1 /* $NetBSD: vfs_cache.c,v 1.152 2021/11/01 21:28:03 andvar Exp $ */ 2 3 /*- 4 * Copyright (c) 2008, 2019, 2020 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1989, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)vfs_cache.c 8.3 (Berkeley) 8/22/94 61 */ 62 63 /* 64 * Name caching: 65 * 66 * Names found by directory scans are retained in a cache for future 67 * reference. It is managed LRU, so frequently used names will hang 68 * around. The cache is indexed by hash value obtained from the name. 69 * 70 * The name cache is the brainchild of Robert Elz and was introduced in 71 * 4.3BSD. See "Using gprof to Tune the 4.2BSD Kernel", Marshall Kirk 72 * McKusick, May 21 1984. 73 * 74 * Data structures: 75 * 76 * Most Unix namecaches very sensibly use a global hash table to index 77 * names. The global hash table works well, but can cause concurrency 78 * headaches for the kernel hacker. In the NetBSD 10.0 implementation 79 * we are not sensible, and use a per-directory data structure to index 80 * names, but the cache otherwise functions the same. 81 * 82 * The index is a red-black tree. There are no special concurrency 83 * requirements placed on it, because it's per-directory and protected 84 * by the namecache's per-directory locks. It should therefore not be 85 * difficult to experiment with other types of index. 86 * 87 * Each cached name is stored in a struct namecache, along with a 88 * pointer to the associated vnode (nc_vp). Names longer than a 89 * maximum length of NCHNAMLEN are allocated with kmem_alloc(); they 90 * occur infrequently, and names shorter than this are stored directly 91 * in struct namecache. If it is a "negative" entry, (i.e. for a name 92 * that is known NOT to exist) the vnode pointer will be NULL. 93 * 94 * For a directory with 3 cached names for 3 distinct vnodes, the 95 * various vnodes and namecache structs would be connected like this 96 * (the root is at the bottom of the diagram): 97 * 98 * ... 99 * ^ 100 * |- vi_nc_tree 101 * | 102 * +----o----+ +---------+ +---------+ 103 * | VDIR | | VCHR | | VREG | 104 * | vnode o-----+ | vnode o-----+ | vnode o------+ 105 * +---------+ | +---------+ | +---------+ | 106 * ^ | ^ | ^ | 107 * |- nc_vp |- vi_nc_list |- nc_vp |- vi_nc_list |- nc_vp | 108 * | | | | | | 109 * +----o----+ | +----o----+ | +----o----+ | 110 * +---onamecache|<----+ +---onamecache|<----+ +---onamecache|<-----+ 111 * | +---------+ | +---------+ | +---------+ 112 * | ^ | ^ | ^ 113 * | | | | | | 114 * | | +----------------------+ | | 115 * |-nc_dvp | +-------------------------------------------------+ 116 * | |/- vi_nc_tree | | 117 * | | |- nc_dvp |- nc_dvp 118 * | +----o----+ | | 119 * +-->| VDIR |<----------+ | 120 * | vnode |<------------------------------------+ 121 * +---------+ 122 * 123 * START HERE 124 * 125 * Replacement: 126 * 127 * As the cache becomes full, old and unused entries are purged as new 128 * entries are added. The synchronization overhead in maintaining a 129 * strict ordering would be prohibitive, so the VM system's "clock" or 130 * "second chance" page replacement algorithm is aped here. New 131 * entries go to the tail of the active list. After they age out and 132 * reach the head of the list, they are moved to the tail of the 133 * inactive list. Any use of the deactivated cache entry reactivates 134 * it, saving it from impending doom; if not reactivated, the entry 135 * eventually reaches the head of the inactive list and is purged. 136 * 137 * Concurrency: 138 * 139 * From a performance perspective, cache_lookup(nameiop == LOOKUP) is 140 * what really matters; insertion of new entries with cache_enter() is 141 * comparatively infrequent, and overshadowed by the cost of expensive 142 * file system metadata operations (which may involve disk I/O). We 143 * therefore want to make everything simplest in the lookup path. 144 * 145 * struct namecache is mostly stable except for list and tree related 146 * entries, changes to which don't affect the cached name or vnode. 147 * For changes to name+vnode, entries are purged in preference to 148 * modifying them. 149 * 150 * Read access to namecache entries is made via tree, list, or LRU 151 * list. A lock corresponding to the direction of access should be 152 * held. See definition of "struct namecache" in src/sys/namei.src, 153 * and the definition of "struct vnode" for the particulars. 154 * 155 * Per-CPU statistics, and LRU list totals are read unlocked, since 156 * an approximate value is OK. We maintain 32-bit sized per-CPU 157 * counters and 64-bit global counters under the theory that 32-bit 158 * sized counters are less likely to be hosed by nonatomic increment 159 * (on 32-bit platforms). 160 * 161 * The lock order is: 162 * 163 * 1) vi->vi_nc_lock (tree or parent -> child direction, 164 * used during forward lookup) 165 * 166 * 2) vi->vi_nc_listlock (list or child -> parent direction, 167 * used during reverse lookup) 168 * 169 * 3) cache_lru_lock (LRU list direction, used during reclaim) 170 * 171 * 4) vp->v_interlock (what the cache entry points to) 172 */ 173 174 #include <sys/cdefs.h> 175 __KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.152 2021/11/01 21:28:03 andvar Exp $"); 176 177 #define __NAMECACHE_PRIVATE 178 #ifdef _KERNEL_OPT 179 #include "opt_ddb.h" 180 #include "opt_dtrace.h" 181 #endif 182 183 #include <sys/param.h> 184 #include <sys/types.h> 185 #include <sys/atomic.h> 186 #include <sys/callout.h> 187 #include <sys/cpu.h> 188 #include <sys/errno.h> 189 #include <sys/evcnt.h> 190 #include <sys/hash.h> 191 #include <sys/kernel.h> 192 #include <sys/mount.h> 193 #include <sys/mutex.h> 194 #include <sys/namei.h> 195 #include <sys/param.h> 196 #include <sys/pool.h> 197 #include <sys/sdt.h> 198 #include <sys/sysctl.h> 199 #include <sys/systm.h> 200 #include <sys/time.h> 201 #include <sys/vnode_impl.h> 202 203 #include <miscfs/genfs/genfs.h> 204 205 static void cache_activate(struct namecache *); 206 static void cache_update_stats(void *); 207 static int cache_compare_nodes(void *, const void *, const void *); 208 static void cache_deactivate(void); 209 static void cache_reclaim(void); 210 static int cache_stat_sysctl(SYSCTLFN_ARGS); 211 212 /* 213 * Global pool cache. 214 */ 215 static pool_cache_t cache_pool __read_mostly; 216 217 /* 218 * LRU replacement. 219 */ 220 enum cache_lru_id { 221 LRU_ACTIVE, 222 LRU_INACTIVE, 223 LRU_COUNT 224 }; 225 226 static struct { 227 TAILQ_HEAD(, namecache) list[LRU_COUNT]; 228 u_int count[LRU_COUNT]; 229 } cache_lru __cacheline_aligned; 230 231 static kmutex_t cache_lru_lock __cacheline_aligned; 232 233 /* 234 * Cache effectiveness statistics. nchstats holds system-wide total. 235 */ 236 struct nchstats nchstats; 237 struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t); 238 struct nchcpu { 239 struct nchstats_percpu cur; 240 struct nchstats_percpu last; 241 }; 242 static callout_t cache_stat_callout; 243 static kmutex_t cache_stat_lock __cacheline_aligned; 244 245 #define COUNT(f) do { \ 246 lwp_t *l = curlwp; \ 247 KPREEMPT_DISABLE(l); \ 248 struct nchcpu *nchcpu = curcpu()->ci_data.cpu_nch; \ 249 nchcpu->cur.f++; \ 250 KPREEMPT_ENABLE(l); \ 251 } while (/* CONSTCOND */ 0); 252 253 #define UPDATE(nchcpu, f) do { \ 254 uint32_t cur = atomic_load_relaxed(&nchcpu->cur.f); \ 255 nchstats.f += (uint32_t)(cur - nchcpu->last.f); \ 256 nchcpu->last.f = cur; \ 257 } while (/* CONSTCOND */ 0) 258 259 /* 260 * Tunables. cache_maxlen replaces the historical doingcache: 261 * set it zero to disable caching for debugging purposes. 262 */ 263 int cache_lru_maxdeact __read_mostly = 2; /* max # to deactivate */ 264 int cache_lru_maxscan __read_mostly = 64; /* max # to scan/reclaim */ 265 int cache_maxlen __read_mostly = USHRT_MAX; /* max name length to cache */ 266 int cache_stat_interval __read_mostly = 300; /* in seconds */ 267 268 /* 269 * sysctl stuff. 270 */ 271 static struct sysctllog *cache_sysctllog; 272 273 /* 274 * This is a dummy name that cannot usually occur anywhere in the cache nor 275 * file system. It's used when caching the root vnode of mounted file 276 * systems. The name is attached to the directory that the file system is 277 * mounted on. 278 */ 279 static const char cache_mp_name[] = ""; 280 static const int cache_mp_nlen = sizeof(cache_mp_name) - 1; 281 282 /* 283 * Red-black tree stuff. 284 */ 285 static const rb_tree_ops_t cache_rbtree_ops = { 286 .rbto_compare_nodes = cache_compare_nodes, 287 .rbto_compare_key = cache_compare_nodes, 288 .rbto_node_offset = offsetof(struct namecache, nc_tree), 289 .rbto_context = NULL 290 }; 291 292 /* 293 * dtrace probes. 294 */ 295 SDT_PROVIDER_DEFINE(vfs); 296 297 SDT_PROBE_DEFINE1(vfs, namecache, invalidate, done, "struct vnode *"); 298 SDT_PROBE_DEFINE1(vfs, namecache, purge, parents, "struct vnode *"); 299 SDT_PROBE_DEFINE1(vfs, namecache, purge, children, "struct vnode *"); 300 SDT_PROBE_DEFINE2(vfs, namecache, purge, name, "char *", "size_t"); 301 SDT_PROBE_DEFINE1(vfs, namecache, purge, vfs, "struct mount *"); 302 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", 303 "char *", "size_t"); 304 SDT_PROBE_DEFINE3(vfs, namecache, lookup, miss, "struct vnode *", 305 "char *", "size_t"); 306 SDT_PROBE_DEFINE3(vfs, namecache, lookup, toolong, "struct vnode *", 307 "char *", "size_t"); 308 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, success, "struct vnode *", 309 "struct vnode *"); 310 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, fail, "struct vnode *", 311 "int"); 312 SDT_PROBE_DEFINE2(vfs, namecache, prune, done, "int", "int"); 313 SDT_PROBE_DEFINE3(vfs, namecache, enter, toolong, "struct vnode *", 314 "char *", "size_t"); 315 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", 316 "char *", "size_t"); 317 318 /* 319 * rbtree: compare two nodes. 320 */ 321 static int 322 cache_compare_nodes(void *context, const void *n1, const void *n2) 323 { 324 const struct namecache *nc1 = n1; 325 const struct namecache *nc2 = n2; 326 327 if (nc1->nc_key < nc2->nc_key) { 328 return -1; 329 } 330 if (nc1->nc_key > nc2->nc_key) { 331 return 1; 332 } 333 KASSERT(nc1->nc_nlen == nc2->nc_nlen); 334 return memcmp(nc1->nc_name, nc2->nc_name, nc1->nc_nlen); 335 } 336 337 /* 338 * Compute a key value for the given name. The name length is encoded in 339 * the key value to try and improve uniqueness, and so that length doesn't 340 * need to be compared separately for string comparisons. 341 */ 342 static inline uint64_t 343 cache_key(const char *name, size_t nlen) 344 { 345 uint64_t key; 346 347 KASSERT(nlen <= USHRT_MAX); 348 349 key = hash32_buf(name, nlen, HASH32_STR_INIT); 350 return (key << 32) | nlen; 351 } 352 353 /* 354 * Remove an entry from the cache. vi_nc_lock must be held, and if dir2node 355 * is true, then we're locking in the conventional direction and the list 356 * lock will be acquired when removing the entry from the vnode list. 357 */ 358 static void 359 cache_remove(struct namecache *ncp, const bool dir2node) 360 { 361 struct vnode *vp, *dvp = ncp->nc_dvp; 362 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 363 364 KASSERT(rw_write_held(&dvi->vi_nc_lock)); 365 KASSERT(cache_key(ncp->nc_name, ncp->nc_nlen) == ncp->nc_key); 366 KASSERT(rb_tree_find_node(&dvi->vi_nc_tree, ncp) == ncp); 367 368 SDT_PROBE(vfs, namecache, invalidate, done, ncp, 369 0, 0, 0, 0); 370 371 /* 372 * Remove from the vnode's list. This excludes cache_revlookup(), 373 * and then it's safe to remove from the LRU lists. 374 */ 375 if ((vp = ncp->nc_vp) != NULL) { 376 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 377 if (__predict_true(dir2node)) { 378 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 379 TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list); 380 rw_exit(&vi->vi_nc_listlock); 381 } else { 382 TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list); 383 } 384 } 385 386 /* Remove from the directory's rbtree. */ 387 rb_tree_remove_node(&dvi->vi_nc_tree, ncp); 388 389 /* Remove from the LRU lists. */ 390 mutex_enter(&cache_lru_lock); 391 TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru); 392 cache_lru.count[ncp->nc_lrulist]--; 393 mutex_exit(&cache_lru_lock); 394 395 /* Finally, free it. */ 396 if (ncp->nc_nlen > NCHNAMLEN) { 397 size_t sz = offsetof(struct namecache, nc_name[ncp->nc_nlen]); 398 kmem_free(ncp, sz); 399 } else { 400 pool_cache_put(cache_pool, ncp); 401 } 402 } 403 404 /* 405 * Find a single cache entry and return it. vi_nc_lock must be held. 406 */ 407 static struct namecache * __noinline 408 cache_lookup_entry(struct vnode *dvp, const char *name, size_t namelen, 409 uint64_t key) 410 { 411 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 412 struct rb_node *node = dvi->vi_nc_tree.rbt_root; 413 struct namecache *ncp; 414 int lrulist, diff; 415 416 KASSERT(rw_lock_held(&dvi->vi_nc_lock)); 417 418 /* 419 * Search the RB tree for the key. This is an inlined lookup 420 * tailored for exactly what's needed here (64-bit key and so on) 421 * that is quite a bit faster than using rb_tree_find_node(). 422 * 423 * For a matching key memcmp() needs to be called once to confirm 424 * that the correct name has been found. Very rarely there will be 425 * a key value collision and the search will continue. 426 */ 427 for (;;) { 428 if (__predict_false(RB_SENTINEL_P(node))) { 429 return NULL; 430 } 431 ncp = (struct namecache *)node; 432 KASSERT((void *)&ncp->nc_tree == (void *)ncp); 433 KASSERT(ncp->nc_dvp == dvp); 434 if (ncp->nc_key == key) { 435 KASSERT(ncp->nc_nlen == namelen); 436 diff = memcmp(ncp->nc_name, name, namelen); 437 if (__predict_true(diff == 0)) { 438 break; 439 } 440 node = node->rb_nodes[diff < 0]; 441 } else { 442 node = node->rb_nodes[ncp->nc_key < key]; 443 } 444 } 445 446 /* 447 * If the entry is on the wrong LRU list, requeue it. This is an 448 * unlocked check, but it will rarely be wrong and even then there 449 * will be no harm caused. 450 */ 451 lrulist = atomic_load_relaxed(&ncp->nc_lrulist); 452 if (__predict_false(lrulist != LRU_ACTIVE)) { 453 cache_activate(ncp); 454 } 455 return ncp; 456 } 457 458 /* 459 * Look for a the name in the cache. We don't do this 460 * if the segment name is long, simply so the cache can avoid 461 * holding long names (which would either waste space, or 462 * add greatly to the complexity). 463 * 464 * Lookup is called with DVP pointing to the directory to search, 465 * and CNP providing the name of the entry being sought: cn_nameptr 466 * is the name, cn_namelen is its length, and cn_flags is the flags 467 * word from the namei operation. 468 * 469 * DVP must be locked. 470 * 471 * There are three possible non-error return states: 472 * 1. Nothing was found in the cache. Nothing is known about 473 * the requested name. 474 * 2. A negative entry was found in the cache, meaning that the 475 * requested name definitely does not exist. 476 * 3. A positive entry was found in the cache, meaning that the 477 * requested name does exist and that we are providing the 478 * vnode. 479 * In these cases the results are: 480 * 1. 0 returned; VN is set to NULL. 481 * 2. 1 returned; VN is set to NULL. 482 * 3. 1 returned; VN is set to the vnode found. 483 * 484 * The additional result argument ISWHT is set to zero, unless a 485 * negative entry is found that was entered as a whiteout, in which 486 * case ISWHT is set to one. 487 * 488 * The ISWHT_RET argument pointer may be null. In this case an 489 * assertion is made that the whiteout flag is not set. File systems 490 * that do not support whiteouts can/should do this. 491 * 492 * Filesystems that do support whiteouts should add ISWHITEOUT to 493 * cnp->cn_flags if ISWHT comes back nonzero. 494 * 495 * When a vnode is returned, it is locked, as per the vnode lookup 496 * locking protocol. 497 * 498 * There is no way for this function to fail, in the sense of 499 * generating an error that requires aborting the namei operation. 500 * 501 * (Prior to October 2012, this function returned an integer status, 502 * and a vnode, and mucked with the flags word in CNP for whiteouts. 503 * The integer status was -1 for "nothing found", ENOENT for "a 504 * negative entry found", 0 for "a positive entry found", and possibly 505 * other errors, and the value of VN might or might not have been set 506 * depending on what error occurred.) 507 */ 508 bool 509 cache_lookup(struct vnode *dvp, const char *name, size_t namelen, 510 uint32_t nameiop, uint32_t cnflags, 511 int *iswht_ret, struct vnode **vn_ret) 512 { 513 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 514 struct namecache *ncp; 515 struct vnode *vp; 516 uint64_t key; 517 int error; 518 bool hit; 519 krw_t op; 520 521 KASSERT(namelen != cache_mp_nlen || name == cache_mp_name); 522 523 /* Establish default result values */ 524 if (iswht_ret != NULL) { 525 *iswht_ret = 0; 526 } 527 *vn_ret = NULL; 528 529 if (__predict_false(namelen > cache_maxlen)) { 530 SDT_PROBE(vfs, namecache, lookup, toolong, dvp, 531 name, namelen, 0, 0); 532 COUNT(ncs_long); 533 return false; 534 } 535 536 /* Compute the key up front - don't need the lock. */ 537 key = cache_key(name, namelen); 538 539 /* Could the entry be purged below? */ 540 if ((cnflags & ISLASTCN) != 0 && 541 ((cnflags & MAKEENTRY) == 0 || nameiop == CREATE)) { 542 op = RW_WRITER; 543 } else { 544 op = RW_READER; 545 } 546 547 /* Now look for the name. */ 548 rw_enter(&dvi->vi_nc_lock, op); 549 ncp = cache_lookup_entry(dvp, name, namelen, key); 550 if (__predict_false(ncp == NULL)) { 551 rw_exit(&dvi->vi_nc_lock); 552 COUNT(ncs_miss); 553 SDT_PROBE(vfs, namecache, lookup, miss, dvp, 554 name, namelen, 0, 0); 555 return false; 556 } 557 if (__predict_false((cnflags & MAKEENTRY) == 0)) { 558 /* 559 * Last component and we are renaming or deleting, 560 * the cache entry is invalid, or otherwise don't 561 * want cache entry to exist. 562 */ 563 KASSERT((cnflags & ISLASTCN) != 0); 564 cache_remove(ncp, true); 565 rw_exit(&dvi->vi_nc_lock); 566 COUNT(ncs_badhits); 567 return false; 568 } 569 if (ncp->nc_vp == NULL) { 570 if (iswht_ret != NULL) { 571 /* 572 * Restore the ISWHITEOUT flag saved earlier. 573 */ 574 *iswht_ret = ncp->nc_whiteout; 575 } else { 576 KASSERT(!ncp->nc_whiteout); 577 } 578 if (nameiop == CREATE && (cnflags & ISLASTCN) != 0) { 579 /* 580 * Last component and we are preparing to create 581 * the named object, so flush the negative cache 582 * entry. 583 */ 584 COUNT(ncs_badhits); 585 cache_remove(ncp, true); 586 hit = false; 587 } else { 588 COUNT(ncs_neghits); 589 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, 590 namelen, 0, 0); 591 /* found neg entry; vn is already null from above */ 592 hit = true; 593 } 594 rw_exit(&dvi->vi_nc_lock); 595 return hit; 596 } 597 vp = ncp->nc_vp; 598 error = vcache_tryvget(vp); 599 rw_exit(&dvi->vi_nc_lock); 600 if (error) { 601 KASSERT(error == EBUSY); 602 /* 603 * This vnode is being cleaned out. 604 * XXX badhits? 605 */ 606 COUNT(ncs_falsehits); 607 return false; 608 } 609 610 COUNT(ncs_goodhits); 611 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0); 612 /* found it */ 613 *vn_ret = vp; 614 return true; 615 } 616 617 /* 618 * Version of the above without the nameiop argument, for NFS. 619 */ 620 bool 621 cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen, 622 uint32_t cnflags, 623 int *iswht_ret, struct vnode **vn_ret) 624 { 625 626 return cache_lookup(dvp, name, namelen, LOOKUP, cnflags | MAKEENTRY, 627 iswht_ret, vn_ret); 628 } 629 630 /* 631 * Used by namei() to walk down a path, component by component by looking up 632 * names in the cache. The node locks are chained along the way: a parent's 633 * lock is not dropped until the child's is acquired. 634 */ 635 bool 636 cache_lookup_linked(struct vnode *dvp, const char *name, size_t namelen, 637 struct vnode **vn_ret, krwlock_t **plock, 638 kauth_cred_t cred) 639 { 640 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 641 struct namecache *ncp; 642 krwlock_t *oldlock, *newlock; 643 uint64_t key; 644 int error; 645 646 KASSERT(namelen != cache_mp_nlen || name == cache_mp_name); 647 648 /* If disabled, or file system doesn't support this, bail out. */ 649 if (__predict_false((dvp->v_mount->mnt_iflag & IMNT_NCLOOKUP) == 0)) { 650 return false; 651 } 652 653 if (__predict_false(namelen > cache_maxlen)) { 654 COUNT(ncs_long); 655 return false; 656 } 657 658 /* Compute the key up front - don't need the lock. */ 659 key = cache_key(name, namelen); 660 661 /* 662 * Acquire the directory lock. Once we have that, we can drop the 663 * previous one (if any). 664 * 665 * The two lock holds mean that the directory can't go away while 666 * here: the directory must be purged with cache_purge() before 667 * being freed, and both parent & child's vi_nc_lock must be taken 668 * before that point is passed. 669 * 670 * However if there's no previous lock, like at the root of the 671 * chain, then "dvp" must be referenced to prevent dvp going away 672 * before we get its lock. 673 * 674 * Note that the two locks can be the same if looking up a dot, for 675 * example: /usr/bin/. If looking up the parent (..) we can't wait 676 * on the lock as child -> parent is the wrong direction. 677 */ 678 if (*plock != &dvi->vi_nc_lock) { 679 oldlock = *plock; 680 newlock = &dvi->vi_nc_lock; 681 if (!rw_tryenter(&dvi->vi_nc_lock, RW_READER)) { 682 return false; 683 } 684 } else { 685 oldlock = NULL; 686 newlock = NULL; 687 if (*plock == NULL) { 688 KASSERT(vrefcnt(dvp) > 0); 689 } 690 } 691 692 /* 693 * First up check if the user is allowed to look up files in this 694 * directory. 695 */ 696 if (cred != FSCRED) { 697 if (dvi->vi_nc_mode == VNOVAL) { 698 if (newlock != NULL) { 699 rw_exit(newlock); 700 } 701 return false; 702 } 703 KASSERT(dvi->vi_nc_uid != VNOVAL && dvi->vi_nc_gid != VNOVAL); 704 error = kauth_authorize_vnode(cred, 705 KAUTH_ACCESS_ACTION(VEXEC, 706 dvp->v_type, dvi->vi_nc_mode & ALLPERMS), dvp, NULL, 707 genfs_can_access(dvp, cred, dvi->vi_nc_uid, dvi->vi_nc_gid, 708 dvi->vi_nc_mode & ALLPERMS, NULL, VEXEC)); 709 if (error != 0) { 710 if (newlock != NULL) { 711 rw_exit(newlock); 712 } 713 COUNT(ncs_denied); 714 return false; 715 } 716 } 717 718 /* 719 * Now look for a matching cache entry. 720 */ 721 ncp = cache_lookup_entry(dvp, name, namelen, key); 722 if (__predict_false(ncp == NULL)) { 723 if (newlock != NULL) { 724 rw_exit(newlock); 725 } 726 COUNT(ncs_miss); 727 SDT_PROBE(vfs, namecache, lookup, miss, dvp, 728 name, namelen, 0, 0); 729 return false; 730 } 731 if (ncp->nc_vp == NULL) { 732 /* found negative entry; vn is already null from above */ 733 KASSERT(namelen != cache_mp_nlen && name != cache_mp_name); 734 COUNT(ncs_neghits); 735 } else { 736 COUNT(ncs_goodhits); /* XXX can be "badhits" */ 737 } 738 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0); 739 740 /* 741 * Return with the directory lock still held. It will either be 742 * returned to us with another call to cache_lookup_linked() when 743 * looking up the next component, or the caller will release it 744 * manually when finished. 745 */ 746 if (oldlock) { 747 rw_exit(oldlock); 748 } 749 if (newlock) { 750 *plock = newlock; 751 } 752 *vn_ret = ncp->nc_vp; 753 return true; 754 } 755 756 /* 757 * Scan cache looking for name of directory entry pointing at vp. 758 * Will not search for "." or "..". 759 * 760 * If the lookup succeeds the vnode is referenced and stored in dvpp. 761 * 762 * If bufp is non-NULL, also place the name in the buffer which starts 763 * at bufp, immediately before *bpp, and move bpp backwards to point 764 * at the start of it. (Yes, this is a little baroque, but it's done 765 * this way to cater to the whims of getcwd). 766 * 767 * Returns 0 on success, -1 on cache miss, positive errno on failure. 768 */ 769 int 770 cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp, 771 bool checkaccess, accmode_t accmode) 772 { 773 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 774 struct namecache *ncp; 775 struct vnode *dvp; 776 int error, nlen, lrulist; 777 char *bp; 778 779 KASSERT(vp != NULL); 780 781 if (cache_maxlen == 0) 782 goto out; 783 784 rw_enter(&vi->vi_nc_listlock, RW_READER); 785 if (checkaccess) { 786 /* 787 * Check if the user is allowed to see. NOTE: this is 788 * checking for access on the "wrong" directory. getcwd() 789 * wants to see that there is access on every component 790 * along the way, not that there is access to any individual 791 * component. Don't use this to check you can look in vp. 792 * 793 * I don't like it, I didn't come up with it, don't blame me! 794 */ 795 if (vi->vi_nc_mode == VNOVAL) { 796 rw_exit(&vi->vi_nc_listlock); 797 return -1; 798 } 799 KASSERT(vi->vi_nc_uid != VNOVAL && vi->vi_nc_gid != VNOVAL); 800 error = kauth_authorize_vnode(kauth_cred_get(), 801 KAUTH_ACCESS_ACTION(VEXEC, vp->v_type, vi->vi_nc_mode & 802 ALLPERMS), vp, NULL, genfs_can_access(vp, curlwp->l_cred, 803 vi->vi_nc_uid, vi->vi_nc_gid, vi->vi_nc_mode & ALLPERMS, 804 NULL, accmode)); 805 if (error != 0) { 806 rw_exit(&vi->vi_nc_listlock); 807 COUNT(ncs_denied); 808 return EACCES; 809 } 810 } 811 TAILQ_FOREACH(ncp, &vi->vi_nc_list, nc_list) { 812 KASSERT(ncp->nc_vp == vp); 813 KASSERT(ncp->nc_dvp != NULL); 814 nlen = ncp->nc_nlen; 815 816 /* 817 * Ignore mountpoint entries. 818 */ 819 if (ncp->nc_nlen == cache_mp_nlen) { 820 continue; 821 } 822 823 /* 824 * The queue is partially sorted. Once we hit dots, nothing 825 * else remains but dots and dotdots, so bail out. 826 */ 827 if (ncp->nc_name[0] == '.') { 828 if (nlen == 1 || 829 (nlen == 2 && ncp->nc_name[1] == '.')) { 830 break; 831 } 832 } 833 834 /* 835 * Record a hit on the entry. This is an unlocked read but 836 * even if wrong it doesn't matter too much. 837 */ 838 lrulist = atomic_load_relaxed(&ncp->nc_lrulist); 839 if (lrulist != LRU_ACTIVE) { 840 cache_activate(ncp); 841 } 842 843 if (bufp) { 844 bp = *bpp; 845 bp -= nlen; 846 if (bp <= bufp) { 847 *dvpp = NULL; 848 rw_exit(&vi->vi_nc_listlock); 849 SDT_PROBE(vfs, namecache, revlookup, 850 fail, vp, ERANGE, 0, 0, 0); 851 return (ERANGE); 852 } 853 memcpy(bp, ncp->nc_name, nlen); 854 *bpp = bp; 855 } 856 857 dvp = ncp->nc_dvp; 858 error = vcache_tryvget(dvp); 859 rw_exit(&vi->vi_nc_listlock); 860 if (error) { 861 KASSERT(error == EBUSY); 862 if (bufp) 863 (*bpp) += nlen; 864 *dvpp = NULL; 865 SDT_PROBE(vfs, namecache, revlookup, fail, vp, 866 error, 0, 0, 0); 867 return -1; 868 } 869 *dvpp = dvp; 870 SDT_PROBE(vfs, namecache, revlookup, success, vp, dvp, 871 0, 0, 0); 872 COUNT(ncs_revhits); 873 return (0); 874 } 875 rw_exit(&vi->vi_nc_listlock); 876 COUNT(ncs_revmiss); 877 out: 878 *dvpp = NULL; 879 return (-1); 880 } 881 882 /* 883 * Add an entry to the cache. 884 */ 885 void 886 cache_enter(struct vnode *dvp, struct vnode *vp, 887 const char *name, size_t namelen, uint32_t cnflags) 888 { 889 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 890 struct namecache *ncp, *oncp; 891 int total; 892 893 KASSERT(namelen != cache_mp_nlen || name == cache_mp_name); 894 895 /* First, check whether we can/should add a cache entry. */ 896 if ((cnflags & MAKEENTRY) == 0 || 897 __predict_false(namelen > cache_maxlen)) { 898 SDT_PROBE(vfs, namecache, enter, toolong, vp, name, namelen, 899 0, 0); 900 return; 901 } 902 903 SDT_PROBE(vfs, namecache, enter, done, vp, name, namelen, 0, 0); 904 905 /* 906 * Reclaim some entries if over budget. This is an unlocked check, 907 * but it doesn't matter. Just need to catch up with things 908 * eventually: it doesn't matter if we go over temporarily. 909 */ 910 total = atomic_load_relaxed(&cache_lru.count[LRU_ACTIVE]); 911 total += atomic_load_relaxed(&cache_lru.count[LRU_INACTIVE]); 912 if (__predict_false(total > desiredvnodes)) { 913 cache_reclaim(); 914 } 915 916 /* Now allocate a fresh entry. */ 917 if (__predict_true(namelen <= NCHNAMLEN)) { 918 ncp = pool_cache_get(cache_pool, PR_WAITOK); 919 } else { 920 size_t sz = offsetof(struct namecache, nc_name[namelen]); 921 ncp = kmem_alloc(sz, KM_SLEEP); 922 } 923 924 /* 925 * Fill in cache info. For negative hits, save the ISWHITEOUT flag 926 * so we can restore it later when the cache entry is used again. 927 */ 928 ncp->nc_vp = vp; 929 ncp->nc_dvp = dvp; 930 ncp->nc_key = cache_key(name, namelen); 931 ncp->nc_nlen = namelen; 932 ncp->nc_whiteout = ((cnflags & ISWHITEOUT) != 0); 933 memcpy(ncp->nc_name, name, namelen); 934 935 /* 936 * Insert to the directory. Concurrent lookups may race for a cache 937 * entry. If there's a entry there already, purge it. 938 */ 939 rw_enter(&dvi->vi_nc_lock, RW_WRITER); 940 oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp); 941 if (oncp != ncp) { 942 KASSERT(oncp->nc_key == ncp->nc_key); 943 KASSERT(oncp->nc_nlen == ncp->nc_nlen); 944 KASSERT(memcmp(oncp->nc_name, name, namelen) == 0); 945 cache_remove(oncp, true); 946 oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp); 947 KASSERT(oncp == ncp); 948 } 949 950 /* 951 * With the directory lock still held, insert to the tail of the 952 * ACTIVE LRU list (new) and take the opportunity to incrementally 953 * balance the lists. 954 */ 955 mutex_enter(&cache_lru_lock); 956 ncp->nc_lrulist = LRU_ACTIVE; 957 cache_lru.count[LRU_ACTIVE]++; 958 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru); 959 cache_deactivate(); 960 mutex_exit(&cache_lru_lock); 961 962 /* 963 * Finally, insert to the vnode and unlock. With everything set up 964 * it's safe to let cache_revlookup() see the entry. Partially sort 965 * the per-vnode list: dots go to back so cache_revlookup() doesn't 966 * have to consider them. 967 */ 968 if (vp != NULL) { 969 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 970 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 971 if ((namelen == 1 && name[0] == '.') || 972 (namelen == 2 && name[0] == '.' && name[1] == '.')) { 973 TAILQ_INSERT_TAIL(&vi->vi_nc_list, ncp, nc_list); 974 } else { 975 TAILQ_INSERT_HEAD(&vi->vi_nc_list, ncp, nc_list); 976 } 977 rw_exit(&vi->vi_nc_listlock); 978 } 979 rw_exit(&dvi->vi_nc_lock); 980 } 981 982 /* 983 * Set identity info in cache for a vnode. We only care about directories 984 * so ignore other updates. The cached info may be marked invalid if the 985 * inode has an ACL. 986 */ 987 void 988 cache_enter_id(struct vnode *vp, mode_t mode, uid_t uid, gid_t gid, bool valid) 989 { 990 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 991 992 if (vp->v_type == VDIR) { 993 /* Grab both locks, for forward & reverse lookup. */ 994 rw_enter(&vi->vi_nc_lock, RW_WRITER); 995 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 996 if (valid) { 997 vi->vi_nc_mode = mode; 998 vi->vi_nc_uid = uid; 999 vi->vi_nc_gid = gid; 1000 } else { 1001 vi->vi_nc_mode = VNOVAL; 1002 vi->vi_nc_uid = VNOVAL; 1003 vi->vi_nc_gid = VNOVAL; 1004 } 1005 rw_exit(&vi->vi_nc_listlock); 1006 rw_exit(&vi->vi_nc_lock); 1007 } 1008 } 1009 1010 /* 1011 * Return true if we have identity for the given vnode, and use as an 1012 * opportunity to confirm that everything squares up. 1013 * 1014 * Because of shared code, some file systems could provide partial 1015 * information, missing some updates, so check the mount flag too. 1016 */ 1017 bool 1018 cache_have_id(struct vnode *vp) 1019 { 1020 1021 if (vp->v_type == VDIR && 1022 (vp->v_mount->mnt_iflag & IMNT_NCLOOKUP) != 0 && 1023 atomic_load_relaxed(&VNODE_TO_VIMPL(vp)->vi_nc_mode) != VNOVAL) { 1024 return true; 1025 } else { 1026 return false; 1027 } 1028 } 1029 1030 /* 1031 * Enter a mount point. cvp is the covered vnode, and rvp is the root of 1032 * the mounted file system. 1033 */ 1034 void 1035 cache_enter_mount(struct vnode *cvp, struct vnode *rvp) 1036 { 1037 1038 KASSERT(vrefcnt(cvp) > 0); 1039 KASSERT(vrefcnt(rvp) > 0); 1040 KASSERT(cvp->v_type == VDIR); 1041 KASSERT((rvp->v_vflag & VV_ROOT) != 0); 1042 1043 if (rvp->v_type == VDIR) { 1044 cache_enter(cvp, rvp, cache_mp_name, cache_mp_nlen, MAKEENTRY); 1045 } 1046 } 1047 1048 /* 1049 * Look up a cached mount point. Used in the strongly locked path. 1050 */ 1051 bool 1052 cache_lookup_mount(struct vnode *dvp, struct vnode **vn_ret) 1053 { 1054 bool ret; 1055 1056 ret = cache_lookup(dvp, cache_mp_name, cache_mp_nlen, LOOKUP, 1057 MAKEENTRY, NULL, vn_ret); 1058 KASSERT((*vn_ret != NULL) == ret); 1059 return ret; 1060 } 1061 1062 /* 1063 * Try to cross a mount point. For use with cache_lookup_linked(). 1064 */ 1065 bool 1066 cache_cross_mount(struct vnode **dvp, krwlock_t **plock) 1067 { 1068 1069 return cache_lookup_linked(*dvp, cache_mp_name, cache_mp_nlen, 1070 dvp, plock, FSCRED); 1071 } 1072 1073 /* 1074 * Name cache initialization, from vfs_init() when the system is booting. 1075 */ 1076 void 1077 nchinit(void) 1078 { 1079 1080 cache_pool = pool_cache_init(sizeof(struct namecache), 1081 coherency_unit, 0, 0, "namecache", NULL, IPL_NONE, NULL, 1082 NULL, NULL); 1083 KASSERT(cache_pool != NULL); 1084 1085 mutex_init(&cache_lru_lock, MUTEX_DEFAULT, IPL_NONE); 1086 TAILQ_INIT(&cache_lru.list[LRU_ACTIVE]); 1087 TAILQ_INIT(&cache_lru.list[LRU_INACTIVE]); 1088 1089 mutex_init(&cache_stat_lock, MUTEX_DEFAULT, IPL_NONE); 1090 callout_init(&cache_stat_callout, CALLOUT_MPSAFE); 1091 callout_setfunc(&cache_stat_callout, cache_update_stats, NULL); 1092 callout_schedule(&cache_stat_callout, cache_stat_interval * hz); 1093 1094 KASSERT(cache_sysctllog == NULL); 1095 sysctl_createv(&cache_sysctllog, 0, NULL, NULL, 1096 CTLFLAG_PERMANENT, 1097 CTLTYPE_STRUCT, "namecache_stats", 1098 SYSCTL_DESCR("namecache statistics"), 1099 cache_stat_sysctl, 0, NULL, 0, 1100 CTL_VFS, CTL_CREATE, CTL_EOL); 1101 } 1102 1103 /* 1104 * Called once for each CPU in the system as attached. 1105 */ 1106 void 1107 cache_cpu_init(struct cpu_info *ci) 1108 { 1109 void *p; 1110 size_t sz; 1111 1112 sz = roundup2(sizeof(struct nchcpu), coherency_unit) + coherency_unit; 1113 p = kmem_zalloc(sz, KM_SLEEP); 1114 ci->ci_data.cpu_nch = (void *)roundup2((uintptr_t)p, coherency_unit); 1115 } 1116 1117 /* 1118 * A vnode is being allocated: set up cache structures. 1119 */ 1120 void 1121 cache_vnode_init(struct vnode *vp) 1122 { 1123 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 1124 1125 rw_init(&vi->vi_nc_lock); 1126 rw_init(&vi->vi_nc_listlock); 1127 rb_tree_init(&vi->vi_nc_tree, &cache_rbtree_ops); 1128 TAILQ_INIT(&vi->vi_nc_list); 1129 vi->vi_nc_mode = VNOVAL; 1130 vi->vi_nc_uid = VNOVAL; 1131 vi->vi_nc_gid = VNOVAL; 1132 } 1133 1134 /* 1135 * A vnode is being freed: finish cache structures. 1136 */ 1137 void 1138 cache_vnode_fini(struct vnode *vp) 1139 { 1140 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 1141 1142 KASSERT(RB_TREE_MIN(&vi->vi_nc_tree) == NULL); 1143 KASSERT(TAILQ_EMPTY(&vi->vi_nc_list)); 1144 rw_destroy(&vi->vi_nc_lock); 1145 rw_destroy(&vi->vi_nc_listlock); 1146 } 1147 1148 /* 1149 * Helper for cache_purge1(): purge cache entries for the given vnode from 1150 * all directories that the vnode is cached in. 1151 */ 1152 static void 1153 cache_purge_parents(struct vnode *vp) 1154 { 1155 vnode_impl_t *dvi, *vi = VNODE_TO_VIMPL(vp); 1156 struct vnode *dvp, *blocked; 1157 struct namecache *ncp; 1158 1159 SDT_PROBE(vfs, namecache, purge, parents, vp, 0, 0, 0, 0); 1160 1161 blocked = NULL; 1162 1163 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 1164 while ((ncp = TAILQ_FIRST(&vi->vi_nc_list)) != NULL) { 1165 /* 1166 * Locking in the wrong direction. Try for a hold on the 1167 * directory node's lock, and if we get it then all good, 1168 * nuke the entry and move on to the next. 1169 */ 1170 dvp = ncp->nc_dvp; 1171 dvi = VNODE_TO_VIMPL(dvp); 1172 if (rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) { 1173 cache_remove(ncp, false); 1174 rw_exit(&dvi->vi_nc_lock); 1175 blocked = NULL; 1176 continue; 1177 } 1178 1179 /* 1180 * We can't wait on the directory node's lock with our list 1181 * lock held or the system could deadlock. 1182 * 1183 * Take a hold on the directory vnode to prevent it from 1184 * being freed (taking the vnode & lock with it). Then 1185 * wait for the lock to become available with no other locks 1186 * held, and retry. 1187 * 1188 * If this happens twice in a row, give the other side a 1189 * breather; we can do nothing until it lets go. 1190 */ 1191 vhold(dvp); 1192 rw_exit(&vi->vi_nc_listlock); 1193 rw_enter(&dvi->vi_nc_lock, RW_WRITER); 1194 /* Do nothing. */ 1195 rw_exit(&dvi->vi_nc_lock); 1196 holdrele(dvp); 1197 if (blocked == dvp) { 1198 kpause("ncpurge", false, 1, NULL); 1199 } 1200 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 1201 blocked = dvp; 1202 } 1203 rw_exit(&vi->vi_nc_listlock); 1204 } 1205 1206 /* 1207 * Helper for cache_purge1(): purge all cache entries hanging off the given 1208 * directory vnode. 1209 */ 1210 static void 1211 cache_purge_children(struct vnode *dvp) 1212 { 1213 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 1214 struct namecache *ncp; 1215 1216 SDT_PROBE(vfs, namecache, purge, children, dvp, 0, 0, 0, 0); 1217 1218 rw_enter(&dvi->vi_nc_lock, RW_WRITER); 1219 while ((ncp = RB_TREE_MIN(&dvi->vi_nc_tree)) != NULL) { 1220 cache_remove(ncp, true); 1221 } 1222 rw_exit(&dvi->vi_nc_lock); 1223 } 1224 1225 /* 1226 * Helper for cache_purge1(): purge cache entry from the given vnode, 1227 * finding it by name. 1228 */ 1229 static void 1230 cache_purge_name(struct vnode *dvp, const char *name, size_t namelen) 1231 { 1232 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 1233 struct namecache *ncp; 1234 uint64_t key; 1235 1236 SDT_PROBE(vfs, namecache, purge, name, name, namelen, 0, 0, 0); 1237 1238 key = cache_key(name, namelen); 1239 rw_enter(&dvi->vi_nc_lock, RW_WRITER); 1240 ncp = cache_lookup_entry(dvp, name, namelen, key); 1241 if (ncp) { 1242 cache_remove(ncp, true); 1243 } 1244 rw_exit(&dvi->vi_nc_lock); 1245 } 1246 1247 /* 1248 * Cache flush, a particular vnode; called when a vnode is renamed to 1249 * hide entries that would now be invalid. 1250 */ 1251 void 1252 cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags) 1253 { 1254 1255 if (flags & PURGE_PARENTS) { 1256 cache_purge_parents(vp); 1257 } 1258 if (flags & PURGE_CHILDREN) { 1259 cache_purge_children(vp); 1260 } 1261 if (name != NULL) { 1262 cache_purge_name(vp, name, namelen); 1263 } 1264 } 1265 1266 /* 1267 * vnode filter for cache_purgevfs(). 1268 */ 1269 static bool 1270 cache_vdir_filter(void *cookie, vnode_t *vp) 1271 { 1272 1273 return vp->v_type == VDIR; 1274 } 1275 1276 /* 1277 * Cache flush, a whole filesystem; called when filesys is umounted to 1278 * remove entries that would now be invalid. 1279 */ 1280 void 1281 cache_purgevfs(struct mount *mp) 1282 { 1283 struct vnode_iterator *iter; 1284 vnode_t *dvp; 1285 1286 vfs_vnode_iterator_init(mp, &iter); 1287 for (;;) { 1288 dvp = vfs_vnode_iterator_next(iter, cache_vdir_filter, NULL); 1289 if (dvp == NULL) { 1290 break; 1291 } 1292 cache_purge_children(dvp); 1293 vrele(dvp); 1294 } 1295 vfs_vnode_iterator_destroy(iter); 1296 } 1297 1298 /* 1299 * Re-queue an entry onto the tail of the active LRU list, after it has 1300 * scored a hit. 1301 */ 1302 static void 1303 cache_activate(struct namecache *ncp) 1304 { 1305 1306 mutex_enter(&cache_lru_lock); 1307 TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru); 1308 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru); 1309 cache_lru.count[ncp->nc_lrulist]--; 1310 cache_lru.count[LRU_ACTIVE]++; 1311 ncp->nc_lrulist = LRU_ACTIVE; 1312 mutex_exit(&cache_lru_lock); 1313 } 1314 1315 /* 1316 * Try to balance the LRU lists. Pick some victim entries, and re-queue 1317 * them from the head of the active list to the tail of the inactive list. 1318 */ 1319 static void 1320 cache_deactivate(void) 1321 { 1322 struct namecache *ncp; 1323 int total, i; 1324 1325 KASSERT(mutex_owned(&cache_lru_lock)); 1326 1327 /* If we're nowhere near budget yet, don't bother. */ 1328 total = cache_lru.count[LRU_ACTIVE] + cache_lru.count[LRU_INACTIVE]; 1329 if (total < (desiredvnodes >> 1)) { 1330 return; 1331 } 1332 1333 /* 1334 * Aim for a 1:1 ratio of active to inactive. This is to allow each 1335 * potential victim a reasonable amount of time to cycle through the 1336 * inactive list in order to score a hit and be reactivated, while 1337 * trying not to cause reactivations too frequently. 1338 */ 1339 if (cache_lru.count[LRU_ACTIVE] < cache_lru.count[LRU_INACTIVE]) { 1340 return; 1341 } 1342 1343 /* Move only a few at a time; will catch up eventually. */ 1344 for (i = 0; i < cache_lru_maxdeact; i++) { 1345 ncp = TAILQ_FIRST(&cache_lru.list[LRU_ACTIVE]); 1346 if (ncp == NULL) { 1347 break; 1348 } 1349 KASSERT(ncp->nc_lrulist == LRU_ACTIVE); 1350 ncp->nc_lrulist = LRU_INACTIVE; 1351 TAILQ_REMOVE(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru); 1352 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE], ncp, nc_lru); 1353 cache_lru.count[LRU_ACTIVE]--; 1354 cache_lru.count[LRU_INACTIVE]++; 1355 } 1356 } 1357 1358 /* 1359 * Free some entries from the cache, when we have gone over budget. 1360 * 1361 * We don't want to cause too much work for any individual caller, and it 1362 * doesn't matter if we temporarily go over budget. This is also "just a 1363 * cache" so it's not a big deal if we screw up and throw out something we 1364 * shouldn't. So we take a relaxed attitude to this process to reduce its 1365 * impact. 1366 */ 1367 static void 1368 cache_reclaim(void) 1369 { 1370 struct namecache *ncp; 1371 vnode_impl_t *dvi; 1372 int toscan; 1373 1374 /* 1375 * Scan up to a preset maximum number of entries, but no more than 1376 * 0.8% of the total at once (to allow for very small systems). 1377 * 1378 * On bigger systems, do a larger chunk of work to reduce the number 1379 * of times that cache_lru_lock is held for any length of time. 1380 */ 1381 mutex_enter(&cache_lru_lock); 1382 toscan = MIN(cache_lru_maxscan, desiredvnodes >> 7); 1383 toscan = MAX(toscan, 1); 1384 SDT_PROBE(vfs, namecache, prune, done, cache_lru.count[LRU_ACTIVE] + 1385 cache_lru.count[LRU_INACTIVE], toscan, 0, 0, 0); 1386 while (toscan-- != 0) { 1387 /* First try to balance the lists. */ 1388 cache_deactivate(); 1389 1390 /* Now look for a victim on head of inactive list (old). */ 1391 ncp = TAILQ_FIRST(&cache_lru.list[LRU_INACTIVE]); 1392 if (ncp == NULL) { 1393 break; 1394 } 1395 dvi = VNODE_TO_VIMPL(ncp->nc_dvp); 1396 KASSERT(ncp->nc_lrulist == LRU_INACTIVE); 1397 KASSERT(dvi != NULL); 1398 1399 /* 1400 * Locking in the wrong direction. If we can't get the 1401 * lock, the directory is actively busy, and it could also 1402 * cause problems for the next guy in here, so send the 1403 * entry to the back of the list. 1404 */ 1405 if (!rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) { 1406 TAILQ_REMOVE(&cache_lru.list[LRU_INACTIVE], 1407 ncp, nc_lru); 1408 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE], 1409 ncp, nc_lru); 1410 continue; 1411 } 1412 1413 /* 1414 * Now have the victim entry locked. Drop the LRU list 1415 * lock, purge the entry, and start over. The hold on 1416 * vi_nc_lock will prevent the vnode from vanishing until 1417 * finished (cache_purge() will be called on dvp before it 1418 * disappears, and that will wait on vi_nc_lock). 1419 */ 1420 mutex_exit(&cache_lru_lock); 1421 cache_remove(ncp, true); 1422 rw_exit(&dvi->vi_nc_lock); 1423 mutex_enter(&cache_lru_lock); 1424 } 1425 mutex_exit(&cache_lru_lock); 1426 } 1427 1428 /* 1429 * For file system code: count a lookup that required a full re-scan of 1430 * directory metadata. 1431 */ 1432 void 1433 namecache_count_pass2(void) 1434 { 1435 1436 COUNT(ncs_pass2); 1437 } 1438 1439 /* 1440 * For file system code: count a lookup that scored a hit in the directory 1441 * metadata near the location of the last lookup. 1442 */ 1443 void 1444 namecache_count_2passes(void) 1445 { 1446 1447 COUNT(ncs_2passes); 1448 } 1449 1450 /* 1451 * Sum the stats from all CPUs into nchstats. This needs to run at least 1452 * once within every window where a 32-bit counter could roll over. It's 1453 * called regularly by timer to ensure this. 1454 */ 1455 static void 1456 cache_update_stats(void *cookie) 1457 { 1458 CPU_INFO_ITERATOR cii; 1459 struct cpu_info *ci; 1460 1461 mutex_enter(&cache_stat_lock); 1462 for (CPU_INFO_FOREACH(cii, ci)) { 1463 struct nchcpu *nchcpu = ci->ci_data.cpu_nch; 1464 UPDATE(nchcpu, ncs_goodhits); 1465 UPDATE(nchcpu, ncs_neghits); 1466 UPDATE(nchcpu, ncs_badhits); 1467 UPDATE(nchcpu, ncs_falsehits); 1468 UPDATE(nchcpu, ncs_miss); 1469 UPDATE(nchcpu, ncs_long); 1470 UPDATE(nchcpu, ncs_pass2); 1471 UPDATE(nchcpu, ncs_2passes); 1472 UPDATE(nchcpu, ncs_revhits); 1473 UPDATE(nchcpu, ncs_revmiss); 1474 UPDATE(nchcpu, ncs_denied); 1475 } 1476 if (cookie != NULL) { 1477 memcpy(cookie, &nchstats, sizeof(nchstats)); 1478 } 1479 /* Reset the timer; arrive back here in N minutes at latest. */ 1480 callout_schedule(&cache_stat_callout, cache_stat_interval * hz); 1481 mutex_exit(&cache_stat_lock); 1482 } 1483 1484 /* 1485 * Fetch the current values of the stats for sysctl. 1486 */ 1487 static int 1488 cache_stat_sysctl(SYSCTLFN_ARGS) 1489 { 1490 struct nchstats stats; 1491 1492 if (oldp == NULL) { 1493 *oldlenp = sizeof(nchstats); 1494 return 0; 1495 } 1496 1497 if (*oldlenp <= 0) { 1498 *oldlenp = 0; 1499 return 0; 1500 } 1501 1502 /* Refresh the global stats. */ 1503 sysctl_unlock(); 1504 cache_update_stats(&stats); 1505 sysctl_relock(); 1506 1507 *oldlenp = MIN(sizeof(stats), *oldlenp); 1508 return sysctl_copyout(l, &stats, oldp, *oldlenp); 1509 } 1510 1511 /* 1512 * For the debugger, given the address of a vnode, print all associated 1513 * names in the cache. 1514 */ 1515 #ifdef DDB 1516 void 1517 namecache_print(struct vnode *vp, void (*pr)(const char *, ...)) 1518 { 1519 struct vnode *dvp = NULL; 1520 struct namecache *ncp; 1521 enum cache_lru_id id; 1522 1523 for (id = 0; id < LRU_COUNT; id++) { 1524 TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) { 1525 if (ncp->nc_vp == vp) { 1526 (*pr)("name %.*s\n", ncp->nc_nlen, 1527 ncp->nc_name); 1528 dvp = ncp->nc_dvp; 1529 } 1530 } 1531 } 1532 if (dvp == NULL) { 1533 (*pr)("name not found\n"); 1534 return; 1535 } 1536 for (id = 0; id < LRU_COUNT; id++) { 1537 TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) { 1538 if (ncp->nc_vp == dvp) { 1539 (*pr)("parent %.*s\n", ncp->nc_nlen, 1540 ncp->nc_name); 1541 } 1542 } 1543 } 1544 } 1545 #endif 1546