ci->ci_data.cpu_nch = (void *)roundup2((uintptr_t)p, coherency_unit); 1030 } 1031 1032 /* 1033 * A vnode is being allocated: set up cache structures. 1034 */ 1035 void 1036 cache_vnode_init(struct vnode *vp) 1037 { 1038 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 1039 1040 rw_init(&vi->vi_nc_lock); 1041 rw_init(&vi->vi_nc_listlock); 1042 rb_tree_init(&vi->vi_nc_tree, &cache_rbtree_ops); 1043 TAILQ_INIT(&vi->vi_nc_list); 1044 vi->vi_nc_mode = VNOVAL; 1045 vi->vi_nc_uid = VNOVAL; 1046 vi->vi_nc_gid = VNOVAL; 1047 } 1048 1049 /* 1050 * A vnode is being freed: finish cache structures. 1051 */ 1052 void 1053 cache_vnode_fini(struct vnode *vp) 1054 { 1055 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 1056 1057 KASSERT(RB_TREE_MIN(&vi->vi_nc_tree) == NULL); 1058 KASSERT(TAILQ_EMPTY(&vi->vi_nc_list)); 1059 rw_destroy(&vi->vi_nc_lock); 1060 rw_destroy(&vi->vi_nc_listlock); 1061 } 1062 1063 /* 1064 * Helper for cache_purge1(): purge cache entries for the given vnode from 1065 * all directories that the vnode is cached in. 1066 */ 1067 static void 1068 cache_purge_parents(struct vnode *vp) 1069 { 1070 vnode_impl_t *dvi, *vi = VNODE_TO_VIMPL(vp); 1071 struct vnode *dvp, *blocked; 1072 struct namecache *ncp; 1073 1074 SDT_PROBE(vfs, namecache, purge, parents, vp, 0, 0, 0, 0); 1075 1076 blocked = NULL; 1077 1078 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 1079 while ((ncp = TAILQ_FIRST(&vi->vi_nc_list)) != NULL) { 1080 /* 1081 * Locking in the wrong direction. Try for a hold on the 1082 * directory node's lock, and if we get it then all good, 1083 * nuke the entry and move on to the next. 1084 */ 1085 dvp = ncp->nc_dvp; 1086 dvi = VNODE_TO_VIMPL(dvp); 1087 if (rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) { 1088 cache_remove(ncp, false); 1089 rw_exit(&dvi->vi_nc_lock); 1090 blocked = NULL; 1091 continue; 1092 } 1093 1094 /* 1095 * We can't wait on the directory node's lock with our list 1096 * lock held or the system could deadlock. 1097 * 1098 * Take a hold on the directory vnode to prevent it from 1099 * being freed (taking the vnode & lock with it). Then 1100 * wait for the lock to become available with no other locks 1101 * held, and retry. 1102 * 1103 * If this happens twice in a row, give the other side a 1104 * breather; we can do nothing until it lets go. 1105 */ 1106 vhold(dvp); 1107 rw_exit(&vi->vi_nc_listlock); 1108 rw_enter(&dvi->vi_nc_lock, RW_WRITER); 1109 /* Do nothing. */ 1110 rw_exit(&dvi->vi_nc_lock); 1111 holdrele(dvp); 1112 if (blocked == dvp) { 1113 kpause("ncpurge", false, 1, NULL); 1114 } 1115 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 1116 blocked = dvp; 1117 } 1118 rw_exit(&vi->vi_nc_listlock); 1119 } 1120 1121 /* 1122 * Helper for cache_purge1(): purge all cache entries hanging off the given 1123 * directory vnode. 1124 */ 1125 static void 1126 cache_purge_children(struct vnode *dvp) 1127 { 1128 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 1129 struct namecache *ncp; 1130 1131 SDT_PROBE(vfs, namecache, purge, children, dvp, 0, 0, 0, 0); 1132 1133 rw_enter(&dvi->vi_nc_lock, RW_WRITER); 1134 while ((ncp = RB_TREE_MIN(&dvi->vi_nc_tree)) != NULL) { 1135 cache_remove(ncp, true); 1136 } 1137 rw_exit(&dvi->vi_nc_lock); 1138 } 1139 1140 /* 1141 * Helper for cache_purge1(): purge cache entry from the given vnode, 1142 * finding it by name. 1143 */ 1144 static void 1145 cache_purge_name(struct vnode *dvp, const char *name, size_t namelen) 1146 { 1147 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 1148 struct namecache *ncp; 1149 uint64_t key; 1150 1151 SDT_PROBE(vfs, namecache, purge, name, name, namelen, 0, 0, 0); 1152 1153 key = cache_key(name, namelen); 1154 rw_enter(&dvi->vi_nc_lock, RW_WRITER); 1155 ncp = cache_lookup_entry(dvp, name, namelen, key); 1156 if (ncp) { 1157 cache_remove(ncp, true); 1158 } 1159 rw_exit(&dvi->vi_nc_lock); 1160 } 1161 1162 /* 1163 * Cache flush, a particular vnode; called when a vnode is renamed to 1164 * hide entries that would now be invalid. 1165 */ 1166 void 1167 cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags) 1168 { 1169 1170 if (flags & PURGE_PARENTS) { 1171 cache_purge_parents(vp); 1172 } 1173 if (flags & PURGE_CHILDREN) { 1174 cache_purge_children(vp); 1175 } 1176 if (name != NULL) { 1177 cache_purge_name(vp, name, namelen); 1178 } 1179 } 1180 1181 /* 1182 * vnode filter for cache_purgevfs(). 1183 */ 1184 static bool 1185 cache_vdir_filter(void *cookie, vnode_t *vp) 1186 { 1187 1188 return vp->v_type == VDIR; 1189 } 1190 1191 /* 1192 * Cache flush, a whole filesystem; called when filesys is umounted to 1193 * remove entries that would now be invalid. 1194 */ 1195 void 1196 cache_purgevfs(struct mount *mp) 1197 { 1198 struct vnode_iterator *iter; 1199 vnode_t *dvp; 1200 1201 vfs_vnode_iterator_init(mp, &iter); 1202 for (;;) { 1203 dvp = vfs_vnode_iterator_next(iter, cache_vdir_filter, NULL); 1204 if (dvp == NULL) { 1205 break; 1206 } 1207 cache_purge_children(dvp); 1208 vrele(dvp); 1209 } 1210 vfs_vnode_iterator_destroy(iter); 1211 } 1212 1213 /* 1214 * Re-queue an entry onto the tail of the active LRU list, after it has 1215 * scored a hit. 1216 */ 1217 static void 1218 cache_activate(struct namecache *ncp) 1219 { 1220 1221 mutex_enter(&cache_lru_lock); 1222 TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru); 1223 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru); 1224 cache_lru.count[ncp->nc_lrulist]--; 1225 cache_lru.count[LRU_ACTIVE]++; 1226 ncp->nc_lrulist = LRU_ACTIVE; 1227 mutex_exit(&cache_lru_lock); 1228 } 1229 1230 /* 1231 * Try to balance the LRU lists. Pick some victim entries, and re-queue 1232 * them from the head of the active list to the tail of the inactive list. 1233 */ 1234 static void 1235 cache_deactivate(void) 1236 { 1237 struct namecache *ncp; 1238 int total, i; 1239 1240 KASSERT(mutex_owned(&cache_lru_lock)); 1241 1242 /* If we're nowhere near budget yet, don't bother. */ 1243 total = cache_lru.count[LRU_ACTIVE] + cache_lru.count[LRU_INACTIVE]; 1244 if (total < (desiredvnodes >> 1)) { 1245 return; 1246 } 1247 1248 /* 1249 * Aim for a 1:1 ratio of active to inactive. This is to allow each 1250 * potential victim a reasonable amount of time to cycle through the 1251 * inactive list in order to score a hit and be reactivated, while 1252 * trying not to cause reactivations too frequently. 1253 */ 1254 if (cache_lru.count[LRU_ACTIVE] < cache_lru.count[LRU_INACTIVE]) { 1255 return; 1256 } 1257 1258 /* Move only a few at a time; will catch up eventually. */ 1259 for (i = 0; i < cache_lru_maxdeact; i++) { 1260 ncp = TAILQ_FIRST(&cache_lru.list[LRU_ACTIVE]); 1261 if (ncp == NULL) { 1262 break; 1263 } 1264 KASSERT(ncp->nc_lrulist == LRU_ACTIVE); 1265 ncp->nc_lrulist = LRU_INACTIVE; 1266 TAILQ_REMOVE(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru); 1267 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE], ncp, nc_lru); 1268 cache_lru.count[LRU_ACTIVE]--; 1269 cache_lru.count[LRU_INACTIVE]++; 1270 } 1271 } 1272 1273 /* 1274 * Free some entries from the cache, when we have gone over budget. 1275 * 1276 * We don't want to cause too much work for any individual caller, and it 1277 * doesn't matter if we temporarily go over budget. This is also "just a 1278 * cache" so it's not a big deal if we screw up and throw out something we 1279 * shouldn't. So we take a relaxed attitude to this process to reduce its 1280 * impact. 1281 */ 1282 static void 1283 cache_reclaim(void) 1284 { 1285 struct namecache *ncp; 1286 vnode_impl_t *dvi; 1287 int toscan; 1288 1289 /* 1290 * Scan up to a preset maxium number of entries, but no more than 1291 * 0.8% of the total at once (to allow for very small systems). 1292 * 1293 * On bigger systems, do a larger chunk of work to reduce the number 1294 * of times that cache_lru_lock is held for any length of time. 1295 */ 1296 mutex_enter(&cache_lru_lock); 1297 toscan = MIN(cache_lru_maxscan, desiredvnodes >> 7); 1298 toscan = MAX(toscan, 1); 1299 SDT_PROBE(vfs, namecache, prune, done, cache_lru.count[LRU_ACTIVE] + 1300 cache_lru.count[LRU_INACTIVE], toscan, 0, 0, 0); 1301 while (toscan-- != 0) { 1302 /* First try to balance the lists. */ 1303 cache_deactivate(); 1304 1305 /* Now look for a victim on head of inactive list (old). */ 1306 ncp = TAILQ_FIRST(&cache_lru.list[LRU_INACTIVE]); 1307 if (ncp == NULL) { 1308 break; 1309 } 1310 dvi = VNODE_TO_VIMPL(ncp->nc_dvp); 1311 KASSERT(ncp->nc_lrulist == LRU_INACTIVE); 1312 KASSERT(dvi != NULL); 1313 1314 /* 1315 * Locking in the wrong direction. If we can't get the 1316 * lock, the directory is actively busy, and it could also 1317 * cause problems for the next guy in here, so send the 1318 * entry to the back of the list. 1319 */ 1320 if (!rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) { 1321 TAILQ_REMOVE(&cache_lru.list[LRU_INACTIVE], 1322 ncp, nc_lru); 1323 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE], 1324 ncp, nc_lru); 1325 continue; 1326 } 1327 1328 /* 1329 * Now have the victim entry locked. Drop the LRU list 1330 * lock, purge the entry, and start over. The hold on 1331 * vi_nc_lock will prevent the vnode from vanishing until 1332 * finished (cache_purge() will be called on dvp before it 1333 * disappears, and that will wait on vi_nc_lock). 1334 */ 1335 mutex_exit(&cache_lru_lock); 1336 cache_remove(ncp, true); 1337 rw_exit(&dvi->vi_nc_lock); 1338 mutex_enter(&cache_lru_lock); 1339 } 1340 mutex_exit(&cache_lru_lock); 1341 } 1342 1343 /* 1344 * For file system code: count a lookup that required a full re-scan of 1345 * directory metadata. 1346 */ 1347 void 1348 namecache_count_pass2(void) 1349 { 1350 1351 COUNT(ncs_pass2); 1352 } 1353 1354 /* 1355 * For file system code: count a lookup that scored a hit in the directory 1356 * metadata near the location of the last lookup. 1357 */ 1358 void 1359 namecache_count_2passes(void) 1360 { 1361 1362 COUNT(ncs_2passes); 1363 } 1364 1365 /* 1366 * Sum the stats from all CPUs into nchstats. This needs to run at least 1367 * once within every window where a 32-bit counter could roll over. It's 1368 * called regularly by timer to ensure this. 1369 */ 1370 static void 1371 cache_update_stats(void *cookie) 1372 { 1373 CPU_INFO_ITERATOR cii; 1374 struct cpu_info *ci; 1375 1376 mutex_enter(&cache_stat_lock); 1377 for (CPU_INFO_FOREACH(cii, ci)) { 1378 struct nchcpu *nchcpu = ci->ci_data.cpu_nch; 1379 UPDATE(nchcpu, ncs_goodhits); 1380 UPDATE(nchcpu, ncs_neghits); 1381 UPDATE(nchcpu, ncs_badhits); 1382 UPDATE(nchcpu, ncs_falsehits); 1383 UPDATE(nchcpu, ncs_miss); 1384 UPDATE(nchcpu, ncs_long); 1385 UPDATE(nchcpu, ncs_pass2); 1386 UPDATE(nchcpu, ncs_2passes); 1387 UPDATE(nchcpu, ncs_revhits); 1388 UPDATE(nchcpu, ncs_revmiss); 1389 UPDATE(nchcpu, ncs_denied); 1390 } 1391 if (cookie != NULL) { 1392 memcpy(cookie, &nchstats, sizeof(nchstats)); 1393 } 1394 /* Reset the timer; arrive back here in N minutes at latest. */ 1395 callout_schedule(&cache_stat_callout, cache_stat_interval * hz); 1396 mutex_exit(&cache_stat_lock); 1397 } 1398 1399 /* 1400 * Fetch the current values of the stats for sysctl. 1401 */ 1402 static int 1403 cache_stat_sysctl(SYSCTLFN_ARGS) 1404 { 1405 struct nchstats stats; 1406 1407 if (oldp == NULL) { 1408 *oldlenp = sizeof(nchstats); 1409 return 0; 1410 } 1411 1412 if (*oldlenp <= 0) { 1413 *oldlenp = 0; 1414 return 0; 1415 } 1416 1417 /* Refresh the global stats. */ 1418 sysctl_unlock(); 1419 cache_update_stats(&stats); 1420 sysctl_relock(); 1421 1422 *oldlenp = MIN(sizeof(stats), *oldlenp); 1423 return sysctl_copyout(l, &stats, oldp, *oldlenp); 1424 } 1425 1426 /* 1427 * For the debugger, given the address of a vnode, print all associated 1428 * names in the cache. 1429 */ 1430 #ifdef DDB 1431 void 1432 namecache_print(struct vnode *vp, void (*pr)(const char *, ...)) 1433 { 1434 struct vnode *dvp = NULL; 1435 struct namecache *ncp; 1436 enum cache_lru_id id; 1437 1438 for (id = 0; id < LRU_COUNT; id++) { 1439 TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) { 1440 if (ncp->nc_vp == vp) { 1441 (*pr)("name %.*s\n", ncp->nc_nlen, 1442 ncp->nc_name); 1443 dvp = ncp->nc_dvp; 1444 } 1445 } 1446 } 1447 if (dvp == NULL) { 1448 (*pr)("name not found\n"); 1449 return; 1450 } 1451 for (id = 0; id < LRU_COUNT; id++) { 1452 TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) { 1453 if (ncp->nc_vp == dvp) { 1454 (*pr)("parent %.*s\n", ncp->nc_nlen, 1455 ncp->nc_name); 1456 } 1457 } 1458 } 1459 } 1460 #endif 1461