xref: /netbsd-src/sys/kern/vfs_cache.c (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1 /*	$NetBSD: vfs_cache.c,v 1.109 2015/12/05 05:23:35 dholland Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * Copyright (c) 1989, 1993
31  *	The Regents of the University of California.  All rights reserved.
32  *
33  * Redistribution and use in source and binary forms, with or without
34  * modification, are permitted provided that the following conditions
35  * are met:
36  * 1. Redistributions of source code must retain the above copyright
37  *    notice, this list of conditions and the following disclaimer.
38  * 2. Redistributions in binary form must reproduce the above copyright
39  *    notice, this list of conditions and the following disclaimer in the
40  *    documentation and/or other materials provided with the distribution.
41  * 3. Neither the name of the University nor the names of its contributors
42  *    may be used to endorse or promote products derived from this software
43  *    without specific prior written permission.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  *
57  *	@(#)vfs_cache.c	8.3 (Berkeley) 8/22/94
58  */
59 
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.109 2015/12/05 05:23:35 dholland Exp $");
62 
63 #ifdef _KERNEL_OPT
64 #include "opt_ddb.h"
65 #include "opt_revcache.h"
66 #include "opt_dtrace.h"
67 #endif
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/sysctl.h>
72 #include <sys/time.h>
73 #include <sys/mount.h>
74 #include <sys/vnode.h>
75 #include <sys/namei.h>
76 #include <sys/errno.h>
77 #include <sys/pool.h>
78 #include <sys/mutex.h>
79 #include <sys/atomic.h>
80 #include <sys/kthread.h>
81 #include <sys/kernel.h>
82 #include <sys/cpu.h>
83 #include <sys/evcnt.h>
84 #include <sys/sdt.h>
85 
86 #define NAMECACHE_ENTER_REVERSE
87 /*
88  * Name caching works as follows:
89  *
90  * Names found by directory scans are retained in a cache
91  * for future reference.  It is managed LRU, so frequently
92  * used names will hang around.  Cache is indexed by hash value
93  * obtained from (dvp, name) where dvp refers to the directory
94  * containing name.
95  *
96  * For simplicity (and economy of storage), names longer than
97  * a maximum length of NCHNAMLEN are not cached; they occur
98  * infrequently in any case, and are almost never of interest.
99  *
100  * Upon reaching the last segment of a path, if the reference
101  * is for DELETE, or NOCACHE is set (rewrite), and the
102  * name is located in the cache, it will be dropped.
103  * The entry is dropped also when it was not possible to lock
104  * the cached vnode, either because vget() failed or the generation
105  * number has changed while waiting for the lock.
106  */
107 
108 /*
109  * The locking in this subsystem works as follows:
110  *
111  * When an entry is added to the cache, via cache_enter(),
112  * namecache_lock is taken to exclude other writers.  The new
113  * entry is added to the hash list in a way which permits
114  * concurrent lookups and invalidations in the cache done on
115  * other CPUs to continue in parallel.
116  *
117  * When a lookup is done in the cache, via cache_lookup() or
118  * cache_lookup_raw(), the per-cpu lock below is taken.  This
119  * protects calls to cache_lookup_entry() and cache_invalidate()
120  * against cache_reclaim() but allows lookups to continue in
121  * parallel with cache_enter().
122  *
123  * cache_revlookup() takes namecache_lock to exclude cache_enter()
124  * and cache_reclaim() since the list it operates on is not
125  * maintained to allow concurrent reads.
126  *
127  * When cache_reclaim() is called namecache_lock is held to hold
128  * off calls to cache_enter()/cache_revlookup() and each of the
129  * per-cpu locks is taken to hold off lookups.  Holding all these
130  * locks essentially idles the subsystem, ensuring there are no
131  * concurrent references to the cache entries being freed.
132  *
133  * 32 bit per-cpu statistic counters (struct nchstats_percpu) are
134  * incremented when the operations they count are performed while
135  * running on the corresponding CPU.  Frequently individual counters
136  * are incremented while holding a lock (either a per-cpu lock or
137  * namecache_lock) sufficient to preclude concurrent increments
138  * being done to the same counter, so non-atomic increments are
139  * done using the COUNT() macro.  Counters which are incremented
140  * when one of these locks is not held use the COUNT_UNL() macro
141  * instead.  COUNT_UNL() could be defined to do atomic increments
142  * but currently just does what COUNT() does, on the theory that
143  * it is unlikely the non-atomic increment will be interrupted
144  * by something on the same CPU that increments the same counter,
145  * but even if it does happen the consequences aren't serious.
146  *
147  * N.B.: Attempting to protect COUNT_UNL() increments by taking
148  * a per-cpu lock in the namecache_count_*() functions causes
149  * a deadlock.  Don't do that, use atomic increments instead if
150  * the imperfections here bug you.
151  *
152  * The 64 bit system-wide statistic counts (struct nchstats) are
153  * maintained by sampling the per-cpu counters periodically, adding
154  * in the deltas since the last samples and recording the current
155  * samples to use to compute the next delta.  The sampling is done
156  * as a side effect of cache_reclaim() which is run periodically,
157  * for its own purposes, often enough to avoid overflow of the 32
158  * bit counters.  While sampling in this fashion requires no locking
159  * it is never-the-less done only after all locks have been taken by
160  * cache_reclaim() to allow cache_stat_sysctl() to hold off
161  * cache_reclaim() with minimal locking.
162  *
163  * cache_stat_sysctl() takes its CPU's per-cpu lock to hold off
164  * cache_reclaim() so that it can copy the subsystem total stats
165  * without them being concurrently modified.  If CACHE_STATS_CURRENT
166  * is defined it also harvests the per-cpu increments into the total,
167  * which again requires cache_reclaim() to be held off.
168  *
169  * The per-cpu data (a lock and the per-cpu stats structures)
170  * are defined next.
171  */
172 struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t);
173 
174 struct nchcpu {
175 	kmutex_t		cpu_lock;
176 	struct nchstats_percpu	cpu_stats;
177 	/* XXX maybe __cacheline_aligned would improve this? */
178 	struct nchstats_percpu	cpu_stats_last;	/* from last sample */
179 };
180 
181 /*
182  * The type for the hash code. While the hash function generates a
183  * u32, the hash code has historically been passed around as a u_long,
184  * and the value is modified by xor'ing a uintptr_t, so it's not
185  * entirely clear what the best type is. For now I'll leave it
186  * unchanged as u_long.
187  */
188 
189 typedef u_long nchash_t;
190 
191 /*
192  * Structures associated with name cacheing.
193  */
194 
195 static kmutex_t *namecache_lock __read_mostly;
196 static pool_cache_t namecache_cache __read_mostly;
197 static TAILQ_HEAD(, namecache) nclruhead __cacheline_aligned;
198 
199 static LIST_HEAD(nchashhead, namecache) *nchashtbl __read_mostly;
200 static u_long	nchash __read_mostly;
201 
202 #define	NCHASH2(hash, dvp)	\
203 	(((hash) ^ ((uintptr_t)(dvp) >> 3)) & nchash)
204 
205 static LIST_HEAD(ncvhashhead, namecache) *ncvhashtbl __read_mostly;
206 static u_long	ncvhash __read_mostly;
207 
208 #define	NCVHASH(vp)		(((uintptr_t)(vp) >> 3) & ncvhash)
209 
210 /* Number of cache entries allocated. */
211 static long	numcache __cacheline_aligned;
212 
213 /* Garbage collection queue and number of entries pending in it. */
214 static void	*cache_gcqueue;
215 static u_int	cache_gcpend;
216 
217 /* Cache effectiveness statistics.  This holds total from per-cpu stats */
218 struct nchstats	nchstats __cacheline_aligned;
219 
220 /*
221  * Macros to count an event, update the central stats with per-cpu
222  * values and add current per-cpu increments to the subsystem total
223  * last collected by cache_reclaim().
224  */
225 #define	CACHE_STATS_CURRENT	/* nothing */
226 
227 #define	COUNT(cpup, f)	((cpup)->cpu_stats.f++)
228 
229 #define	UPDATE(cpup, f) do { \
230 	struct nchcpu *Xcpup = (cpup); \
231 	uint32_t Xcnt = (volatile uint32_t) Xcpup->cpu_stats.f; \
232 	nchstats.f += Xcnt - Xcpup->cpu_stats_last.f; \
233 	Xcpup->cpu_stats_last.f = Xcnt; \
234 } while (/* CONSTCOND */ 0)
235 
236 #define	ADD(stats, cpup, f) do { \
237 	struct nchcpu *Xcpup = (cpup); \
238 	stats.f += Xcpup->cpu_stats.f - Xcpup->cpu_stats_last.f; \
239 } while (/* CONSTCOND */ 0)
240 
241 /* Do unlocked stats the same way. Use a different name to allow mind changes */
242 #define	COUNT_UNL(cpup, f)	COUNT((cpup), f)
243 
244 static const int cache_lowat = 95;
245 static const int cache_hiwat = 98;
246 static const int cache_hottime = 5;	/* number of seconds */
247 static int doingcache = 1;		/* 1 => enable the cache */
248 
249 static struct evcnt cache_ev_scan;
250 static struct evcnt cache_ev_gc;
251 static struct evcnt cache_ev_over;
252 static struct evcnt cache_ev_under;
253 static struct evcnt cache_ev_forced;
254 
255 static void cache_invalidate(struct namecache *);
256 static struct namecache *cache_lookup_entry(
257     const struct vnode *, const char *, size_t);
258 static void cache_thread(void *);
259 static void cache_invalidate(struct namecache *);
260 static void cache_disassociate(struct namecache *);
261 static void cache_reclaim(void);
262 static int cache_ctor(void *, void *, int);
263 static void cache_dtor(void *, void *);
264 
265 static struct sysctllog *sysctllog;
266 static void sysctl_cache_stat_setup(void);
267 
268 SDT_PROVIDER_DEFINE(vfs);
269 
270 SDT_PROBE_DEFINE1(vfs, namecache, invalidate, done, "struct vnode *");
271 SDT_PROBE_DEFINE1(vfs, namecache, purge, parents, "struct vnode *");
272 SDT_PROBE_DEFINE1(vfs, namecache, purge, children, "struct vnode *");
273 SDT_PROBE_DEFINE2(vfs, namecache, purge, name, "char *", "size_t");
274 SDT_PROBE_DEFINE1(vfs, namecache, purge, vfs, "struct mount *");
275 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *",
276     "char *", "size_t");
277 SDT_PROBE_DEFINE3(vfs, namecache, lookup, miss, "struct vnode *",
278     "char *", "size_t");
279 SDT_PROBE_DEFINE3(vfs, namecache, lookup, toolong, "struct vnode *",
280     "char *", "size_t");
281 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, success, "struct vnode *",
282      "struct vnode *");
283 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, fail, "struct vnode *",
284      "int");
285 SDT_PROBE_DEFINE2(vfs, namecache, prune, done, "int", "int");
286 SDT_PROBE_DEFINE3(vfs, namecache, enter, toolong, "struct vnode *",
287     "char *", "size_t");
288 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *",
289     "char *", "size_t");
290 
291 /*
292  * Compute the hash for an entry.
293  *
294  * (This is for now a wrapper around namei_hash, whose interface is
295  * for the time being slightly inconvenient.)
296  */
297 static nchash_t
298 cache_hash(const char *name, size_t namelen)
299 {
300 	const char *endptr;
301 
302 	endptr = name + namelen;
303 	return namei_hash(name, &endptr);
304 }
305 
306 /*
307  * Invalidate a cache entry and enqueue it for garbage collection.
308  * The caller needs to hold namecache_lock or a per-cpu lock to hold
309  * off cache_reclaim().
310  */
311 static void
312 cache_invalidate(struct namecache *ncp)
313 {
314 	void *head;
315 
316 	KASSERT(mutex_owned(&ncp->nc_lock));
317 
318 	if (ncp->nc_dvp != NULL) {
319 		SDT_PROBE(vfs, namecache, invalidate, done, ncp->nc_dvp,
320 		    0, 0, 0, 0);
321 
322 		ncp->nc_vp = NULL;
323 		ncp->nc_dvp = NULL;
324 		do {
325 			head = cache_gcqueue;
326 			ncp->nc_gcqueue = head;
327 		} while (atomic_cas_ptr(&cache_gcqueue, head, ncp) != head);
328 		atomic_inc_uint(&cache_gcpend);
329 	}
330 }
331 
332 /*
333  * Disassociate a namecache entry from any vnodes it is attached to,
334  * and remove from the global LRU list.
335  */
336 static void
337 cache_disassociate(struct namecache *ncp)
338 {
339 
340 	KASSERT(mutex_owned(namecache_lock));
341 	KASSERT(ncp->nc_dvp == NULL);
342 
343 	if (ncp->nc_lru.tqe_prev != NULL) {
344 		TAILQ_REMOVE(&nclruhead, ncp, nc_lru);
345 		ncp->nc_lru.tqe_prev = NULL;
346 	}
347 	if (ncp->nc_vhash.le_prev != NULL) {
348 		LIST_REMOVE(ncp, nc_vhash);
349 		ncp->nc_vhash.le_prev = NULL;
350 	}
351 	if (ncp->nc_vlist.le_prev != NULL) {
352 		LIST_REMOVE(ncp, nc_vlist);
353 		ncp->nc_vlist.le_prev = NULL;
354 	}
355 	if (ncp->nc_dvlist.le_prev != NULL) {
356 		LIST_REMOVE(ncp, nc_dvlist);
357 		ncp->nc_dvlist.le_prev = NULL;
358 	}
359 }
360 
361 /*
362  * Lock all CPUs to prevent any cache lookup activity.  Conceptually,
363  * this locks out all "readers".
364  */
365 static void
366 cache_lock_cpus(void)
367 {
368 	CPU_INFO_ITERATOR cii;
369 	struct cpu_info *ci;
370 	struct nchcpu *cpup;
371 
372 	/*
373 	 * Lock out all CPUs first, then harvest per-cpu stats.  This
374 	 * is probably not quite as cache-efficient as doing the lock
375 	 * and harvest at the same time, but allows cache_stat_sysctl()
376 	 * to make do with a per-cpu lock.
377 	 */
378 	for (CPU_INFO_FOREACH(cii, ci)) {
379 		cpup = ci->ci_data.cpu_nch;
380 		mutex_enter(&cpup->cpu_lock);
381 	}
382 	for (CPU_INFO_FOREACH(cii, ci)) {
383 		cpup = ci->ci_data.cpu_nch;
384 		UPDATE(cpup, ncs_goodhits);
385 		UPDATE(cpup, ncs_neghits);
386 		UPDATE(cpup, ncs_badhits);
387 		UPDATE(cpup, ncs_falsehits);
388 		UPDATE(cpup, ncs_miss);
389 		UPDATE(cpup, ncs_long);
390 		UPDATE(cpup, ncs_pass2);
391 		UPDATE(cpup, ncs_2passes);
392 		UPDATE(cpup, ncs_revhits);
393 		UPDATE(cpup, ncs_revmiss);
394 	}
395 }
396 
397 /*
398  * Release all CPU locks.
399  */
400 static void
401 cache_unlock_cpus(void)
402 {
403 	CPU_INFO_ITERATOR cii;
404 	struct cpu_info *ci;
405 	struct nchcpu *cpup;
406 
407 	for (CPU_INFO_FOREACH(cii, ci)) {
408 		cpup = ci->ci_data.cpu_nch;
409 		mutex_exit(&cpup->cpu_lock);
410 	}
411 }
412 
413 /*
414  * Find a single cache entry and return it locked.
415  * The caller needs to hold namecache_lock or a per-cpu lock to hold
416  * off cache_reclaim().
417  */
418 static struct namecache *
419 cache_lookup_entry(const struct vnode *dvp, const char *name, size_t namelen)
420 {
421 	struct nchashhead *ncpp;
422 	struct namecache *ncp;
423 	nchash_t hash;
424 
425 	KASSERT(dvp != NULL);
426 	hash = cache_hash(name, namelen);
427 	ncpp = &nchashtbl[NCHASH2(hash, dvp)];
428 
429 	LIST_FOREACH(ncp, ncpp, nc_hash) {
430 		membar_datadep_consumer();	/* for Alpha... */
431 		if (ncp->nc_dvp != dvp ||
432 		    ncp->nc_nlen != namelen ||
433 		    memcmp(ncp->nc_name, name, (u_int)ncp->nc_nlen))
434 		    	continue;
435 	    	mutex_enter(&ncp->nc_lock);
436 		if (__predict_true(ncp->nc_dvp == dvp)) {
437 			ncp->nc_hittime = hardclock_ticks;
438 			SDT_PROBE(vfs, namecache, lookup, hit, dvp,
439 			    name, namelen, 0, 0);
440 			return ncp;
441 		}
442 		/* Raced: entry has been nullified. */
443 		mutex_exit(&ncp->nc_lock);
444 	}
445 
446 	SDT_PROBE(vfs, namecache, lookup, miss, dvp,
447 	    name, namelen, 0, 0);
448 	return NULL;
449 }
450 
451 /*
452  * Look for a the name in the cache. We don't do this
453  * if the segment name is long, simply so the cache can avoid
454  * holding long names (which would either waste space, or
455  * add greatly to the complexity).
456  *
457  * Lookup is called with DVP pointing to the directory to search,
458  * and CNP providing the name of the entry being sought: cn_nameptr
459  * is the name, cn_namelen is its length, and cn_flags is the flags
460  * word from the namei operation.
461  *
462  * DVP must be locked.
463  *
464  * There are three possible non-error return states:
465  *    1. Nothing was found in the cache. Nothing is known about
466  *       the requested name.
467  *    2. A negative entry was found in the cache, meaning that the
468  *       requested name definitely does not exist.
469  *    3. A positive entry was found in the cache, meaning that the
470  *       requested name does exist and that we are providing the
471  *       vnode.
472  * In these cases the results are:
473  *    1. 0 returned; VN is set to NULL.
474  *    2. 1 returned; VN is set to NULL.
475  *    3. 1 returned; VN is set to the vnode found.
476  *
477  * The additional result argument ISWHT is set to zero, unless a
478  * negative entry is found that was entered as a whiteout, in which
479  * case ISWHT is set to one.
480  *
481  * The ISWHT_RET argument pointer may be null. In this case an
482  * assertion is made that the whiteout flag is not set. File systems
483  * that do not support whiteouts can/should do this.
484  *
485  * Filesystems that do support whiteouts should add ISWHITEOUT to
486  * cnp->cn_flags if ISWHT comes back nonzero.
487  *
488  * When a vnode is returned, it is locked, as per the vnode lookup
489  * locking protocol.
490  *
491  * There is no way for this function to fail, in the sense of
492  * generating an error that requires aborting the namei operation.
493  *
494  * (Prior to October 2012, this function returned an integer status,
495  * and a vnode, and mucked with the flags word in CNP for whiteouts.
496  * The integer status was -1 for "nothing found", ENOENT for "a
497  * negative entry found", 0 for "a positive entry found", and possibly
498  * other errors, and the value of VN might or might not have been set
499  * depending on what error occurred.)
500  */
501 int
502 cache_lookup(struct vnode *dvp, const char *name, size_t namelen,
503 	     uint32_t nameiop, uint32_t cnflags,
504 	     int *iswht_ret, struct vnode **vn_ret)
505 {
506 	struct namecache *ncp;
507 	struct vnode *vp;
508 	struct nchcpu *cpup;
509 	int error, ret_value;
510 
511 
512 	/* Establish default result values */
513 	if (iswht_ret != NULL) {
514 		*iswht_ret = 0;
515 	}
516 	*vn_ret = NULL;
517 
518 	if (__predict_false(!doingcache)) {
519 		return 0;
520 	}
521 
522 	cpup = curcpu()->ci_data.cpu_nch;
523 	mutex_enter(&cpup->cpu_lock);
524 	if (__predict_false(namelen > NCHNAMLEN)) {
525 		SDT_PROBE(vfs, namecache, lookup, toolong, dvp,
526 		    name, namelen, 0, 0);
527 		COUNT(cpup, ncs_long);
528 		mutex_exit(&cpup->cpu_lock);
529 		/* found nothing */
530 		return 0;
531 	}
532 
533 	ncp = cache_lookup_entry(dvp, name, namelen);
534 	if (__predict_false(ncp == NULL)) {
535 		COUNT(cpup, ncs_miss);
536 		mutex_exit(&cpup->cpu_lock);
537 		/* found nothing */
538 		return 0;
539 	}
540 	if ((cnflags & MAKEENTRY) == 0) {
541 		COUNT(cpup, ncs_badhits);
542 		/*
543 		 * Last component and we are renaming or deleting,
544 		 * the cache entry is invalid, or otherwise don't
545 		 * want cache entry to exist.
546 		 */
547 		cache_invalidate(ncp);
548 		mutex_exit(&ncp->nc_lock);
549 		mutex_exit(&cpup->cpu_lock);
550 		/* found nothing */
551 		return 0;
552 	}
553 	if (ncp->nc_vp == NULL) {
554 		if (iswht_ret != NULL) {
555 			/*
556 			 * Restore the ISWHITEOUT flag saved earlier.
557 			 */
558 			KASSERT((ncp->nc_flags & ~ISWHITEOUT) == 0);
559 			*iswht_ret = (ncp->nc_flags & ISWHITEOUT) != 0;
560 		} else {
561 			KASSERT(ncp->nc_flags == 0);
562 		}
563 
564 		if (__predict_true(nameiop != CREATE ||
565 		    (cnflags & ISLASTCN) == 0)) {
566 			COUNT(cpup, ncs_neghits);
567 			/* found neg entry; vn is already null from above */
568 			ret_value = 1;
569 		} else {
570 			COUNT(cpup, ncs_badhits);
571 			/*
572 			 * Last component and we are preparing to create
573 			 * the named object, so flush the negative cache
574 			 * entry.
575 			 */
576 			cache_invalidate(ncp);
577 			/* found nothing */
578 			ret_value = 0;
579 		}
580 		mutex_exit(&ncp->nc_lock);
581 		mutex_exit(&cpup->cpu_lock);
582 		return ret_value;
583 	}
584 
585 	vp = ncp->nc_vp;
586 	mutex_enter(vp->v_interlock);
587 	mutex_exit(&ncp->nc_lock);
588 	mutex_exit(&cpup->cpu_lock);
589 
590 	/*
591 	 * Unlocked except for the vnode interlock.  Call vget().
592 	 */
593 	error = vget(vp, LK_NOWAIT, false /* !wait */);
594 	if (error) {
595 		KASSERT(error == EBUSY);
596 		/*
597 		 * This vnode is being cleaned out.
598 		 * XXX badhits?
599 		 */
600 		COUNT_UNL(cpup, ncs_falsehits);
601 		/* found nothing */
602 		return 0;
603 	}
604 
605 	COUNT_UNL(cpup, ncs_goodhits);
606 	/* found it */
607 	*vn_ret = vp;
608 	return 1;
609 }
610 
611 
612 /*
613  * Cut-'n-pasted version of the above without the nameiop argument.
614  */
615 int
616 cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen,
617 		 uint32_t cnflags,
618 		 int *iswht_ret, struct vnode **vn_ret)
619 {
620 	struct namecache *ncp;
621 	struct vnode *vp;
622 	struct nchcpu *cpup;
623 	int error;
624 
625 	/* Establish default results. */
626 	if (iswht_ret != NULL) {
627 		*iswht_ret = 0;
628 	}
629 	*vn_ret = NULL;
630 
631 	if (__predict_false(!doingcache)) {
632 		/* found nothing */
633 		return 0;
634 	}
635 
636 	cpup = curcpu()->ci_data.cpu_nch;
637 	mutex_enter(&cpup->cpu_lock);
638 	if (__predict_false(namelen > NCHNAMLEN)) {
639 		COUNT(cpup, ncs_long);
640 		mutex_exit(&cpup->cpu_lock);
641 		/* found nothing */
642 		return 0;
643 	}
644 	ncp = cache_lookup_entry(dvp, name, namelen);
645 	if (__predict_false(ncp == NULL)) {
646 		COUNT(cpup, ncs_miss);
647 		mutex_exit(&cpup->cpu_lock);
648 		/* found nothing */
649 		return 0;
650 	}
651 	vp = ncp->nc_vp;
652 	if (vp == NULL) {
653 		/*
654 		 * Restore the ISWHITEOUT flag saved earlier.
655 		 */
656 		if (iswht_ret != NULL) {
657 			KASSERT((ncp->nc_flags & ~ISWHITEOUT) == 0);
658 			/*cnp->cn_flags |= ncp->nc_flags;*/
659 			*iswht_ret = (ncp->nc_flags & ISWHITEOUT) != 0;
660 		}
661 		COUNT(cpup, ncs_neghits);
662 		mutex_exit(&ncp->nc_lock);
663 		mutex_exit(&cpup->cpu_lock);
664 		/* found negative entry; vn is already null from above */
665 		return 1;
666 	}
667 	mutex_enter(vp->v_interlock);
668 	mutex_exit(&ncp->nc_lock);
669 	mutex_exit(&cpup->cpu_lock);
670 
671 	/*
672 	 * Unlocked except for the vnode interlock.  Call vget().
673 	 */
674 	error = vget(vp, LK_NOWAIT, false /* !wait */);
675 	if (error) {
676 		KASSERT(error == EBUSY);
677 		/*
678 		 * This vnode is being cleaned out.
679 		 * XXX badhits?
680 		 */
681 		COUNT_UNL(cpup, ncs_falsehits);
682 		/* found nothing */
683 		return 0;
684 	}
685 
686 	COUNT_UNL(cpup, ncs_goodhits); /* XXX can be "badhits" */
687 	/* found it */
688 	*vn_ret = vp;
689 	return 1;
690 }
691 
692 /*
693  * Scan cache looking for name of directory entry pointing at vp.
694  *
695  * If the lookup succeeds the vnode is referenced and stored in dvpp.
696  *
697  * If bufp is non-NULL, also place the name in the buffer which starts
698  * at bufp, immediately before *bpp, and move bpp backwards to point
699  * at the start of it.  (Yes, this is a little baroque, but it's done
700  * this way to cater to the whims of getcwd).
701  *
702  * Returns 0 on success, -1 on cache miss, positive errno on failure.
703  */
704 int
705 cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp)
706 {
707 	struct namecache *ncp;
708 	struct vnode *dvp;
709 	struct ncvhashhead *nvcpp;
710 	struct nchcpu *cpup;
711 	char *bp;
712 	int error, nlen;
713 
714 	if (!doingcache)
715 		goto out;
716 
717 	nvcpp = &ncvhashtbl[NCVHASH(vp)];
718 
719 	/*
720 	 * We increment counters in the local CPU's per-cpu stats.
721 	 * We don't take the per-cpu lock, however, since this function
722 	 * is the only place these counters are incremented so no one
723 	 * will be racing with us to increment them.
724 	 */
725 	cpup = curcpu()->ci_data.cpu_nch;
726 	mutex_enter(namecache_lock);
727 	LIST_FOREACH(ncp, nvcpp, nc_vhash) {
728 		mutex_enter(&ncp->nc_lock);
729 		if (ncp->nc_vp == vp &&
730 		    (dvp = ncp->nc_dvp) != NULL &&
731 		    dvp != vp) { 		/* avoid pesky . entries.. */
732 
733 #ifdef DIAGNOSTIC
734 			if (ncp->nc_nlen == 1 &&
735 			    ncp->nc_name[0] == '.')
736 				panic("cache_revlookup: found entry for .");
737 
738 			if (ncp->nc_nlen == 2 &&
739 			    ncp->nc_name[0] == '.' &&
740 			    ncp->nc_name[1] == '.')
741 				panic("cache_revlookup: found entry for ..");
742 #endif
743 			COUNT(cpup, ncs_revhits);
744 			nlen = ncp->nc_nlen;
745 
746 			if (bufp) {
747 				bp = *bpp;
748 				bp -= nlen;
749 				if (bp <= bufp) {
750 					*dvpp = NULL;
751 					mutex_exit(&ncp->nc_lock);
752 					mutex_exit(namecache_lock);
753 					SDT_PROBE(vfs, namecache, revlookup,
754 					    fail, vp, ERANGE, 0, 0, 0);
755 					return (ERANGE);
756 				}
757 				memcpy(bp, ncp->nc_name, nlen);
758 				*bpp = bp;
759 			}
760 
761 			mutex_enter(dvp->v_interlock);
762 			mutex_exit(&ncp->nc_lock);
763 			mutex_exit(namecache_lock);
764 			error = vget(dvp, LK_NOWAIT, false /* !wait */);
765 			if (error) {
766 				KASSERT(error == EBUSY);
767 				if (bufp)
768 					(*bpp) += nlen;
769 				*dvpp = NULL;
770 				SDT_PROBE(vfs, namecache, revlookup, fail, vp,
771 				    error, 0, 0, 0);
772 				return -1;
773 			}
774 			*dvpp = dvp;
775 			SDT_PROBE(vfs, namecache, revlookup, success, vp, dvp,
776 			    0, 0, 0);
777 			return (0);
778 		}
779 		mutex_exit(&ncp->nc_lock);
780 	}
781 	COUNT(cpup, ncs_revmiss);
782 	mutex_exit(namecache_lock);
783  out:
784 	*dvpp = NULL;
785 	return (-1);
786 }
787 
788 /*
789  * Add an entry to the cache
790  */
791 void
792 cache_enter(struct vnode *dvp, struct vnode *vp,
793 	    const char *name, size_t namelen, uint32_t cnflags)
794 {
795 	struct namecache *ncp;
796 	struct namecache *oncp;
797 	struct nchashhead *ncpp;
798 	struct ncvhashhead *nvcpp;
799 	nchash_t hash;
800 
801 	/* First, check whether we can/should add a cache entry. */
802 	if ((cnflags & MAKEENTRY) == 0 ||
803 	    __predict_false(namelen > NCHNAMLEN || !doingcache)) {
804 		SDT_PROBE(vfs, namecache, enter, toolong, vp, name, namelen,
805 		    0, 0);
806 		return;
807 	}
808 
809 	SDT_PROBE(vfs, namecache, enter, done, vp, name, namelen, 0, 0);
810 	if (numcache > desiredvnodes) {
811 		mutex_enter(namecache_lock);
812 		cache_ev_forced.ev_count++;
813 		cache_reclaim();
814 		mutex_exit(namecache_lock);
815 	}
816 
817 	ncp = pool_cache_get(namecache_cache, PR_WAITOK);
818 	mutex_enter(namecache_lock);
819 	numcache++;
820 
821 	/*
822 	 * Concurrent lookups in the same directory may race for a
823 	 * cache entry.  if there's a duplicated entry, free it.
824 	 */
825 	oncp = cache_lookup_entry(dvp, name, namelen);
826 	if (oncp) {
827 		cache_invalidate(oncp);
828 		mutex_exit(&oncp->nc_lock);
829 	}
830 
831 	/* Grab the vnode we just found. */
832 	mutex_enter(&ncp->nc_lock);
833 	ncp->nc_vp = vp;
834 	ncp->nc_flags = 0;
835 	ncp->nc_hittime = 0;
836 	ncp->nc_gcqueue = NULL;
837 	if (vp == NULL) {
838 		/*
839 		 * For negative hits, save the ISWHITEOUT flag so we can
840 		 * restore it later when the cache entry is used again.
841 		 */
842 		ncp->nc_flags = cnflags & ISWHITEOUT;
843 	}
844 
845 	/* Fill in cache info. */
846 	ncp->nc_dvp = dvp;
847 	LIST_INSERT_HEAD(&dvp->v_dnclist, ncp, nc_dvlist);
848 	if (vp)
849 		LIST_INSERT_HEAD(&vp->v_nclist, ncp, nc_vlist);
850 	else {
851 		ncp->nc_vlist.le_prev = NULL;
852 		ncp->nc_vlist.le_next = NULL;
853 	}
854 	KASSERT(namelen <= NCHNAMLEN);
855 	ncp->nc_nlen = namelen;
856 	memcpy(ncp->nc_name, name, (unsigned)ncp->nc_nlen);
857 	TAILQ_INSERT_TAIL(&nclruhead, ncp, nc_lru);
858 	hash = cache_hash(name, namelen);
859 	ncpp = &nchashtbl[NCHASH2(hash, dvp)];
860 
861 	/*
862 	 * Flush updates before making visible in table.  No need for a
863 	 * memory barrier on the other side: to see modifications the
864 	 * list must be followed, meaning a dependent pointer load.
865 	 * The below is LIST_INSERT_HEAD() inlined, with the memory
866 	 * barrier included in the correct place.
867 	 */
868 	if ((ncp->nc_hash.le_next = ncpp->lh_first) != NULL)
869 		ncpp->lh_first->nc_hash.le_prev = &ncp->nc_hash.le_next;
870 	ncp->nc_hash.le_prev = &ncpp->lh_first;
871 	membar_producer();
872 	ncpp->lh_first = ncp;
873 
874 	ncp->nc_vhash.le_prev = NULL;
875 	ncp->nc_vhash.le_next = NULL;
876 
877 	/*
878 	 * Create reverse-cache entries (used in getcwd) for directories.
879 	 * (and in linux procfs exe node)
880 	 */
881 	if (vp != NULL &&
882 	    vp != dvp &&
883 #ifndef NAMECACHE_ENTER_REVERSE
884 	    vp->v_type == VDIR &&
885 #endif
886 	    (ncp->nc_nlen > 2 ||
887 	    (ncp->nc_nlen > 1 && ncp->nc_name[1] != '.') ||
888 	    (/* ncp->nc_nlen > 0 && */ ncp->nc_name[0] != '.'))) {
889 		nvcpp = &ncvhashtbl[NCVHASH(vp)];
890 		LIST_INSERT_HEAD(nvcpp, ncp, nc_vhash);
891 	}
892 	mutex_exit(&ncp->nc_lock);
893 	mutex_exit(namecache_lock);
894 }
895 
896 /*
897  * Name cache initialization, from vfs_init() when we are booting
898  */
899 void
900 nchinit(void)
901 {
902 	int error;
903 
904 	TAILQ_INIT(&nclruhead);
905 	namecache_cache = pool_cache_init(sizeof(struct namecache),
906 	    coherency_unit, 0, 0, "ncache", NULL, IPL_NONE, cache_ctor,
907 	    cache_dtor, NULL);
908 	KASSERT(namecache_cache != NULL);
909 
910 	namecache_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
911 
912 	nchashtbl = hashinit(desiredvnodes, HASH_LIST, true, &nchash);
913 	ncvhashtbl =
914 #ifdef NAMECACHE_ENTER_REVERSE
915 	    hashinit(desiredvnodes, HASH_LIST, true, &ncvhash);
916 #else
917 	    hashinit(desiredvnodes/8, HASH_LIST, true, &ncvhash);
918 #endif
919 
920 	error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, cache_thread,
921 	    NULL, NULL, "cachegc");
922 	if (error != 0)
923 		panic("nchinit %d", error);
924 
925 	evcnt_attach_dynamic(&cache_ev_scan, EVCNT_TYPE_MISC, NULL,
926 	   "namecache", "entries scanned");
927 	evcnt_attach_dynamic(&cache_ev_gc, EVCNT_TYPE_MISC, NULL,
928 	   "namecache", "entries collected");
929 	evcnt_attach_dynamic(&cache_ev_over, EVCNT_TYPE_MISC, NULL,
930 	   "namecache", "over scan target");
931 	evcnt_attach_dynamic(&cache_ev_under, EVCNT_TYPE_MISC, NULL,
932 	   "namecache", "under scan target");
933 	evcnt_attach_dynamic(&cache_ev_forced, EVCNT_TYPE_MISC, NULL,
934 	   "namecache", "forced reclaims");
935 
936 	sysctl_cache_stat_setup();
937 }
938 
939 static int
940 cache_ctor(void *arg, void *obj, int flag)
941 {
942 	struct namecache *ncp;
943 
944 	ncp = obj;
945 	mutex_init(&ncp->nc_lock, MUTEX_DEFAULT, IPL_NONE);
946 
947 	return 0;
948 }
949 
950 static void
951 cache_dtor(void *arg, void *obj)
952 {
953 	struct namecache *ncp;
954 
955 	ncp = obj;
956 	mutex_destroy(&ncp->nc_lock);
957 }
958 
959 /*
960  * Called once for each CPU in the system as attached.
961  */
962 void
963 cache_cpu_init(struct cpu_info *ci)
964 {
965 	struct nchcpu *cpup;
966 	size_t sz;
967 
968 	sz = roundup2(sizeof(*cpup), coherency_unit) + coherency_unit;
969 	cpup = kmem_zalloc(sz, KM_SLEEP);
970 	cpup = (void *)roundup2((uintptr_t)cpup, coherency_unit);
971 	mutex_init(&cpup->cpu_lock, MUTEX_DEFAULT, IPL_NONE);
972 	ci->ci_data.cpu_nch = cpup;
973 }
974 
975 /*
976  * Name cache reinitialization, for when the maximum number of vnodes increases.
977  */
978 void
979 nchreinit(void)
980 {
981 	struct namecache *ncp;
982 	struct nchashhead *oldhash1, *hash1;
983 	struct ncvhashhead *oldhash2, *hash2;
984 	u_long i, oldmask1, oldmask2, mask1, mask2;
985 
986 	hash1 = hashinit(desiredvnodes, HASH_LIST, true, &mask1);
987 	hash2 =
988 #ifdef NAMECACHE_ENTER_REVERSE
989 	    hashinit(desiredvnodes, HASH_LIST, true, &mask2);
990 #else
991 	    hashinit(desiredvnodes/8, HASH_LIST, true, &mask2);
992 #endif
993 	mutex_enter(namecache_lock);
994 	cache_lock_cpus();
995 	oldhash1 = nchashtbl;
996 	oldmask1 = nchash;
997 	nchashtbl = hash1;
998 	nchash = mask1;
999 	oldhash2 = ncvhashtbl;
1000 	oldmask2 = ncvhash;
1001 	ncvhashtbl = hash2;
1002 	ncvhash = mask2;
1003 	for (i = 0; i <= oldmask1; i++) {
1004 		while ((ncp = LIST_FIRST(&oldhash1[i])) != NULL) {
1005 			LIST_REMOVE(ncp, nc_hash);
1006 			ncp->nc_hash.le_prev = NULL;
1007 		}
1008 	}
1009 	for (i = 0; i <= oldmask2; i++) {
1010 		while ((ncp = LIST_FIRST(&oldhash2[i])) != NULL) {
1011 			LIST_REMOVE(ncp, nc_vhash);
1012 			ncp->nc_vhash.le_prev = NULL;
1013 		}
1014 	}
1015 	cache_unlock_cpus();
1016 	mutex_exit(namecache_lock);
1017 	hashdone(oldhash1, HASH_LIST, oldmask1);
1018 	hashdone(oldhash2, HASH_LIST, oldmask2);
1019 }
1020 
1021 /*
1022  * Cache flush, a particular vnode; called when a vnode is renamed to
1023  * hide entries that would now be invalid
1024  */
1025 void
1026 cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags)
1027 {
1028 	struct namecache *ncp, *ncnext;
1029 
1030 	mutex_enter(namecache_lock);
1031 	if (flags & PURGE_PARENTS) {
1032 		SDT_PROBE(vfs, namecache, purge, parents, vp, 0, 0, 0, 0);
1033 
1034 		for (ncp = LIST_FIRST(&vp->v_nclist); ncp != NULL;
1035 		    ncp = ncnext) {
1036 			ncnext = LIST_NEXT(ncp, nc_vlist);
1037 			mutex_enter(&ncp->nc_lock);
1038 			cache_invalidate(ncp);
1039 			mutex_exit(&ncp->nc_lock);
1040 			cache_disassociate(ncp);
1041 		}
1042 	}
1043 	if (flags & PURGE_CHILDREN) {
1044 		SDT_PROBE(vfs, namecache, purge, children, vp, 0, 0, 0, 0);
1045 		for (ncp = LIST_FIRST(&vp->v_dnclist); ncp != NULL;
1046 		    ncp = ncnext) {
1047 			ncnext = LIST_NEXT(ncp, nc_dvlist);
1048 			mutex_enter(&ncp->nc_lock);
1049 			cache_invalidate(ncp);
1050 			mutex_exit(&ncp->nc_lock);
1051 			cache_disassociate(ncp);
1052 		}
1053 	}
1054 	if (name != NULL) {
1055 		SDT_PROBE(vfs, namecache, purge, name, name, namelen, 0, 0, 0);
1056 		ncp = cache_lookup_entry(vp, name, namelen);
1057 		if (ncp) {
1058 			cache_invalidate(ncp);
1059 			mutex_exit(&ncp->nc_lock);
1060 			cache_disassociate(ncp);
1061 		}
1062 	}
1063 	mutex_exit(namecache_lock);
1064 }
1065 
1066 /*
1067  * Cache flush, a whole filesystem; called when filesys is umounted to
1068  * remove entries that would now be invalid.
1069  */
1070 void
1071 cache_purgevfs(struct mount *mp)
1072 {
1073 	struct namecache *ncp, *nxtcp;
1074 
1075 	SDT_PROBE(vfs, namecache, purge, vfs, mp, 0, 0, 0, 0);
1076 	mutex_enter(namecache_lock);
1077 	for (ncp = TAILQ_FIRST(&nclruhead); ncp != NULL; ncp = nxtcp) {
1078 		nxtcp = TAILQ_NEXT(ncp, nc_lru);
1079 		mutex_enter(&ncp->nc_lock);
1080 		if (ncp->nc_dvp != NULL && ncp->nc_dvp->v_mount == mp) {
1081 			/* Free the resources we had. */
1082 			cache_invalidate(ncp);
1083 			cache_disassociate(ncp);
1084 		}
1085 		mutex_exit(&ncp->nc_lock);
1086 	}
1087 	cache_reclaim();
1088 	mutex_exit(namecache_lock);
1089 }
1090 
1091 /*
1092  * Scan global list invalidating entries until we meet a preset target.
1093  * Prefer to invalidate entries that have not scored a hit within
1094  * cache_hottime seconds.  We sort the LRU list only for this routine's
1095  * benefit.
1096  */
1097 static void
1098 cache_prune(int incache, int target)
1099 {
1100 	struct namecache *ncp, *nxtcp, *sentinel;
1101 	int items, recent, tryharder;
1102 
1103 	KASSERT(mutex_owned(namecache_lock));
1104 
1105 	SDT_PROBE(vfs, namecache, prune, done, incache, target, 0, 0, 0);
1106 	items = 0;
1107 	tryharder = 0;
1108 	recent = hardclock_ticks - hz * cache_hottime;
1109 	sentinel = NULL;
1110 	for (ncp = TAILQ_FIRST(&nclruhead); ncp != NULL; ncp = nxtcp) {
1111 		if (incache <= target)
1112 			break;
1113 		items++;
1114 		nxtcp = TAILQ_NEXT(ncp, nc_lru);
1115 		if (ncp == sentinel) {
1116 			/*
1117 			 * If we looped back on ourself, then ignore
1118 			 * recent entries and purge whatever we find.
1119 			 */
1120 			tryharder = 1;
1121 		}
1122 		if (ncp->nc_dvp == NULL)
1123 			continue;
1124 		if (!tryharder && (ncp->nc_hittime - recent) > 0) {
1125 			if (sentinel == NULL)
1126 				sentinel = ncp;
1127 			TAILQ_REMOVE(&nclruhead, ncp, nc_lru);
1128 			TAILQ_INSERT_TAIL(&nclruhead, ncp, nc_lru);
1129 			continue;
1130 		}
1131 		mutex_enter(&ncp->nc_lock);
1132 		if (ncp->nc_dvp != NULL) {
1133 			cache_invalidate(ncp);
1134 			cache_disassociate(ncp);
1135 			incache--;
1136 		}
1137 		mutex_exit(&ncp->nc_lock);
1138 	}
1139 	cache_ev_scan.ev_count += items;
1140 }
1141 
1142 /*
1143  * Collect dead cache entries from all CPUs and garbage collect.
1144  */
1145 static void
1146 cache_reclaim(void)
1147 {
1148 	struct namecache *ncp, *next;
1149 	int items;
1150 
1151 	KASSERT(mutex_owned(namecache_lock));
1152 
1153 	/*
1154 	 * If the number of extant entries not awaiting garbage collection
1155 	 * exceeds the high water mark, then reclaim stale entries until we
1156 	 * reach our low water mark.
1157 	 */
1158 	items = numcache - cache_gcpend;
1159 	if (items > (uint64_t)desiredvnodes * cache_hiwat / 100) {
1160 		cache_prune(items, (int)((uint64_t)desiredvnodes *
1161 		    cache_lowat / 100));
1162 		cache_ev_over.ev_count++;
1163 	} else
1164 		cache_ev_under.ev_count++;
1165 
1166 	/*
1167 	 * Stop forward lookup activity on all CPUs and garbage collect dead
1168 	 * entries.
1169 	 */
1170 	cache_lock_cpus();
1171 	ncp = cache_gcqueue;
1172 	cache_gcqueue = NULL;
1173 	items = cache_gcpend;
1174 	cache_gcpend = 0;
1175 	while (ncp != NULL) {
1176 		next = ncp->nc_gcqueue;
1177 		cache_disassociate(ncp);
1178 		KASSERT(ncp->nc_dvp == NULL);
1179 		if (ncp->nc_hash.le_prev != NULL) {
1180 			LIST_REMOVE(ncp, nc_hash);
1181 			ncp->nc_hash.le_prev = NULL;
1182 		}
1183 		pool_cache_put(namecache_cache, ncp);
1184 		ncp = next;
1185 	}
1186 	cache_unlock_cpus();
1187 	numcache -= items;
1188 	cache_ev_gc.ev_count += items;
1189 }
1190 
1191 /*
1192  * Cache maintainence thread, awakening once per second to:
1193  *
1194  * => keep number of entries below the high water mark
1195  * => sort pseudo-LRU list
1196  * => garbage collect dead entries
1197  */
1198 static void
1199 cache_thread(void *arg)
1200 {
1201 
1202 	mutex_enter(namecache_lock);
1203 	for (;;) {
1204 		cache_reclaim();
1205 		kpause("cachegc", false, hz, namecache_lock);
1206 	}
1207 }
1208 
1209 #ifdef DDB
1210 void
1211 namecache_print(struct vnode *vp, void (*pr)(const char *, ...))
1212 {
1213 	struct vnode *dvp = NULL;
1214 	struct namecache *ncp;
1215 
1216 	TAILQ_FOREACH(ncp, &nclruhead, nc_lru) {
1217 		if (ncp->nc_vp == vp && ncp->nc_dvp != NULL) {
1218 			(*pr)("name %.*s\n", ncp->nc_nlen, ncp->nc_name);
1219 			dvp = ncp->nc_dvp;
1220 		}
1221 	}
1222 	if (dvp == NULL) {
1223 		(*pr)("name not found\n");
1224 		return;
1225 	}
1226 	vp = dvp;
1227 	TAILQ_FOREACH(ncp, &nclruhead, nc_lru) {
1228 		if (ncp->nc_vp == vp) {
1229 			(*pr)("parent %.*s\n", ncp->nc_nlen, ncp->nc_name);
1230 		}
1231 	}
1232 }
1233 #endif
1234 
1235 void
1236 namecache_count_pass2(void)
1237 {
1238 	struct nchcpu *cpup = curcpu()->ci_data.cpu_nch;
1239 
1240 	COUNT_UNL(cpup, ncs_pass2);
1241 }
1242 
1243 void
1244 namecache_count_2passes(void)
1245 {
1246 	struct nchcpu *cpup = curcpu()->ci_data.cpu_nch;
1247 
1248 	COUNT_UNL(cpup, ncs_2passes);
1249 }
1250 
1251 /*
1252  * Fetch the current values of the stats.  We return the most
1253  * recent values harvested into nchstats by cache_reclaim(), which
1254  * will be less than a second old.
1255  */
1256 static int
1257 cache_stat_sysctl(SYSCTLFN_ARGS)
1258 {
1259 	struct nchstats stats;
1260 	struct nchcpu *my_cpup;
1261 #ifdef CACHE_STATS_CURRENT
1262 	CPU_INFO_ITERATOR cii;
1263 	struct cpu_info *ci;
1264 #endif	/* CACHE_STATS_CURRENT */
1265 
1266 	if (oldp == NULL) {
1267 		*oldlenp = sizeof(stats);
1268 		return 0;
1269 	}
1270 
1271 	if (*oldlenp < sizeof(stats)) {
1272 		*oldlenp = 0;
1273 		return 0;
1274 	}
1275 
1276 	/*
1277 	 * Take this CPU's per-cpu lock to hold off cache_reclaim()
1278 	 * from doing a stats update while doing minimal damage to
1279 	 * concurrent operations.
1280 	 */
1281 	sysctl_unlock();
1282 	my_cpup = curcpu()->ci_data.cpu_nch;
1283 	mutex_enter(&my_cpup->cpu_lock);
1284 	stats = nchstats;
1285 #ifdef CACHE_STATS_CURRENT
1286 	for (CPU_INFO_FOREACH(cii, ci)) {
1287 		struct nchcpu *cpup = ci->ci_data.cpu_nch;
1288 
1289 		ADD(stats, cpup, ncs_goodhits);
1290 		ADD(stats, cpup, ncs_neghits);
1291 		ADD(stats, cpup, ncs_badhits);
1292 		ADD(stats, cpup, ncs_falsehits);
1293 		ADD(stats, cpup, ncs_miss);
1294 		ADD(stats, cpup, ncs_long);
1295 		ADD(stats, cpup, ncs_pass2);
1296 		ADD(stats, cpup, ncs_2passes);
1297 		ADD(stats, cpup, ncs_revhits);
1298 		ADD(stats, cpup, ncs_revmiss);
1299 	}
1300 #endif	/* CACHE_STATS_CURRENT */
1301 	mutex_exit(&my_cpup->cpu_lock);
1302 	sysctl_relock();
1303 
1304 	*oldlenp = sizeof(stats);
1305 	return sysctl_copyout(l, &stats, oldp, sizeof(stats));
1306 }
1307 
1308 static void
1309 sysctl_cache_stat_setup(void)
1310 {
1311 
1312 	KASSERT(sysctllog == NULL);
1313 	sysctl_createv(&sysctllog, 0, NULL, NULL,
1314 		       CTLFLAG_PERMANENT,
1315 		       CTLTYPE_STRUCT, "namecache_stats",
1316 		       SYSCTL_DESCR("namecache statistics"),
1317 		       cache_stat_sysctl, 0, NULL, 0,
1318 		       CTL_VFS, CTL_CREATE, CTL_EOL);
1319 }
1320