1 /* $NetBSD: vfs_cache.c,v 1.154 2023/04/29 10:07:22 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 2008, 2019, 2020 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1989, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)vfs_cache.c 8.3 (Berkeley) 8/22/94 61 */ 62 63 /* 64 * Name caching: 65 * 66 * Names found by directory scans are retained in a cache for future 67 * reference. It is managed LRU, so frequently used names will hang 68 * around. The cache is indexed by hash value obtained from the name. 69 * 70 * The name cache is the brainchild of Robert Elz and was introduced in 71 * 4.3BSD. See "Using gprof to Tune the 4.2BSD Kernel", Marshall Kirk 72 * McKusick, May 21 1984. 73 * 74 * Data structures: 75 * 76 * Most Unix namecaches very sensibly use a global hash table to index 77 * names. The global hash table works well, but can cause concurrency 78 * headaches for the kernel hacker. In the NetBSD 10.0 implementation 79 * we are not sensible, and use a per-directory data structure to index 80 * names, but the cache otherwise functions the same. 81 * 82 * The index is a red-black tree. There are no special concurrency 83 * requirements placed on it, because it's per-directory and protected 84 * by the namecache's per-directory locks. It should therefore not be 85 * difficult to experiment with other types of index. 86 * 87 * Each cached name is stored in a struct namecache, along with a 88 * pointer to the associated vnode (nc_vp). Names longer than a 89 * maximum length of NCHNAMLEN are allocated with kmem_alloc(); they 90 * occur infrequently, and names shorter than this are stored directly 91 * in struct namecache. If it is a "negative" entry, (i.e. for a name 92 * that is known NOT to exist) the vnode pointer will be NULL. 93 * 94 * For a directory with 3 cached names for 3 distinct vnodes, the 95 * various vnodes and namecache structs would be connected like this 96 * (the root is at the bottom of the diagram): 97 * 98 * ... 99 * ^ 100 * |- vi_nc_tree 101 * | 102 * +----o----+ +---------+ +---------+ 103 * | VDIR | | VCHR | | VREG | 104 * | vnode o-----+ | vnode o-----+ | vnode o------+ 105 * +---------+ | +---------+ | +---------+ | 106 * ^ | ^ | ^ | 107 * |- nc_vp |- vi_nc_list |- nc_vp |- vi_nc_list |- nc_vp | 108 * | | | | | | 109 * +----o----+ | +----o----+ | +----o----+ | 110 * +---onamecache|<----+ +---onamecache|<----+ +---onamecache|<-----+ 111 * | +---------+ | +---------+ | +---------+ 112 * | ^ | ^ | ^ 113 * | | | | | | 114 * | | +----------------------+ | | 115 * |-nc_dvp | +-------------------------------------------------+ 116 * | |/- vi_nc_tree | | 117 * | | |- nc_dvp |- nc_dvp 118 * | +----o----+ | | 119 * +-->| VDIR |<----------+ | 120 * | vnode |<------------------------------------+ 121 * +---------+ 122 * 123 * START HERE 124 * 125 * Replacement: 126 * 127 * As the cache becomes full, old and unused entries are purged as new 128 * entries are added. The synchronization overhead in maintaining a 129 * strict ordering would be prohibitive, so the VM system's "clock" or 130 * "second chance" page replacement algorithm is aped here. New 131 * entries go to the tail of the active list. After they age out and 132 * reach the head of the list, they are moved to the tail of the 133 * inactive list. Any use of the deactivated cache entry reactivates 134 * it, saving it from impending doom; if not reactivated, the entry 135 * eventually reaches the head of the inactive list and is purged. 136 * 137 * Concurrency: 138 * 139 * From a performance perspective, cache_lookup(nameiop == LOOKUP) is 140 * what really matters; insertion of new entries with cache_enter() is 141 * comparatively infrequent, and overshadowed by the cost of expensive 142 * file system metadata operations (which may involve disk I/O). We 143 * therefore want to make everything simplest in the lookup path. 144 * 145 * struct namecache is mostly stable except for list and tree related 146 * entries, changes to which don't affect the cached name or vnode. 147 * For changes to name+vnode, entries are purged in preference to 148 * modifying them. 149 * 150 * Read access to namecache entries is made via tree, list, or LRU 151 * list. A lock corresponding to the direction of access should be 152 * held. See definition of "struct namecache" in src/sys/namei.src, 153 * and the definition of "struct vnode" for the particulars. 154 * 155 * Per-CPU statistics, and LRU list totals are read unlocked, since 156 * an approximate value is OK. We maintain 32-bit sized per-CPU 157 * counters and 64-bit global counters under the theory that 32-bit 158 * sized counters are less likely to be hosed by nonatomic increment 159 * (on 32-bit platforms). 160 * 161 * The lock order is: 162 * 163 * 1) vi->vi_nc_lock (tree or parent -> child direction, 164 * used during forward lookup) 165 * 166 * 2) vi->vi_nc_listlock (list or child -> parent direction, 167 * used during reverse lookup) 168 * 169 * 3) cache_lru_lock (LRU list direction, used during reclaim) 170 * 171 * 4) vp->v_interlock (what the cache entry points to) 172 */ 173 174 #include <sys/cdefs.h> 175 __KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.154 2023/04/29 10:07:22 riastradh Exp $"); 176 177 #define __NAMECACHE_PRIVATE 178 #ifdef _KERNEL_OPT 179 #include "opt_ddb.h" 180 #include "opt_dtrace.h" 181 #endif 182 183 #include <sys/param.h> 184 #include <sys/types.h> 185 #include <sys/atomic.h> 186 #include <sys/callout.h> 187 #include <sys/cpu.h> 188 #include <sys/errno.h> 189 #include <sys/evcnt.h> 190 #include <sys/hash.h> 191 #include <sys/kernel.h> 192 #include <sys/mount.h> 193 #include <sys/mutex.h> 194 #include <sys/namei.h> 195 #include <sys/param.h> 196 #include <sys/pool.h> 197 #include <sys/sdt.h> 198 #include <sys/sysctl.h> 199 #include <sys/systm.h> 200 #include <sys/time.h> 201 #include <sys/vnode_impl.h> 202 203 #include <miscfs/genfs/genfs.h> 204 205 static void cache_activate(struct namecache *); 206 static void cache_update_stats(void *); 207 static int cache_compare_nodes(void *, const void *, const void *); 208 static void cache_deactivate(void); 209 static void cache_reclaim(void); 210 static int cache_stat_sysctl(SYSCTLFN_ARGS); 211 212 /* 213 * Global pool cache. 214 */ 215 static pool_cache_t cache_pool __read_mostly; 216 217 /* 218 * LRU replacement. 219 */ 220 enum cache_lru_id { 221 LRU_ACTIVE, 222 LRU_INACTIVE, 223 LRU_COUNT 224 }; 225 226 static struct { 227 TAILQ_HEAD(, namecache) list[LRU_COUNT]; 228 u_int count[LRU_COUNT]; 229 } cache_lru __cacheline_aligned; 230 231 static kmutex_t cache_lru_lock __cacheline_aligned; 232 233 /* 234 * Cache effectiveness statistics. nchstats holds system-wide total. 235 */ 236 struct nchstats nchstats; 237 struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t); 238 struct nchcpu { 239 struct nchstats_percpu cur; 240 struct nchstats_percpu last; 241 }; 242 static callout_t cache_stat_callout; 243 static kmutex_t cache_stat_lock __cacheline_aligned; 244 245 #define COUNT(f) do { \ 246 lwp_t *l = curlwp; \ 247 KPREEMPT_DISABLE(l); \ 248 struct nchcpu *nchcpu = curcpu()->ci_data.cpu_nch; \ 249 nchcpu->cur.f++; \ 250 KPREEMPT_ENABLE(l); \ 251 } while (/* CONSTCOND */ 0); 252 253 #define UPDATE(nchcpu, f) do { \ 254 uint32_t cur = atomic_load_relaxed(&nchcpu->cur.f); \ 255 nchstats.f += (uint32_t)(cur - nchcpu->last.f); \ 256 nchcpu->last.f = cur; \ 257 } while (/* CONSTCOND */ 0) 258 259 /* 260 * Tunables. cache_maxlen replaces the historical doingcache: 261 * set it zero to disable caching for debugging purposes. 262 */ 263 int cache_lru_maxdeact __read_mostly = 2; /* max # to deactivate */ 264 int cache_lru_maxscan __read_mostly = 64; /* max # to scan/reclaim */ 265 int cache_maxlen __read_mostly = USHRT_MAX; /* max name length to cache */ 266 int cache_stat_interval __read_mostly = 300; /* in seconds */ 267 268 /* 269 * sysctl stuff. 270 */ 271 static struct sysctllog *cache_sysctllog; 272 273 /* 274 * This is a dummy name that cannot usually occur anywhere in the cache nor 275 * file system. It's used when caching the root vnode of mounted file 276 * systems. The name is attached to the directory that the file system is 277 * mounted on. 278 */ 279 static const char cache_mp_name[] = ""; 280 static const int cache_mp_nlen = sizeof(cache_mp_name) - 1; 281 282 /* 283 * Red-black tree stuff. 284 */ 285 static const rb_tree_ops_t cache_rbtree_ops = { 286 .rbto_compare_nodes = cache_compare_nodes, 287 .rbto_compare_key = cache_compare_nodes, 288 .rbto_node_offset = offsetof(struct namecache, nc_tree), 289 .rbto_context = NULL 290 }; 291 292 /* 293 * dtrace probes. 294 */ 295 SDT_PROBE_DEFINE1(vfs, namecache, invalidate, done, "struct vnode *"); 296 SDT_PROBE_DEFINE1(vfs, namecache, purge, parents, "struct vnode *"); 297 SDT_PROBE_DEFINE1(vfs, namecache, purge, children, "struct vnode *"); 298 SDT_PROBE_DEFINE2(vfs, namecache, purge, name, "char *", "size_t"); 299 SDT_PROBE_DEFINE1(vfs, namecache, purge, vfs, "struct mount *"); 300 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", 301 "char *", "size_t"); 302 SDT_PROBE_DEFINE3(vfs, namecache, lookup, miss, "struct vnode *", 303 "char *", "size_t"); 304 SDT_PROBE_DEFINE3(vfs, namecache, lookup, toolong, "struct vnode *", 305 "char *", "size_t"); 306 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, success, "struct vnode *", 307 "struct vnode *"); 308 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, fail, "struct vnode *", 309 "int"); 310 SDT_PROBE_DEFINE2(vfs, namecache, prune, done, "int", "int"); 311 SDT_PROBE_DEFINE3(vfs, namecache, enter, toolong, "struct vnode *", 312 "char *", "size_t"); 313 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", 314 "char *", "size_t"); 315 316 /* 317 * rbtree: compare two nodes. 318 */ 319 static int 320 cache_compare_nodes(void *context, const void *n1, const void *n2) 321 { 322 const struct namecache *nc1 = n1; 323 const struct namecache *nc2 = n2; 324 325 if (nc1->nc_key < nc2->nc_key) { 326 return -1; 327 } 328 if (nc1->nc_key > nc2->nc_key) { 329 return 1; 330 } 331 KASSERT(nc1->nc_nlen == nc2->nc_nlen); 332 return memcmp(nc1->nc_name, nc2->nc_name, nc1->nc_nlen); 333 } 334 335 /* 336 * Compute a key value for the given name. The name length is encoded in 337 * the key value to try and improve uniqueness, and so that length doesn't 338 * need to be compared separately for string comparisons. 339 */ 340 static inline uint64_t 341 cache_key(const char *name, size_t nlen) 342 { 343 uint64_t key; 344 345 KASSERT(nlen <= USHRT_MAX); 346 347 key = hash32_buf(name, nlen, HASH32_STR_INIT); 348 return (key << 32) | nlen; 349 } 350 351 /* 352 * Remove an entry from the cache. vi_nc_lock must be held, and if dir2node 353 * is true, then we're locking in the conventional direction and the list 354 * lock will be acquired when removing the entry from the vnode list. 355 */ 356 static void 357 cache_remove(struct namecache *ncp, const bool dir2node) 358 { 359 struct vnode *vp, *dvp = ncp->nc_dvp; 360 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 361 362 KASSERT(rw_write_held(&dvi->vi_nc_lock)); 363 KASSERT(cache_key(ncp->nc_name, ncp->nc_nlen) == ncp->nc_key); 364 KASSERT(rb_tree_find_node(&dvi->vi_nc_tree, ncp) == ncp); 365 366 SDT_PROBE(vfs, namecache, invalidate, done, ncp, 367 0, 0, 0, 0); 368 369 /* 370 * Remove from the vnode's list. This excludes cache_revlookup(), 371 * and then it's safe to remove from the LRU lists. 372 */ 373 if ((vp = ncp->nc_vp) != NULL) { 374 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 375 if (__predict_true(dir2node)) { 376 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 377 TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list); 378 rw_exit(&vi->vi_nc_listlock); 379 } else { 380 TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list); 381 } 382 } 383 384 /* Remove from the directory's rbtree. */ 385 rb_tree_remove_node(&dvi->vi_nc_tree, ncp); 386 387 /* Remove from the LRU lists. */ 388 mutex_enter(&cache_lru_lock); 389 TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru); 390 cache_lru.count[ncp->nc_lrulist]--; 391 mutex_exit(&cache_lru_lock); 392 393 /* Finally, free it. */ 394 if (ncp->nc_nlen > NCHNAMLEN) { 395 size_t sz = offsetof(struct namecache, nc_name[ncp->nc_nlen]); 396 kmem_free(ncp, sz); 397 } else { 398 pool_cache_put(cache_pool, ncp); 399 } 400 } 401 402 /* 403 * Find a single cache entry and return it. vi_nc_lock must be held. 404 */ 405 static struct namecache * __noinline 406 cache_lookup_entry(struct vnode *dvp, const char *name, size_t namelen, 407 uint64_t key) 408 { 409 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 410 struct rb_node *node = dvi->vi_nc_tree.rbt_root; 411 struct namecache *ncp; 412 int lrulist, diff; 413 414 KASSERT(rw_lock_held(&dvi->vi_nc_lock)); 415 416 /* 417 * Search the RB tree for the key. This is an inlined lookup 418 * tailored for exactly what's needed here (64-bit key and so on) 419 * that is quite a bit faster than using rb_tree_find_node(). 420 * 421 * For a matching key memcmp() needs to be called once to confirm 422 * that the correct name has been found. Very rarely there will be 423 * a key value collision and the search will continue. 424 */ 425 for (;;) { 426 if (__predict_false(RB_SENTINEL_P(node))) { 427 return NULL; 428 } 429 ncp = (struct namecache *)node; 430 KASSERT((void *)&ncp->nc_tree == (void *)ncp); 431 KASSERT(ncp->nc_dvp == dvp); 432 if (ncp->nc_key == key) { 433 KASSERT(ncp->nc_nlen == namelen); 434 diff = memcmp(ncp->nc_name, name, namelen); 435 if (__predict_true(diff == 0)) { 436 break; 437 } 438 node = node->rb_nodes[diff < 0]; 439 } else { 440 node = node->rb_nodes[ncp->nc_key < key]; 441 } 442 } 443 444 /* 445 * If the entry is on the wrong LRU list, requeue it. This is an 446 * unlocked check, but it will rarely be wrong and even then there 447 * will be no harm caused. 448 */ 449 lrulist = atomic_load_relaxed(&ncp->nc_lrulist); 450 if (__predict_false(lrulist != LRU_ACTIVE)) { 451 cache_activate(ncp); 452 } 453 return ncp; 454 } 455 456 /* 457 * Look for a the name in the cache. We don't do this 458 * if the segment name is long, simply so the cache can avoid 459 * holding long names (which would either waste space, or 460 * add greatly to the complexity). 461 * 462 * Lookup is called with DVP pointing to the directory to search, 463 * and CNP providing the name of the entry being sought: cn_nameptr 464 * is the name, cn_namelen is its length, and cn_flags is the flags 465 * word from the namei operation. 466 * 467 * DVP must be locked. 468 * 469 * There are three possible non-error return states: 470 * 1. Nothing was found in the cache. Nothing is known about 471 * the requested name. 472 * 2. A negative entry was found in the cache, meaning that the 473 * requested name definitely does not exist. 474 * 3. A positive entry was found in the cache, meaning that the 475 * requested name does exist and that we are providing the 476 * vnode. 477 * In these cases the results are: 478 * 1. 0 returned; VN is set to NULL. 479 * 2. 1 returned; VN is set to NULL. 480 * 3. 1 returned; VN is set to the vnode found. 481 * 482 * The additional result argument ISWHT is set to zero, unless a 483 * negative entry is found that was entered as a whiteout, in which 484 * case ISWHT is set to one. 485 * 486 * The ISWHT_RET argument pointer may be null. In this case an 487 * assertion is made that the whiteout flag is not set. File systems 488 * that do not support whiteouts can/should do this. 489 * 490 * Filesystems that do support whiteouts should add ISWHITEOUT to 491 * cnp->cn_flags if ISWHT comes back nonzero. 492 * 493 * When a vnode is returned, it is locked, as per the vnode lookup 494 * locking protocol. 495 * 496 * There is no way for this function to fail, in the sense of 497 * generating an error that requires aborting the namei operation. 498 * 499 * (Prior to October 2012, this function returned an integer status, 500 * and a vnode, and mucked with the flags word in CNP for whiteouts. 501 * The integer status was -1 for "nothing found", ENOENT for "a 502 * negative entry found", 0 for "a positive entry found", and possibly 503 * other errors, and the value of VN might or might not have been set 504 * depending on what error occurred.) 505 */ 506 bool 507 cache_lookup(struct vnode *dvp, const char *name, size_t namelen, 508 uint32_t nameiop, uint32_t cnflags, 509 int *iswht_ret, struct vnode **vn_ret) 510 { 511 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 512 struct namecache *ncp; 513 struct vnode *vp; 514 uint64_t key; 515 int error; 516 bool hit; 517 krw_t op; 518 519 KASSERT(namelen != cache_mp_nlen || name == cache_mp_name); 520 521 /* Establish default result values */ 522 if (iswht_ret != NULL) { 523 *iswht_ret = 0; 524 } 525 *vn_ret = NULL; 526 527 if (__predict_false(namelen > cache_maxlen)) { 528 SDT_PROBE(vfs, namecache, lookup, toolong, dvp, 529 name, namelen, 0, 0); 530 COUNT(ncs_long); 531 return false; 532 } 533 534 /* Compute the key up front - don't need the lock. */ 535 key = cache_key(name, namelen); 536 537 /* Could the entry be purged below? */ 538 if ((cnflags & ISLASTCN) != 0 && 539 ((cnflags & MAKEENTRY) == 0 || nameiop == CREATE)) { 540 op = RW_WRITER; 541 } else { 542 op = RW_READER; 543 } 544 545 /* Now look for the name. */ 546 rw_enter(&dvi->vi_nc_lock, op); 547 ncp = cache_lookup_entry(dvp, name, namelen, key); 548 if (__predict_false(ncp == NULL)) { 549 rw_exit(&dvi->vi_nc_lock); 550 COUNT(ncs_miss); 551 SDT_PROBE(vfs, namecache, lookup, miss, dvp, 552 name, namelen, 0, 0); 553 return false; 554 } 555 if (__predict_false((cnflags & MAKEENTRY) == 0)) { 556 /* 557 * Last component and we are renaming or deleting, 558 * the cache entry is invalid, or otherwise don't 559 * want cache entry to exist. 560 */ 561 KASSERT((cnflags & ISLASTCN) != 0); 562 cache_remove(ncp, true); 563 rw_exit(&dvi->vi_nc_lock); 564 COUNT(ncs_badhits); 565 return false; 566 } 567 if (ncp->nc_vp == NULL) { 568 if (iswht_ret != NULL) { 569 /* 570 * Restore the ISWHITEOUT flag saved earlier. 571 */ 572 *iswht_ret = ncp->nc_whiteout; 573 } else { 574 KASSERT(!ncp->nc_whiteout); 575 } 576 if (nameiop == CREATE && (cnflags & ISLASTCN) != 0) { 577 /* 578 * Last component and we are preparing to create 579 * the named object, so flush the negative cache 580 * entry. 581 */ 582 COUNT(ncs_badhits); 583 cache_remove(ncp, true); 584 hit = false; 585 } else { 586 COUNT(ncs_neghits); 587 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, 588 namelen, 0, 0); 589 /* found neg entry; vn is already null from above */ 590 hit = true; 591 } 592 rw_exit(&dvi->vi_nc_lock); 593 return hit; 594 } 595 vp = ncp->nc_vp; 596 error = vcache_tryvget(vp); 597 rw_exit(&dvi->vi_nc_lock); 598 if (error) { 599 KASSERT(error == EBUSY); 600 /* 601 * This vnode is being cleaned out. 602 * XXX badhits? 603 */ 604 COUNT(ncs_falsehits); 605 return false; 606 } 607 608 COUNT(ncs_goodhits); 609 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0); 610 /* found it */ 611 *vn_ret = vp; 612 return true; 613 } 614 615 /* 616 * Version of the above without the nameiop argument, for NFS. 617 */ 618 bool 619 cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen, 620 uint32_t cnflags, 621 int *iswht_ret, struct vnode **vn_ret) 622 { 623 624 return cache_lookup(dvp, name, namelen, LOOKUP, cnflags | MAKEENTRY, 625 iswht_ret, vn_ret); 626 } 627 628 /* 629 * Used by namei() to walk down a path, component by component by looking up 630 * names in the cache. The node locks are chained along the way: a parent's 631 * lock is not dropped until the child's is acquired. 632 */ 633 bool 634 cache_lookup_linked(struct vnode *dvp, const char *name, size_t namelen, 635 struct vnode **vn_ret, krwlock_t **plock, 636 kauth_cred_t cred) 637 { 638 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 639 struct namecache *ncp; 640 krwlock_t *oldlock, *newlock; 641 uint64_t key; 642 int error; 643 644 KASSERT(namelen != cache_mp_nlen || name == cache_mp_name); 645 646 /* If disabled, or file system doesn't support this, bail out. */ 647 if (__predict_false((dvp->v_mount->mnt_iflag & IMNT_NCLOOKUP) == 0)) { 648 return false; 649 } 650 651 if (__predict_false(namelen > cache_maxlen)) { 652 COUNT(ncs_long); 653 return false; 654 } 655 656 /* Compute the key up front - don't need the lock. */ 657 key = cache_key(name, namelen); 658 659 /* 660 * Acquire the directory lock. Once we have that, we can drop the 661 * previous one (if any). 662 * 663 * The two lock holds mean that the directory can't go away while 664 * here: the directory must be purged with cache_purge() before 665 * being freed, and both parent & child's vi_nc_lock must be taken 666 * before that point is passed. 667 * 668 * However if there's no previous lock, like at the root of the 669 * chain, then "dvp" must be referenced to prevent dvp going away 670 * before we get its lock. 671 * 672 * Note that the two locks can be the same if looking up a dot, for 673 * example: /usr/bin/. If looking up the parent (..) we can't wait 674 * on the lock as child -> parent is the wrong direction. 675 */ 676 if (*plock != &dvi->vi_nc_lock) { 677 oldlock = *plock; 678 newlock = &dvi->vi_nc_lock; 679 if (!rw_tryenter(&dvi->vi_nc_lock, RW_READER)) { 680 return false; 681 } 682 } else { 683 oldlock = NULL; 684 newlock = NULL; 685 if (*plock == NULL) { 686 KASSERT(vrefcnt(dvp) > 0); 687 } 688 } 689 690 /* 691 * First up check if the user is allowed to look up files in this 692 * directory. 693 */ 694 if (cred != FSCRED) { 695 if (dvi->vi_nc_mode == VNOVAL) { 696 if (newlock != NULL) { 697 rw_exit(newlock); 698 } 699 return false; 700 } 701 KASSERT(dvi->vi_nc_uid != VNOVAL); 702 KASSERT(dvi->vi_nc_gid != VNOVAL); 703 error = kauth_authorize_vnode(cred, 704 KAUTH_ACCESS_ACTION(VEXEC, 705 dvp->v_type, dvi->vi_nc_mode & ALLPERMS), dvp, NULL, 706 genfs_can_access(dvp, cred, dvi->vi_nc_uid, dvi->vi_nc_gid, 707 dvi->vi_nc_mode & ALLPERMS, NULL, VEXEC)); 708 if (error != 0) { 709 if (newlock != NULL) { 710 rw_exit(newlock); 711 } 712 COUNT(ncs_denied); 713 return false; 714 } 715 } 716 717 /* 718 * Now look for a matching cache entry. 719 */ 720 ncp = cache_lookup_entry(dvp, name, namelen, key); 721 if (__predict_false(ncp == NULL)) { 722 if (newlock != NULL) { 723 rw_exit(newlock); 724 } 725 COUNT(ncs_miss); 726 SDT_PROBE(vfs, namecache, lookup, miss, dvp, 727 name, namelen, 0, 0); 728 return false; 729 } 730 if (ncp->nc_vp == NULL) { 731 /* found negative entry; vn is already null from above */ 732 KASSERT(namelen != cache_mp_nlen); 733 KASSERT(name != cache_mp_name); 734 COUNT(ncs_neghits); 735 } else { 736 COUNT(ncs_goodhits); /* XXX can be "badhits" */ 737 } 738 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0); 739 740 /* 741 * Return with the directory lock still held. It will either be 742 * returned to us with another call to cache_lookup_linked() when 743 * looking up the next component, or the caller will release it 744 * manually when finished. 745 */ 746 if (oldlock) { 747 rw_exit(oldlock); 748 } 749 if (newlock) { 750 *plock = newlock; 751 } 752 *vn_ret = ncp->nc_vp; 753 return true; 754 } 755 756 /* 757 * Scan cache looking for name of directory entry pointing at vp. 758 * Will not search for "." or "..". 759 * 760 * If the lookup succeeds the vnode is referenced and stored in dvpp. 761 * 762 * If bufp is non-NULL, also place the name in the buffer which starts 763 * at bufp, immediately before *bpp, and move bpp backwards to point 764 * at the start of it. (Yes, this is a little baroque, but it's done 765 * this way to cater to the whims of getcwd). 766 * 767 * Returns 0 on success, -1 on cache miss, positive errno on failure. 768 */ 769 int 770 cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp, 771 bool checkaccess, accmode_t accmode) 772 { 773 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 774 struct namecache *ncp; 775 struct vnode *dvp; 776 int error, nlen, lrulist; 777 char *bp; 778 779 KASSERT(vp != NULL); 780 781 if (cache_maxlen == 0) 782 goto out; 783 784 rw_enter(&vi->vi_nc_listlock, RW_READER); 785 if (checkaccess) { 786 /* 787 * Check if the user is allowed to see. NOTE: this is 788 * checking for access on the "wrong" directory. getcwd() 789 * wants to see that there is access on every component 790 * along the way, not that there is access to any individual 791 * component. Don't use this to check you can look in vp. 792 * 793 * I don't like it, I didn't come up with it, don't blame me! 794 */ 795 if (vi->vi_nc_mode == VNOVAL) { 796 rw_exit(&vi->vi_nc_listlock); 797 return -1; 798 } 799 KASSERT(vi->vi_nc_uid != VNOVAL); 800 KASSERT(vi->vi_nc_gid != VNOVAL); 801 error = kauth_authorize_vnode(kauth_cred_get(), 802 KAUTH_ACCESS_ACTION(VEXEC, vp->v_type, vi->vi_nc_mode & 803 ALLPERMS), vp, NULL, genfs_can_access(vp, curlwp->l_cred, 804 vi->vi_nc_uid, vi->vi_nc_gid, vi->vi_nc_mode & ALLPERMS, 805 NULL, accmode)); 806 if (error != 0) { 807 rw_exit(&vi->vi_nc_listlock); 808 COUNT(ncs_denied); 809 return EACCES; 810 } 811 } 812 TAILQ_FOREACH(ncp, &vi->vi_nc_list, nc_list) { 813 KASSERT(ncp->nc_vp == vp); 814 KASSERT(ncp->nc_dvp != NULL); 815 nlen = ncp->nc_nlen; 816 817 /* 818 * Ignore mountpoint entries. 819 */ 820 if (ncp->nc_nlen == cache_mp_nlen) { 821 continue; 822 } 823 824 /* 825 * The queue is partially sorted. Once we hit dots, nothing 826 * else remains but dots and dotdots, so bail out. 827 */ 828 if (ncp->nc_name[0] == '.') { 829 if (nlen == 1 || 830 (nlen == 2 && ncp->nc_name[1] == '.')) { 831 break; 832 } 833 } 834 835 /* 836 * Record a hit on the entry. This is an unlocked read but 837 * even if wrong it doesn't matter too much. 838 */ 839 lrulist = atomic_load_relaxed(&ncp->nc_lrulist); 840 if (lrulist != LRU_ACTIVE) { 841 cache_activate(ncp); 842 } 843 844 if (bufp) { 845 bp = *bpp; 846 bp -= nlen; 847 if (bp <= bufp) { 848 *dvpp = NULL; 849 rw_exit(&vi->vi_nc_listlock); 850 SDT_PROBE(vfs, namecache, revlookup, 851 fail, vp, ERANGE, 0, 0, 0); 852 return (ERANGE); 853 } 854 memcpy(bp, ncp->nc_name, nlen); 855 *bpp = bp; 856 } 857 858 dvp = ncp->nc_dvp; 859 error = vcache_tryvget(dvp); 860 rw_exit(&vi->vi_nc_listlock); 861 if (error) { 862 KASSERT(error == EBUSY); 863 if (bufp) 864 (*bpp) += nlen; 865 *dvpp = NULL; 866 SDT_PROBE(vfs, namecache, revlookup, fail, vp, 867 error, 0, 0, 0); 868 return -1; 869 } 870 *dvpp = dvp; 871 SDT_PROBE(vfs, namecache, revlookup, success, vp, dvp, 872 0, 0, 0); 873 COUNT(ncs_revhits); 874 return (0); 875 } 876 rw_exit(&vi->vi_nc_listlock); 877 COUNT(ncs_revmiss); 878 out: 879 *dvpp = NULL; 880 return (-1); 881 } 882 883 /* 884 * Add an entry to the cache. 885 */ 886 void 887 cache_enter(struct vnode *dvp, struct vnode *vp, 888 const char *name, size_t namelen, uint32_t cnflags) 889 { 890 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 891 struct namecache *ncp, *oncp; 892 int total; 893 894 KASSERT(namelen != cache_mp_nlen || name == cache_mp_name); 895 896 /* First, check whether we can/should add a cache entry. */ 897 if ((cnflags & MAKEENTRY) == 0 || 898 __predict_false(namelen > cache_maxlen)) { 899 SDT_PROBE(vfs, namecache, enter, toolong, vp, name, namelen, 900 0, 0); 901 return; 902 } 903 904 SDT_PROBE(vfs, namecache, enter, done, vp, name, namelen, 0, 0); 905 906 /* 907 * Reclaim some entries if over budget. This is an unlocked check, 908 * but it doesn't matter. Just need to catch up with things 909 * eventually: it doesn't matter if we go over temporarily. 910 */ 911 total = atomic_load_relaxed(&cache_lru.count[LRU_ACTIVE]); 912 total += atomic_load_relaxed(&cache_lru.count[LRU_INACTIVE]); 913 if (__predict_false(total > desiredvnodes)) { 914 cache_reclaim(); 915 } 916 917 /* Now allocate a fresh entry. */ 918 if (__predict_true(namelen <= NCHNAMLEN)) { 919 ncp = pool_cache_get(cache_pool, PR_WAITOK); 920 } else { 921 size_t sz = offsetof(struct namecache, nc_name[namelen]); 922 ncp = kmem_alloc(sz, KM_SLEEP); 923 } 924 925 /* 926 * Fill in cache info. For negative hits, save the ISWHITEOUT flag 927 * so we can restore it later when the cache entry is used again. 928 */ 929 ncp->nc_vp = vp; 930 ncp->nc_dvp = dvp; 931 ncp->nc_key = cache_key(name, namelen); 932 ncp->nc_nlen = namelen; 933 ncp->nc_whiteout = ((cnflags & ISWHITEOUT) != 0); 934 memcpy(ncp->nc_name, name, namelen); 935 936 /* 937 * Insert to the directory. Concurrent lookups may race for a cache 938 * entry. If there's a entry there already, purge it. 939 */ 940 rw_enter(&dvi->vi_nc_lock, RW_WRITER); 941 oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp); 942 if (oncp != ncp) { 943 KASSERT(oncp->nc_key == ncp->nc_key); 944 KASSERT(oncp->nc_nlen == ncp->nc_nlen); 945 KASSERT(memcmp(oncp->nc_name, name, namelen) == 0); 946 cache_remove(oncp, true); 947 oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp); 948 KASSERT(oncp == ncp); 949 } 950 951 /* 952 * With the directory lock still held, insert to the tail of the 953 * ACTIVE LRU list (new) and take the opportunity to incrementally 954 * balance the lists. 955 */ 956 mutex_enter(&cache_lru_lock); 957 ncp->nc_lrulist = LRU_ACTIVE; 958 cache_lru.count[LRU_ACTIVE]++; 959 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru); 960 cache_deactivate(); 961 mutex_exit(&cache_lru_lock); 962 963 /* 964 * Finally, insert to the vnode and unlock. With everything set up 965 * it's safe to let cache_revlookup() see the entry. Partially sort 966 * the per-vnode list: dots go to back so cache_revlookup() doesn't 967 * have to consider them. 968 */ 969 if (vp != NULL) { 970 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 971 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 972 if ((namelen == 1 && name[0] == '.') || 973 (namelen == 2 && name[0] == '.' && name[1] == '.')) { 974 TAILQ_INSERT_TAIL(&vi->vi_nc_list, ncp, nc_list); 975 } else { 976 TAILQ_INSERT_HEAD(&vi->vi_nc_list, ncp, nc_list); 977 } 978 rw_exit(&vi->vi_nc_listlock); 979 } 980 rw_exit(&dvi->vi_nc_lock); 981 } 982 983 /* 984 * Set identity info in cache for a vnode. We only care about directories 985 * so ignore other updates. The cached info may be marked invalid if the 986 * inode has an ACL. 987 */ 988 void 989 cache_enter_id(struct vnode *vp, mode_t mode, uid_t uid, gid_t gid, bool valid) 990 { 991 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 992 993 if (vp->v_type == VDIR) { 994 /* Grab both locks, for forward & reverse lookup. */ 995 rw_enter(&vi->vi_nc_lock, RW_WRITER); 996 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 997 if (valid) { 998 vi->vi_nc_mode = mode; 999 vi->vi_nc_uid = uid; 1000 vi->vi_nc_gid = gid; 1001 } else { 1002 vi->vi_nc_mode = VNOVAL; 1003 vi->vi_nc_uid = VNOVAL; 1004 vi->vi_nc_gid = VNOVAL; 1005 } 1006 rw_exit(&vi->vi_nc_listlock); 1007 rw_exit(&vi->vi_nc_lock); 1008 } 1009 } 1010 1011 /* 1012 * Return true if we have identity for the given vnode, and use as an 1013 * opportunity to confirm that everything squares up. 1014 * 1015 * Because of shared code, some file systems could provide partial 1016 * information, missing some updates, so check the mount flag too. 1017 */ 1018 bool 1019 cache_have_id(struct vnode *vp) 1020 { 1021 1022 if (vp->v_type == VDIR && 1023 (vp->v_mount->mnt_iflag & IMNT_NCLOOKUP) != 0 && 1024 atomic_load_relaxed(&VNODE_TO_VIMPL(vp)->vi_nc_mode) != VNOVAL) { 1025 return true; 1026 } else { 1027 return false; 1028 } 1029 } 1030 1031 /* 1032 * Enter a mount point. cvp is the covered vnode, and rvp is the root of 1033 * the mounted file system. 1034 */ 1035 void 1036 cache_enter_mount(struct vnode *cvp, struct vnode *rvp) 1037 { 1038 1039 KASSERT(vrefcnt(cvp) > 0); 1040 KASSERT(vrefcnt(rvp) > 0); 1041 KASSERT(cvp->v_type == VDIR); 1042 KASSERT((rvp->v_vflag & VV_ROOT) != 0); 1043 1044 if (rvp->v_type == VDIR) { 1045 cache_enter(cvp, rvp, cache_mp_name, cache_mp_nlen, MAKEENTRY); 1046 } 1047 } 1048 1049 /* 1050 * Look up a cached mount point. Used in the strongly locked path. 1051 */ 1052 bool 1053 cache_lookup_mount(struct vnode *dvp, struct vnode **vn_ret) 1054 { 1055 bool ret; 1056 1057 ret = cache_lookup(dvp, cache_mp_name, cache_mp_nlen, LOOKUP, 1058 MAKEENTRY, NULL, vn_ret); 1059 KASSERT((*vn_ret != NULL) == ret); 1060 return ret; 1061 } 1062 1063 /* 1064 * Try to cross a mount point. For use with cache_lookup_linked(). 1065 */ 1066 bool 1067 cache_cross_mount(struct vnode **dvp, krwlock_t **plock) 1068 { 1069 1070 return cache_lookup_linked(*dvp, cache_mp_name, cache_mp_nlen, 1071 dvp, plock, FSCRED); 1072 } 1073 1074 /* 1075 * Name cache initialization, from vfs_init() when the system is booting. 1076 */ 1077 void 1078 nchinit(void) 1079 { 1080 1081 cache_pool = pool_cache_init(sizeof(struct namecache), 1082 coherency_unit, 0, 0, "namecache", NULL, IPL_NONE, NULL, 1083 NULL, NULL); 1084 KASSERT(cache_pool != NULL); 1085 1086 mutex_init(&cache_lru_lock, MUTEX_DEFAULT, IPL_NONE); 1087 TAILQ_INIT(&cache_lru.list[LRU_ACTIVE]); 1088 TAILQ_INIT(&cache_lru.list[LRU_INACTIVE]); 1089 1090 mutex_init(&cache_stat_lock, MUTEX_DEFAULT, IPL_NONE); 1091 callout_init(&cache_stat_callout, CALLOUT_MPSAFE); 1092 callout_setfunc(&cache_stat_callout, cache_update_stats, NULL); 1093 callout_schedule(&cache_stat_callout, cache_stat_interval * hz); 1094 1095 KASSERT(cache_sysctllog == NULL); 1096 sysctl_createv(&cache_sysctllog, 0, NULL, NULL, 1097 CTLFLAG_PERMANENT, 1098 CTLTYPE_STRUCT, "namecache_stats", 1099 SYSCTL_DESCR("namecache statistics"), 1100 cache_stat_sysctl, 0, NULL, 0, 1101 CTL_VFS, CTL_CREATE, CTL_EOL); 1102 } 1103 1104 /* 1105 * Called once for each CPU in the system as attached. 1106 */ 1107 void 1108 cache_cpu_init(struct cpu_info *ci) 1109 { 1110 void *p; 1111 size_t sz; 1112 1113 sz = roundup2(sizeof(struct nchcpu), coherency_unit) + coherency_unit; 1114 p = kmem_zalloc(sz, KM_SLEEP); 1115 ci->ci_data.cpu_nch = (void *)roundup2((uintptr_t)p, coherency_unit); 1116 } 1117 1118 /* 1119 * A vnode is being allocated: set up cache structures. 1120 */ 1121 void 1122 cache_vnode_init(struct vnode *vp) 1123 { 1124 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 1125 1126 rw_init(&vi->vi_nc_lock); 1127 rw_init(&vi->vi_nc_listlock); 1128 rb_tree_init(&vi->vi_nc_tree, &cache_rbtree_ops); 1129 TAILQ_INIT(&vi->vi_nc_list); 1130 vi->vi_nc_mode = VNOVAL; 1131 vi->vi_nc_uid = VNOVAL; 1132 vi->vi_nc_gid = VNOVAL; 1133 } 1134 1135 /* 1136 * A vnode is being freed: finish cache structures. 1137 */ 1138 void 1139 cache_vnode_fini(struct vnode *vp) 1140 { 1141 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 1142 1143 KASSERT(RB_TREE_MIN(&vi->vi_nc_tree) == NULL); 1144 KASSERT(TAILQ_EMPTY(&vi->vi_nc_list)); 1145 rw_destroy(&vi->vi_nc_lock); 1146 rw_destroy(&vi->vi_nc_listlock); 1147 } 1148 1149 /* 1150 * Helper for cache_purge1(): purge cache entries for the given vnode from 1151 * all directories that the vnode is cached in. 1152 */ 1153 static void 1154 cache_purge_parents(struct vnode *vp) 1155 { 1156 vnode_impl_t *dvi, *vi = VNODE_TO_VIMPL(vp); 1157 struct vnode *dvp, *blocked; 1158 struct namecache *ncp; 1159 1160 SDT_PROBE(vfs, namecache, purge, parents, vp, 0, 0, 0, 0); 1161 1162 blocked = NULL; 1163 1164 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 1165 while ((ncp = TAILQ_FIRST(&vi->vi_nc_list)) != NULL) { 1166 /* 1167 * Locking in the wrong direction. Try for a hold on the 1168 * directory node's lock, and if we get it then all good, 1169 * nuke the entry and move on to the next. 1170 */ 1171 dvp = ncp->nc_dvp; 1172 dvi = VNODE_TO_VIMPL(dvp); 1173 if (rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) { 1174 cache_remove(ncp, false); 1175 rw_exit(&dvi->vi_nc_lock); 1176 blocked = NULL; 1177 continue; 1178 } 1179 1180 /* 1181 * We can't wait on the directory node's lock with our list 1182 * lock held or the system could deadlock. 1183 * 1184 * Take a hold on the directory vnode to prevent it from 1185 * being freed (taking the vnode & lock with it). Then 1186 * wait for the lock to become available with no other locks 1187 * held, and retry. 1188 * 1189 * If this happens twice in a row, give the other side a 1190 * breather; we can do nothing until it lets go. 1191 */ 1192 vhold(dvp); 1193 rw_exit(&vi->vi_nc_listlock); 1194 rw_enter(&dvi->vi_nc_lock, RW_WRITER); 1195 /* Do nothing. */ 1196 rw_exit(&dvi->vi_nc_lock); 1197 holdrele(dvp); 1198 if (blocked == dvp) { 1199 kpause("ncpurge", false, 1, NULL); 1200 } 1201 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 1202 blocked = dvp; 1203 } 1204 rw_exit(&vi->vi_nc_listlock); 1205 } 1206 1207 /* 1208 * Helper for cache_purge1(): purge all cache entries hanging off the given 1209 * directory vnode. 1210 */ 1211 static void 1212 cache_purge_children(struct vnode *dvp) 1213 { 1214 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 1215 struct namecache *ncp; 1216 1217 SDT_PROBE(vfs, namecache, purge, children, dvp, 0, 0, 0, 0); 1218 1219 rw_enter(&dvi->vi_nc_lock, RW_WRITER); 1220 while ((ncp = RB_TREE_MIN(&dvi->vi_nc_tree)) != NULL) { 1221 cache_remove(ncp, true); 1222 } 1223 rw_exit(&dvi->vi_nc_lock); 1224 } 1225 1226 /* 1227 * Helper for cache_purge1(): purge cache entry from the given vnode, 1228 * finding it by name. 1229 */ 1230 static void 1231 cache_purge_name(struct vnode *dvp, const char *name, size_t namelen) 1232 { 1233 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 1234 struct namecache *ncp; 1235 uint64_t key; 1236 1237 SDT_PROBE(vfs, namecache, purge, name, name, namelen, 0, 0, 0); 1238 1239 key = cache_key(name, namelen); 1240 rw_enter(&dvi->vi_nc_lock, RW_WRITER); 1241 ncp = cache_lookup_entry(dvp, name, namelen, key); 1242 if (ncp) { 1243 cache_remove(ncp, true); 1244 } 1245 rw_exit(&dvi->vi_nc_lock); 1246 } 1247 1248 /* 1249 * Cache flush, a particular vnode; called when a vnode is renamed to 1250 * hide entries that would now be invalid. 1251 */ 1252 void 1253 cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags) 1254 { 1255 1256 if (flags & PURGE_PARENTS) { 1257 cache_purge_parents(vp); 1258 } 1259 if (flags & PURGE_CHILDREN) { 1260 cache_purge_children(vp); 1261 } 1262 if (name != NULL) { 1263 cache_purge_name(vp, name, namelen); 1264 } 1265 } 1266 1267 /* 1268 * vnode filter for cache_purgevfs(). 1269 */ 1270 static bool 1271 cache_vdir_filter(void *cookie, vnode_t *vp) 1272 { 1273 1274 return vp->v_type == VDIR; 1275 } 1276 1277 /* 1278 * Cache flush, a whole filesystem; called when filesys is umounted to 1279 * remove entries that would now be invalid. 1280 */ 1281 void 1282 cache_purgevfs(struct mount *mp) 1283 { 1284 struct vnode_iterator *iter; 1285 vnode_t *dvp; 1286 1287 vfs_vnode_iterator_init(mp, &iter); 1288 for (;;) { 1289 dvp = vfs_vnode_iterator_next(iter, cache_vdir_filter, NULL); 1290 if (dvp == NULL) { 1291 break; 1292 } 1293 cache_purge_children(dvp); 1294 vrele(dvp); 1295 } 1296 vfs_vnode_iterator_destroy(iter); 1297 } 1298 1299 /* 1300 * Re-queue an entry onto the tail of the active LRU list, after it has 1301 * scored a hit. 1302 */ 1303 static void 1304 cache_activate(struct namecache *ncp) 1305 { 1306 1307 mutex_enter(&cache_lru_lock); 1308 TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru); 1309 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru); 1310 cache_lru.count[ncp->nc_lrulist]--; 1311 cache_lru.count[LRU_ACTIVE]++; 1312 ncp->nc_lrulist = LRU_ACTIVE; 1313 mutex_exit(&cache_lru_lock); 1314 } 1315 1316 /* 1317 * Try to balance the LRU lists. Pick some victim entries, and re-queue 1318 * them from the head of the active list to the tail of the inactive list. 1319 */ 1320 static void 1321 cache_deactivate(void) 1322 { 1323 struct namecache *ncp; 1324 int total, i; 1325 1326 KASSERT(mutex_owned(&cache_lru_lock)); 1327 1328 /* If we're nowhere near budget yet, don't bother. */ 1329 total = cache_lru.count[LRU_ACTIVE] + cache_lru.count[LRU_INACTIVE]; 1330 if (total < (desiredvnodes >> 1)) { 1331 return; 1332 } 1333 1334 /* 1335 * Aim for a 1:1 ratio of active to inactive. This is to allow each 1336 * potential victim a reasonable amount of time to cycle through the 1337 * inactive list in order to score a hit and be reactivated, while 1338 * trying not to cause reactivations too frequently. 1339 */ 1340 if (cache_lru.count[LRU_ACTIVE] < cache_lru.count[LRU_INACTIVE]) { 1341 return; 1342 } 1343 1344 /* Move only a few at a time; will catch up eventually. */ 1345 for (i = 0; i < cache_lru_maxdeact; i++) { 1346 ncp = TAILQ_FIRST(&cache_lru.list[LRU_ACTIVE]); 1347 if (ncp == NULL) { 1348 break; 1349 } 1350 KASSERT(ncp->nc_lrulist == LRU_ACTIVE); 1351 ncp->nc_lrulist = LRU_INACTIVE; 1352 TAILQ_REMOVE(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru); 1353 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE], ncp, nc_lru); 1354 cache_lru.count[LRU_ACTIVE]--; 1355 cache_lru.count[LRU_INACTIVE]++; 1356 } 1357 } 1358 1359 /* 1360 * Free some entries from the cache, when we have gone over budget. 1361 * 1362 * We don't want to cause too much work for any individual caller, and it 1363 * doesn't matter if we temporarily go over budget. This is also "just a 1364 * cache" so it's not a big deal if we screw up and throw out something we 1365 * shouldn't. So we take a relaxed attitude to this process to reduce its 1366 * impact. 1367 */ 1368 static void 1369 cache_reclaim(void) 1370 { 1371 struct namecache *ncp; 1372 vnode_impl_t *dvi; 1373 int toscan; 1374 1375 /* 1376 * Scan up to a preset maximum number of entries, but no more than 1377 * 0.8% of the total at once (to allow for very small systems). 1378 * 1379 * On bigger systems, do a larger chunk of work to reduce the number 1380 * of times that cache_lru_lock is held for any length of time. 1381 */ 1382 mutex_enter(&cache_lru_lock); 1383 toscan = MIN(cache_lru_maxscan, desiredvnodes >> 7); 1384 toscan = MAX(toscan, 1); 1385 SDT_PROBE(vfs, namecache, prune, done, cache_lru.count[LRU_ACTIVE] + 1386 cache_lru.count[LRU_INACTIVE], toscan, 0, 0, 0); 1387 while (toscan-- != 0) { 1388 /* First try to balance the lists. */ 1389 cache_deactivate(); 1390 1391 /* Now look for a victim on head of inactive list (old). */ 1392 ncp = TAILQ_FIRST(&cache_lru.list[LRU_INACTIVE]); 1393 if (ncp == NULL) { 1394 break; 1395 } 1396 dvi = VNODE_TO_VIMPL(ncp->nc_dvp); 1397 KASSERT(ncp->nc_lrulist == LRU_INACTIVE); 1398 KASSERT(dvi != NULL); 1399 1400 /* 1401 * Locking in the wrong direction. If we can't get the 1402 * lock, the directory is actively busy, and it could also 1403 * cause problems for the next guy in here, so send the 1404 * entry to the back of the list. 1405 */ 1406 if (!rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) { 1407 TAILQ_REMOVE(&cache_lru.list[LRU_INACTIVE], 1408 ncp, nc_lru); 1409 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE], 1410 ncp, nc_lru); 1411 continue; 1412 } 1413 1414 /* 1415 * Now have the victim entry locked. Drop the LRU list 1416 * lock, purge the entry, and start over. The hold on 1417 * vi_nc_lock will prevent the vnode from vanishing until 1418 * finished (cache_purge() will be called on dvp before it 1419 * disappears, and that will wait on vi_nc_lock). 1420 */ 1421 mutex_exit(&cache_lru_lock); 1422 cache_remove(ncp, true); 1423 rw_exit(&dvi->vi_nc_lock); 1424 mutex_enter(&cache_lru_lock); 1425 } 1426 mutex_exit(&cache_lru_lock); 1427 } 1428 1429 /* 1430 * For file system code: count a lookup that required a full re-scan of 1431 * directory metadata. 1432 */ 1433 void 1434 namecache_count_pass2(void) 1435 { 1436 1437 COUNT(ncs_pass2); 1438 } 1439 1440 /* 1441 * For file system code: count a lookup that scored a hit in the directory 1442 * metadata near the location of the last lookup. 1443 */ 1444 void 1445 namecache_count_2passes(void) 1446 { 1447 1448 COUNT(ncs_2passes); 1449 } 1450 1451 /* 1452 * Sum the stats from all CPUs into nchstats. This needs to run at least 1453 * once within every window where a 32-bit counter could roll over. It's 1454 * called regularly by timer to ensure this. 1455 */ 1456 static void 1457 cache_update_stats(void *cookie) 1458 { 1459 CPU_INFO_ITERATOR cii; 1460 struct cpu_info *ci; 1461 1462 mutex_enter(&cache_stat_lock); 1463 for (CPU_INFO_FOREACH(cii, ci)) { 1464 struct nchcpu *nchcpu = ci->ci_data.cpu_nch; 1465 UPDATE(nchcpu, ncs_goodhits); 1466 UPDATE(nchcpu, ncs_neghits); 1467 UPDATE(nchcpu, ncs_badhits); 1468 UPDATE(nchcpu, ncs_falsehits); 1469 UPDATE(nchcpu, ncs_miss); 1470 UPDATE(nchcpu, ncs_long); 1471 UPDATE(nchcpu, ncs_pass2); 1472 UPDATE(nchcpu, ncs_2passes); 1473 UPDATE(nchcpu, ncs_revhits); 1474 UPDATE(nchcpu, ncs_revmiss); 1475 UPDATE(nchcpu, ncs_denied); 1476 } 1477 if (cookie != NULL) { 1478 memcpy(cookie, &nchstats, sizeof(nchstats)); 1479 } 1480 /* Reset the timer; arrive back here in N minutes at latest. */ 1481 callout_schedule(&cache_stat_callout, cache_stat_interval * hz); 1482 mutex_exit(&cache_stat_lock); 1483 } 1484 1485 /* 1486 * Fetch the current values of the stats for sysctl. 1487 */ 1488 static int 1489 cache_stat_sysctl(SYSCTLFN_ARGS) 1490 { 1491 struct nchstats stats; 1492 1493 if (oldp == NULL) { 1494 *oldlenp = sizeof(nchstats); 1495 return 0; 1496 } 1497 1498 if (*oldlenp <= 0) { 1499 *oldlenp = 0; 1500 return 0; 1501 } 1502 1503 /* Refresh the global stats. */ 1504 sysctl_unlock(); 1505 cache_update_stats(&stats); 1506 sysctl_relock(); 1507 1508 *oldlenp = MIN(sizeof(stats), *oldlenp); 1509 return sysctl_copyout(l, &stats, oldp, *oldlenp); 1510 } 1511 1512 /* 1513 * For the debugger, given the address of a vnode, print all associated 1514 * names in the cache. 1515 */ 1516 #ifdef DDB 1517 void 1518 namecache_print(struct vnode *vp, void (*pr)(const char *, ...)) 1519 { 1520 struct vnode *dvp = NULL; 1521 struct namecache *ncp; 1522 enum cache_lru_id id; 1523 1524 for (id = 0; id < LRU_COUNT; id++) { 1525 TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) { 1526 if (ncp->nc_vp == vp) { 1527 (*pr)("name %.*s\n", ncp->nc_nlen, 1528 ncp->nc_name); 1529 dvp = ncp->nc_dvp; 1530 } 1531 } 1532 } 1533 if (dvp == NULL) { 1534 (*pr)("name not found\n"); 1535 return; 1536 } 1537 for (id = 0; id < LRU_COUNT; id++) { 1538 TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) { 1539 if (ncp->nc_vp == dvp) { 1540 (*pr)("parent %.*s\n", ncp->nc_nlen, 1541 ncp->nc_name); 1542 } 1543 } 1544 } 1545 } 1546 #endif 1547