1 /* $NetBSD: vfs_cache.c,v 1.149 2020/12/12 18:41:13 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2008, 2019, 2020 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1989, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)vfs_cache.c 8.3 (Berkeley) 8/22/94 61 */ 62 63 /* 64 * Name caching: 65 * 66 * Names found by directory scans are retained in a cache for future 67 * reference. It is managed LRU, so frequently used names will hang 68 * around. The cache is indexed by hash value obtained from the name. 69 * 70 * The name cache is the brainchild of Robert Elz and was introduced in 71 * 4.3BSD. See "Using gprof to Tune the 4.2BSD Kernel", Marshall Kirk 72 * McKusick, May 21 1984. 73 * 74 * Data structures: 75 * 76 * Most Unix namecaches very sensibly use a global hash table to index 77 * names. The global hash table works well, but can cause concurrency 78 * headaches for the kernel hacker. In the NetBSD 10.0 implementation 79 * we are not sensible, and use a per-directory data structure to index 80 * names, but the cache otherwise functions the same. 81 * 82 * The index is a red-black tree. There are no special concurrency 83 * requirements placed on it, because it's per-directory and protected 84 * by the namecache's per-directory locks. It should therefore not be 85 * difficult to experiment with other types of index. 86 * 87 * Each cached name is stored in a struct namecache, along with a 88 * pointer to the associated vnode (nc_vp). Names longer than a 89 * maximum length of NCHNAMLEN are allocated with kmem_alloc(); they 90 * occur infrequently, and names shorter than this are stored directly 91 * in struct namecache. If it is a "negative" entry, (i.e. for a name 92 * that is known NOT to exist) the vnode pointer will be NULL. 93 * 94 * For a directory with 3 cached names for 3 distinct vnodes, the 95 * various vnodes and namecache structs would be connected like this 96 * (the root is at the bottom of the diagram): 97 * 98 * ... 99 * ^ 100 * |- vi_nc_tree 101 * | 102 * +----o----+ +---------+ +---------+ 103 * | VDIR | | VCHR | | VREG | 104 * | vnode o-----+ | vnode o-----+ | vnode o------+ 105 * +---------+ | +---------+ | +---------+ | 106 * ^ | ^ | ^ | 107 * |- nc_vp |- vi_nc_list |- nc_vp |- vi_nc_list |- nc_vp | 108 * | | | | | | 109 * +----o----+ | +----o----+ | +----o----+ | 110 * +---onamecache|<----+ +---onamecache|<----+ +---onamecache|<-----+ 111 * | +---------+ | +---------+ | +---------+ 112 * | ^ | ^ | ^ 113 * | | | | | | 114 * | | +----------------------+ | | 115 * |-nc_dvp | +-------------------------------------------------+ 116 * | |/- vi_nc_tree | | 117 * | | |- nc_dvp |- nc_dvp 118 * | +----o----+ | | 119 * +-->| VDIR |<----------+ | 120 * | vnode |<------------------------------------+ 121 * +---------+ 122 * 123 * START HERE 124 * 125 * Replacement: 126 * 127 * As the cache becomes full, old and unused entries are purged as new 128 * entries are added. The synchronization overhead in maintaining a 129 * strict ordering would be prohibitive, so the VM system's "clock" or 130 * "second chance" page replacement algorithm is aped here. New 131 * entries go to the tail of the active list. After they age out and 132 * reach the head of the list, they are moved to the tail of the 133 * inactive list. Any use of the deactivated cache entry reactivates 134 * it, saving it from impending doom; if not reactivated, the entry 135 * eventually reaches the head of the inactive list and is purged. 136 * 137 * Concurrency: 138 * 139 * From a performance perspective, cache_lookup(nameiop == LOOKUP) is 140 * what really matters; insertion of new entries with cache_enter() is 141 * comparatively infrequent, and overshadowed by the cost of expensive 142 * file system metadata operations (which may involve disk I/O). We 143 * therefore want to make everything simplest in the lookup path. 144 * 145 * struct namecache is mostly stable except for list and tree related 146 * entries, changes to which don't affect the cached name or vnode. 147 * For changes to name+vnode, entries are purged in preference to 148 * modifying them. 149 * 150 * Read access to namecache entries is made via tree, list, or LRU 151 * list. A lock corresponding to the direction of access should be 152 * held. See definition of "struct namecache" in src/sys/namei.src, 153 * and the definition of "struct vnode" for the particulars. 154 * 155 * Per-CPU statistics, and LRU list totals are read unlocked, since 156 * an approximate value is OK. We maintain 32-bit sized per-CPU 157 * counters and 64-bit global counters under the theory that 32-bit 158 * sized counters are less likely to be hosed by nonatomic increment 159 * (on 32-bit platforms). 160 * 161 * The lock order is: 162 * 163 * 1) vi->vi_nc_lock (tree or parent -> child direction, 164 * used during forward lookup) 165 * 166 * 2) vi->vi_nc_listlock (list or child -> parent direction, 167 * used during reverse lookup) 168 * 169 * 3) cache_lru_lock (LRU list direction, used during reclaim) 170 * 171 * 4) vp->v_interlock (what the cache entry points to) 172 */ 173 174 #include <sys/cdefs.h> 175 __KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.149 2020/12/12 18:41:13 christos Exp $"); 176 177 #define __NAMECACHE_PRIVATE 178 #ifdef _KERNEL_OPT 179 #include "opt_ddb.h" 180 #include "opt_dtrace.h" 181 #endif 182 183 #include <sys/types.h> 184 #include <sys/atomic.h> 185 #include <sys/callout.h> 186 #include <sys/cpu.h> 187 #include <sys/errno.h> 188 #include <sys/evcnt.h> 189 #include <sys/hash.h> 190 #include <sys/kernel.h> 191 #include <sys/mount.h> 192 #include <sys/mutex.h> 193 #include <sys/namei.h> 194 #include <sys/param.h> 195 #include <sys/pool.h> 196 #include <sys/sdt.h> 197 #include <sys/sysctl.h> 198 #include <sys/systm.h> 199 #include <sys/time.h> 200 #include <sys/vnode_impl.h> 201 202 #include <miscfs/genfs/genfs.h> 203 204 static void cache_activate(struct namecache *); 205 static void cache_update_stats(void *); 206 static int cache_compare_nodes(void *, const void *, const void *); 207 static void cache_deactivate(void); 208 static void cache_reclaim(void); 209 static int cache_stat_sysctl(SYSCTLFN_ARGS); 210 211 /* 212 * Global pool cache. 213 */ 214 static pool_cache_t cache_pool __read_mostly; 215 216 /* 217 * LRU replacement. 218 */ 219 enum cache_lru_id { 220 LRU_ACTIVE, 221 LRU_INACTIVE, 222 LRU_COUNT 223 }; 224 225 static struct { 226 TAILQ_HEAD(, namecache) list[LRU_COUNT]; 227 u_int count[LRU_COUNT]; 228 } cache_lru __cacheline_aligned; 229 230 static kmutex_t cache_lru_lock __cacheline_aligned; 231 232 /* 233 * Cache effectiveness statistics. nchstats holds system-wide total. 234 */ 235 struct nchstats nchstats; 236 struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t); 237 struct nchcpu { 238 struct nchstats_percpu cur; 239 struct nchstats_percpu last; 240 }; 241 static callout_t cache_stat_callout; 242 static kmutex_t cache_stat_lock __cacheline_aligned; 243 244 #define COUNT(f) do { \ 245 lwp_t *l = curlwp; \ 246 KPREEMPT_DISABLE(l); \ 247 struct nchcpu *nchcpu = curcpu()->ci_data.cpu_nch; \ 248 nchcpu->cur.f++; \ 249 KPREEMPT_ENABLE(l); \ 250 } while (/* CONSTCOND */ 0); 251 252 #define UPDATE(nchcpu, f) do { \ 253 uint32_t cur = atomic_load_relaxed(&nchcpu->cur.f); \ 254 nchstats.f += (uint32_t)(cur - nchcpu->last.f); \ 255 nchcpu->last.f = cur; \ 256 } while (/* CONSTCOND */ 0) 257 258 /* 259 * Tunables. cache_maxlen replaces the historical doingcache: 260 * set it zero to disable caching for debugging purposes. 261 */ 262 int cache_lru_maxdeact __read_mostly = 2; /* max # to deactivate */ 263 int cache_lru_maxscan __read_mostly = 64; /* max # to scan/reclaim */ 264 int cache_maxlen __read_mostly = USHRT_MAX; /* max name length to cache */ 265 int cache_stat_interval __read_mostly = 300; /* in seconds */ 266 267 /* 268 * sysctl stuff. 269 */ 270 static struct sysctllog *cache_sysctllog; 271 272 /* 273 * This is a dummy name that cannot usually occur anywhere in the cache nor 274 * file system. It's used when caching the root vnode of mounted file 275 * systems. The name is attached to the directory that the file system is 276 * mounted on. 277 */ 278 static const char cache_mp_name[] = ""; 279 static const int cache_mp_nlen = sizeof(cache_mp_name) - 1; 280 281 /* 282 * Red-black tree stuff. 283 */ 284 static const rb_tree_ops_t cache_rbtree_ops = { 285 .rbto_compare_nodes = cache_compare_nodes, 286 .rbto_compare_key = cache_compare_nodes, 287 .rbto_node_offset = offsetof(struct namecache, nc_tree), 288 .rbto_context = NULL 289 }; 290 291 /* 292 * dtrace probes. 293 */ 294 SDT_PROVIDER_DEFINE(vfs); 295 296 SDT_PROBE_DEFINE1(vfs, namecache, invalidate, done, "struct vnode *"); 297 SDT_PROBE_DEFINE1(vfs, namecache, purge, parents, "struct vnode *"); 298 SDT_PROBE_DEFINE1(vfs, namecache, purge, children, "struct vnode *"); 299 SDT_PROBE_DEFINE2(vfs, namecache, purge, name, "char *", "size_t"); 300 SDT_PROBE_DEFINE1(vfs, namecache, purge, vfs, "struct mount *"); 301 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", 302 "char *", "size_t"); 303 SDT_PROBE_DEFINE3(vfs, namecache, lookup, miss, "struct vnode *", 304 "char *", "size_t"); 305 SDT_PROBE_DEFINE3(vfs, namecache, lookup, toolong, "struct vnode *", 306 "char *", "size_t"); 307 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, success, "struct vnode *", 308 "struct vnode *"); 309 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, fail, "struct vnode *", 310 "int"); 311 SDT_PROBE_DEFINE2(vfs, namecache, prune, done, "int", "int"); 312 SDT_PROBE_DEFINE3(vfs, namecache, enter, toolong, "struct vnode *", 313 "char *", "size_t"); 314 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", 315 "char *", "size_t"); 316 317 /* 318 * rbtree: compare two nodes. 319 */ 320 static int 321 cache_compare_nodes(void *context, const void *n1, const void *n2) 322 { 323 const struct namecache *nc1 = n1; 324 const struct namecache *nc2 = n2; 325 326 if (nc1->nc_key < nc2->nc_key) { 327 return -1; 328 } 329 if (nc1->nc_key > nc2->nc_key) { 330 return 1; 331 } 332 KASSERT(nc1->nc_nlen == nc2->nc_nlen); 333 return memcmp(nc1->nc_name, nc2->nc_name, nc1->nc_nlen); 334 } 335 336 /* 337 * Compute a key value for the given name. The name length is encoded in 338 * the key value to try and improve uniqueness, and so that length doesn't 339 * need to be compared separately for string comparisons. 340 */ 341 static inline uint64_t 342 cache_key(const char *name, size_t nlen) 343 { 344 uint64_t key; 345 346 KASSERT(nlen <= USHRT_MAX); 347 348 key = hash32_buf(name, nlen, HASH32_STR_INIT); 349 return (key << 32) | nlen; 350 } 351 352 /* 353 * Remove an entry from the cache. vi_nc_lock must be held, and if dir2node 354 * is true, then we're locking in the conventional direction and the list 355 * lock will be acquired when removing the entry from the vnode list. 356 */ 357 static void 358 cache_remove(struct namecache *ncp, const bool dir2node) 359 { 360 struct vnode *vp, *dvp = ncp->nc_dvp; 361 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 362 363 KASSERT(rw_write_held(&dvi->vi_nc_lock)); 364 KASSERT(cache_key(ncp->nc_name, ncp->nc_nlen) == ncp->nc_key); 365 KASSERT(rb_tree_find_node(&dvi->vi_nc_tree, ncp) == ncp); 366 367 SDT_PROBE(vfs, namecache, invalidate, done, ncp, 368 0, 0, 0, 0); 369 370 /* 371 * Remove from the vnode's list. This excludes cache_revlookup(), 372 * and then it's safe to remove from the LRU lists. 373 */ 374 if ((vp = ncp->nc_vp) != NULL) { 375 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 376 if (__predict_true(dir2node)) { 377 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 378 TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list); 379 rw_exit(&vi->vi_nc_listlock); 380 } else { 381 TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list); 382 } 383 } 384 385 /* Remove from the directory's rbtree. */ 386 rb_tree_remove_node(&dvi->vi_nc_tree, ncp); 387 388 /* Remove from the LRU lists. */ 389 mutex_enter(&cache_lru_lock); 390 TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru); 391 cache_lru.count[ncp->nc_lrulist]--; 392 mutex_exit(&cache_lru_lock); 393 394 /* Finally, free it. */ 395 if (ncp->nc_nlen > NCHNAMLEN) { 396 size_t sz = offsetof(struct namecache, nc_name[ncp->nc_nlen]); 397 kmem_free(ncp, sz); 398 } else { 399 pool_cache_put(cache_pool, ncp); 400 } 401 } 402 403 /* 404 * Find a single cache entry and return it. vi_nc_lock must be held. 405 */ 406 static struct namecache * __noinline 407 cache_lookup_entry(struct vnode *dvp, const char *name, size_t namelen, 408 uint64_t key) 409 { 410 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 411 struct rb_node *node = dvi->vi_nc_tree.rbt_root; 412 struct namecache *ncp; 413 int lrulist, diff; 414 415 KASSERT(rw_lock_held(&dvi->vi_nc_lock)); 416 417 /* 418 * Search the RB tree for the key. This is an inlined lookup 419 * tailored for exactly what's needed here (64-bit key and so on) 420 * that is quite a bit faster than using rb_tree_find_node(). 421 * 422 * For a matching key memcmp() needs to be called once to confirm 423 * that the correct name has been found. Very rarely there will be 424 * a key value collision and the search will continue. 425 */ 426 for (;;) { 427 if (__predict_false(RB_SENTINEL_P(node))) { 428 return NULL; 429 } 430 ncp = (struct namecache *)node; 431 KASSERT((void *)&ncp->nc_tree == (void *)ncp); 432 KASSERT(ncp->nc_dvp == dvp); 433 if (ncp->nc_key == key) { 434 KASSERT(ncp->nc_nlen == namelen); 435 diff = memcmp(ncp->nc_name, name, namelen); 436 if (__predict_true(diff == 0)) { 437 break; 438 } 439 node = node->rb_nodes[diff < 0]; 440 } else { 441 node = node->rb_nodes[ncp->nc_key < key]; 442 } 443 } 444 445 /* 446 * If the entry is on the wrong LRU list, requeue it. This is an 447 * unlocked check, but it will rarely be wrong and even then there 448 * will be no harm caused. 449 */ 450 lrulist = atomic_load_relaxed(&ncp->nc_lrulist); 451 if (__predict_false(lrulist != LRU_ACTIVE)) { 452 cache_activate(ncp); 453 } 454 return ncp; 455 } 456 457 /* 458 * Look for a the name in the cache. We don't do this 459 * if the segment name is long, simply so the cache can avoid 460 * holding long names (which would either waste space, or 461 * add greatly to the complexity). 462 * 463 * Lookup is called with DVP pointing to the directory to search, 464 * and CNP providing the name of the entry being sought: cn_nameptr 465 * is the name, cn_namelen is its length, and cn_flags is the flags 466 * word from the namei operation. 467 * 468 * DVP must be locked. 469 * 470 * There are three possible non-error return states: 471 * 1. Nothing was found in the cache. Nothing is known about 472 * the requested name. 473 * 2. A negative entry was found in the cache, meaning that the 474 * requested name definitely does not exist. 475 * 3. A positive entry was found in the cache, meaning that the 476 * requested name does exist and that we are providing the 477 * vnode. 478 * In these cases the results are: 479 * 1. 0 returned; VN is set to NULL. 480 * 2. 1 returned; VN is set to NULL. 481 * 3. 1 returned; VN is set to the vnode found. 482 * 483 * The additional result argument ISWHT is set to zero, unless a 484 * negative entry is found that was entered as a whiteout, in which 485 * case ISWHT is set to one. 486 * 487 * The ISWHT_RET argument pointer may be null. In this case an 488 * assertion is made that the whiteout flag is not set. File systems 489 * that do not support whiteouts can/should do this. 490 * 491 * Filesystems that do support whiteouts should add ISWHITEOUT to 492 * cnp->cn_flags if ISWHT comes back nonzero. 493 * 494 * When a vnode is returned, it is locked, as per the vnode lookup 495 * locking protocol. 496 * 497 * There is no way for this function to fail, in the sense of 498 * generating an error that requires aborting the namei operation. 499 * 500 * (Prior to October 2012, this function returned an integer status, 501 * and a vnode, and mucked with the flags word in CNP for whiteouts. 502 * The integer status was -1 for "nothing found", ENOENT for "a 503 * negative entry found", 0 for "a positive entry found", and possibly 504 * other errors, and the value of VN might or might not have been set 505 * depending on what error occurred.) 506 */ 507 bool 508 cache_lookup(struct vnode *dvp, const char *name, size_t namelen, 509 uint32_t nameiop, uint32_t cnflags, 510 int *iswht_ret, struct vnode **vn_ret) 511 { 512 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 513 struct namecache *ncp; 514 struct vnode *vp; 515 uint64_t key; 516 int error; 517 bool hit; 518 krw_t op; 519 520 KASSERT(namelen != cache_mp_nlen || name == cache_mp_name); 521 522 /* Establish default result values */ 523 if (iswht_ret != NULL) { 524 *iswht_ret = 0; 525 } 526 *vn_ret = NULL; 527 528 if (__predict_false(namelen > cache_maxlen)) { 529 SDT_PROBE(vfs, namecache, lookup, toolong, dvp, 530 name, namelen, 0, 0); 531 COUNT(ncs_long); 532 return false; 533 } 534 535 /* Compute the key up front - don't need the lock. */ 536 key = cache_key(name, namelen); 537 538 /* Could the entry be purged below? */ 539 if ((cnflags & ISLASTCN) != 0 && 540 ((cnflags & MAKEENTRY) == 0 || nameiop == CREATE)) { 541 op = RW_WRITER; 542 } else { 543 op = RW_READER; 544 } 545 546 /* Now look for the name. */ 547 rw_enter(&dvi->vi_nc_lock, op); 548 ncp = cache_lookup_entry(dvp, name, namelen, key); 549 if (__predict_false(ncp == NULL)) { 550 rw_exit(&dvi->vi_nc_lock); 551 COUNT(ncs_miss); 552 SDT_PROBE(vfs, namecache, lookup, miss, dvp, 553 name, namelen, 0, 0); 554 return false; 555 } 556 if (__predict_false((cnflags & MAKEENTRY) == 0)) { 557 /* 558 * Last component and we are renaming or deleting, 559 * the cache entry is invalid, or otherwise don't 560 * want cache entry to exist. 561 */ 562 KASSERT((cnflags & ISLASTCN) != 0); 563 cache_remove(ncp, true); 564 rw_exit(&dvi->vi_nc_lock); 565 COUNT(ncs_badhits); 566 return false; 567 } 568 if (ncp->nc_vp == NULL) { 569 if (iswht_ret != NULL) { 570 /* 571 * Restore the ISWHITEOUT flag saved earlier. 572 */ 573 *iswht_ret = ncp->nc_whiteout; 574 } else { 575 KASSERT(!ncp->nc_whiteout); 576 } 577 if (nameiop == CREATE && (cnflags & ISLASTCN) != 0) { 578 /* 579 * Last component and we are preparing to create 580 * the named object, so flush the negative cache 581 * entry. 582 */ 583 COUNT(ncs_badhits); 584 cache_remove(ncp, true); 585 hit = false; 586 } else { 587 COUNT(ncs_neghits); 588 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, 589 namelen, 0, 0); 590 /* found neg entry; vn is already null from above */ 591 hit = true; 592 } 593 rw_exit(&dvi->vi_nc_lock); 594 return hit; 595 } 596 vp = ncp->nc_vp; 597 error = vcache_tryvget(vp); 598 rw_exit(&dvi->vi_nc_lock); 599 if (error) { 600 KASSERT(error == EBUSY); 601 /* 602 * This vnode is being cleaned out. 603 * XXX badhits? 604 */ 605 COUNT(ncs_falsehits); 606 return false; 607 } 608 609 COUNT(ncs_goodhits); 610 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0); 611 /* found it */ 612 *vn_ret = vp; 613 return true; 614 } 615 616 /* 617 * Version of the above without the nameiop argument, for NFS. 618 */ 619 bool 620 cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen, 621 uint32_t cnflags, 622 int *iswht_ret, struct vnode **vn_ret) 623 { 624 625 return cache_lookup(dvp, name, namelen, LOOKUP, cnflags | MAKEENTRY, 626 iswht_ret, vn_ret); 627 } 628 629 /* 630 * Used by namei() to walk down a path, component by component by looking up 631 * names in the cache. The node locks are chained along the way: a parent's 632 * lock is not dropped until the child's is acquired. 633 */ 634 bool 635 cache_lookup_linked(struct vnode *dvp, const char *name, size_t namelen, 636 struct vnode **vn_ret, krwlock_t **plock, 637 kauth_cred_t cred) 638 { 639 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 640 struct namecache *ncp; 641 krwlock_t *oldlock, *newlock; 642 uint64_t key; 643 int error; 644 645 KASSERT(namelen != cache_mp_nlen || name == cache_mp_name); 646 647 /* If disabled, or file system doesn't support this, bail out. */ 648 if (__predict_false((dvp->v_mount->mnt_iflag & IMNT_NCLOOKUP) == 0)) { 649 return false; 650 } 651 652 if (__predict_false(namelen > cache_maxlen)) { 653 COUNT(ncs_long); 654 return false; 655 } 656 657 /* Compute the key up front - don't need the lock. */ 658 key = cache_key(name, namelen); 659 660 /* 661 * Acquire the directory lock. Once we have that, we can drop the 662 * previous one (if any). 663 * 664 * The two lock holds mean that the directory can't go away while 665 * here: the directory must be purged with cache_purge() before 666 * being freed, and both parent & child's vi_nc_lock must be taken 667 * before that point is passed. 668 * 669 * However if there's no previous lock, like at the root of the 670 * chain, then "dvp" must be referenced to prevent dvp going away 671 * before we get its lock. 672 * 673 * Note that the two locks can be the same if looking up a dot, for 674 * example: /usr/bin/. If looking up the parent (..) we can't wait 675 * on the lock as child -> parent is the wrong direction. 676 */ 677 if (*plock != &dvi->vi_nc_lock) { 678 oldlock = *plock; 679 newlock = &dvi->vi_nc_lock; 680 if (!rw_tryenter(&dvi->vi_nc_lock, RW_READER)) { 681 return false; 682 } 683 } else { 684 oldlock = NULL; 685 newlock = NULL; 686 if (*plock == NULL) { 687 KASSERT(vrefcnt(dvp) > 0); 688 } 689 } 690 691 /* 692 * First up check if the user is allowed to look up files in this 693 * directory. 694 */ 695 if (cred != FSCRED) { 696 if (dvi->vi_nc_mode == VNOVAL) { 697 if (newlock != NULL) { 698 rw_exit(newlock); 699 } 700 return false; 701 } 702 KASSERT(dvi->vi_nc_uid != VNOVAL && dvi->vi_nc_gid != VNOVAL); 703 error = kauth_authorize_vnode(cred, KAUTH_ACCESS_ACTION(VEXEC, 704 dvp->v_type, dvi->vi_nc_mode & ALLPERMS), dvp, NULL, 705 genfs_can_access(dvp, cred, dvi->vi_nc_uid, dvi->vi_nc_gid, 706 dvi->vi_nc_mode & ALLPERMS, NULL, VEXEC)); 707 if (error != 0) { 708 if (newlock != NULL) { 709 rw_exit(newlock); 710 } 711 COUNT(ncs_denied); 712 return false; 713 } 714 } 715 716 /* 717 * Now look for a matching cache entry. 718 */ 719 ncp = cache_lookup_entry(dvp, name, namelen, key); 720 if (__predict_false(ncp == NULL)) { 721 if (newlock != NULL) { 722 rw_exit(newlock); 723 } 724 COUNT(ncs_miss); 725 SDT_PROBE(vfs, namecache, lookup, miss, dvp, 726 name, namelen, 0, 0); 727 return false; 728 } 729 if (ncp->nc_vp == NULL) { 730 /* found negative entry; vn is already null from above */ 731 KASSERT(namelen != cache_mp_nlen && name != cache_mp_name); 732 COUNT(ncs_neghits); 733 } else { 734 COUNT(ncs_goodhits); /* XXX can be "badhits" */ 735 } 736 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0); 737 738 /* 739 * Return with the directory lock still held. It will either be 740 * returned to us with another call to cache_lookup_linked() when 741 * looking up the next component, or the caller will release it 742 * manually when finished. 743 */ 744 if (oldlock) { 745 rw_exit(oldlock); 746 } 747 if (newlock) { 748 *plock = newlock; 749 } 750 *vn_ret = ncp->nc_vp; 751 return true; 752 } 753 754 /* 755 * Scan cache looking for name of directory entry pointing at vp. 756 * Will not search for "." or "..". 757 * 758 * If the lookup succeeds the vnode is referenced and stored in dvpp. 759 * 760 * If bufp is non-NULL, also place the name in the buffer which starts 761 * at bufp, immediately before *bpp, and move bpp backwards to point 762 * at the start of it. (Yes, this is a little baroque, but it's done 763 * this way to cater to the whims of getcwd). 764 * 765 * Returns 0 on success, -1 on cache miss, positive errno on failure. 766 */ 767 int 768 cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp, 769 bool checkaccess, accmode_t accmode) 770 { 771 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 772 struct namecache *ncp; 773 struct vnode *dvp; 774 int error, nlen, lrulist; 775 char *bp; 776 777 KASSERT(vp != NULL); 778 779 if (cache_maxlen == 0) 780 goto out; 781 782 rw_enter(&vi->vi_nc_listlock, RW_READER); 783 if (checkaccess) { 784 /* 785 * Check if the user is allowed to see. NOTE: this is 786 * checking for access on the "wrong" directory. getcwd() 787 * wants to see that there is access on every component 788 * along the way, not that there is access to any individual 789 * component. Don't use this to check you can look in vp. 790 * 791 * I don't like it, I didn't come up with it, don't blame me! 792 */ 793 if (vi->vi_nc_mode == VNOVAL) { 794 rw_exit(&vi->vi_nc_listlock); 795 return -1; 796 } 797 KASSERT(vi->vi_nc_uid != VNOVAL && vi->vi_nc_gid != VNOVAL); 798 error = kauth_authorize_vnode(curlwp->l_cred, 799 KAUTH_ACCESS_ACTION(VEXEC, vp->v_type, vi->vi_nc_mode & 800 ALLPERMS), vp, NULL, genfs_can_access(vp, curlwp->l_cred, 801 vi->vi_nc_uid, vi->vi_nc_gid, vi->vi_nc_mode & ALLPERMS, 802 NULL, accmode)); 803 if (error != 0) { 804 rw_exit(&vi->vi_nc_listlock); 805 COUNT(ncs_denied); 806 return EACCES; 807 } 808 } 809 TAILQ_FOREACH(ncp, &vi->vi_nc_list, nc_list) { 810 KASSERT(ncp->nc_vp == vp); 811 KASSERT(ncp->nc_dvp != NULL); 812 nlen = ncp->nc_nlen; 813 814 /* 815 * Ignore mountpoint entries. 816 */ 817 if (ncp->nc_nlen == cache_mp_nlen) { 818 continue; 819 } 820 821 /* 822 * The queue is partially sorted. Once we hit dots, nothing 823 * else remains but dots and dotdots, so bail out. 824 */ 825 if (ncp->nc_name[0] == '.') { 826 if (nlen == 1 || 827 (nlen == 2 && ncp->nc_name[1] == '.')) { 828 break; 829 } 830 } 831 832 /* 833 * Record a hit on the entry. This is an unlocked read but 834 * even if wrong it doesn't matter too much. 835 */ 836 lrulist = atomic_load_relaxed(&ncp->nc_lrulist); 837 if (lrulist != LRU_ACTIVE) { 838 cache_activate(ncp); 839 } 840 841 if (bufp) { 842 bp = *bpp; 843 bp -= nlen; 844 if (bp <= bufp) { 845 *dvpp = NULL; 846 rw_exit(&vi->vi_nc_listlock); 847 SDT_PROBE(vfs, namecache, revlookup, 848 fail, vp, ERANGE, 0, 0, 0); 849 return (ERANGE); 850 } 851 memcpy(bp, ncp->nc_name, nlen); 852 *bpp = bp; 853 } 854 855 dvp = ncp->nc_dvp; 856 error = vcache_tryvget(dvp); 857 rw_exit(&vi->vi_nc_listlock); 858 if (error) { 859 KASSERT(error == EBUSY); 860 if (bufp) 861 (*bpp) += nlen; 862 *dvpp = NULL; 863 SDT_PROBE(vfs, namecache, revlookup, fail, vp, 864 error, 0, 0, 0); 865 return -1; 866 } 867 *dvpp = dvp; 868 SDT_PROBE(vfs, namecache, revlookup, success, vp, dvp, 869 0, 0, 0); 870 COUNT(ncs_revhits); 871 return (0); 872 } 873 rw_exit(&vi->vi_nc_listlock); 874 COUNT(ncs_revmiss); 875 out: 876 *dvpp = NULL; 877 return (-1); 878 } 879 880 /* 881 * Add an entry to the cache. 882 */ 883 void 884 cache_enter(struct vnode *dvp, struct vnode *vp, 885 const char *name, size_t namelen, uint32_t cnflags) 886 { 887 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 888 struct namecache *ncp, *oncp; 889 int total; 890 891 KASSERT(namelen != cache_mp_nlen || name == cache_mp_name); 892 893 /* First, check whether we can/should add a cache entry. */ 894 if ((cnflags & MAKEENTRY) == 0 || 895 __predict_false(namelen > cache_maxlen)) { 896 SDT_PROBE(vfs, namecache, enter, toolong, vp, name, namelen, 897 0, 0); 898 return; 899 } 900 901 SDT_PROBE(vfs, namecache, enter, done, vp, name, namelen, 0, 0); 902 903 /* 904 * Reclaim some entries if over budget. This is an unlocked check, 905 * but it doesn't matter. Just need to catch up with things 906 * eventually: it doesn't matter if we go over temporarily. 907 */ 908 total = atomic_load_relaxed(&cache_lru.count[LRU_ACTIVE]); 909 total += atomic_load_relaxed(&cache_lru.count[LRU_INACTIVE]); 910 if (__predict_false(total > desiredvnodes)) { 911 cache_reclaim(); 912 } 913 914 /* Now allocate a fresh entry. */ 915 if (__predict_true(namelen <= NCHNAMLEN)) { 916 ncp = pool_cache_get(cache_pool, PR_WAITOK); 917 } else { 918 size_t sz = offsetof(struct namecache, nc_name[namelen]); 919 ncp = kmem_alloc(sz, KM_SLEEP); 920 } 921 922 /* 923 * Fill in cache info. For negative hits, save the ISWHITEOUT flag 924 * so we can restore it later when the cache entry is used again. 925 */ 926 ncp->nc_vp = vp; 927 ncp->nc_dvp = dvp; 928 ncp->nc_key = cache_key(name, namelen); 929 ncp->nc_nlen = namelen; 930 ncp->nc_whiteout = ((cnflags & ISWHITEOUT) != 0); 931 memcpy(ncp->nc_name, name, namelen); 932 933 /* 934 * Insert to the directory. Concurrent lookups may race for a cache 935 * entry. If there's a entry there already, purge it. 936 */ 937 rw_enter(&dvi->vi_nc_lock, RW_WRITER); 938 oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp); 939 if (oncp != ncp) { 940 KASSERT(oncp->nc_key == ncp->nc_key); 941 KASSERT(oncp->nc_nlen == ncp->nc_nlen); 942 KASSERT(memcmp(oncp->nc_name, name, namelen) == 0); 943 cache_remove(oncp, true); 944 oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp); 945 KASSERT(oncp == ncp); 946 } 947 948 /* 949 * With the directory lock still held, insert to the tail of the 950 * ACTIVE LRU list (new) and take the opportunity to incrementally 951 * balance the lists. 952 */ 953 mutex_enter(&cache_lru_lock); 954 ncp->nc_lrulist = LRU_ACTIVE; 955 cache_lru.count[LRU_ACTIVE]++; 956 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru); 957 cache_deactivate(); 958 mutex_exit(&cache_lru_lock); 959 960 /* 961 * Finally, insert to the vnode and unlock. With everything set up 962 * it's safe to let cache_revlookup() see the entry. Partially sort 963 * the per-vnode list: dots go to back so cache_revlookup() doesn't 964 * have to consider them. 965 */ 966 if (vp != NULL) { 967 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 968 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 969 if ((namelen == 1 && name[0] == '.') || 970 (namelen == 2 && name[0] == '.' && name[1] == '.')) { 971 TAILQ_INSERT_TAIL(&vi->vi_nc_list, ncp, nc_list); 972 } else { 973 TAILQ_INSERT_HEAD(&vi->vi_nc_list, ncp, nc_list); 974 } 975 rw_exit(&vi->vi_nc_listlock); 976 } 977 rw_exit(&dvi->vi_nc_lock); 978 } 979 980 /* 981 * Set identity info in cache for a vnode. We only care about directories 982 * so ignore other updates. The cached info may be marked invalid if the 983 * inode has an ACL. 984 */ 985 void 986 cache_enter_id(struct vnode *vp, mode_t mode, uid_t uid, gid_t gid, bool valid) 987 { 988 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 989 990 if (vp->v_type == VDIR) { 991 /* Grab both locks, for forward & reverse lookup. */ 992 rw_enter(&vi->vi_nc_lock, RW_WRITER); 993 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 994 if (valid) { 995 vi->vi_nc_mode = mode; 996 vi->vi_nc_uid = uid; 997 vi->vi_nc_gid = gid; 998 } else { 999 vi->vi_nc_mode = VNOVAL; 1000 vi->vi_nc_uid = VNOVAL; 1001 vi->vi_nc_gid = VNOVAL; 1002 } 1003 rw_exit(&vi->vi_nc_listlock); 1004 rw_exit(&vi->vi_nc_lock); 1005 } 1006 } 1007 1008 /* 1009 * Return true if we have identity for the given vnode, and use as an 1010 * opportunity to confirm that everything squares up. 1011 * 1012 * Because of shared code, some file systems could provide partial 1013 * information, missing some updates, so check the mount flag too. 1014 */ 1015 bool 1016 cache_have_id(struct vnode *vp) 1017 { 1018 1019 if (vp->v_type == VDIR && 1020 (vp->v_mount->mnt_iflag & IMNT_NCLOOKUP) != 0 && 1021 atomic_load_relaxed(&VNODE_TO_VIMPL(vp)->vi_nc_mode) != VNOVAL) { 1022 return true; 1023 } else { 1024 return false; 1025 } 1026 } 1027 1028 /* 1029 * Enter a mount point. cvp is the covered vnode, and rvp is the root of 1030 * the mounted file system. 1031 */ 1032 void 1033 cache_enter_mount(struct vnode *cvp, struct vnode *rvp) 1034 { 1035 1036 KASSERT(vrefcnt(cvp) > 0); 1037 KASSERT(vrefcnt(rvp) > 0); 1038 KASSERT(cvp->v_type == VDIR); 1039 KASSERT((rvp->v_vflag & VV_ROOT) != 0); 1040 1041 if (rvp->v_type == VDIR) { 1042 cache_enter(cvp, rvp, cache_mp_name, cache_mp_nlen, MAKEENTRY); 1043 } 1044 } 1045 1046 /* 1047 * Look up a cached mount point. Used in the strongly locked path. 1048 */ 1049 bool 1050 cache_lookup_mount(struct vnode *dvp, struct vnode **vn_ret) 1051 { 1052 bool ret; 1053 1054 ret = cache_lookup(dvp, cache_mp_name, cache_mp_nlen, LOOKUP, 1055 MAKEENTRY, NULL, vn_ret); 1056 KASSERT((*vn_ret != NULL) == ret); 1057 return ret; 1058 } 1059 1060 /* 1061 * Try to cross a mount point. For use with cache_lookup_linked(). 1062 */ 1063 bool 1064 cache_cross_mount(struct vnode **dvp, krwlock_t **plock) 1065 { 1066 1067 return cache_lookup_linked(*dvp, cache_mp_name, cache_mp_nlen, 1068 dvp, plock, FSCRED); 1069 } 1070 1071 /* 1072 * Name cache initialization, from vfs_init() when the system is booting. 1073 */ 1074 void 1075 nchinit(void) 1076 { 1077 1078 cache_pool = pool_cache_init(sizeof(struct namecache), 1079 coherency_unit, 0, 0, "namecache", NULL, IPL_NONE, NULL, 1080 NULL, NULL); 1081 KASSERT(cache_pool != NULL); 1082 1083 mutex_init(&cache_lru_lock, MUTEX_DEFAULT, IPL_NONE); 1084 TAILQ_INIT(&cache_lru.list[LRU_ACTIVE]); 1085 TAILQ_INIT(&cache_lru.list[LRU_INACTIVE]); 1086 1087 mutex_init(&cache_stat_lock, MUTEX_DEFAULT, IPL_NONE); 1088 callout_init(&cache_stat_callout, CALLOUT_MPSAFE); 1089 callout_setfunc(&cache_stat_callout, cache_update_stats, NULL); 1090 callout_schedule(&cache_stat_callout, cache_stat_interval * hz); 1091 1092 KASSERT(cache_sysctllog == NULL); 1093 sysctl_createv(&cache_sysctllog, 0, NULL, NULL, 1094 CTLFLAG_PERMANENT, 1095 CTLTYPE_STRUCT, "namecache_stats", 1096 SYSCTL_DESCR("namecache statistics"), 1097 cache_stat_sysctl, 0, NULL, 0, 1098 CTL_VFS, CTL_CREATE, CTL_EOL); 1099 } 1100 1101 /* 1102 * Called once for each CPU in the system as attached. 1103 */ 1104 void 1105 cache_cpu_init(struct cpu_info *ci) 1106 { 1107 void *p; 1108 size_t sz; 1109 1110 sz = roundup2(sizeof(struct nchcpu), coherency_unit) + coherency_unit; 1111 p = kmem_zalloc(sz, KM_SLEEP); 1112 ci->ci_data.cpu_nch = (void *)roundup2((uintptr_t)p, coherency_unit); 1113 } 1114 1115 /* 1116 * A vnode is being allocated: set up cache structures. 1117 */ 1118 void 1119 cache_vnode_init(struct vnode *vp) 1120 { 1121 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 1122 1123 rw_init(&vi->vi_nc_lock); 1124 rw_init(&vi->vi_nc_listlock); 1125 rb_tree_init(&vi->vi_nc_tree, &cache_rbtree_ops); 1126 TAILQ_INIT(&vi->vi_nc_list); 1127 vi->vi_nc_mode = VNOVAL; 1128 vi->vi_nc_uid = VNOVAL; 1129 vi->vi_nc_gid = VNOVAL; 1130 } 1131 1132 /* 1133 * A vnode is being freed: finish cache structures. 1134 */ 1135 void 1136 cache_vnode_fini(struct vnode *vp) 1137 { 1138 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 1139 1140 KASSERT(RB_TREE_MIN(&vi->vi_nc_tree) == NULL); 1141 KASSERT(TAILQ_EMPTY(&vi->vi_nc_list)); 1142 rw_destroy(&vi->vi_nc_lock); 1143 rw_destroy(&vi->vi_nc_listlock); 1144 } 1145 1146 /* 1147 * Helper for cache_purge1(): purge cache entries for the given vnode from 1148 * all directories that the vnode is cached in. 1149 */ 1150 static void 1151 cache_purge_parents(struct vnode *vp) 1152 { 1153 vnode_impl_t *dvi, *vi = VNODE_TO_VIMPL(vp); 1154 struct vnode *dvp, *blocked; 1155 struct namecache *ncp; 1156 1157 SDT_PROBE(vfs, namecache, purge, parents, vp, 0, 0, 0, 0); 1158 1159 blocked = NULL; 1160 1161 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 1162 while ((ncp = TAILQ_FIRST(&vi->vi_nc_list)) != NULL) { 1163 /* 1164 * Locking in the wrong direction. Try for a hold on the 1165 * directory node's lock, and if we get it then all good, 1166 * nuke the entry and move on to the next. 1167 */ 1168 dvp = ncp->nc_dvp; 1169 dvi = VNODE_TO_VIMPL(dvp); 1170 if (rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) { 1171 cache_remove(ncp, false); 1172 rw_exit(&dvi->vi_nc_lock); 1173 blocked = NULL; 1174 continue; 1175 } 1176 1177 /* 1178 * We can't wait on the directory node's lock with our list 1179 * lock held or the system could deadlock. 1180 * 1181 * Take a hold on the directory vnode to prevent it from 1182 * being freed (taking the vnode & lock with it). Then 1183 * wait for the lock to become available with no other locks 1184 * held, and retry. 1185 * 1186 * If this happens twice in a row, give the other side a 1187 * breather; we can do nothing until it lets go. 1188 */ 1189 vhold(dvp); 1190 rw_exit(&vi->vi_nc_listlock); 1191 rw_enter(&dvi->vi_nc_lock, RW_WRITER); 1192 /* Do nothing. */ 1193 rw_exit(&dvi->vi_nc_lock); 1194 holdrele(dvp); 1195 if (blocked == dvp) { 1196 kpause("ncpurge", false, 1, NULL); 1197 } 1198 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 1199 blocked = dvp; 1200 } 1201 rw_exit(&vi->vi_nc_listlock); 1202 } 1203 1204 /* 1205 * Helper for cache_purge1(): purge all cache entries hanging off the given 1206 * directory vnode. 1207 */ 1208 static void 1209 cache_purge_children(struct vnode *dvp) 1210 { 1211 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 1212 struct namecache *ncp; 1213 1214 SDT_PROBE(vfs, namecache, purge, children, dvp, 0, 0, 0, 0); 1215 1216 rw_enter(&dvi->vi_nc_lock, RW_WRITER); 1217 while ((ncp = RB_TREE_MIN(&dvi->vi_nc_tree)) != NULL) { 1218 cache_remove(ncp, true); 1219 } 1220 rw_exit(&dvi->vi_nc_lock); 1221 } 1222 1223 /* 1224 * Helper for cache_purge1(): purge cache entry from the given vnode, 1225 * finding it by name. 1226 */ 1227 static void 1228 cache_purge_name(struct vnode *dvp, const char *name, size_t namelen) 1229 { 1230 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 1231 struct namecache *ncp; 1232 uint64_t key; 1233 1234 SDT_PROBE(vfs, namecache, purge, name, name, namelen, 0, 0, 0); 1235 1236 key = cache_key(name, namelen); 1237 rw_enter(&dvi->vi_nc_lock, RW_WRITER); 1238 ncp = cache_lookup_entry(dvp, name, namelen, key); 1239 if (ncp) { 1240 cache_remove(ncp, true); 1241 } 1242 rw_exit(&dvi->vi_nc_lock); 1243 } 1244 1245 /* 1246 * Cache flush, a particular vnode; called when a vnode is renamed to 1247 * hide entries that would now be invalid. 1248 */ 1249 void 1250 cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags) 1251 { 1252 1253 if (flags & PURGE_PARENTS) { 1254 cache_purge_parents(vp); 1255 } 1256 if (flags & PURGE_CHILDREN) { 1257 cache_purge_children(vp); 1258 } 1259 if (name != NULL) { 1260 cache_purge_name(vp, name, namelen); 1261 } 1262 } 1263 1264 /* 1265 * vnode filter for cache_purgevfs(). 1266 */ 1267 static bool 1268 cache_vdir_filter(void *cookie, vnode_t *vp) 1269 { 1270 1271 return vp->v_type == VDIR; 1272 } 1273 1274 /* 1275 * Cache flush, a whole filesystem; called when filesys is umounted to 1276 * remove entries that would now be invalid. 1277 */ 1278 void 1279 cache_purgevfs(struct mount *mp) 1280 { 1281 struct vnode_iterator *iter; 1282 vnode_t *dvp; 1283 1284 vfs_vnode_iterator_init(mp, &iter); 1285 for (;;) { 1286 dvp = vfs_vnode_iterator_next(iter, cache_vdir_filter, NULL); 1287 if (dvp == NULL) { 1288 break; 1289 } 1290 cache_purge_children(dvp); 1291 vrele(dvp); 1292 } 1293 vfs_vnode_iterator_destroy(iter); 1294 } 1295 1296 /* 1297 * Re-queue an entry onto the tail of the active LRU list, after it has 1298 * scored a hit. 1299 */ 1300 static void 1301 cache_activate(struct namecache *ncp) 1302 { 1303 1304 mutex_enter(&cache_lru_lock); 1305 TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru); 1306 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru); 1307 cache_lru.count[ncp->nc_lrulist]--; 1308 cache_lru.count[LRU_ACTIVE]++; 1309 ncp->nc_lrulist = LRU_ACTIVE; 1310 mutex_exit(&cache_lru_lock); 1311 } 1312 1313 /* 1314 * Try to balance the LRU lists. Pick some victim entries, and re-queue 1315 * them from the head of the active list to the tail of the inactive list. 1316 */ 1317 static void 1318 cache_deactivate(void) 1319 { 1320 struct namecache *ncp; 1321 int total, i; 1322 1323 KASSERT(mutex_owned(&cache_lru_lock)); 1324 1325 /* If we're nowhere near budget yet, don't bother. */ 1326 total = cache_lru.count[LRU_ACTIVE] + cache_lru.count[LRU_INACTIVE]; 1327 if (total < (desiredvnodes >> 1)) { 1328 return; 1329 } 1330 1331 /* 1332 * Aim for a 1:1 ratio of active to inactive. This is to allow each 1333 * potential victim a reasonable amount of time to cycle through the 1334 * inactive list in order to score a hit and be reactivated, while 1335 * trying not to cause reactivations too frequently. 1336 */ 1337 if (cache_lru.count[LRU_ACTIVE] < cache_lru.count[LRU_INACTIVE]) { 1338 return; 1339 } 1340 1341 /* Move only a few at a time; will catch up eventually. */ 1342 for (i = 0; i < cache_lru_maxdeact; i++) { 1343 ncp = TAILQ_FIRST(&cache_lru.list[LRU_ACTIVE]); 1344 if (ncp == NULL) { 1345 break; 1346 } 1347 KASSERT(ncp->nc_lrulist == LRU_ACTIVE); 1348 ncp->nc_lrulist = LRU_INACTIVE; 1349 TAILQ_REMOVE(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru); 1350 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE], ncp, nc_lru); 1351 cache_lru.count[LRU_ACTIVE]--; 1352 cache_lru.count[LRU_INACTIVE]++; 1353 } 1354 } 1355 1356 /* 1357 * Free some entries from the cache, when we have gone over budget. 1358 * 1359 * We don't want to cause too much work for any individual caller, and it 1360 * doesn't matter if we temporarily go over budget. This is also "just a 1361 * cache" so it's not a big deal if we screw up and throw out something we 1362 * shouldn't. So we take a relaxed attitude to this process to reduce its 1363 * impact. 1364 */ 1365 static void 1366 cache_reclaim(void) 1367 { 1368 struct namecache *ncp; 1369 vnode_impl_t *dvi; 1370 int toscan; 1371 1372 /* 1373 * Scan up to a preset maxium number of entries, but no more than 1374 * 0.8% of the total at once (to allow for very small systems). 1375 * 1376 * On bigger systems, do a larger chunk of work to reduce the number 1377 * of times that cache_lru_lock is held for any length of time. 1378 */ 1379 mutex_enter(&cache_lru_lock); 1380 toscan = MIN(cache_lru_maxscan, desiredvnodes >> 7); 1381 toscan = MAX(toscan, 1); 1382 SDT_PROBE(vfs, namecache, prune, done, cache_lru.count[LRU_ACTIVE] + 1383 cache_lru.count[LRU_INACTIVE], toscan, 0, 0, 0); 1384 while (toscan-- != 0) { 1385 /* First try to balance the lists. */ 1386 cache_deactivate(); 1387 1388 /* Now look for a victim on head of inactive list (old). */ 1389 ncp = TAILQ_FIRST(&cache_lru.list[LRU_INACTIVE]); 1390 if (ncp == NULL) { 1391 break; 1392 } 1393 dvi = VNODE_TO_VIMPL(ncp->nc_dvp); 1394 KASSERT(ncp->nc_lrulist == LRU_INACTIVE); 1395 KASSERT(dvi != NULL); 1396 1397 /* 1398 * Locking in the wrong direction. If we can't get the 1399 * lock, the directory is actively busy, and it could also 1400 * cause problems for the next guy in here, so send the 1401 * entry to the back of the list. 1402 */ 1403 if (!rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) { 1404 TAILQ_REMOVE(&cache_lru.list[LRU_INACTIVE], 1405 ncp, nc_lru); 1406 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE], 1407 ncp, nc_lru); 1408 continue; 1409 } 1410 1411 /* 1412 * Now have the victim entry locked. Drop the LRU list 1413 * lock, purge the entry, and start over. The hold on 1414 * vi_nc_lock will prevent the vnode from vanishing until 1415 * finished (cache_purge() will be called on dvp before it 1416 * disappears, and that will wait on vi_nc_lock). 1417 */ 1418 mutex_exit(&cache_lru_lock); 1419 cache_remove(ncp, true); 1420 rw_exit(&dvi->vi_nc_lock); 1421 mutex_enter(&cache_lru_lock); 1422 } 1423 mutex_exit(&cache_lru_lock); 1424 } 1425 1426 /* 1427 * For file system code: count a lookup that required a full re-scan of 1428 * directory metadata. 1429 */ 1430 void 1431 namecache_count_pass2(void) 1432 { 1433 1434 COUNT(ncs_pass2); 1435 } 1436 1437 /* 1438 * For file system code: count a lookup that scored a hit in the directory 1439 * metadata near the location of the last lookup. 1440 */ 1441 void 1442 namecache_count_2passes(void) 1443 { 1444 1445 COUNT(ncs_2passes); 1446 } 1447 1448 /* 1449 * Sum the stats from all CPUs into nchstats. This needs to run at least 1450 * once within every window where a 32-bit counter could roll over. It's 1451 * called regularly by timer to ensure this. 1452 */ 1453 static void 1454 cache_update_stats(void *cookie) 1455 { 1456 CPU_INFO_ITERATOR cii; 1457 struct cpu_info *ci; 1458 1459 mutex_enter(&cache_stat_lock); 1460 for (CPU_INFO_FOREACH(cii, ci)) { 1461 struct nchcpu *nchcpu = ci->ci_data.cpu_nch; 1462 UPDATE(nchcpu, ncs_goodhits); 1463 UPDATE(nchcpu, ncs_neghits); 1464 UPDATE(nchcpu, ncs_badhits); 1465 UPDATE(nchcpu, ncs_falsehits); 1466 UPDATE(nchcpu, ncs_miss); 1467 UPDATE(nchcpu, ncs_long); 1468 UPDATE(nchcpu, ncs_pass2); 1469 UPDATE(nchcpu, ncs_2passes); 1470 UPDATE(nchcpu, ncs_revhits); 1471 UPDATE(nchcpu, ncs_revmiss); 1472 UPDATE(nchcpu, ncs_denied); 1473 } 1474 if (cookie != NULL) { 1475 memcpy(cookie, &nchstats, sizeof(nchstats)); 1476 } 1477 /* Reset the timer; arrive back here in N minutes at latest. */ 1478 callout_schedule(&cache_stat_callout, cache_stat_interval * hz); 1479 mutex_exit(&cache_stat_lock); 1480 } 1481 1482 /* 1483 * Fetch the current values of the stats for sysctl. 1484 */ 1485 static int 1486 cache_stat_sysctl(SYSCTLFN_ARGS) 1487 { 1488 struct nchstats stats; 1489 1490 if (oldp == NULL) { 1491 *oldlenp = sizeof(nchstats); 1492 return 0; 1493 } 1494 1495 if (*oldlenp <= 0) { 1496 *oldlenp = 0; 1497 return 0; 1498 } 1499 1500 /* Refresh the global stats. */ 1501 sysctl_unlock(); 1502 cache_update_stats(&stats); 1503 sysctl_relock(); 1504 1505 *oldlenp = MIN(sizeof(stats), *oldlenp); 1506 return sysctl_copyout(l, &stats, oldp, *oldlenp); 1507 } 1508 1509 /* 1510 * For the debugger, given the address of a vnode, print all associated 1511 * names in the cache. 1512 */ 1513 #ifdef DDB 1514 void 1515 namecache_print(struct vnode *vp, void (*pr)(const char *, ...)) 1516 { 1517 struct vnode *dvp = NULL; 1518 struct namecache *ncp; 1519 enum cache_lru_id id; 1520 1521 for (id = 0; id < LRU_COUNT; id++) { 1522 TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) { 1523 if (ncp->nc_vp == vp) { 1524 (*pr)("name %.*s\n", ncp->nc_nlen, 1525 ncp->nc_name); 1526 dvp = ncp->nc_dvp; 1527 } 1528 } 1529 } 1530 if (dvp == NULL) { 1531 (*pr)("name not found\n"); 1532 return; 1533 } 1534 for (id = 0; id < LRU_COUNT; id++) { 1535 TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) { 1536 if (ncp->nc_vp == dvp) { 1537 (*pr)("parent %.*s\n", ncp->nc_nlen, 1538 ncp->nc_name); 1539 } 1540 } 1541 } 1542 } 1543 #endif 1544