xref: /netbsd-src/sys/kern/vfs_bio.c (revision e77448e07be3174235c13f58032a0d6d0ab7638d)
1 /*	$NetBSD: vfs_bio.c,v 1.198 2008/05/16 09:21:59 hannken Exp $	*/
2 
3 /*-
4  * Copyright (c) 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1982, 1986, 1989, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  * (c) UNIX System Laboratories, Inc.
36  * All or some portions of this file are derived from material licensed
37  * to the University of California by American Telephone and Telegraph
38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39  * the permission of UNIX System Laboratories, Inc.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
66  */
67 
68 /*-
69  * Copyright (c) 1994 Christopher G. Demetriou
70  *
71  * Redistribution and use in source and binary forms, with or without
72  * modification, are permitted provided that the following conditions
73  * are met:
74  * 1. Redistributions of source code must retain the above copyright
75  *    notice, this list of conditions and the following disclaimer.
76  * 2. Redistributions in binary form must reproduce the above copyright
77  *    notice, this list of conditions and the following disclaimer in the
78  *    documentation and/or other materials provided with the distribution.
79  * 3. All advertising materials mentioning features or use of this software
80  *    must display the following acknowledgement:
81  *	This product includes software developed by the University of
82  *	California, Berkeley and its contributors.
83  * 4. Neither the name of the University nor the names of its contributors
84  *    may be used to endorse or promote products derived from this software
85  *    without specific prior written permission.
86  *
87  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97  * SUCH DAMAGE.
98  *
99  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
100  */
101 
102 /*
103  * Some references:
104  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
105  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
106  *		UNIX Operating System (Addison Welley, 1989)
107  */
108 
109 #include <sys/cdefs.h>
110 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.198 2008/05/16 09:21:59 hannken Exp $");
111 
112 #include "fs_ffs.h"
113 #include "opt_bufcache.h"
114 
115 #include <sys/param.h>
116 #include <sys/systm.h>
117 #include <sys/kernel.h>
118 #include <sys/proc.h>
119 #include <sys/buf.h>
120 #include <sys/vnode.h>
121 #include <sys/mount.h>
122 #include <sys/resourcevar.h>
123 #include <sys/sysctl.h>
124 #include <sys/conf.h>
125 #include <sys/kauth.h>
126 #include <sys/fstrans.h>
127 #include <sys/intr.h>
128 #include <sys/cpu.h>
129 
130 #include <uvm/uvm.h>
131 
132 #include <miscfs/specfs/specdev.h>
133 
134 #ifndef	BUFPAGES
135 # define BUFPAGES 0
136 #endif
137 
138 #ifdef BUFCACHE
139 # if (BUFCACHE < 5) || (BUFCACHE > 95)
140 #  error BUFCACHE is not between 5 and 95
141 # endif
142 #else
143 # define BUFCACHE 15
144 #endif
145 
146 u_int	nbuf;			/* XXX - for softdep_lockedbufs */
147 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
148 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
149 
150 /* Function prototypes */
151 struct bqueue;
152 
153 static void buf_setwm(void);
154 static int buf_trim(void);
155 static void *bufpool_page_alloc(struct pool *, int);
156 static void bufpool_page_free(struct pool *, void *);
157 static buf_t *bio_doread(struct vnode *, daddr_t, int,
158     kauth_cred_t, int);
159 static buf_t *getnewbuf(int, int, int);
160 static int buf_lotsfree(void);
161 static int buf_canrelease(void);
162 static u_long buf_mempoolidx(u_long);
163 static u_long buf_roundsize(u_long);
164 static void *buf_malloc(size_t);
165 static void buf_mrelease(void *, size_t);
166 static void binsheadfree(buf_t *, struct bqueue *);
167 static void binstailfree(buf_t *, struct bqueue *);
168 int count_lock_queue(void); /* XXX */
169 #ifdef DEBUG
170 static int checkfreelist(buf_t *, struct bqueue *);
171 #endif
172 static void biointr(void *);
173 static void biodone2(buf_t *);
174 static void bref(buf_t *);
175 static void brele(buf_t *);
176 
177 /*
178  * Definitions for the buffer hash lists.
179  */
180 #define	BUFHASH(dvp, lbn)	\
181 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
182 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
183 u_long	bufhash;
184 struct bqueue bufqueues[BQUEUES];
185 const struct bio_ops *bioopsp;	/* I/O operation notification */
186 
187 static kcondvar_t needbuffer_cv;
188 
189 /*
190  * Buffer queue lock.
191  */
192 kmutex_t bufcache_lock;
193 kmutex_t buffer_lock;
194 
195 /* Software ISR for completed transfers. */
196 static void *biodone_sih;
197 
198 /* Buffer pool for I/O buffers. */
199 static pool_cache_t buf_cache;
200 static pool_cache_t bufio_cache;
201 
202 /* XXX - somewhat gross.. */
203 #if MAXBSIZE == 0x2000
204 #define NMEMPOOLS 5
205 #elif MAXBSIZE == 0x4000
206 #define NMEMPOOLS 6
207 #elif MAXBSIZE == 0x8000
208 #define NMEMPOOLS 7
209 #else
210 #define NMEMPOOLS 8
211 #endif
212 
213 #define MEMPOOL_INDEX_OFFSET 9	/* smallest pool is 512 bytes */
214 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
215 #error update vfs_bio buffer memory parameters
216 #endif
217 
218 /* Buffer memory pools */
219 static struct pool bmempools[NMEMPOOLS];
220 
221 static struct vm_map *buf_map;
222 
223 /*
224  * Buffer memory pool allocator.
225  */
226 static void *
227 bufpool_page_alloc(struct pool *pp, int flags)
228 {
229 
230 	return (void *)uvm_km_alloc(buf_map,
231 	    MAXBSIZE, MAXBSIZE,
232 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
233 	    | UVM_KMF_WIRED);
234 }
235 
236 static void
237 bufpool_page_free(struct pool *pp, void *v)
238 {
239 
240 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
241 }
242 
243 static struct pool_allocator bufmempool_allocator = {
244 	.pa_alloc = bufpool_page_alloc,
245 	.pa_free = bufpool_page_free,
246 	.pa_pagesz = MAXBSIZE,
247 };
248 
249 /* Buffer memory management variables */
250 u_long bufmem_valimit;
251 u_long bufmem_hiwater;
252 u_long bufmem_lowater;
253 u_long bufmem;
254 
255 /*
256  * MD code can call this to set a hard limit on the amount
257  * of virtual memory used by the buffer cache.
258  */
259 int
260 buf_setvalimit(vsize_t sz)
261 {
262 
263 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
264 	if (sz < NMEMPOOLS * MAXBSIZE)
265 		return EINVAL;
266 
267 	bufmem_valimit = sz;
268 	return 0;
269 }
270 
271 static void
272 buf_setwm(void)
273 {
274 
275 	bufmem_hiwater = buf_memcalc();
276 	/* lowater is approx. 2% of memory (with bufcache = 15) */
277 #define	BUFMEM_WMSHIFT	3
278 #define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
279 	if (bufmem_hiwater < BUFMEM_HIWMMIN)
280 		/* Ensure a reasonable minimum value */
281 		bufmem_hiwater = BUFMEM_HIWMMIN;
282 	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
283 }
284 
285 #ifdef DEBUG
286 int debug_verify_freelist = 0;
287 static int
288 checkfreelist(buf_t *bp, struct bqueue *dp)
289 {
290 	buf_t *b;
291 
292 	if (!debug_verify_freelist)
293 		return 1;
294 
295 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
296 		if (b == bp)
297 			return 1;
298 	}
299 
300 	return 0;
301 }
302 #endif
303 
304 /*
305  * Insq/Remq for the buffer hash lists.
306  * Call with buffer queue locked.
307  */
308 static void
309 binsheadfree(buf_t *bp, struct bqueue *dp)
310 {
311 
312 	KASSERT(bp->b_freelistindex == -1);
313 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
314 	dp->bq_bytes += bp->b_bufsize;
315 	bp->b_freelistindex = dp - bufqueues;
316 }
317 
318 static void
319 binstailfree(buf_t *bp, struct bqueue *dp)
320 {
321 
322 	KASSERT(bp->b_freelistindex == -1);
323 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
324 	dp->bq_bytes += bp->b_bufsize;
325 	bp->b_freelistindex = dp - bufqueues;
326 }
327 
328 void
329 bremfree(buf_t *bp)
330 {
331 	struct bqueue *dp;
332 	int bqidx = bp->b_freelistindex;
333 
334 	KASSERT(mutex_owned(&bufcache_lock));
335 
336 	KASSERT(bqidx != -1);
337 	dp = &bufqueues[bqidx];
338 	KDASSERT(checkfreelist(bp, dp));
339 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
340 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
341 	dp->bq_bytes -= bp->b_bufsize;
342 
343 	/* For the sysctl helper. */
344 	if (bp == dp->bq_marker)
345 		dp->bq_marker = NULL;
346 
347 #if defined(DIAGNOSTIC)
348 	bp->b_freelistindex = -1;
349 #endif /* defined(DIAGNOSTIC) */
350 }
351 
352 /*
353  * Add a reference to an buffer structure that came from buf_cache.
354  */
355 static inline void
356 bref(buf_t *bp)
357 {
358 
359 	KASSERT(mutex_owned(&bufcache_lock));
360 	KASSERT(bp->b_refcnt > 0);
361 
362 	bp->b_refcnt++;
363 }
364 
365 /*
366  * Free an unused buffer structure that came from buf_cache.
367  */
368 static inline void
369 brele(buf_t *bp)
370 {
371 
372 	KASSERT(mutex_owned(&bufcache_lock));
373 	KASSERT(bp->b_refcnt > 0);
374 
375 	if (bp->b_refcnt-- == 1) {
376 		buf_destroy(bp);
377 #ifdef DEBUG
378 		memset((char *)bp, 0, sizeof(*bp));
379 #endif
380 		pool_cache_put(buf_cache, bp);
381 	}
382 }
383 
384 /*
385  * note that for some ports this is used by pmap bootstrap code to
386  * determine kva size.
387  */
388 u_long
389 buf_memcalc(void)
390 {
391 	u_long n;
392 
393 	/*
394 	 * Determine the upper bound of memory to use for buffers.
395 	 *
396 	 *	- If bufpages is specified, use that as the number
397 	 *	  pages.
398 	 *
399 	 *	- Otherwise, use bufcache as the percentage of
400 	 *	  physical memory.
401 	 */
402 	if (bufpages != 0) {
403 		n = bufpages;
404 	} else {
405 		if (bufcache < 5) {
406 			printf("forcing bufcache %d -> 5", bufcache);
407 			bufcache = 5;
408 		}
409 		if (bufcache > 95) {
410 			printf("forcing bufcache %d -> 95", bufcache);
411 			bufcache = 95;
412 		}
413 		n = calc_cache_size(buf_map, bufcache,
414 		    (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
415 		    / PAGE_SIZE;
416 	}
417 
418 	n <<= PAGE_SHIFT;
419 	if (bufmem_valimit != 0 && n > bufmem_valimit)
420 		n = bufmem_valimit;
421 
422 	return (n);
423 }
424 
425 /*
426  * Initialize buffers and hash links for buffers.
427  */
428 void
429 bufinit(void)
430 {
431 	struct bqueue *dp;
432 	int use_std;
433 	u_int i;
434 
435 	mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
436 	mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
437 	cv_init(&needbuffer_cv, "needbuf");
438 
439 	if (bufmem_valimit != 0) {
440 		vaddr_t minaddr = 0, maxaddr;
441 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
442 					  bufmem_valimit, 0, false, 0);
443 		if (buf_map == NULL)
444 			panic("bufinit: cannot allocate submap");
445 	} else
446 		buf_map = kernel_map;
447 
448 	/*
449 	 * Initialize buffer cache memory parameters.
450 	 */
451 	bufmem = 0;
452 	buf_setwm();
453 
454 	/* On "small" machines use small pool page sizes where possible */
455 	use_std = (physmem < atop(16*1024*1024));
456 
457 	/*
458 	 * Also use them on systems that can map the pool pages using
459 	 * a direct-mapped segment.
460 	 */
461 #ifdef PMAP_MAP_POOLPAGE
462 	use_std = 1;
463 #endif
464 
465 	buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
466 	    "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
467 	bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
468 	    "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
469 
470 	bufmempool_allocator.pa_backingmap = buf_map;
471 	for (i = 0; i < NMEMPOOLS; i++) {
472 		struct pool_allocator *pa;
473 		struct pool *pp = &bmempools[i];
474 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
475 		char *name = kmem_alloc(8, KM_SLEEP);
476 		if (__predict_true(size >= 1024))
477 			(void)snprintf(name, 8, "buf%dk", size / 1024);
478 		else
479 			(void)snprintf(name, 8, "buf%db", size);
480 		pa = (size <= PAGE_SIZE && use_std)
481 			? &pool_allocator_nointr
482 			: &bufmempool_allocator;
483 		pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
484 		pool_setlowat(pp, 1);
485 		pool_sethiwat(pp, 1);
486 	}
487 
488 	/* Initialize the buffer queues */
489 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
490 		TAILQ_INIT(&dp->bq_queue);
491 		dp->bq_bytes = 0;
492 	}
493 
494 	/*
495 	 * Estimate hash table size based on the amount of memory we
496 	 * intend to use for the buffer cache. The average buffer
497 	 * size is dependent on our clients (i.e. filesystems).
498 	 *
499 	 * For now, use an empirical 3K per buffer.
500 	 */
501 	nbuf = (bufmem_hiwater / 1024) / 3;
502 	bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
503 }
504 
505 void
506 bufinit2(void)
507 {
508 
509 	biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
510 	    NULL);
511 	if (biodone_sih == NULL)
512 		panic("bufinit2: can't establish soft interrupt");
513 }
514 
515 static int
516 buf_lotsfree(void)
517 {
518 	int try, thresh;
519 
520 	/* Always allocate if less than the low water mark. */
521 	if (bufmem < bufmem_lowater)
522 		return 1;
523 
524 	/* Never allocate if greater than the high water mark. */
525 	if (bufmem > bufmem_hiwater)
526 		return 0;
527 
528 	/* If there's anything on the AGE list, it should be eaten. */
529 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
530 		return 0;
531 
532 	/*
533 	 * The probabily of getting a new allocation is inversely
534 	 * proportional to the current size of the cache, using
535 	 * a granularity of 16 steps.
536 	 */
537 	try = random() & 0x0000000fL;
538 
539 	/* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
540 	thresh = (bufmem - bufmem_lowater) /
541 	    ((bufmem_hiwater - bufmem_lowater) / 16);
542 
543 	if (try >= thresh)
544 		return 1;
545 
546 	/* Otherwise don't allocate. */
547 	return 0;
548 }
549 
550 /*
551  * Return estimate of bytes we think need to be
552  * released to help resolve low memory conditions.
553  *
554  * => called with bufcache_lock held.
555  */
556 static int
557 buf_canrelease(void)
558 {
559 	int pagedemand, ninvalid = 0;
560 
561 	KASSERT(mutex_owned(&bufcache_lock));
562 
563 	if (bufmem < bufmem_lowater)
564 		return 0;
565 
566 	if (bufmem > bufmem_hiwater)
567 		return bufmem - bufmem_hiwater;
568 
569 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
570 
571 	pagedemand = uvmexp.freetarg - uvmexp.free;
572 	if (pagedemand < 0)
573 		return ninvalid;
574 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
575 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
576 }
577 
578 /*
579  * Buffer memory allocation helper functions
580  */
581 static u_long
582 buf_mempoolidx(u_long size)
583 {
584 	u_int n = 0;
585 
586 	size -= 1;
587 	size >>= MEMPOOL_INDEX_OFFSET;
588 	while (size) {
589 		size >>= 1;
590 		n += 1;
591 	}
592 	if (n >= NMEMPOOLS)
593 		panic("buf mem pool index %d", n);
594 	return n;
595 }
596 
597 static u_long
598 buf_roundsize(u_long size)
599 {
600 	/* Round up to nearest power of 2 */
601 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
602 }
603 
604 static void *
605 buf_malloc(size_t size)
606 {
607 	u_int n = buf_mempoolidx(size);
608 	void *addr;
609 
610 	while (1) {
611 		addr = pool_get(&bmempools[n], PR_NOWAIT);
612 		if (addr != NULL)
613 			break;
614 
615 		/* No memory, see if we can free some. If so, try again */
616 		mutex_enter(&bufcache_lock);
617 		if (buf_drain(1) > 0) {
618 			mutex_exit(&bufcache_lock);
619 			continue;
620 		}
621 
622 		if (curlwp == uvm.pagedaemon_lwp) {
623 			mutex_exit(&bufcache_lock);
624 			return NULL;
625 		}
626 
627 		/* Wait for buffers to arrive on the LRU queue */
628 		cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
629 		mutex_exit(&bufcache_lock);
630 	}
631 
632 	return addr;
633 }
634 
635 static void
636 buf_mrelease(void *addr, size_t size)
637 {
638 
639 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
640 }
641 
642 /*
643  * bread()/breadn() helper.
644  */
645 static buf_t *
646 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
647     int async)
648 {
649 	buf_t *bp;
650 	struct mount *mp;
651 
652 	bp = getblk(vp, blkno, size, 0, 0);
653 
654 #ifdef DIAGNOSTIC
655 	if (bp == NULL) {
656 		panic("bio_doread: no such buf");
657 	}
658 #endif
659 
660 	/*
661 	 * If buffer does not have data valid, start a read.
662 	 * Note that if buffer is BC_INVAL, getblk() won't return it.
663 	 * Therefore, it's valid if its I/O has completed or been delayed.
664 	 */
665 	if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
666 		/* Start I/O for the buffer. */
667 		SET(bp->b_flags, B_READ | async);
668 		if (async)
669 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
670 		else
671 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
672 		VOP_STRATEGY(vp, bp);
673 
674 		/* Pay for the read. */
675 		curlwp->l_ru.ru_inblock++;
676 	} else if (async)
677 		brelse(bp, 0);
678 
679 	if (vp->v_type == VBLK)
680 		mp = vp->v_specmountpoint;
681 	else
682 		mp = vp->v_mount;
683 
684 	/*
685 	 * Collect statistics on synchronous and asynchronous reads.
686 	 * Reads from block devices are charged to their associated
687 	 * filesystem (if any).
688 	 */
689 	if (mp != NULL) {
690 		if (async == 0)
691 			mp->mnt_stat.f_syncreads++;
692 		else
693 			mp->mnt_stat.f_asyncreads++;
694 	}
695 
696 	return (bp);
697 }
698 
699 /*
700  * Read a disk block.
701  * This algorithm described in Bach (p.54).
702  */
703 int
704 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
705     int flags, buf_t **bpp)
706 {
707 	buf_t *bp;
708 	int error;
709 
710 	/* Get buffer for block. */
711 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
712 
713 	/* Wait for the read to complete, and return result. */
714 	error = biowait(bp);
715 	if (error == 0 && (flags & B_MODIFY) != 0)
716 		error = fscow_run(bp, true);
717 	return error;
718 }
719 
720 /*
721  * Read-ahead multiple disk blocks. The first is sync, the rest async.
722  * Trivial modification to the breada algorithm presented in Bach (p.55).
723  */
724 int
725 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
726     int *rasizes, int nrablks, kauth_cred_t cred, int flags, buf_t **bpp)
727 {
728 	buf_t *bp;
729 	int error, i;
730 
731 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
732 
733 	/*
734 	 * For each of the read-ahead blocks, start a read, if necessary.
735 	 */
736 	mutex_enter(&bufcache_lock);
737 	for (i = 0; i < nrablks; i++) {
738 		/* If it's in the cache, just go on to next one. */
739 		if (incore(vp, rablks[i]))
740 			continue;
741 
742 		/* Get a buffer for the read-ahead block */
743 		mutex_exit(&bufcache_lock);
744 		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
745 		mutex_enter(&bufcache_lock);
746 	}
747 	mutex_exit(&bufcache_lock);
748 
749 	/* Otherwise, we had to start a read for it; wait until it's valid. */
750 	error = biowait(bp);
751 	if (error == 0 && (flags & B_MODIFY) != 0)
752 		error = fscow_run(bp, true);
753 	return error;
754 }
755 
756 /*
757  * Read with single-block read-ahead.  Defined in Bach (p.55), but
758  * implemented as a call to breadn().
759  * XXX for compatibility with old file systems.
760  */
761 int
762 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
763     int rabsize, kauth_cred_t cred, int flags, buf_t **bpp)
764 {
765 
766 	return (breadn(vp, blkno, size, &rablkno, &rabsize, 1,
767 	    cred, flags, bpp));
768 }
769 
770 /*
771  * Block write.  Described in Bach (p.56)
772  */
773 int
774 bwrite(buf_t *bp)
775 {
776 	int rv, sync, wasdelayed;
777 	struct vnode *vp;
778 	struct mount *mp;
779 
780 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
781 
782 	vp = bp->b_vp;
783 	if (vp != NULL) {
784 		KASSERT(bp->b_objlock == &vp->v_interlock);
785 		if (vp->v_type == VBLK)
786 			mp = vp->v_specmountpoint;
787 		else
788 			mp = vp->v_mount;
789 	} else {
790 		mp = NULL;
791 	}
792 
793 	/*
794 	 * Remember buffer type, to switch on it later.  If the write was
795 	 * synchronous, but the file system was mounted with MNT_ASYNC,
796 	 * convert it to a delayed write.
797 	 * XXX note that this relies on delayed tape writes being converted
798 	 * to async, not sync writes (which is safe, but ugly).
799 	 */
800 	sync = !ISSET(bp->b_flags, B_ASYNC);
801 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
802 		bdwrite(bp);
803 		return (0);
804 	}
805 
806 	/*
807 	 * Collect statistics on synchronous and asynchronous writes.
808 	 * Writes to block devices are charged to their associated
809 	 * filesystem (if any).
810 	 */
811 	if (mp != NULL) {
812 		if (sync)
813 			mp->mnt_stat.f_syncwrites++;
814 		else
815 			mp->mnt_stat.f_asyncwrites++;
816 	}
817 
818 	/*
819 	 * Pay for the I/O operation and make sure the buf is on the correct
820 	 * vnode queue.
821 	 */
822 	bp->b_error = 0;
823 	wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
824 	CLR(bp->b_flags, B_READ);
825 	if (wasdelayed) {
826 		mutex_enter(&bufcache_lock);
827 		mutex_enter(bp->b_objlock);
828 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
829 		reassignbuf(bp, bp->b_vp);
830 		mutex_exit(&bufcache_lock);
831 	} else {
832 		curlwp->l_ru.ru_oublock++;
833 		mutex_enter(bp->b_objlock);
834 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
835 	}
836 	if (vp != NULL)
837 		vp->v_numoutput++;
838 	mutex_exit(bp->b_objlock);
839 
840 	/* Initiate disk write. */
841 	if (sync)
842 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
843 	else
844 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
845 
846 	VOP_STRATEGY(vp, bp);
847 
848 	if (sync) {
849 		/* If I/O was synchronous, wait for it to complete. */
850 		rv = biowait(bp);
851 
852 		/* Release the buffer. */
853 		brelse(bp, 0);
854 
855 		return (rv);
856 	} else {
857 		return (0);
858 	}
859 }
860 
861 int
862 vn_bwrite(void *v)
863 {
864 	struct vop_bwrite_args *ap = v;
865 
866 	return (bwrite(ap->a_bp));
867 }
868 
869 /*
870  * Delayed write.
871  *
872  * The buffer is marked dirty, but is not queued for I/O.
873  * This routine should be used when the buffer is expected
874  * to be modified again soon, typically a small write that
875  * partially fills a buffer.
876  *
877  * NB: magnetic tapes cannot be delayed; they must be
878  * written in the order that the writes are requested.
879  *
880  * Described in Leffler, et al. (pp. 208-213).
881  */
882 void
883 bdwrite(buf_t *bp)
884 {
885 
886 	KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
887 	    ISSET(bp->b_flags, B_COWDONE));
888 
889 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
890 
891 	/* If this is a tape block, write the block now. */
892 	if (bdev_type(bp->b_dev) == D_TAPE) {
893 		bawrite(bp);
894 		return;
895 	}
896 
897 	/*
898 	 * If the block hasn't been seen before:
899 	 *	(1) Mark it as having been seen,
900 	 *	(2) Charge for the write,
901 	 *	(3) Make sure it's on its vnode's correct block list.
902 	 */
903 	KASSERT(bp->b_vp == NULL || bp->b_objlock == &bp->b_vp->v_interlock);
904 
905 	if (!ISSET(bp->b_oflags, BO_DELWRI)) {
906 		mutex_enter(&bufcache_lock);
907 		mutex_enter(bp->b_objlock);
908 		SET(bp->b_oflags, BO_DELWRI);
909 		curlwp->l_ru.ru_oublock++;
910 		reassignbuf(bp, bp->b_vp);
911 		mutex_exit(&bufcache_lock);
912 	} else {
913 		mutex_enter(bp->b_objlock);
914 	}
915 	/* Otherwise, the "write" is done, so mark and release the buffer. */
916 	CLR(bp->b_oflags, BO_DONE);
917 	mutex_exit(bp->b_objlock);
918 
919 	brelse(bp, 0);
920 }
921 
922 /*
923  * Asynchronous block write; just an asynchronous bwrite().
924  */
925 void
926 bawrite(buf_t *bp)
927 {
928 
929 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
930 
931 	SET(bp->b_flags, B_ASYNC);
932 	VOP_BWRITE(bp);
933 }
934 
935 /*
936  * Same as first half of bdwrite, mark buffer dirty, but do not release it.
937  * Call with the buffer interlock held.
938  *
939  * Note: called only from biodone() through ffs softdep's io_complete()
940  */
941 void
942 bdirty(buf_t *bp)
943 {
944 
945 	KASSERT(mutex_owned(&bufcache_lock));
946 	KASSERT(bp->b_objlock == &bp->b_vp->v_interlock);
947 	KASSERT(mutex_owned(bp->b_objlock));
948 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
949 
950 	CLR(bp->b_cflags, BC_AGE);
951 
952 	if (!ISSET(bp->b_oflags, BO_DELWRI)) {
953 		SET(bp->b_oflags, BO_DELWRI);
954 		curlwp->l_ru.ru_oublock++;
955 		reassignbuf(bp, bp->b_vp);
956 	}
957 }
958 
959 
960 /*
961  * Release a buffer on to the free lists.
962  * Described in Bach (p. 46).
963  */
964 void
965 brelsel(buf_t *bp, int set)
966 {
967 	struct bqueue *bufq;
968 	struct vnode *vp;
969 
970 	KASSERT(mutex_owned(&bufcache_lock));
971 
972 	SET(bp->b_cflags, set);
973 
974 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
975 	KASSERT(bp->b_iodone == NULL);
976 
977 	/* Wake up any processes waiting for any buffer to become free. */
978 	cv_signal(&needbuffer_cv);
979 
980 	/* Wake up any proceeses waiting for _this_ buffer to become */
981 	if (ISSET(bp->b_cflags, BC_WANTED) != 0) {
982 		CLR(bp->b_cflags, BC_WANTED|BC_AGE);
983 		cv_broadcast(&bp->b_busy);
984 	}
985 
986 	/*
987 	 * Determine which queue the buffer should be on, then put it there.
988 	 */
989 
990 	/* If it's locked, don't report an error; try again later. */
991 	if (ISSET(bp->b_flags, B_LOCKED))
992 		bp->b_error = 0;
993 
994 	/* If it's not cacheable, or an error, mark it invalid. */
995 	if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
996 		SET(bp->b_cflags, BC_INVAL);
997 
998 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
999 		/*
1000 		 * This is a delayed write buffer that was just flushed to
1001 		 * disk.  It is still on the LRU queue.  If it's become
1002 		 * invalid, then we need to move it to a different queue;
1003 		 * otherwise leave it in its current position.
1004 		 */
1005 		CLR(bp->b_cflags, BC_VFLUSH);
1006 		if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1007 		    !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1008 			KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU]));
1009 			goto already_queued;
1010 		} else {
1011 			bremfree(bp);
1012 		}
1013 	}
1014 
1015 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE]));
1016 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU]));
1017 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED]));
1018 
1019 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1020 		/*
1021 		 * If it's invalid or empty, dissociate it from its vnode
1022 		 * and put on the head of the appropriate queue.
1023 		 */
1024 		if (bioopsp != NULL)
1025 			(*bioopsp->io_deallocate)(bp);
1026 
1027 		mutex_enter(bp->b_objlock);
1028 		CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1029 		if ((vp = bp->b_vp) != NULL) {
1030 			KASSERT(bp->b_objlock == &vp->v_interlock);
1031 			reassignbuf(bp, bp->b_vp);
1032 			brelvp(bp);
1033 			mutex_exit(&vp->v_interlock);
1034 		} else {
1035 			KASSERT(bp->b_objlock == &buffer_lock);
1036 			mutex_exit(bp->b_objlock);
1037 		}
1038 
1039 		if (bp->b_bufsize <= 0)
1040 			/* no data */
1041 			goto already_queued;
1042 		else
1043 			/* invalid data */
1044 			bufq = &bufqueues[BQ_AGE];
1045 		binsheadfree(bp, bufq);
1046 	} else  {
1047 		/*
1048 		 * It has valid data.  Put it on the end of the appropriate
1049 		 * queue, so that it'll stick around for as long as possible.
1050 		 * If buf is AGE, but has dependencies, must put it on last
1051 		 * bufqueue to be scanned, ie LRU. This protects against the
1052 		 * livelock where BQ_AGE only has buffers with dependencies,
1053 		 * and we thus never get to the dependent buffers in BQ_LRU.
1054 		 */
1055 		if (ISSET(bp->b_flags, B_LOCKED)) {
1056 			/* locked in core */
1057 			bufq = &bufqueues[BQ_LOCKED];
1058 		} else if (!ISSET(bp->b_cflags, BC_AGE)) {
1059 			/* valid data */
1060 			bufq = &bufqueues[BQ_LRU];
1061 		} else {
1062 			/* stale but valid data */
1063 			int has_deps;
1064 
1065 			if (bioopsp != NULL)
1066 				has_deps = (*bioopsp->io_countdeps)(bp, 0);
1067 			else
1068 				has_deps = 0;
1069 			bufq = has_deps ? &bufqueues[BQ_LRU] :
1070 			    &bufqueues[BQ_AGE];
1071 		}
1072 		binstailfree(bp, bufq);
1073 	}
1074 already_queued:
1075 	/* Unlock the buffer. */
1076 	CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1077 	CLR(bp->b_flags, B_ASYNC);
1078 
1079 	if (bp->b_bufsize <= 0)
1080 		brele(bp);
1081 }
1082 
1083 void
1084 brelse(buf_t *bp, int set)
1085 {
1086 
1087 	mutex_enter(&bufcache_lock);
1088 	brelsel(bp, set);
1089 	mutex_exit(&bufcache_lock);
1090 }
1091 
1092 /*
1093  * Determine if a block is in the cache.
1094  * Just look on what would be its hash chain.  If it's there, return
1095  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
1096  * we normally don't return the buffer, unless the caller explicitly
1097  * wants us to.
1098  */
1099 buf_t *
1100 incore(struct vnode *vp, daddr_t blkno)
1101 {
1102 	buf_t *bp;
1103 
1104 	KASSERT(mutex_owned(&bufcache_lock));
1105 
1106 	/* Search hash chain */
1107 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1108 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1109 		    !ISSET(bp->b_cflags, BC_INVAL)) {
1110 		    	KASSERT(bp->b_objlock == &vp->v_interlock);
1111 		    	return (bp);
1112 		}
1113 	}
1114 
1115 	return (NULL);
1116 }
1117 
1118 /*
1119  * Get a block of requested size that is associated with
1120  * a given vnode and block offset. If it is found in the
1121  * block cache, mark it as having been found, make it busy
1122  * and return it. Otherwise, return an empty block of the
1123  * correct size. It is up to the caller to insure that the
1124  * cached blocks be of the correct size.
1125  */
1126 buf_t *
1127 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1128 {
1129 	int err, preserve;
1130 	buf_t *bp;
1131 
1132 	mutex_enter(&bufcache_lock);
1133  loop:
1134 	bp = incore(vp, blkno);
1135 	if (bp != NULL) {
1136 		err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1137 		if (err != 0) {
1138 			if (err == EPASSTHROUGH)
1139 				goto loop;
1140 			mutex_exit(&bufcache_lock);
1141 			return (NULL);
1142 		}
1143 #ifdef DIAGNOSTIC
1144 		if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1145 		    bp->b_bcount < size && vp->v_type != VBLK)
1146 			panic("getblk: block size invariant failed");
1147 #endif
1148 		bremfree(bp);
1149 		preserve = 1;
1150 	} else {
1151 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1152 			goto loop;
1153 
1154 		if (incore(vp, blkno) != NULL) {
1155 			/* The block has come into memory in the meantime. */
1156 			brelsel(bp, 0);
1157 			goto loop;
1158 		}
1159 
1160 		LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1161 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1162 		mutex_enter(&vp->v_interlock);
1163 		bgetvp(vp, bp);
1164 		mutex_exit(&vp->v_interlock);
1165 		preserve = 0;
1166 	}
1167 	mutex_exit(&bufcache_lock);
1168 
1169 	/*
1170 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1171 	 * if we re-size buffers here.
1172 	 */
1173 	if (ISSET(bp->b_flags, B_LOCKED)) {
1174 		KASSERT(bp->b_bufsize >= size);
1175 	} else {
1176 		if (allocbuf(bp, size, preserve)) {
1177 			mutex_enter(&bufcache_lock);
1178 			LIST_REMOVE(bp, b_hash);
1179 			mutex_exit(&bufcache_lock);
1180 			brelse(bp, BC_INVAL);
1181 			return NULL;
1182 		}
1183 	}
1184 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1185 	return (bp);
1186 }
1187 
1188 /*
1189  * Get an empty, disassociated buffer of given size.
1190  */
1191 buf_t *
1192 geteblk(int size)
1193 {
1194 	buf_t *bp;
1195 	int error;
1196 
1197 	mutex_enter(&bufcache_lock);
1198 	while ((bp = getnewbuf(0, 0, 0)) == NULL)
1199 		;
1200 
1201 	SET(bp->b_cflags, BC_INVAL);
1202 	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1203 	mutex_exit(&bufcache_lock);
1204 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1205 	error = allocbuf(bp, size, 0);
1206 	KASSERT(error == 0);
1207 	return (bp);
1208 }
1209 
1210 /*
1211  * Expand or contract the actual memory allocated to a buffer.
1212  *
1213  * If the buffer shrinks, data is lost, so it's up to the
1214  * caller to have written it out *first*; this routine will not
1215  * start a write.  If the buffer grows, it's the callers
1216  * responsibility to fill out the buffer's additional contents.
1217  */
1218 int
1219 allocbuf(buf_t *bp, int size, int preserve)
1220 {
1221 	vsize_t oldsize, desired_size;
1222 	void *addr;
1223 	int delta;
1224 
1225 	desired_size = buf_roundsize(size);
1226 	if (desired_size > MAXBSIZE)
1227 		printf("allocbuf: buffer larger than MAXBSIZE requested");
1228 
1229 	bp->b_bcount = size;
1230 
1231 	oldsize = bp->b_bufsize;
1232 	if (oldsize == desired_size)
1233 		return 0;
1234 
1235 	/*
1236 	 * If we want a buffer of a different size, re-allocate the
1237 	 * buffer's memory; copy old content only if needed.
1238 	 */
1239 	addr = buf_malloc(desired_size);
1240 	if (addr == NULL)
1241 		return ENOMEM;
1242 	if (preserve)
1243 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1244 	if (bp->b_data != NULL)
1245 		buf_mrelease(bp->b_data, oldsize);
1246 	bp->b_data = addr;
1247 	bp->b_bufsize = desired_size;
1248 
1249 	/*
1250 	 * Update overall buffer memory counter (protected by bufcache_lock)
1251 	 */
1252 	delta = (long)desired_size - (long)oldsize;
1253 
1254 	mutex_enter(&bufcache_lock);
1255 	if ((bufmem += delta) > bufmem_hiwater) {
1256 		/*
1257 		 * Need to trim overall memory usage.
1258 		 */
1259 		while (buf_canrelease()) {
1260 			if (curcpu()->ci_schedstate.spc_flags &
1261 			    SPCF_SHOULDYIELD) {
1262 				mutex_exit(&bufcache_lock);
1263 				preempt();
1264 				mutex_enter(&bufcache_lock);
1265 			}
1266 			if (buf_trim() == 0)
1267 				break;
1268 		}
1269 	}
1270 	mutex_exit(&bufcache_lock);
1271 	return 0;
1272 }
1273 
1274 /*
1275  * Find a buffer which is available for use.
1276  * Select something from a free list.
1277  * Preference is to AGE list, then LRU list.
1278  *
1279  * Called with the buffer queues locked.
1280  * Return buffer locked.
1281  */
1282 buf_t *
1283 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1284 {
1285 	buf_t *bp;
1286 	struct vnode *vp;
1287 
1288  start:
1289 	KASSERT(mutex_owned(&bufcache_lock));
1290 
1291 	/*
1292 	 * Get a new buffer from the pool.
1293 	 */
1294 	if (!from_bufq && buf_lotsfree()) {
1295 		mutex_exit(&bufcache_lock);
1296 		bp = pool_cache_get(buf_cache, PR_NOWAIT);
1297 		if (bp != NULL) {
1298 			memset((char *)bp, 0, sizeof(*bp));
1299 			buf_init(bp);
1300 			bp->b_dev = NODEV;
1301 			bp->b_vnbufs.le_next = NOLIST;
1302 			bp->b_cflags = BC_BUSY;
1303 			bp->b_refcnt = 1;
1304 			mutex_enter(&bufcache_lock);
1305 #if defined(DIAGNOSTIC)
1306 			bp->b_freelistindex = -1;
1307 #endif /* defined(DIAGNOSTIC) */
1308 			return (bp);
1309 		}
1310 		mutex_enter(&bufcache_lock);
1311 	}
1312 
1313 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1314 	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1315 		bremfree(bp);
1316 	} else {
1317 		/*
1318 		 * XXX: !from_bufq should be removed.
1319 		 */
1320 		if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1321 			/* wait for a free buffer of any kind */
1322 			if ((slpflag & PCATCH) != 0)
1323 				(void)cv_timedwait_sig(&needbuffer_cv,
1324 				    &bufcache_lock, slptimeo);
1325 			else
1326 				(void)cv_timedwait(&needbuffer_cv,
1327 				    &bufcache_lock, slptimeo);
1328 		}
1329 		return (NULL);
1330 	}
1331 
1332 #ifdef DIAGNOSTIC
1333 	if (bp->b_bufsize <= 0)
1334 		panic("buffer %p: on queue but empty", bp);
1335 #endif
1336 
1337 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1338 		/*
1339 		 * This is a delayed write buffer being flushed to disk.  Make
1340 		 * sure it gets aged out of the queue when it's finished, and
1341 		 * leave it off the LRU queue.
1342 		 */
1343 		CLR(bp->b_cflags, BC_VFLUSH);
1344 		SET(bp->b_cflags, BC_AGE);
1345 		goto start;
1346 	}
1347 
1348 	/* Buffer is no longer on free lists. */
1349 	SET(bp->b_cflags, BC_BUSY);
1350 
1351 	/*
1352 	 * If buffer was a delayed write, start it and return NULL
1353 	 * (since we might sleep while starting the write).
1354 	 */
1355 	if (ISSET(bp->b_oflags, BO_DELWRI)) {
1356 		/*
1357 		 * This buffer has gone through the LRU, so make sure it gets
1358 		 * reused ASAP.
1359 		 */
1360 		SET(bp->b_cflags, BC_AGE);
1361 		mutex_exit(&bufcache_lock);
1362 		bawrite(bp);
1363 		mutex_enter(&bufcache_lock);
1364 		return (NULL);
1365 	}
1366 
1367 	vp = bp->b_vp;
1368 	if (bioopsp != NULL)
1369 		(*bioopsp->io_deallocate)(bp);
1370 
1371 	/* clear out various other fields */
1372 	bp->b_cflags = BC_BUSY;
1373 	bp->b_oflags = 0;
1374 	bp->b_flags = 0;
1375 	bp->b_dev = NODEV;
1376 	bp->b_blkno = 0;
1377 	bp->b_lblkno = 0;
1378 	bp->b_rawblkno = 0;
1379 	bp->b_iodone = 0;
1380 	bp->b_error = 0;
1381 	bp->b_resid = 0;
1382 	bp->b_bcount = 0;
1383 
1384 	LIST_REMOVE(bp, b_hash);
1385 
1386 	/* Disassociate us from our vnode, if we had one... */
1387 	if (vp != NULL) {
1388 		mutex_enter(&vp->v_interlock);
1389 		brelvp(bp);
1390 		mutex_exit(&vp->v_interlock);
1391 	}
1392 
1393 	return (bp);
1394 }
1395 
1396 /*
1397  * Attempt to free an aged buffer off the queues.
1398  * Called with queue lock held.
1399  * Returns the amount of buffer memory freed.
1400  */
1401 static int
1402 buf_trim(void)
1403 {
1404 	buf_t *bp;
1405 	long size = 0;
1406 
1407 	KASSERT(mutex_owned(&bufcache_lock));
1408 
1409 	/* Instruct getnewbuf() to get buffers off the queues */
1410 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1411 		return 0;
1412 
1413 	KASSERT((bp->b_cflags & BC_WANTED) == 0);
1414 	size = bp->b_bufsize;
1415 	bufmem -= size;
1416 	if (size > 0) {
1417 		buf_mrelease(bp->b_data, size);
1418 		bp->b_bcount = bp->b_bufsize = 0;
1419 	}
1420 	/* brelse() will return the buffer to the global buffer pool */
1421 	brelsel(bp, 0);
1422 	return size;
1423 }
1424 
1425 int
1426 buf_drain(int n)
1427 {
1428 	int size = 0, sz;
1429 
1430 	KASSERT(mutex_owned(&bufcache_lock));
1431 
1432 	while (size < n && bufmem > bufmem_lowater) {
1433 		sz = buf_trim();
1434 		if (sz <= 0)
1435 			break;
1436 		size += sz;
1437 	}
1438 
1439 	return size;
1440 }
1441 
1442 /*
1443  * Wait for operations on the buffer to complete.
1444  * When they do, extract and return the I/O's error value.
1445  */
1446 int
1447 biowait(buf_t *bp)
1448 {
1449 
1450 	mutex_enter(bp->b_objlock);
1451 	while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
1452 		cv_wait(&bp->b_done, bp->b_objlock);
1453 	mutex_exit(bp->b_objlock);
1454 
1455 	return bp->b_error;
1456 }
1457 
1458 /*
1459  * Mark I/O complete on a buffer.
1460  *
1461  * If a callback has been requested, e.g. the pageout
1462  * daemon, do so. Otherwise, awaken waiting processes.
1463  *
1464  * [ Leffler, et al., says on p.247:
1465  *	"This routine wakes up the blocked process, frees the buffer
1466  *	for an asynchronous write, or, for a request by the pagedaemon
1467  *	process, invokes a procedure specified in the buffer structure" ]
1468  *
1469  * In real life, the pagedaemon (or other system processes) wants
1470  * to do async stuff to, and doesn't want the buffer brelse()'d.
1471  * (for swap pager, that puts swap buffers on the free lists (!!!),
1472  * for the vn device, that puts malloc'd buffers on the free lists!)
1473  */
1474 void
1475 biodone(buf_t *bp)
1476 {
1477 	int s;
1478 
1479 	KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1480 
1481 	if (cpu_intr_p()) {
1482 		/* From interrupt mode: defer to a soft interrupt. */
1483 		s = splvm();
1484 		TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1485 		softint_schedule(biodone_sih);
1486 		splx(s);
1487 	} else {
1488 		/* Process now - the buffer may be freed soon. */
1489 		biodone2(bp);
1490 	}
1491 }
1492 
1493 static void
1494 biodone2(buf_t *bp)
1495 {
1496 	void (*callout)(buf_t *);
1497 
1498 	if (bioopsp != NULL)
1499 		(*bioopsp->io_complete)(bp);
1500 
1501 	mutex_enter(bp->b_objlock);
1502 	/* Note that the transfer is done. */
1503 	if (ISSET(bp->b_oflags, BO_DONE))
1504 		panic("biodone2 already");
1505 	CLR(bp->b_flags, B_COWDONE);
1506 	SET(bp->b_oflags, BO_DONE);
1507 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1508 
1509 	/* Wake up waiting writers. */
1510 	if (!ISSET(bp->b_flags, B_READ))
1511 		vwakeup(bp);
1512 
1513 	if ((callout = bp->b_iodone) != NULL) {
1514 		/* Note callout done, then call out. */
1515 		KERNEL_LOCK(1, NULL);		/* XXXSMP */
1516 		bp->b_iodone = NULL;
1517 		mutex_exit(bp->b_objlock);
1518 		(*callout)(bp);
1519 		KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
1520 	} else if (ISSET(bp->b_flags, B_ASYNC)) {
1521 		/* If async, release. */
1522 		mutex_exit(bp->b_objlock);
1523 		brelse(bp, 0);
1524 	} else {
1525 		/* Otherwise just wake up waiters in biowait(). */
1526 		cv_broadcast(&bp->b_done);
1527 		mutex_exit(bp->b_objlock);
1528 	}
1529 }
1530 
1531 static void
1532 biointr(void *cookie)
1533 {
1534 	struct cpu_info *ci;
1535 	buf_t *bp;
1536 	int s;
1537 
1538 	ci = curcpu();
1539 
1540 	while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1541 		KASSERT(curcpu() == ci);
1542 
1543 		s = splvm();
1544 		bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1545 		TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1546 		splx(s);
1547 
1548 		biodone2(bp);
1549 	}
1550 }
1551 
1552 /*
1553  * Return a count of buffers on the "locked" queue.
1554  */
1555 int
1556 count_lock_queue(void)
1557 {
1558 	buf_t *bp;
1559 	int n = 0;
1560 
1561 	mutex_enter(&bufcache_lock);
1562 	TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1563 		n++;
1564 	mutex_exit(&bufcache_lock);
1565 	return (n);
1566 }
1567 
1568 /*
1569  * Wait for all buffers to complete I/O
1570  * Return the number of "stuck" buffers.
1571  */
1572 int
1573 buf_syncwait(void)
1574 {
1575 	buf_t *bp;
1576 	int iter, nbusy, nbusy_prev = 0, dcount, ihash;
1577 
1578 	dcount = 10000;
1579 	for (iter = 0; iter < 20;) {
1580 		mutex_enter(&bufcache_lock);
1581 		nbusy = 0;
1582 		for (ihash = 0; ihash < bufhash+1; ihash++) {
1583 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1584 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1585 				nbusy += ((bp->b_flags & B_READ) == 0);
1586 			/*
1587 			 * With soft updates, some buffers that are
1588 			 * written will be remarked as dirty until other
1589 			 * buffers are written.
1590 			 */
1591 			if (bp->b_vp && bp->b_vp->v_mount
1592 			    && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1593 			    && (bp->b_oflags & BO_DELWRI)) {
1594 				bremfree(bp);
1595 				bp->b_cflags |= BC_BUSY;
1596 				nbusy++;
1597 				mutex_exit(&bufcache_lock);
1598 				bawrite(bp);
1599 				if (dcount-- <= 0) {
1600 					printf("softdep ");
1601 					goto fail;
1602 				}
1603 				mutex_enter(&bufcache_lock);
1604 			}
1605 		    }
1606 		}
1607 		mutex_exit(&bufcache_lock);
1608 
1609 		if (nbusy == 0)
1610 			break;
1611 		if (nbusy_prev == 0)
1612 			nbusy_prev = nbusy;
1613 		printf("%d ", nbusy);
1614 		tsleep(&nbusy, PRIBIO, "bflush",
1615 		    (iter == 0) ? 1 : hz / 25 * iter);
1616 		if (nbusy >= nbusy_prev) /* we didn't flush anything */
1617 			iter++;
1618 		else
1619 			nbusy_prev = nbusy;
1620 	}
1621 
1622 	if (nbusy) {
1623 fail:;
1624 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1625 		printf("giving up\nPrinting vnodes for busy buffers\n");
1626 		for (ihash = 0; ihash < bufhash+1; ihash++) {
1627 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1628 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1629 			    (bp->b_flags & B_READ) == 0)
1630 				vprint(NULL, bp->b_vp);
1631 		    }
1632 		}
1633 #endif
1634 	}
1635 
1636 	return nbusy;
1637 }
1638 
1639 static void
1640 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1641 {
1642 
1643 	o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1644 	o->b_error = i->b_error;
1645 	o->b_prio = i->b_prio;
1646 	o->b_dev = i->b_dev;
1647 	o->b_bufsize = i->b_bufsize;
1648 	o->b_bcount = i->b_bcount;
1649 	o->b_resid = i->b_resid;
1650 	o->b_addr = PTRTOUINT64(i->b_data);
1651 	o->b_blkno = i->b_blkno;
1652 	o->b_rawblkno = i->b_rawblkno;
1653 	o->b_iodone = PTRTOUINT64(i->b_iodone);
1654 	o->b_proc = PTRTOUINT64(i->b_proc);
1655 	o->b_vp = PTRTOUINT64(i->b_vp);
1656 	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1657 	o->b_lblkno = i->b_lblkno;
1658 }
1659 
1660 #define KERN_BUFSLOP 20
1661 static int
1662 sysctl_dobuf(SYSCTLFN_ARGS)
1663 {
1664 	buf_t *bp;
1665 	struct buf_sysctl bs;
1666 	struct bqueue *bq;
1667 	char *dp;
1668 	u_int i, op, arg;
1669 	size_t len, needed, elem_size, out_size;
1670 	int error, elem_count, retries;
1671 
1672 	if (namelen == 1 && name[0] == CTL_QUERY)
1673 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
1674 
1675 	if (namelen != 4)
1676 		return (EINVAL);
1677 
1678 	retries = 100;
1679  retry:
1680 	dp = oldp;
1681 	len = (oldp != NULL) ? *oldlenp : 0;
1682 	op = name[0];
1683 	arg = name[1];
1684 	elem_size = name[2];
1685 	elem_count = name[3];
1686 	out_size = MIN(sizeof(bs), elem_size);
1687 
1688 	/*
1689 	 * at the moment, these are just "placeholders" to make the
1690 	 * API for retrieving kern.buf data more extensible in the
1691 	 * future.
1692 	 *
1693 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
1694 	 * these will be resolved at a later point.
1695 	 */
1696 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1697 	    elem_size < 1 || elem_count < 0)
1698 		return (EINVAL);
1699 
1700 	error = 0;
1701 	needed = 0;
1702 	sysctl_unlock();
1703 	mutex_enter(&bufcache_lock);
1704 	for (i = 0; i < BQUEUES; i++) {
1705 		bq = &bufqueues[i];
1706 		TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1707 			bq->bq_marker = bp;
1708 			if (len >= elem_size && elem_count > 0) {
1709 				sysctl_fillbuf(bp, &bs);
1710 				mutex_exit(&bufcache_lock);
1711 				error = copyout(&bs, dp, out_size);
1712 				mutex_enter(&bufcache_lock);
1713 				if (error)
1714 					break;
1715 				if (bq->bq_marker != bp) {
1716 					/*
1717 					 * This sysctl node is only for
1718 					 * statistics.  Retry; if the
1719 					 * queue keeps changing, then
1720 					 * bail out.
1721 					 */
1722 					if (retries-- == 0) {
1723 						error = EAGAIN;
1724 						break;
1725 					}
1726 					mutex_exit(&bufcache_lock);
1727 					goto retry;
1728 				}
1729 				dp += elem_size;
1730 				len -= elem_size;
1731 			}
1732 			if (elem_count > 0) {
1733 				needed += elem_size;
1734 				if (elem_count != INT_MAX)
1735 					elem_count--;
1736 			}
1737 		}
1738 		if (error != 0)
1739 			break;
1740 	}
1741 	mutex_exit(&bufcache_lock);
1742 	sysctl_relock();
1743 
1744 	*oldlenp = needed;
1745 	if (oldp == NULL)
1746 		*oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1747 
1748 	return (error);
1749 }
1750 
1751 static int
1752 sysctl_bufvm_update(SYSCTLFN_ARGS)
1753 {
1754 	int t, error, rv;
1755 	struct sysctlnode node;
1756 
1757 	node = *rnode;
1758 	node.sysctl_data = &t;
1759 	t = *(int *)rnode->sysctl_data;
1760 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1761 	if (error || newp == NULL)
1762 		return (error);
1763 
1764 	if (t < 0)
1765 		return EINVAL;
1766 	if (rnode->sysctl_data == &bufcache) {
1767 		if (t > 100)
1768 			return (EINVAL);
1769 		bufcache = t;
1770 		buf_setwm();
1771 	} else if (rnode->sysctl_data == &bufmem_lowater) {
1772 		if (bufmem_hiwater - t < 16)
1773 			return (EINVAL);
1774 		bufmem_lowater = t;
1775 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
1776 		if (t - bufmem_lowater < 16)
1777 			return (EINVAL);
1778 		bufmem_hiwater = t;
1779 	} else
1780 		return (EINVAL);
1781 
1782 	/* Drain until below new high water mark */
1783 	sysctl_unlock();
1784 	mutex_enter(&bufcache_lock);
1785 	while ((t = bufmem - bufmem_hiwater) >= 0) {
1786 		rv = buf_drain(t / (2 * 1024));
1787 		if (rv <= 0)
1788 			break;
1789 	}
1790 	mutex_exit(&bufcache_lock);
1791 	sysctl_relock();
1792 
1793 	return 0;
1794 }
1795 
1796 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1797 {
1798 
1799 	sysctl_createv(clog, 0, NULL, NULL,
1800 		       CTLFLAG_PERMANENT,
1801 		       CTLTYPE_NODE, "kern", NULL,
1802 		       NULL, 0, NULL, 0,
1803 		       CTL_KERN, CTL_EOL);
1804 	sysctl_createv(clog, 0, NULL, NULL,
1805 		       CTLFLAG_PERMANENT,
1806 		       CTLTYPE_NODE, "buf",
1807 		       SYSCTL_DESCR("Kernel buffer cache information"),
1808 		       sysctl_dobuf, 0, NULL, 0,
1809 		       CTL_KERN, KERN_BUF, CTL_EOL);
1810 }
1811 
1812 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1813 {
1814 
1815 	sysctl_createv(clog, 0, NULL, NULL,
1816 		       CTLFLAG_PERMANENT,
1817 		       CTLTYPE_NODE, "vm", NULL,
1818 		       NULL, 0, NULL, 0,
1819 		       CTL_VM, CTL_EOL);
1820 
1821 	sysctl_createv(clog, 0, NULL, NULL,
1822 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1823 		       CTLTYPE_INT, "bufcache",
1824 		       SYSCTL_DESCR("Percentage of physical memory to use for "
1825 				    "buffer cache"),
1826 		       sysctl_bufvm_update, 0, &bufcache, 0,
1827 		       CTL_VM, CTL_CREATE, CTL_EOL);
1828 	sysctl_createv(clog, 0, NULL, NULL,
1829 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1830 		       CTLTYPE_INT, "bufmem",
1831 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
1832 				    "cache"),
1833 		       NULL, 0, &bufmem, 0,
1834 		       CTL_VM, CTL_CREATE, CTL_EOL);
1835 	sysctl_createv(clog, 0, NULL, NULL,
1836 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1837 		       CTLTYPE_INT, "bufmem_lowater",
1838 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
1839 				    "reserve for buffer cache"),
1840 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1841 		       CTL_VM, CTL_CREATE, CTL_EOL);
1842 	sysctl_createv(clog, 0, NULL, NULL,
1843 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1844 		       CTLTYPE_INT, "bufmem_hiwater",
1845 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
1846 				    "for buffer cache"),
1847 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1848 		       CTL_VM, CTL_CREATE, CTL_EOL);
1849 }
1850 
1851 #ifdef DEBUG
1852 /*
1853  * Print out statistics on the current allocation of the buffer pool.
1854  * Can be enabled to print out on every ``sync'' by setting "syncprt"
1855  * in vfs_syscalls.c using sysctl.
1856  */
1857 void
1858 vfs_bufstats(void)
1859 {
1860 	int i, j, count;
1861 	buf_t *bp;
1862 	struct bqueue *dp;
1863 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1864 	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1865 
1866 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1867 		count = 0;
1868 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1869 			counts[j] = 0;
1870 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1871 			counts[bp->b_bufsize/PAGE_SIZE]++;
1872 			count++;
1873 		}
1874 		printf("%s: total-%d", bname[i], count);
1875 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1876 			if (counts[j] != 0)
1877 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1878 		printf("\n");
1879 	}
1880 }
1881 #endif /* DEBUG */
1882 
1883 /* ------------------------------ */
1884 
1885 buf_t *
1886 getiobuf(struct vnode *vp, bool waitok)
1887 {
1888 	buf_t *bp;
1889 
1890 	bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1891 	if (bp == NULL)
1892 		return bp;
1893 
1894 	buf_init(bp);
1895 
1896 	if ((bp->b_vp = vp) == NULL)
1897 		bp->b_objlock = &buffer_lock;
1898 	else
1899 		bp->b_objlock = &vp->v_interlock;
1900 
1901 	return bp;
1902 }
1903 
1904 void
1905 putiobuf(buf_t *bp)
1906 {
1907 
1908 	buf_destroy(bp);
1909 	pool_cache_put(bufio_cache, bp);
1910 }
1911 
1912 /*
1913  * nestiobuf_iodone: b_iodone callback for nested buffers.
1914  */
1915 
1916 void
1917 nestiobuf_iodone(buf_t *bp)
1918 {
1919 	buf_t *mbp = bp->b_private;
1920 	int error;
1921 	int donebytes;
1922 
1923 	KASSERT(bp->b_bcount <= bp->b_bufsize);
1924 	KASSERT(mbp != bp);
1925 
1926 	error = bp->b_error;
1927 	if (bp->b_error == 0 &&
1928 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
1929 		/*
1930 		 * Not all got transfered, raise an error. We have no way to
1931 		 * propagate these conditions to mbp.
1932 		 */
1933 		error = EIO;
1934 	}
1935 
1936 	donebytes = bp->b_bufsize;
1937 
1938 	putiobuf(bp);
1939 	nestiobuf_done(mbp, donebytes, error);
1940 }
1941 
1942 /*
1943  * nestiobuf_setup: setup a "nested" buffer.
1944  *
1945  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1946  * => 'bp' should be a buffer allocated by getiobuf.
1947  * => 'offset' is a byte offset in the master buffer.
1948  * => 'size' is a size in bytes of this nested buffer.
1949  */
1950 
1951 void
1952 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
1953 {
1954 	const int b_read = mbp->b_flags & B_READ;
1955 	struct vnode *vp = mbp->b_vp;
1956 
1957 	KASSERT(mbp->b_bcount >= offset + size);
1958 	bp->b_vp = vp;
1959 	bp->b_objlock = mbp->b_objlock;
1960 	bp->b_cflags = BC_BUSY;
1961 	bp->b_flags = B_ASYNC | b_read;
1962 	bp->b_iodone = nestiobuf_iodone;
1963 	bp->b_data = (char *)mbp->b_data + offset;
1964 	bp->b_resid = bp->b_bcount = size;
1965 	bp->b_bufsize = bp->b_bcount;
1966 	bp->b_private = mbp;
1967 	BIO_COPYPRIO(bp, mbp);
1968 	if (!b_read && vp != NULL) {
1969 		mutex_enter(&vp->v_interlock);
1970 		vp->v_numoutput++;
1971 		mutex_exit(&vp->v_interlock);
1972 	}
1973 }
1974 
1975 /*
1976  * nestiobuf_done: propagate completion to the master buffer.
1977  *
1978  * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1979  * => 'error' is an errno(2) that 'donebytes' has been completed with.
1980  */
1981 
1982 void
1983 nestiobuf_done(buf_t *mbp, int donebytes, int error)
1984 {
1985 
1986 	if (donebytes == 0) {
1987 		return;
1988 	}
1989 	mutex_enter(mbp->b_objlock);
1990 	KASSERT(mbp->b_resid >= donebytes);
1991 	mbp->b_resid -= donebytes;
1992 	if (error)
1993 		mbp->b_error = error;
1994 	if (mbp->b_resid == 0) {
1995 		mutex_exit(mbp->b_objlock);
1996 		biodone(mbp);
1997 	} else
1998 		mutex_exit(mbp->b_objlock);
1999 }
2000 
2001 void
2002 buf_init(buf_t *bp)
2003 {
2004 
2005 	LIST_INIT(&bp->b_dep);
2006 	cv_init(&bp->b_busy, "biolock");
2007 	cv_init(&bp->b_done, "biowait");
2008 	bp->b_dev = NODEV;
2009 	bp->b_error = 0;
2010 	bp->b_flags = 0;
2011 	bp->b_cflags = 0;
2012 	bp->b_oflags = 0;
2013 	bp->b_objlock = &buffer_lock;
2014 	bp->b_iodone = NULL;
2015 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
2016 }
2017 
2018 void
2019 buf_destroy(buf_t *bp)
2020 {
2021 
2022 	cv_destroy(&bp->b_done);
2023 	cv_destroy(&bp->b_busy);
2024 }
2025 
2026 int
2027 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2028 {
2029 	int error;
2030 
2031 	KASSERT(mutex_owned(&bufcache_lock));
2032 
2033 	if ((bp->b_cflags & BC_BUSY) != 0) {
2034 		if (curlwp == uvm.pagedaemon_lwp)
2035 			return EDEADLK;
2036 		bp->b_cflags |= BC_WANTED;
2037 		bref(bp);
2038 		if (interlock != NULL)
2039 			mutex_exit(interlock);
2040 		if (intr) {
2041 			error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2042 			    timo);
2043 		} else {
2044 			error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2045 			    timo);
2046 		}
2047 		brele(bp);
2048 		if (interlock != NULL)
2049 			mutex_enter(interlock);
2050 		if (error != 0)
2051 			return error;
2052 		return EPASSTHROUGH;
2053 	}
2054 	bp->b_cflags |= BC_BUSY;
2055 
2056 	return 0;
2057 }
2058