xref: /netbsd-src/sys/kern/vfs_cache.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /*	$NetBSD: vfs_cache.c,v 1.152 2021/11/01 21:28:03 andvar Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, 2019, 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1989, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *	@(#)vfs_cache.c	8.3 (Berkeley) 8/22/94
61  */
62 
63 /*
64  * Name caching:
65  *
66  *	Names found by directory scans are retained in a cache for future
67  *	reference.  It is managed LRU, so frequently used names will hang
68  *	around.  The cache is indexed by hash value obtained from the name.
69  *
70  *	The name cache is the brainchild of Robert Elz and was introduced in
71  *	4.3BSD.  See "Using gprof to Tune the 4.2BSD Kernel", Marshall Kirk
72  *	McKusick, May 21 1984.
73  *
74  * Data structures:
75  *
76  *	Most Unix namecaches very sensibly use a global hash table to index
77  *	names.  The global hash table works well, but can cause concurrency
78  *	headaches for the kernel hacker.  In the NetBSD 10.0 implementation
79  *	we are not sensible, and use a per-directory data structure to index
80  *	names, but the cache otherwise functions the same.
81  *
82  *	The index is a red-black tree.  There are no special concurrency
83  *	requirements placed on it, because it's per-directory and protected
84  *	by the namecache's per-directory locks.  It should therefore not be
85  *	difficult to experiment with other types of index.
86  *
87  *	Each cached name is stored in a struct namecache, along with a
88  *	pointer to the associated vnode (nc_vp).  Names longer than a
89  *	maximum length of NCHNAMLEN are allocated with kmem_alloc(); they
90  *	occur infrequently, and names shorter than this are stored directly
91  *	in struct namecache.  If it is a "negative" entry, (i.e. for a name
92  *	that is known NOT to exist) the vnode pointer will be NULL.
93  *
94  *	For a directory with 3 cached names for 3 distinct vnodes, the
95  *	various vnodes and namecache structs would be connected like this
96  *	(the root is at the bottom of the diagram):
97  *
98  *          ...
99  *           ^
100  *           |- vi_nc_tree
101  *           |
102  *      +----o----+               +---------+               +---------+
103  *      |  VDIR   |               |  VCHR   |               |  VREG   |
104  *      |  vnode  o-----+         |  vnode  o-----+         |  vnode  o------+
105  *      +---------+     |         +---------+     |         +---------+      |
106  *           ^          |              ^          |              ^           |
107  *           |- nc_vp   |- vi_nc_list  |- nc_vp   |- vi_nc_list  |- nc_vp    |
108  *           |          |              |          |              |           |
109  *      +----o----+     |         +----o----+     |         +----o----+      |
110  *  +---onamecache|<----+     +---onamecache|<----+     +---onamecache|<-----+
111  *  |   +---------+           |   +---------+           |   +---------+
112  *  |        ^                |        ^                |        ^
113  *  |        |                |        |                |        |
114  *  |        |  +----------------------+                |        |
115  *  |-nc_dvp | +-------------------------------------------------+
116  *  |        |/- vi_nc_tree   |                         |
117  *  |        |                |- nc_dvp                 |- nc_dvp
118  *  |   +----o----+           |                         |
119  *  +-->|  VDIR   |<----------+                         |
120  *      |  vnode  |<------------------------------------+
121  *      +---------+
122  *
123  *      START HERE
124  *
125  * Replacement:
126  *
127  *	As the cache becomes full, old and unused entries are purged as new
128  *	entries are added.  The synchronization overhead in maintaining a
129  *	strict ordering would be prohibitive, so the VM system's "clock" or
130  *	"second chance" page replacement algorithm is aped here.  New
131  *	entries go to the tail of the active list.  After they age out and
132  *	reach the head of the list, they are moved to the tail of the
133  *	inactive list.  Any use of the deactivated cache entry reactivates
134  *	it, saving it from impending doom; if not reactivated, the entry
135  *	eventually reaches the head of the inactive list and is purged.
136  *
137  * Concurrency:
138  *
139  *	From a performance perspective, cache_lookup(nameiop == LOOKUP) is
140  *	what really matters; insertion of new entries with cache_enter() is
141  *	comparatively infrequent, and overshadowed by the cost of expensive
142  *	file system metadata operations (which may involve disk I/O).  We
143  *	therefore want to make everything simplest in the lookup path.
144  *
145  *	struct namecache is mostly stable except for list and tree related
146  *	entries, changes to which don't affect the cached name or vnode.
147  *	For changes to name+vnode, entries are purged in preference to
148  *	modifying them.
149  *
150  *	Read access to namecache entries is made via tree, list, or LRU
151  *	list.  A lock corresponding to the direction of access should be
152  *	held.  See definition of "struct namecache" in src/sys/namei.src,
153  *	and the definition of "struct vnode" for the particulars.
154  *
155  *	Per-CPU statistics, and LRU list totals are read unlocked, since
156  *	an approximate value is OK.  We maintain 32-bit sized per-CPU
157  *	counters and 64-bit global counters under the theory that 32-bit
158  *	sized counters are less likely to be hosed by nonatomic increment
159  *	(on 32-bit platforms).
160  *
161  *	The lock order is:
162  *
163  *	1) vi->vi_nc_lock	(tree or parent -> child direction,
164  *				 used during forward lookup)
165  *
166  *	2) vi->vi_nc_listlock	(list or child -> parent direction,
167  *				 used during reverse lookup)
168  *
169  *	3) cache_lru_lock	(LRU list direction, used during reclaim)
170  *
171  *	4) vp->v_interlock	(what the cache entry points to)
172  */
173 
174 #include <sys/cdefs.h>
175 __KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.152 2021/11/01 21:28:03 andvar Exp $");
176 
177 #define __NAMECACHE_PRIVATE
178 #ifdef _KERNEL_OPT
179 #include "opt_ddb.h"
180 #include "opt_dtrace.h"
181 #endif
182 
183 #include <sys/param.h>
184 #include <sys/types.h>
185 #include <sys/atomic.h>
186 #include <sys/callout.h>
187 #include <sys/cpu.h>
188 #include <sys/errno.h>
189 #include <sys/evcnt.h>
190 #include <sys/hash.h>
191 #include <sys/kernel.h>
192 #include <sys/mount.h>
193 #include <sys/mutex.h>
194 #include <sys/namei.h>
195 #include <sys/param.h>
196 #include <sys/pool.h>
197 #include <sys/sdt.h>
198 #include <sys/sysctl.h>
199 #include <sys/systm.h>
200 #include <sys/time.h>
201 #include <sys/vnode_impl.h>
202 
203 #include <miscfs/genfs/genfs.h>
204 
205 static void	cache_activate(struct namecache *);
206 static void	cache_update_stats(void *);
207 static int	cache_compare_nodes(void *, const void *, const void *);
208 static void	cache_deactivate(void);
209 static void	cache_reclaim(void);
210 static int	cache_stat_sysctl(SYSCTLFN_ARGS);
211 
212 /*
213  * Global pool cache.
214  */
215 static pool_cache_t cache_pool __read_mostly;
216 
217 /*
218  * LRU replacement.
219  */
220 enum cache_lru_id {
221 	LRU_ACTIVE,
222 	LRU_INACTIVE,
223 	LRU_COUNT
224 };
225 
226 static struct {
227 	TAILQ_HEAD(, namecache)	list[LRU_COUNT];
228 	u_int			count[LRU_COUNT];
229 } cache_lru __cacheline_aligned;
230 
231 static kmutex_t cache_lru_lock __cacheline_aligned;
232 
233 /*
234  * Cache effectiveness statistics.  nchstats holds system-wide total.
235  */
236 struct nchstats	nchstats;
237 struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t);
238 struct nchcpu {
239 	struct nchstats_percpu cur;
240 	struct nchstats_percpu last;
241 };
242 static callout_t cache_stat_callout;
243 static kmutex_t cache_stat_lock __cacheline_aligned;
244 
245 #define	COUNT(f) do { \
246 	lwp_t *l = curlwp; \
247 	KPREEMPT_DISABLE(l); \
248 	struct nchcpu *nchcpu = curcpu()->ci_data.cpu_nch; \
249 	nchcpu->cur.f++; \
250 	KPREEMPT_ENABLE(l); \
251 } while (/* CONSTCOND */ 0);
252 
253 #define	UPDATE(nchcpu, f) do { \
254 	uint32_t cur = atomic_load_relaxed(&nchcpu->cur.f); \
255 	nchstats.f += (uint32_t)(cur - nchcpu->last.f); \
256 	nchcpu->last.f = cur; \
257 } while (/* CONSTCOND */ 0)
258 
259 /*
260  * Tunables.  cache_maxlen replaces the historical doingcache:
261  * set it zero to disable caching for debugging purposes.
262  */
263 int cache_lru_maxdeact __read_mostly = 2;	/* max # to deactivate */
264 int cache_lru_maxscan __read_mostly = 64;	/* max # to scan/reclaim */
265 int cache_maxlen __read_mostly = USHRT_MAX;	/* max name length to cache */
266 int cache_stat_interval __read_mostly = 300;	/* in seconds */
267 
268 /*
269  * sysctl stuff.
270  */
271 static struct	sysctllog *cache_sysctllog;
272 
273 /*
274  * This is a dummy name that cannot usually occur anywhere in the cache nor
275  * file system.  It's used when caching the root vnode of mounted file
276  * systems.  The name is attached to the directory that the file system is
277  * mounted on.
278  */
279 static const char cache_mp_name[] = "";
280 static const int cache_mp_nlen = sizeof(cache_mp_name) - 1;
281 
282 /*
283  * Red-black tree stuff.
284  */
285 static const rb_tree_ops_t cache_rbtree_ops = {
286 	.rbto_compare_nodes = cache_compare_nodes,
287 	.rbto_compare_key = cache_compare_nodes,
288 	.rbto_node_offset = offsetof(struct namecache, nc_tree),
289 	.rbto_context = NULL
290 };
291 
292 /*
293  * dtrace probes.
294  */
295 SDT_PROVIDER_DEFINE(vfs);
296 
297 SDT_PROBE_DEFINE1(vfs, namecache, invalidate, done, "struct vnode *");
298 SDT_PROBE_DEFINE1(vfs, namecache, purge, parents, "struct vnode *");
299 SDT_PROBE_DEFINE1(vfs, namecache, purge, children, "struct vnode *");
300 SDT_PROBE_DEFINE2(vfs, namecache, purge, name, "char *", "size_t");
301 SDT_PROBE_DEFINE1(vfs, namecache, purge, vfs, "struct mount *");
302 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *",
303     "char *", "size_t");
304 SDT_PROBE_DEFINE3(vfs, namecache, lookup, miss, "struct vnode *",
305     "char *", "size_t");
306 SDT_PROBE_DEFINE3(vfs, namecache, lookup, toolong, "struct vnode *",
307     "char *", "size_t");
308 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, success, "struct vnode *",
309      "struct vnode *");
310 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, fail, "struct vnode *",
311      "int");
312 SDT_PROBE_DEFINE2(vfs, namecache, prune, done, "int", "int");
313 SDT_PROBE_DEFINE3(vfs, namecache, enter, toolong, "struct vnode *",
314     "char *", "size_t");
315 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *",
316     "char *", "size_t");
317 
318 /*
319  * rbtree: compare two nodes.
320  */
321 static int
322 cache_compare_nodes(void *context, const void *n1, const void *n2)
323 {
324 	const struct namecache *nc1 = n1;
325 	const struct namecache *nc2 = n2;
326 
327 	if (nc1->nc_key < nc2->nc_key) {
328 		return -1;
329 	}
330 	if (nc1->nc_key > nc2->nc_key) {
331 		return 1;
332 	}
333 	KASSERT(nc1->nc_nlen == nc2->nc_nlen);
334 	return memcmp(nc1->nc_name, nc2->nc_name, nc1->nc_nlen);
335 }
336 
337 /*
338  * Compute a key value for the given name.  The name length is encoded in
339  * the key value to try and improve uniqueness, and so that length doesn't
340  * need to be compared separately for string comparisons.
341  */
342 static inline uint64_t
343 cache_key(const char *name, size_t nlen)
344 {
345 	uint64_t key;
346 
347 	KASSERT(nlen <= USHRT_MAX);
348 
349 	key = hash32_buf(name, nlen, HASH32_STR_INIT);
350 	return (key << 32) | nlen;
351 }
352 
353 /*
354  * Remove an entry from the cache.  vi_nc_lock must be held, and if dir2node
355  * is true, then we're locking in the conventional direction and the list
356  * lock will be acquired when removing the entry from the vnode list.
357  */
358 static void
359 cache_remove(struct namecache *ncp, const bool dir2node)
360 {
361 	struct vnode *vp, *dvp = ncp->nc_dvp;
362 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
363 
364 	KASSERT(rw_write_held(&dvi->vi_nc_lock));
365 	KASSERT(cache_key(ncp->nc_name, ncp->nc_nlen) == ncp->nc_key);
366 	KASSERT(rb_tree_find_node(&dvi->vi_nc_tree, ncp) == ncp);
367 
368 	SDT_PROBE(vfs, namecache, invalidate, done, ncp,
369 	    0, 0, 0, 0);
370 
371 	/*
372 	 * Remove from the vnode's list.  This excludes cache_revlookup(),
373 	 * and then it's safe to remove from the LRU lists.
374 	 */
375 	if ((vp = ncp->nc_vp) != NULL) {
376 		vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
377 		if (__predict_true(dir2node)) {
378 			rw_enter(&vi->vi_nc_listlock, RW_WRITER);
379 			TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list);
380 			rw_exit(&vi->vi_nc_listlock);
381 		} else {
382 			TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list);
383 		}
384 	}
385 
386 	/* Remove from the directory's rbtree. */
387 	rb_tree_remove_node(&dvi->vi_nc_tree, ncp);
388 
389 	/* Remove from the LRU lists. */
390 	mutex_enter(&cache_lru_lock);
391 	TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru);
392 	cache_lru.count[ncp->nc_lrulist]--;
393 	mutex_exit(&cache_lru_lock);
394 
395 	/* Finally, free it. */
396 	if (ncp->nc_nlen > NCHNAMLEN) {
397 		size_t sz = offsetof(struct namecache, nc_name[ncp->nc_nlen]);
398 		kmem_free(ncp, sz);
399 	} else {
400 		pool_cache_put(cache_pool, ncp);
401 	}
402 }
403 
404 /*
405  * Find a single cache entry and return it.  vi_nc_lock must be held.
406  */
407 static struct namecache * __noinline
408 cache_lookup_entry(struct vnode *dvp, const char *name, size_t namelen,
409     uint64_t key)
410 {
411 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
412 	struct rb_node *node = dvi->vi_nc_tree.rbt_root;
413 	struct namecache *ncp;
414 	int lrulist, diff;
415 
416 	KASSERT(rw_lock_held(&dvi->vi_nc_lock));
417 
418 	/*
419 	 * Search the RB tree for the key.  This is an inlined lookup
420 	 * tailored for exactly what's needed here (64-bit key and so on)
421 	 * that is quite a bit faster than using rb_tree_find_node().
422 	 *
423 	 * For a matching key memcmp() needs to be called once to confirm
424 	 * that the correct name has been found.  Very rarely there will be
425 	 * a key value collision and the search will continue.
426 	 */
427 	for (;;) {
428 		if (__predict_false(RB_SENTINEL_P(node))) {
429 			return NULL;
430 		}
431 		ncp = (struct namecache *)node;
432 		KASSERT((void *)&ncp->nc_tree == (void *)ncp);
433 		KASSERT(ncp->nc_dvp == dvp);
434 		if (ncp->nc_key == key) {
435 			KASSERT(ncp->nc_nlen == namelen);
436 			diff = memcmp(ncp->nc_name, name, namelen);
437 			if (__predict_true(diff == 0)) {
438 				break;
439 			}
440 			node = node->rb_nodes[diff < 0];
441 		} else {
442 			node = node->rb_nodes[ncp->nc_key < key];
443 		}
444 	}
445 
446 	/*
447 	 * If the entry is on the wrong LRU list, requeue it.  This is an
448 	 * unlocked check, but it will rarely be wrong and even then there
449 	 * will be no harm caused.
450 	 */
451 	lrulist = atomic_load_relaxed(&ncp->nc_lrulist);
452 	if (__predict_false(lrulist != LRU_ACTIVE)) {
453 		cache_activate(ncp);
454 	}
455 	return ncp;
456 }
457 
458 /*
459  * Look for a the name in the cache. We don't do this
460  * if the segment name is long, simply so the cache can avoid
461  * holding long names (which would either waste space, or
462  * add greatly to the complexity).
463  *
464  * Lookup is called with DVP pointing to the directory to search,
465  * and CNP providing the name of the entry being sought: cn_nameptr
466  * is the name, cn_namelen is its length, and cn_flags is the flags
467  * word from the namei operation.
468  *
469  * DVP must be locked.
470  *
471  * There are three possible non-error return states:
472  *    1. Nothing was found in the cache. Nothing is known about
473  *       the requested name.
474  *    2. A negative entry was found in the cache, meaning that the
475  *       requested name definitely does not exist.
476  *    3. A positive entry was found in the cache, meaning that the
477  *       requested name does exist and that we are providing the
478  *       vnode.
479  * In these cases the results are:
480  *    1. 0 returned; VN is set to NULL.
481  *    2. 1 returned; VN is set to NULL.
482  *    3. 1 returned; VN is set to the vnode found.
483  *
484  * The additional result argument ISWHT is set to zero, unless a
485  * negative entry is found that was entered as a whiteout, in which
486  * case ISWHT is set to one.
487  *
488  * The ISWHT_RET argument pointer may be null. In this case an
489  * assertion is made that the whiteout flag is not set. File systems
490  * that do not support whiteouts can/should do this.
491  *
492  * Filesystems that do support whiteouts should add ISWHITEOUT to
493  * cnp->cn_flags if ISWHT comes back nonzero.
494  *
495  * When a vnode is returned, it is locked, as per the vnode lookup
496  * locking protocol.
497  *
498  * There is no way for this function to fail, in the sense of
499  * generating an error that requires aborting the namei operation.
500  *
501  * (Prior to October 2012, this function returned an integer status,
502  * and a vnode, and mucked with the flags word in CNP for whiteouts.
503  * The integer status was -1 for "nothing found", ENOENT for "a
504  * negative entry found", 0 for "a positive entry found", and possibly
505  * other errors, and the value of VN might or might not have been set
506  * depending on what error occurred.)
507  */
508 bool
509 cache_lookup(struct vnode *dvp, const char *name, size_t namelen,
510 	     uint32_t nameiop, uint32_t cnflags,
511 	     int *iswht_ret, struct vnode **vn_ret)
512 {
513 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
514 	struct namecache *ncp;
515 	struct vnode *vp;
516 	uint64_t key;
517 	int error;
518 	bool hit;
519 	krw_t op;
520 
521 	KASSERT(namelen != cache_mp_nlen || name == cache_mp_name);
522 
523 	/* Establish default result values */
524 	if (iswht_ret != NULL) {
525 		*iswht_ret = 0;
526 	}
527 	*vn_ret = NULL;
528 
529 	if (__predict_false(namelen > cache_maxlen)) {
530 		SDT_PROBE(vfs, namecache, lookup, toolong, dvp,
531 		    name, namelen, 0, 0);
532 		COUNT(ncs_long);
533 		return false;
534 	}
535 
536 	/* Compute the key up front - don't need the lock. */
537 	key = cache_key(name, namelen);
538 
539 	/* Could the entry be purged below? */
540 	if ((cnflags & ISLASTCN) != 0 &&
541 	    ((cnflags & MAKEENTRY) == 0 || nameiop == CREATE)) {
542 	    	op = RW_WRITER;
543 	} else {
544 		op = RW_READER;
545 	}
546 
547 	/* Now look for the name. */
548 	rw_enter(&dvi->vi_nc_lock, op);
549 	ncp = cache_lookup_entry(dvp, name, namelen, key);
550 	if (__predict_false(ncp == NULL)) {
551 		rw_exit(&dvi->vi_nc_lock);
552 		COUNT(ncs_miss);
553 		SDT_PROBE(vfs, namecache, lookup, miss, dvp,
554 		    name, namelen, 0, 0);
555 		return false;
556 	}
557 	if (__predict_false((cnflags & MAKEENTRY) == 0)) {
558 		/*
559 		 * Last component and we are renaming or deleting,
560 		 * the cache entry is invalid, or otherwise don't
561 		 * want cache entry to exist.
562 		 */
563 		KASSERT((cnflags & ISLASTCN) != 0);
564 		cache_remove(ncp, true);
565 		rw_exit(&dvi->vi_nc_lock);
566 		COUNT(ncs_badhits);
567 		return false;
568 	}
569 	if (ncp->nc_vp == NULL) {
570 		if (iswht_ret != NULL) {
571 			/*
572 			 * Restore the ISWHITEOUT flag saved earlier.
573 			 */
574 			*iswht_ret = ncp->nc_whiteout;
575 		} else {
576 			KASSERT(!ncp->nc_whiteout);
577 		}
578 		if (nameiop == CREATE && (cnflags & ISLASTCN) != 0) {
579 			/*
580 			 * Last component and we are preparing to create
581 			 * the named object, so flush the negative cache
582 			 * entry.
583 			 */
584 			COUNT(ncs_badhits);
585 			cache_remove(ncp, true);
586 			hit = false;
587 		} else {
588 			COUNT(ncs_neghits);
589 			SDT_PROBE(vfs, namecache, lookup, hit, dvp, name,
590 			    namelen, 0, 0);
591 			/* found neg entry; vn is already null from above */
592 			hit = true;
593 		}
594 		rw_exit(&dvi->vi_nc_lock);
595 		return hit;
596 	}
597 	vp = ncp->nc_vp;
598 	error = vcache_tryvget(vp);
599 	rw_exit(&dvi->vi_nc_lock);
600 	if (error) {
601 		KASSERT(error == EBUSY);
602 		/*
603 		 * This vnode is being cleaned out.
604 		 * XXX badhits?
605 		 */
606 		COUNT(ncs_falsehits);
607 		return false;
608 	}
609 
610 	COUNT(ncs_goodhits);
611 	SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
612 	/* found it */
613 	*vn_ret = vp;
614 	return true;
615 }
616 
617 /*
618  * Version of the above without the nameiop argument, for NFS.
619  */
620 bool
621 cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen,
622 		 uint32_t cnflags,
623 		 int *iswht_ret, struct vnode **vn_ret)
624 {
625 
626 	return cache_lookup(dvp, name, namelen, LOOKUP, cnflags | MAKEENTRY,
627 	    iswht_ret, vn_ret);
628 }
629 
630 /*
631  * Used by namei() to walk down a path, component by component by looking up
632  * names in the cache.  The node locks are chained along the way: a parent's
633  * lock is not dropped until the child's is acquired.
634  */
635 bool
636 cache_lookup_linked(struct vnode *dvp, const char *name, size_t namelen,
637 		    struct vnode **vn_ret, krwlock_t **plock,
638 		    kauth_cred_t cred)
639 {
640 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
641 	struct namecache *ncp;
642 	krwlock_t *oldlock, *newlock;
643 	uint64_t key;
644 	int error;
645 
646 	KASSERT(namelen != cache_mp_nlen || name == cache_mp_name);
647 
648 	/* If disabled, or file system doesn't support this, bail out. */
649 	if (__predict_false((dvp->v_mount->mnt_iflag & IMNT_NCLOOKUP) == 0)) {
650 		return false;
651 	}
652 
653 	if (__predict_false(namelen > cache_maxlen)) {
654 		COUNT(ncs_long);
655 		return false;
656 	}
657 
658 	/* Compute the key up front - don't need the lock. */
659 	key = cache_key(name, namelen);
660 
661 	/*
662 	 * Acquire the directory lock.  Once we have that, we can drop the
663 	 * previous one (if any).
664 	 *
665 	 * The two lock holds mean that the directory can't go away while
666 	 * here: the directory must be purged with cache_purge() before
667 	 * being freed, and both parent & child's vi_nc_lock must be taken
668 	 * before that point is passed.
669 	 *
670 	 * However if there's no previous lock, like at the root of the
671 	 * chain, then "dvp" must be referenced to prevent dvp going away
672 	 * before we get its lock.
673 	 *
674 	 * Note that the two locks can be the same if looking up a dot, for
675 	 * example: /usr/bin/.  If looking up the parent (..) we can't wait
676 	 * on the lock as child -> parent is the wrong direction.
677 	 */
678 	if (*plock != &dvi->vi_nc_lock) {
679 		oldlock = *plock;
680 		newlock = &dvi->vi_nc_lock;
681 		if (!rw_tryenter(&dvi->vi_nc_lock, RW_READER)) {
682 			return false;
683 		}
684 	} else {
685 		oldlock = NULL;
686 		newlock = NULL;
687 		if (*plock == NULL) {
688 			KASSERT(vrefcnt(dvp) > 0);
689 		}
690 	}
691 
692 	/*
693 	 * First up check if the user is allowed to look up files in this
694 	 * directory.
695 	 */
696 	if (cred != FSCRED) {
697 		if (dvi->vi_nc_mode == VNOVAL) {
698 			if (newlock != NULL) {
699 				rw_exit(newlock);
700 			}
701 			return false;
702 		}
703 		KASSERT(dvi->vi_nc_uid != VNOVAL && dvi->vi_nc_gid != VNOVAL);
704 		error = kauth_authorize_vnode(cred,
705 		    KAUTH_ACCESS_ACTION(VEXEC,
706 		    dvp->v_type, dvi->vi_nc_mode & ALLPERMS), dvp, NULL,
707 		    genfs_can_access(dvp, cred, dvi->vi_nc_uid, dvi->vi_nc_gid,
708 		    dvi->vi_nc_mode & ALLPERMS, NULL, VEXEC));
709 		if (error != 0) {
710 			if (newlock != NULL) {
711 				rw_exit(newlock);
712 			}
713 			COUNT(ncs_denied);
714 			return false;
715 		}
716 	}
717 
718 	/*
719 	 * Now look for a matching cache entry.
720 	 */
721 	ncp = cache_lookup_entry(dvp, name, namelen, key);
722 	if (__predict_false(ncp == NULL)) {
723 		if (newlock != NULL) {
724 			rw_exit(newlock);
725 		}
726 		COUNT(ncs_miss);
727 		SDT_PROBE(vfs, namecache, lookup, miss, dvp,
728 		    name, namelen, 0, 0);
729 		return false;
730 	}
731 	if (ncp->nc_vp == NULL) {
732 		/* found negative entry; vn is already null from above */
733 		KASSERT(namelen != cache_mp_nlen && name != cache_mp_name);
734 		COUNT(ncs_neghits);
735 	} else {
736 		COUNT(ncs_goodhits); /* XXX can be "badhits" */
737 	}
738 	SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
739 
740 	/*
741 	 * Return with the directory lock still held.  It will either be
742 	 * returned to us with another call to cache_lookup_linked() when
743 	 * looking up the next component, or the caller will release it
744 	 * manually when finished.
745 	 */
746 	if (oldlock) {
747 		rw_exit(oldlock);
748 	}
749 	if (newlock) {
750 		*plock = newlock;
751 	}
752 	*vn_ret = ncp->nc_vp;
753 	return true;
754 }
755 
756 /*
757  * Scan cache looking for name of directory entry pointing at vp.
758  * Will not search for "." or "..".
759  *
760  * If the lookup succeeds the vnode is referenced and stored in dvpp.
761  *
762  * If bufp is non-NULL, also place the name in the buffer which starts
763  * at bufp, immediately before *bpp, and move bpp backwards to point
764  * at the start of it.  (Yes, this is a little baroque, but it's done
765  * this way to cater to the whims of getcwd).
766  *
767  * Returns 0 on success, -1 on cache miss, positive errno on failure.
768  */
769 int
770 cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp,
771     bool checkaccess, accmode_t accmode)
772 {
773 	vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
774 	struct namecache *ncp;
775 	struct vnode *dvp;
776 	int error, nlen, lrulist;
777 	char *bp;
778 
779 	KASSERT(vp != NULL);
780 
781 	if (cache_maxlen == 0)
782 		goto out;
783 
784 	rw_enter(&vi->vi_nc_listlock, RW_READER);
785 	if (checkaccess) {
786 		/*
787 		 * Check if the user is allowed to see.  NOTE: this is
788 		 * checking for access on the "wrong" directory.  getcwd()
789 		 * wants to see that there is access on every component
790 		 * along the way, not that there is access to any individual
791 		 * component.  Don't use this to check you can look in vp.
792 		 *
793 		 * I don't like it, I didn't come up with it, don't blame me!
794 		 */
795 		if (vi->vi_nc_mode == VNOVAL) {
796 			rw_exit(&vi->vi_nc_listlock);
797 			return -1;
798 		}
799 		KASSERT(vi->vi_nc_uid != VNOVAL && vi->vi_nc_gid != VNOVAL);
800 		error = kauth_authorize_vnode(kauth_cred_get(),
801 		    KAUTH_ACCESS_ACTION(VEXEC, vp->v_type, vi->vi_nc_mode &
802 		    ALLPERMS), vp, NULL, genfs_can_access(vp, curlwp->l_cred,
803 		    vi->vi_nc_uid, vi->vi_nc_gid, vi->vi_nc_mode & ALLPERMS,
804 		    NULL, accmode));
805 		    if (error != 0) {
806 		    	rw_exit(&vi->vi_nc_listlock);
807 			COUNT(ncs_denied);
808 			return EACCES;
809 		}
810 	}
811 	TAILQ_FOREACH(ncp, &vi->vi_nc_list, nc_list) {
812 		KASSERT(ncp->nc_vp == vp);
813 		KASSERT(ncp->nc_dvp != NULL);
814 		nlen = ncp->nc_nlen;
815 
816 		/*
817 		 * Ignore mountpoint entries.
818 		 */
819 		if (ncp->nc_nlen == cache_mp_nlen) {
820 			continue;
821 		}
822 
823 		/*
824 		 * The queue is partially sorted.  Once we hit dots, nothing
825 		 * else remains but dots and dotdots, so bail out.
826 		 */
827 		if (ncp->nc_name[0] == '.') {
828 			if (nlen == 1 ||
829 			    (nlen == 2 && ncp->nc_name[1] == '.')) {
830 			    	break;
831 			}
832 		}
833 
834 		/*
835 		 * Record a hit on the entry.  This is an unlocked read but
836 		 * even if wrong it doesn't matter too much.
837 		 */
838 		lrulist = atomic_load_relaxed(&ncp->nc_lrulist);
839 		if (lrulist != LRU_ACTIVE) {
840 			cache_activate(ncp);
841 		}
842 
843 		if (bufp) {
844 			bp = *bpp;
845 			bp -= nlen;
846 			if (bp <= bufp) {
847 				*dvpp = NULL;
848 				rw_exit(&vi->vi_nc_listlock);
849 				SDT_PROBE(vfs, namecache, revlookup,
850 				    fail, vp, ERANGE, 0, 0, 0);
851 				return (ERANGE);
852 			}
853 			memcpy(bp, ncp->nc_name, nlen);
854 			*bpp = bp;
855 		}
856 
857 		dvp = ncp->nc_dvp;
858 		error = vcache_tryvget(dvp);
859 		rw_exit(&vi->vi_nc_listlock);
860 		if (error) {
861 			KASSERT(error == EBUSY);
862 			if (bufp)
863 				(*bpp) += nlen;
864 			*dvpp = NULL;
865 			SDT_PROBE(vfs, namecache, revlookup, fail, vp,
866 			    error, 0, 0, 0);
867 			return -1;
868 		}
869 		*dvpp = dvp;
870 		SDT_PROBE(vfs, namecache, revlookup, success, vp, dvp,
871 		    0, 0, 0);
872 		COUNT(ncs_revhits);
873 		return (0);
874 	}
875 	rw_exit(&vi->vi_nc_listlock);
876 	COUNT(ncs_revmiss);
877  out:
878 	*dvpp = NULL;
879 	return (-1);
880 }
881 
882 /*
883  * Add an entry to the cache.
884  */
885 void
886 cache_enter(struct vnode *dvp, struct vnode *vp,
887 	    const char *name, size_t namelen, uint32_t cnflags)
888 {
889 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
890 	struct namecache *ncp, *oncp;
891 	int total;
892 
893 	KASSERT(namelen != cache_mp_nlen || name == cache_mp_name);
894 
895 	/* First, check whether we can/should add a cache entry. */
896 	if ((cnflags & MAKEENTRY) == 0 ||
897 	    __predict_false(namelen > cache_maxlen)) {
898 		SDT_PROBE(vfs, namecache, enter, toolong, vp, name, namelen,
899 		    0, 0);
900 		return;
901 	}
902 
903 	SDT_PROBE(vfs, namecache, enter, done, vp, name, namelen, 0, 0);
904 
905 	/*
906 	 * Reclaim some entries if over budget.  This is an unlocked check,
907 	 * but it doesn't matter.  Just need to catch up with things
908 	 * eventually: it doesn't matter if we go over temporarily.
909 	 */
910 	total = atomic_load_relaxed(&cache_lru.count[LRU_ACTIVE]);
911 	total += atomic_load_relaxed(&cache_lru.count[LRU_INACTIVE]);
912 	if (__predict_false(total > desiredvnodes)) {
913 		cache_reclaim();
914 	}
915 
916 	/* Now allocate a fresh entry. */
917 	if (__predict_true(namelen <= NCHNAMLEN)) {
918 		ncp = pool_cache_get(cache_pool, PR_WAITOK);
919 	} else {
920 		size_t sz = offsetof(struct namecache, nc_name[namelen]);
921 		ncp = kmem_alloc(sz, KM_SLEEP);
922 	}
923 
924 	/*
925 	 * Fill in cache info.  For negative hits, save the ISWHITEOUT flag
926 	 * so we can restore it later when the cache entry is used again.
927 	 */
928 	ncp->nc_vp = vp;
929 	ncp->nc_dvp = dvp;
930 	ncp->nc_key = cache_key(name, namelen);
931 	ncp->nc_nlen = namelen;
932 	ncp->nc_whiteout = ((cnflags & ISWHITEOUT) != 0);
933 	memcpy(ncp->nc_name, name, namelen);
934 
935 	/*
936 	 * Insert to the directory.  Concurrent lookups may race for a cache
937 	 * entry.  If there's a entry there already, purge it.
938 	 */
939 	rw_enter(&dvi->vi_nc_lock, RW_WRITER);
940 	oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp);
941 	if (oncp != ncp) {
942 		KASSERT(oncp->nc_key == ncp->nc_key);
943 		KASSERT(oncp->nc_nlen == ncp->nc_nlen);
944 		KASSERT(memcmp(oncp->nc_name, name, namelen) == 0);
945 		cache_remove(oncp, true);
946 		oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp);
947 		KASSERT(oncp == ncp);
948 	}
949 
950 	/*
951 	 * With the directory lock still held, insert to the tail of the
952 	 * ACTIVE LRU list (new) and take the opportunity to incrementally
953 	 * balance the lists.
954 	 */
955 	mutex_enter(&cache_lru_lock);
956 	ncp->nc_lrulist = LRU_ACTIVE;
957 	cache_lru.count[LRU_ACTIVE]++;
958 	TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
959 	cache_deactivate();
960 	mutex_exit(&cache_lru_lock);
961 
962 	/*
963 	 * Finally, insert to the vnode and unlock.  With everything set up
964 	 * it's safe to let cache_revlookup() see the entry.  Partially sort
965 	 * the per-vnode list: dots go to back so cache_revlookup() doesn't
966 	 * have to consider them.
967 	 */
968 	if (vp != NULL) {
969 		vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
970 		rw_enter(&vi->vi_nc_listlock, RW_WRITER);
971 		if ((namelen == 1 && name[0] == '.') ||
972 		    (namelen == 2 && name[0] == '.' && name[1] == '.')) {
973 			TAILQ_INSERT_TAIL(&vi->vi_nc_list, ncp, nc_list);
974 		} else {
975 			TAILQ_INSERT_HEAD(&vi->vi_nc_list, ncp, nc_list);
976 		}
977 		rw_exit(&vi->vi_nc_listlock);
978 	}
979 	rw_exit(&dvi->vi_nc_lock);
980 }
981 
982 /*
983  * Set identity info in cache for a vnode.  We only care about directories
984  * so ignore other updates.  The cached info may be marked invalid if the
985  * inode has an ACL.
986  */
987 void
988 cache_enter_id(struct vnode *vp, mode_t mode, uid_t uid, gid_t gid, bool valid)
989 {
990 	vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
991 
992 	if (vp->v_type == VDIR) {
993 		/* Grab both locks, for forward & reverse lookup. */
994 		rw_enter(&vi->vi_nc_lock, RW_WRITER);
995 		rw_enter(&vi->vi_nc_listlock, RW_WRITER);
996 		if (valid) {
997 			vi->vi_nc_mode = mode;
998 			vi->vi_nc_uid = uid;
999 			vi->vi_nc_gid = gid;
1000 		} else {
1001 			vi->vi_nc_mode = VNOVAL;
1002 			vi->vi_nc_uid = VNOVAL;
1003 			vi->vi_nc_gid = VNOVAL;
1004 		}
1005 		rw_exit(&vi->vi_nc_listlock);
1006 		rw_exit(&vi->vi_nc_lock);
1007 	}
1008 }
1009 
1010 /*
1011  * Return true if we have identity for the given vnode, and use as an
1012  * opportunity to confirm that everything squares up.
1013  *
1014  * Because of shared code, some file systems could provide partial
1015  * information, missing some updates, so check the mount flag too.
1016  */
1017 bool
1018 cache_have_id(struct vnode *vp)
1019 {
1020 
1021 	if (vp->v_type == VDIR &&
1022 	    (vp->v_mount->mnt_iflag & IMNT_NCLOOKUP) != 0 &&
1023 	    atomic_load_relaxed(&VNODE_TO_VIMPL(vp)->vi_nc_mode) != VNOVAL) {
1024 		return true;
1025 	} else {
1026 		return false;
1027 	}
1028 }
1029 
1030 /*
1031  * Enter a mount point.  cvp is the covered vnode, and rvp is the root of
1032  * the mounted file system.
1033  */
1034 void
1035 cache_enter_mount(struct vnode *cvp, struct vnode *rvp)
1036 {
1037 
1038 	KASSERT(vrefcnt(cvp) > 0);
1039 	KASSERT(vrefcnt(rvp) > 0);
1040 	KASSERT(cvp->v_type == VDIR);
1041 	KASSERT((rvp->v_vflag & VV_ROOT) != 0);
1042 
1043 	if (rvp->v_type == VDIR) {
1044 		cache_enter(cvp, rvp, cache_mp_name, cache_mp_nlen, MAKEENTRY);
1045 	}
1046 }
1047 
1048 /*
1049  * Look up a cached mount point.  Used in the strongly locked path.
1050  */
1051 bool
1052 cache_lookup_mount(struct vnode *dvp, struct vnode **vn_ret)
1053 {
1054 	bool ret;
1055 
1056 	ret = cache_lookup(dvp, cache_mp_name, cache_mp_nlen, LOOKUP,
1057 	    MAKEENTRY, NULL, vn_ret);
1058 	KASSERT((*vn_ret != NULL) == ret);
1059 	return ret;
1060 }
1061 
1062 /*
1063  * Try to cross a mount point.  For use with cache_lookup_linked().
1064  */
1065 bool
1066 cache_cross_mount(struct vnode **dvp, krwlock_t **plock)
1067 {
1068 
1069 	return cache_lookup_linked(*dvp, cache_mp_name, cache_mp_nlen,
1070 	   dvp, plock, FSCRED);
1071 }
1072 
1073 /*
1074  * Name cache initialization, from vfs_init() when the system is booting.
1075  */
1076 void
1077 nchinit(void)
1078 {
1079 
1080 	cache_pool = pool_cache_init(sizeof(struct namecache),
1081 	    coherency_unit, 0, 0, "namecache", NULL, IPL_NONE, NULL,
1082 	    NULL, NULL);
1083 	KASSERT(cache_pool != NULL);
1084 
1085 	mutex_init(&cache_lru_lock, MUTEX_DEFAULT, IPL_NONE);
1086 	TAILQ_INIT(&cache_lru.list[LRU_ACTIVE]);
1087 	TAILQ_INIT(&cache_lru.list[LRU_INACTIVE]);
1088 
1089 	mutex_init(&cache_stat_lock, MUTEX_DEFAULT, IPL_NONE);
1090 	callout_init(&cache_stat_callout, CALLOUT_MPSAFE);
1091 	callout_setfunc(&cache_stat_callout, cache_update_stats, NULL);
1092 	callout_schedule(&cache_stat_callout, cache_stat_interval * hz);
1093 
1094 	KASSERT(cache_sysctllog == NULL);
1095 	sysctl_createv(&cache_sysctllog, 0, NULL, NULL,
1096 		       CTLFLAG_PERMANENT,
1097 		       CTLTYPE_STRUCT, "namecache_stats",
1098 		       SYSCTL_DESCR("namecache statistics"),
1099 		       cache_stat_sysctl, 0, NULL, 0,
1100 		       CTL_VFS, CTL_CREATE, CTL_EOL);
1101 }
1102 
1103 /*
1104  * Called once for each CPU in the system as attached.
1105  */
1106 void
1107 cache_cpu_init(struct cpu_info *ci)
1108 {
1109 	void *p;
1110 	size_t sz;
1111 
1112 	sz = roundup2(sizeof(struct nchcpu), coherency_unit) + coherency_unit;
1113 	p = kmem_zalloc(sz, KM_SLEEP);
1114 	ci->ci_data.cpu_nch = (void *)roundup2((uintptr_t)p, coherency_unit);
1115 }
1116 
1117 /*
1118  * A vnode is being allocated: set up cache structures.
1119  */
1120 void
1121 cache_vnode_init(struct vnode *vp)
1122 {
1123 	vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
1124 
1125 	rw_init(&vi->vi_nc_lock);
1126 	rw_init(&vi->vi_nc_listlock);
1127 	rb_tree_init(&vi->vi_nc_tree, &cache_rbtree_ops);
1128 	TAILQ_INIT(&vi->vi_nc_list);
1129 	vi->vi_nc_mode = VNOVAL;
1130 	vi->vi_nc_uid = VNOVAL;
1131 	vi->vi_nc_gid = VNOVAL;
1132 }
1133 
1134 /*
1135  * A vnode is being freed: finish cache structures.
1136  */
1137 void
1138 cache_vnode_fini(struct vnode *vp)
1139 {
1140 	vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
1141 
1142 	KASSERT(RB_TREE_MIN(&vi->vi_nc_tree) == NULL);
1143 	KASSERT(TAILQ_EMPTY(&vi->vi_nc_list));
1144 	rw_destroy(&vi->vi_nc_lock);
1145 	rw_destroy(&vi->vi_nc_listlock);
1146 }
1147 
1148 /*
1149  * Helper for cache_purge1(): purge cache entries for the given vnode from
1150  * all directories that the vnode is cached in.
1151  */
1152 static void
1153 cache_purge_parents(struct vnode *vp)
1154 {
1155 	vnode_impl_t *dvi, *vi = VNODE_TO_VIMPL(vp);
1156 	struct vnode *dvp, *blocked;
1157 	struct namecache *ncp;
1158 
1159 	SDT_PROBE(vfs, namecache, purge, parents, vp, 0, 0, 0, 0);
1160 
1161 	blocked = NULL;
1162 
1163 	rw_enter(&vi->vi_nc_listlock, RW_WRITER);
1164 	while ((ncp = TAILQ_FIRST(&vi->vi_nc_list)) != NULL) {
1165 		/*
1166 		 * Locking in the wrong direction.  Try for a hold on the
1167 		 * directory node's lock, and if we get it then all good,
1168 		 * nuke the entry and move on to the next.
1169 		 */
1170 		dvp = ncp->nc_dvp;
1171 		dvi = VNODE_TO_VIMPL(dvp);
1172 		if (rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) {
1173 			cache_remove(ncp, false);
1174 			rw_exit(&dvi->vi_nc_lock);
1175 			blocked = NULL;
1176 			continue;
1177 		}
1178 
1179 		/*
1180 		 * We can't wait on the directory node's lock with our list
1181 		 * lock held or the system could deadlock.
1182 		 *
1183 		 * Take a hold on the directory vnode to prevent it from
1184 		 * being freed (taking the vnode & lock with it).  Then
1185 		 * wait for the lock to become available with no other locks
1186 		 * held, and retry.
1187 		 *
1188 		 * If this happens twice in a row, give the other side a
1189 		 * breather; we can do nothing until it lets go.
1190 		 */
1191 		vhold(dvp);
1192 		rw_exit(&vi->vi_nc_listlock);
1193 		rw_enter(&dvi->vi_nc_lock, RW_WRITER);
1194 		/* Do nothing. */
1195 		rw_exit(&dvi->vi_nc_lock);
1196 		holdrele(dvp);
1197 		if (blocked == dvp) {
1198 			kpause("ncpurge", false, 1, NULL);
1199 		}
1200 		rw_enter(&vi->vi_nc_listlock, RW_WRITER);
1201 		blocked = dvp;
1202 	}
1203 	rw_exit(&vi->vi_nc_listlock);
1204 }
1205 
1206 /*
1207  * Helper for cache_purge1(): purge all cache entries hanging off the given
1208  * directory vnode.
1209  */
1210 static void
1211 cache_purge_children(struct vnode *dvp)
1212 {
1213 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
1214 	struct namecache *ncp;
1215 
1216 	SDT_PROBE(vfs, namecache, purge, children, dvp, 0, 0, 0, 0);
1217 
1218 	rw_enter(&dvi->vi_nc_lock, RW_WRITER);
1219 	while ((ncp = RB_TREE_MIN(&dvi->vi_nc_tree)) != NULL) {
1220 		cache_remove(ncp, true);
1221 	}
1222 	rw_exit(&dvi->vi_nc_lock);
1223 }
1224 
1225 /*
1226  * Helper for cache_purge1(): purge cache entry from the given vnode,
1227  * finding it by name.
1228  */
1229 static void
1230 cache_purge_name(struct vnode *dvp, const char *name, size_t namelen)
1231 {
1232 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
1233 	struct namecache *ncp;
1234 	uint64_t key;
1235 
1236 	SDT_PROBE(vfs, namecache, purge, name, name, namelen, 0, 0, 0);
1237 
1238 	key = cache_key(name, namelen);
1239 	rw_enter(&dvi->vi_nc_lock, RW_WRITER);
1240 	ncp = cache_lookup_entry(dvp, name, namelen, key);
1241 	if (ncp) {
1242 		cache_remove(ncp, true);
1243 	}
1244 	rw_exit(&dvi->vi_nc_lock);
1245 }
1246 
1247 /*
1248  * Cache flush, a particular vnode; called when a vnode is renamed to
1249  * hide entries that would now be invalid.
1250  */
1251 void
1252 cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags)
1253 {
1254 
1255 	if (flags & PURGE_PARENTS) {
1256 		cache_purge_parents(vp);
1257 	}
1258 	if (flags & PURGE_CHILDREN) {
1259 		cache_purge_children(vp);
1260 	}
1261 	if (name != NULL) {
1262 		cache_purge_name(vp, name, namelen);
1263 	}
1264 }
1265 
1266 /*
1267  * vnode filter for cache_purgevfs().
1268  */
1269 static bool
1270 cache_vdir_filter(void *cookie, vnode_t *vp)
1271 {
1272 
1273 	return vp->v_type == VDIR;
1274 }
1275 
1276 /*
1277  * Cache flush, a whole filesystem; called when filesys is umounted to
1278  * remove entries that would now be invalid.
1279  */
1280 void
1281 cache_purgevfs(struct mount *mp)
1282 {
1283 	struct vnode_iterator *iter;
1284 	vnode_t *dvp;
1285 
1286 	vfs_vnode_iterator_init(mp, &iter);
1287 	for (;;) {
1288 		dvp = vfs_vnode_iterator_next(iter, cache_vdir_filter, NULL);
1289 		if (dvp == NULL) {
1290 			break;
1291 		}
1292 		cache_purge_children(dvp);
1293 		vrele(dvp);
1294 	}
1295 	vfs_vnode_iterator_destroy(iter);
1296 }
1297 
1298 /*
1299  * Re-queue an entry onto the tail of the active LRU list, after it has
1300  * scored a hit.
1301  */
1302 static void
1303 cache_activate(struct namecache *ncp)
1304 {
1305 
1306 	mutex_enter(&cache_lru_lock);
1307 	TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru);
1308 	TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
1309 	cache_lru.count[ncp->nc_lrulist]--;
1310 	cache_lru.count[LRU_ACTIVE]++;
1311 	ncp->nc_lrulist = LRU_ACTIVE;
1312 	mutex_exit(&cache_lru_lock);
1313 }
1314 
1315 /*
1316  * Try to balance the LRU lists.  Pick some victim entries, and re-queue
1317  * them from the head of the active list to the tail of the inactive list.
1318  */
1319 static void
1320 cache_deactivate(void)
1321 {
1322 	struct namecache *ncp;
1323 	int total, i;
1324 
1325 	KASSERT(mutex_owned(&cache_lru_lock));
1326 
1327 	/* If we're nowhere near budget yet, don't bother. */
1328 	total = cache_lru.count[LRU_ACTIVE] + cache_lru.count[LRU_INACTIVE];
1329 	if (total < (desiredvnodes >> 1)) {
1330 	    	return;
1331 	}
1332 
1333 	/*
1334 	 * Aim for a 1:1 ratio of active to inactive.  This is to allow each
1335 	 * potential victim a reasonable amount of time to cycle through the
1336 	 * inactive list in order to score a hit and be reactivated, while
1337 	 * trying not to cause reactivations too frequently.
1338 	 */
1339 	if (cache_lru.count[LRU_ACTIVE] < cache_lru.count[LRU_INACTIVE]) {
1340 		return;
1341 	}
1342 
1343 	/* Move only a few at a time; will catch up eventually. */
1344 	for (i = 0; i < cache_lru_maxdeact; i++) {
1345 		ncp = TAILQ_FIRST(&cache_lru.list[LRU_ACTIVE]);
1346 		if (ncp == NULL) {
1347 			break;
1348 		}
1349 		KASSERT(ncp->nc_lrulist == LRU_ACTIVE);
1350 		ncp->nc_lrulist = LRU_INACTIVE;
1351 		TAILQ_REMOVE(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
1352 		TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE], ncp, nc_lru);
1353 		cache_lru.count[LRU_ACTIVE]--;
1354 		cache_lru.count[LRU_INACTIVE]++;
1355 	}
1356 }
1357 
1358 /*
1359  * Free some entries from the cache, when we have gone over budget.
1360  *
1361  * We don't want to cause too much work for any individual caller, and it
1362  * doesn't matter if we temporarily go over budget.  This is also "just a
1363  * cache" so it's not a big deal if we screw up and throw out something we
1364  * shouldn't.  So we take a relaxed attitude to this process to reduce its
1365  * impact.
1366  */
1367 static void
1368 cache_reclaim(void)
1369 {
1370 	struct namecache *ncp;
1371 	vnode_impl_t *dvi;
1372 	int toscan;
1373 
1374 	/*
1375 	 * Scan up to a preset maximum number of entries, but no more than
1376 	 * 0.8% of the total at once (to allow for very small systems).
1377 	 *
1378 	 * On bigger systems, do a larger chunk of work to reduce the number
1379 	 * of times that cache_lru_lock is held for any length of time.
1380 	 */
1381 	mutex_enter(&cache_lru_lock);
1382 	toscan = MIN(cache_lru_maxscan, desiredvnodes >> 7);
1383 	toscan = MAX(toscan, 1);
1384 	SDT_PROBE(vfs, namecache, prune, done, cache_lru.count[LRU_ACTIVE] +
1385 	    cache_lru.count[LRU_INACTIVE], toscan, 0, 0, 0);
1386 	while (toscan-- != 0) {
1387 		/* First try to balance the lists. */
1388 		cache_deactivate();
1389 
1390 		/* Now look for a victim on head of inactive list (old). */
1391 		ncp = TAILQ_FIRST(&cache_lru.list[LRU_INACTIVE]);
1392 		if (ncp == NULL) {
1393 			break;
1394 		}
1395 		dvi = VNODE_TO_VIMPL(ncp->nc_dvp);
1396 		KASSERT(ncp->nc_lrulist == LRU_INACTIVE);
1397 		KASSERT(dvi != NULL);
1398 
1399 		/*
1400 		 * Locking in the wrong direction.  If we can't get the
1401 		 * lock, the directory is actively busy, and it could also
1402 		 * cause problems for the next guy in here, so send the
1403 		 * entry to the back of the list.
1404 		 */
1405 		if (!rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) {
1406 			TAILQ_REMOVE(&cache_lru.list[LRU_INACTIVE],
1407 			    ncp, nc_lru);
1408 			TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE],
1409 			    ncp, nc_lru);
1410 			continue;
1411 		}
1412 
1413 		/*
1414 		 * Now have the victim entry locked.  Drop the LRU list
1415 		 * lock, purge the entry, and start over.  The hold on
1416 		 * vi_nc_lock will prevent the vnode from vanishing until
1417 		 * finished (cache_purge() will be called on dvp before it
1418 		 * disappears, and that will wait on vi_nc_lock).
1419 		 */
1420 		mutex_exit(&cache_lru_lock);
1421 		cache_remove(ncp, true);
1422 		rw_exit(&dvi->vi_nc_lock);
1423 		mutex_enter(&cache_lru_lock);
1424 	}
1425 	mutex_exit(&cache_lru_lock);
1426 }
1427 
1428 /*
1429  * For file system code: count a lookup that required a full re-scan of
1430  * directory metadata.
1431  */
1432 void
1433 namecache_count_pass2(void)
1434 {
1435 
1436 	COUNT(ncs_pass2);
1437 }
1438 
1439 /*
1440  * For file system code: count a lookup that scored a hit in the directory
1441  * metadata near the location of the last lookup.
1442  */
1443 void
1444 namecache_count_2passes(void)
1445 {
1446 
1447 	COUNT(ncs_2passes);
1448 }
1449 
1450 /*
1451  * Sum the stats from all CPUs into nchstats.  This needs to run at least
1452  * once within every window where a 32-bit counter could roll over.  It's
1453  * called regularly by timer to ensure this.
1454  */
1455 static void
1456 cache_update_stats(void *cookie)
1457 {
1458 	CPU_INFO_ITERATOR cii;
1459 	struct cpu_info *ci;
1460 
1461 	mutex_enter(&cache_stat_lock);
1462 	for (CPU_INFO_FOREACH(cii, ci)) {
1463 		struct nchcpu *nchcpu = ci->ci_data.cpu_nch;
1464 		UPDATE(nchcpu, ncs_goodhits);
1465 		UPDATE(nchcpu, ncs_neghits);
1466 		UPDATE(nchcpu, ncs_badhits);
1467 		UPDATE(nchcpu, ncs_falsehits);
1468 		UPDATE(nchcpu, ncs_miss);
1469 		UPDATE(nchcpu, ncs_long);
1470 		UPDATE(nchcpu, ncs_pass2);
1471 		UPDATE(nchcpu, ncs_2passes);
1472 		UPDATE(nchcpu, ncs_revhits);
1473 		UPDATE(nchcpu, ncs_revmiss);
1474 		UPDATE(nchcpu, ncs_denied);
1475 	}
1476 	if (cookie != NULL) {
1477 		memcpy(cookie, &nchstats, sizeof(nchstats));
1478 	}
1479 	/* Reset the timer; arrive back here in N minutes at latest. */
1480 	callout_schedule(&cache_stat_callout, cache_stat_interval * hz);
1481 	mutex_exit(&cache_stat_lock);
1482 }
1483 
1484 /*
1485  * Fetch the current values of the stats for sysctl.
1486  */
1487 static int
1488 cache_stat_sysctl(SYSCTLFN_ARGS)
1489 {
1490 	struct nchstats stats;
1491 
1492 	if (oldp == NULL) {
1493 		*oldlenp = sizeof(nchstats);
1494 		return 0;
1495 	}
1496 
1497 	if (*oldlenp <= 0) {
1498 		*oldlenp = 0;
1499 		return 0;
1500 	}
1501 
1502 	/* Refresh the global stats. */
1503 	sysctl_unlock();
1504 	cache_update_stats(&stats);
1505 	sysctl_relock();
1506 
1507 	*oldlenp = MIN(sizeof(stats), *oldlenp);
1508 	return sysctl_copyout(l, &stats, oldp, *oldlenp);
1509 }
1510 
1511 /*
1512  * For the debugger, given the address of a vnode, print all associated
1513  * names in the cache.
1514  */
1515 #ifdef DDB
1516 void
1517 namecache_print(struct vnode *vp, void (*pr)(const char *, ...))
1518 {
1519 	struct vnode *dvp = NULL;
1520 	struct namecache *ncp;
1521 	enum cache_lru_id id;
1522 
1523 	for (id = 0; id < LRU_COUNT; id++) {
1524 		TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) {
1525 			if (ncp->nc_vp == vp) {
1526 				(*pr)("name %.*s\n", ncp->nc_nlen,
1527 				    ncp->nc_name);
1528 				dvp = ncp->nc_dvp;
1529 			}
1530 		}
1531 	}
1532 	if (dvp == NULL) {
1533 		(*pr)("name not found\n");
1534 		return;
1535 	}
1536 	for (id = 0; id < LRU_COUNT; id++) {
1537 		TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) {
1538 			if (ncp->nc_vp == dvp) {
1539 				(*pr)("parent %.*s\n", ncp->nc_nlen,
1540 				    ncp->nc_name);
1541 			}
1542 		}
1543 	}
1544 }
1545 #endif
1546