1 /* $NetBSD: vfs_bio.c,v 1.115 2004/02/11 17:36:31 tls Exp $ */ 2 3 /*- 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 37 */ 38 39 /*- 40 * Copyright (c) 1994 Christopher G. Demetriou 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. All advertising materials mentioning features or use of this software 51 * must display the following acknowledgement: 52 * This product includes software developed by the University of 53 * California, Berkeley and its contributors. 54 * 4. Neither the name of the University nor the names of its contributors 55 * may be used to endorse or promote products derived from this software 56 * without specific prior written permission. 57 * 58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 68 * SUCH DAMAGE. 69 * 70 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 71 */ 72 73 /* 74 * Some references: 75 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986) 76 * Leffler, et al.: The Design and Implementation of the 4.3BSD 77 * UNIX Operating System (Addison Welley, 1989) 78 */ 79 80 #include "opt_bufcache.h" 81 #include "opt_softdep.h" 82 83 #include <sys/cdefs.h> 84 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.115 2004/02/11 17:36:31 tls Exp $"); 85 86 #include <sys/param.h> 87 #include <sys/systm.h> 88 #include <sys/kernel.h> 89 #include <sys/proc.h> 90 #include <sys/buf.h> 91 #include <sys/vnode.h> 92 #include <sys/mount.h> 93 #include <sys/malloc.h> 94 #include <sys/resourcevar.h> 95 #include <sys/sysctl.h> 96 #include <sys/conf.h> 97 98 #include <uvm/uvm.h> 99 100 #include <miscfs/specfs/specdev.h> 101 102 #ifndef BUFPAGES 103 # define BUFPAGES 0 104 #endif 105 106 #ifdef BUFCACHE 107 # if (BUFCACHE < 5) || (BUFCACHE > 95) 108 # error BUFCACHE is not between 5 and 95 109 # endif 110 #else 111 # define BUFCACHE 15 112 #endif 113 114 u_int nbuf; /* XXX - for softdep_lockedbufs */ 115 u_int bufpages = BUFPAGES; /* optional hardwired count */ 116 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */ 117 118 119 /* Macros to clear/set/test flags. */ 120 #define SET(t, f) (t) |= (f) 121 #define CLR(t, f) (t) &= ~(f) 122 #define ISSET(t, f) ((t) & (f)) 123 124 /* 125 * Definitions for the buffer hash lists. 126 */ 127 #define BUFHASH(dvp, lbn) \ 128 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash]) 129 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash; 130 u_long bufhash; 131 #ifndef SOFTDEP 132 struct bio_ops bioops; /* I/O operation notification */ 133 #endif 134 135 /* 136 * Insq/Remq for the buffer hash lists. 137 */ 138 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash) 139 #define bremhash(bp) LIST_REMOVE(bp, b_hash) 140 141 /* 142 * Definitions for the buffer free lists. 143 */ 144 #define BQUEUES 3 /* number of free buffer queues */ 145 146 #define BQ_LOCKED 0 /* super-blocks &c */ 147 #define BQ_LRU 1 /* lru, useful buffers */ 148 #define BQ_AGE 2 /* rubbish */ 149 150 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES]; 151 int needbuffer; 152 153 /* 154 * Buffer queue lock. 155 * Take this lock first if also taking some buffer's b_interlock. 156 */ 157 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER; 158 159 /* 160 * Buffer pool for I/O buffers. 161 */ 162 struct pool bufpool; 163 164 /* XXX - somewhat gross.. */ 165 #if MAXBSIZE == 0x2000 166 #define NMEMPOOLS 4 167 #elif MAXBSIZE == 0x4000 168 #define NMEMPOOLS 5 169 #elif MAXBSIZE == 0x8000 170 #define NMEMPOOLS 6 171 #else 172 #define NMEMPOOLS 7 173 #endif 174 175 #define MEMPOOL_INDEX_OFFSET 10 /* smallest pool is 1k */ 176 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE 177 #error update vfs_bio buffer memory parameters 178 #endif 179 180 /* Buffer memory pools */ 181 static struct pool bmempools[NMEMPOOLS]; 182 183 struct vm_map *buf_map; 184 185 /* 186 * Buffer memory pool allocator. 187 */ 188 static void * 189 bufpool_page_alloc(struct pool *pp, int flags) 190 { 191 192 return (void *)uvm_km_kmemalloc1(buf_map, 193 uvm.kernel_object, MAXBSIZE, MAXBSIZE, UVM_UNKNOWN_OFFSET, 194 (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK); 195 } 196 197 static void 198 bufpool_page_free(struct pool *pp, void *v) 199 { 200 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE); 201 } 202 203 static struct pool_allocator bufmempool_allocator = { 204 bufpool_page_alloc, bufpool_page_free, MAXBSIZE, 205 }; 206 207 /* Buffer memory management variables */ 208 u_long bufmem_valimit; 209 u_long bufmem_hiwater; 210 u_long bufmem_lowater; 211 u_long bufmem; 212 213 /* 214 * MD code can call this to set a hard limit on the amount 215 * of virtual memory used by the buffer cache. 216 */ 217 int 218 buf_setvalimit(vsize_t sz) 219 { 220 221 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */ 222 if (sz < NMEMPOOLS * MAXBSIZE) 223 return EINVAL; 224 225 bufmem_valimit = sz; 226 return 0; 227 } 228 229 static int buf_trim(void); 230 231 /* 232 * bread()/breadn() helper. 233 */ 234 static __inline struct buf *bio_doread(struct vnode *, daddr_t, int, 235 struct ucred *, int); 236 int count_lock_queue(void); 237 238 /* 239 * Insq/Remq for the buffer free lists. 240 * Call with buffer queue locked. 241 */ 242 #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist) 243 #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist) 244 245 #ifdef DEBUG 246 int debug_verify_freelist = 0; 247 static int checkfreelist(struct buf *bp, struct bqueues *dp) 248 { 249 struct buf *b; 250 TAILQ_FOREACH(b, dp, b_freelist) { 251 if (b == bp) 252 return 1; 253 } 254 return 0; 255 } 256 #endif 257 258 void 259 bremfree(struct buf *bp) 260 { 261 struct bqueues *dp = NULL; 262 263 LOCK_ASSERT(simple_lock_held(&bqueue_slock)); 264 265 KDASSERT(!debug_verify_freelist || 266 checkfreelist(bp, &bufqueues[BQ_AGE]) || 267 checkfreelist(bp, &bufqueues[BQ_LRU]) || 268 checkfreelist(bp, &bufqueues[BQ_LOCKED]) ); 269 270 /* 271 * We only calculate the head of the freelist when removing 272 * the last element of the list as that is the only time that 273 * it is needed (e.g. to reset the tail pointer). 274 * 275 * NB: This makes an assumption about how tailq's are implemented. 276 * 277 * We break the TAILQ abstraction in order to efficiently remove a 278 * buffer from its freelist without having to know exactly which 279 * freelist it is on. 280 */ 281 if (TAILQ_NEXT(bp, b_freelist) == NULL) { 282 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) 283 if (dp->tqh_last == &bp->b_freelist.tqe_next) 284 break; 285 if (dp == &bufqueues[BQUEUES]) 286 panic("bremfree: lost tail"); 287 } 288 TAILQ_REMOVE(dp, bp, b_freelist); 289 } 290 291 u_long 292 buf_memcalc(void) 293 { 294 u_long n; 295 296 /* 297 * Determine the upper bound of memory to use for buffers. 298 * 299 * - If bufpages is specified, use that as the number 300 * pages. 301 * 302 * - Otherwise, use bufcache as the percentage of 303 * physical memory. 304 */ 305 if (bufpages != 0) { 306 n = bufpages; 307 } else { 308 if (bufcache < 5) { 309 printf("forcing bufcache %d -> 5", bufcache); 310 bufcache = 5; 311 } 312 if (bufcache > 95) { 313 printf("forcing bufcache %d -> 95", bufcache); 314 bufcache = 95; 315 } 316 n = physmem / 100 * bufcache; 317 } 318 319 n <<= PAGE_SHIFT; 320 if (bufmem_valimit != 0 && n > bufmem_valimit) 321 n = bufmem_valimit; 322 323 return (n); 324 } 325 326 /* 327 * Initialize buffers and hash links for buffers. 328 */ 329 void 330 bufinit(void) 331 { 332 struct bqueues *dp; 333 int smallmem; 334 u_int i; 335 336 /* 337 * Initialize buffer cache memory parameters. 338 */ 339 bufmem = 0; 340 bufmem_hiwater = buf_memcalc(); 341 /* lowater is approx. 2% of memory (with bufcache=15) */ 342 bufmem_lowater = (bufmem_hiwater >> 3); 343 if (bufmem_lowater < 64 * 1024) 344 /* Ensure a reasonable minimum value */ 345 bufmem_lowater = 64 * 1024; 346 347 if (bufmem_valimit != 0) { 348 vaddr_t minaddr = 0, maxaddr; 349 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr, 350 bufmem_valimit, VM_MAP_PAGEABLE, 351 FALSE, 0); 352 if (buf_map == NULL) 353 panic("bufinit: cannot allocate submap"); 354 } else 355 buf_map = kernel_map; 356 357 /* 358 * Initialize the buffer pools. 359 */ 360 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL); 361 362 /* On "small" machines use small pool page sizes where possible */ 363 smallmem = (physmem < atop(16*1024*1024)); 364 365 for (i = 0; i < NMEMPOOLS; i++) { 366 struct pool_allocator *pa; 367 struct pool *pp = &bmempools[i]; 368 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET); 369 char *name = malloc(8, M_TEMP, M_WAITOK); 370 snprintf(name, 8, "buf%dk", 1 << i); 371 pa = (size <= PAGE_SIZE && smallmem) 372 ? &pool_allocator_nointr 373 : &bufmempool_allocator; 374 pool_init(pp, size, 0, 0, PR_IMMEDRELEASE, name, pa); 375 pool_setlowat(pp, 1); 376 } 377 378 /* Initialize the buffer queues */ 379 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) 380 TAILQ_INIT(dp); 381 382 /* 383 * Estimate hash table size based on the amount of memory we 384 * intend to use for the buffer cache. The average buffer 385 * size is dependent on our clients (i.e. filesystems). 386 * 387 * For now, use an empirical 3K per buffer. 388 */ 389 nbuf = (bufmem_hiwater / 1024) / 3; 390 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash); 391 } 392 393 static int 394 buf_lotsfree(void) 395 { 396 int try, thresh; 397 398 if (bufmem < bufmem_lowater) { 399 return 1; 400 } 401 402 /* If there's anything on the AGE list, it should be eaten. */ 403 404 if(TAILQ_FIRST(&bufqueues[BQ_AGE]) != NULL) 405 return 0; 406 407 try = random() & 0x0000000fL; 408 409 thresh = (16 * bufmem) / bufmem_hiwater; 410 411 if ((try > thresh) && (uvmexp.free > ( 2 * uvmexp.freetarg))) { 412 return 1; 413 } 414 415 return 0; 416 } 417 418 /* 419 * Return estimate of # of buffers we think need to be 420 * released to help resolve low memory conditions. 421 */ 422 static int 423 buf_canrelease(void) 424 { 425 int pagedemand, ninvalid = 0; 426 struct buf *bp; 427 428 TAILQ_FOREACH(bp, &bufqueues[BQ_AGE], b_freelist) 429 ninvalid += bp->b_bufsize; 430 431 if (bufmem < bufmem_lowater) 432 return 0; 433 434 pagedemand = uvmexp.freetarg - uvmexp.free; 435 if (pagedemand < 0) 436 return ninvalid; 437 return MAX(ninvalid, MIN(2 * MAXBSIZE, 438 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE))); 439 } 440 441 /* 442 * Buffer memory allocation helper functions 443 */ 444 static __inline u_long 445 buf_mempoolidx(u_long size) 446 { 447 u_int n = 0; 448 449 size -= 1; 450 size >>= MEMPOOL_INDEX_OFFSET; 451 while (size) { 452 size >>= 1; 453 n += 1; 454 } 455 if (n >= NMEMPOOLS) 456 panic("buf mem pool index %d", n); 457 return n; 458 } 459 460 static __inline u_long 461 buf_roundsize(u_long size) 462 { 463 /* Round up to nearest power of 2 */ 464 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET)); 465 } 466 467 static __inline caddr_t 468 buf_malloc(size_t size) 469 { 470 u_int n = buf_mempoolidx(size); 471 caddr_t addr; 472 int s; 473 474 while (1) { 475 addr = pool_get(&bmempools[n], PR_NOWAIT); 476 if (addr != NULL) 477 break; 478 479 /* No memory, see if we can free some. If so, try again */ 480 if (buf_drain(1) > 0) 481 continue; 482 483 /* Wait for buffers to arrive on the LRU queue */ 484 s = splbio(); 485 simple_lock(&bqueue_slock); 486 needbuffer = 1; 487 ltsleep(&needbuffer, PNORELOCK | (PRIBIO+1), 488 "buf_malloc", 0, &bqueue_slock); 489 splx(s); 490 } 491 492 return addr; 493 } 494 495 static void 496 buf_mrelease(caddr_t addr, size_t size) 497 { 498 499 pool_put(&bmempools[buf_mempoolidx(size)], addr); 500 } 501 502 503 static __inline struct buf * 504 bio_doread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred, 505 int async) 506 { 507 struct buf *bp; 508 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */ 509 struct proc *p = l->l_proc; 510 511 bp = getblk(vp, blkno, size, 0, 0); 512 513 #ifdef DIAGNOSTIC 514 if (bp == NULL) { 515 panic("bio_doread: no such buf"); 516 } 517 #endif 518 519 /* 520 * If buffer does not have data valid, start a read. 521 * Note that if buffer is B_INVAL, getblk() won't return it. 522 * Therefore, it's valid if its I/O has completed or been delayed. 523 */ 524 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) { 525 /* Start I/O for the buffer. */ 526 SET(bp->b_flags, B_READ | async); 527 if (async) 528 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 529 else 530 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 531 VOP_STRATEGY(vp, bp); 532 533 /* Pay for the read. */ 534 p->p_stats->p_ru.ru_inblock++; 535 } else if (async) { 536 brelse(bp); 537 } 538 539 return (bp); 540 } 541 542 /* 543 * Read a disk block. 544 * This algorithm described in Bach (p.54). 545 */ 546 int 547 bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred, 548 struct buf **bpp) 549 { 550 struct buf *bp; 551 552 /* Get buffer for block. */ 553 bp = *bpp = bio_doread(vp, blkno, size, cred, 0); 554 555 /* Wait for the read to complete, and return result. */ 556 return (biowait(bp)); 557 } 558 559 /* 560 * Read-ahead multiple disk blocks. The first is sync, the rest async. 561 * Trivial modification to the breada algorithm presented in Bach (p.55). 562 */ 563 int 564 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks, 565 int *rasizes, int nrablks, struct ucred *cred, struct buf **bpp) 566 { 567 struct buf *bp; 568 int i; 569 570 bp = *bpp = bio_doread(vp, blkno, size, cred, 0); 571 572 /* 573 * For each of the read-ahead blocks, start a read, if necessary. 574 */ 575 for (i = 0; i < nrablks; i++) { 576 /* If it's in the cache, just go on to next one. */ 577 if (incore(vp, rablks[i])) 578 continue; 579 580 /* Get a buffer for the read-ahead block */ 581 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC); 582 } 583 584 /* Otherwise, we had to start a read for it; wait until it's valid. */ 585 return (biowait(bp)); 586 } 587 588 /* 589 * Read with single-block read-ahead. Defined in Bach (p.55), but 590 * implemented as a call to breadn(). 591 * XXX for compatibility with old file systems. 592 */ 593 int 594 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno, 595 int rabsize, struct ucred *cred, struct buf **bpp) 596 { 597 598 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp)); 599 } 600 601 /* 602 * Block write. Described in Bach (p.56) 603 */ 604 int 605 bwrite(struct buf *bp) 606 { 607 int rv, sync, wasdelayed, s; 608 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */ 609 struct proc *p = l->l_proc; 610 struct vnode *vp; 611 struct mount *mp; 612 613 KASSERT(ISSET(bp->b_flags, B_BUSY)); 614 615 vp = bp->b_vp; 616 if (vp != NULL) { 617 if (vp->v_type == VBLK) 618 mp = vp->v_specmountpoint; 619 else 620 mp = vp->v_mount; 621 } else { 622 mp = NULL; 623 } 624 625 /* 626 * Remember buffer type, to switch on it later. If the write was 627 * synchronous, but the file system was mounted with MNT_ASYNC, 628 * convert it to a delayed write. 629 * XXX note that this relies on delayed tape writes being converted 630 * to async, not sync writes (which is safe, but ugly). 631 */ 632 sync = !ISSET(bp->b_flags, B_ASYNC); 633 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) { 634 bdwrite(bp); 635 return (0); 636 } 637 638 /* 639 * Collect statistics on synchronous and asynchronous writes. 640 * Writes to block devices are charged to their associated 641 * filesystem (if any). 642 */ 643 if (mp != NULL) { 644 if (sync) 645 mp->mnt_stat.f_syncwrites++; 646 else 647 mp->mnt_stat.f_asyncwrites++; 648 } 649 650 s = splbio(); 651 simple_lock(&bp->b_interlock); 652 653 wasdelayed = ISSET(bp->b_flags, B_DELWRI); 654 655 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI)); 656 657 /* 658 * Pay for the I/O operation and make sure the buf is on the correct 659 * vnode queue. 660 */ 661 if (wasdelayed) 662 reassignbuf(bp, bp->b_vp); 663 else 664 p->p_stats->p_ru.ru_oublock++; 665 666 /* Initiate disk write. Make sure the appropriate party is charged. */ 667 V_INCR_NUMOUTPUT(bp->b_vp); 668 simple_unlock(&bp->b_interlock); 669 splx(s); 670 671 if (sync) 672 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 673 else 674 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 675 676 VOP_STRATEGY(vp, bp); 677 678 if (sync) { 679 /* If I/O was synchronous, wait for it to complete. */ 680 rv = biowait(bp); 681 682 /* Release the buffer. */ 683 brelse(bp); 684 685 return (rv); 686 } else { 687 return (0); 688 } 689 } 690 691 int 692 vn_bwrite(void *v) 693 { 694 struct vop_bwrite_args *ap = v; 695 696 return (bwrite(ap->a_bp)); 697 } 698 699 /* 700 * Delayed write. 701 * 702 * The buffer is marked dirty, but is not queued for I/O. 703 * This routine should be used when the buffer is expected 704 * to be modified again soon, typically a small write that 705 * partially fills a buffer. 706 * 707 * NB: magnetic tapes cannot be delayed; they must be 708 * written in the order that the writes are requested. 709 * 710 * Described in Leffler, et al. (pp. 208-213). 711 */ 712 void 713 bdwrite(struct buf *bp) 714 { 715 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */ 716 struct proc *p = l->l_proc; 717 const struct bdevsw *bdev; 718 int s; 719 720 /* If this is a tape block, write the block now. */ 721 bdev = bdevsw_lookup(bp->b_dev); 722 if (bdev != NULL && bdev->d_type == D_TAPE) { 723 bawrite(bp); 724 return; 725 } 726 727 /* 728 * If the block hasn't been seen before: 729 * (1) Mark it as having been seen, 730 * (2) Charge for the write, 731 * (3) Make sure it's on its vnode's correct block list. 732 */ 733 s = splbio(); 734 simple_lock(&bp->b_interlock); 735 736 KASSERT(ISSET(bp->b_flags, B_BUSY)); 737 738 if (!ISSET(bp->b_flags, B_DELWRI)) { 739 SET(bp->b_flags, B_DELWRI); 740 p->p_stats->p_ru.ru_oublock++; 741 reassignbuf(bp, bp->b_vp); 742 } 743 744 /* Otherwise, the "write" is done, so mark and release the buffer. */ 745 CLR(bp->b_flags, B_DONE); 746 simple_unlock(&bp->b_interlock); 747 splx(s); 748 749 brelse(bp); 750 } 751 752 /* 753 * Asynchronous block write; just an asynchronous bwrite(). 754 */ 755 void 756 bawrite(struct buf *bp) 757 { 758 int s; 759 760 s = splbio(); 761 simple_lock(&bp->b_interlock); 762 763 KASSERT(ISSET(bp->b_flags, B_BUSY)); 764 765 SET(bp->b_flags, B_ASYNC); 766 simple_unlock(&bp->b_interlock); 767 splx(s); 768 VOP_BWRITE(bp); 769 } 770 771 /* 772 * Same as first half of bdwrite, mark buffer dirty, but do not release it. 773 * Call at splbio() and with the buffer interlock locked. 774 * Note: called only from biodone() through ffs softdep's bioops.io_complete() 775 */ 776 void 777 bdirty(struct buf *bp) 778 { 779 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */ 780 struct proc *p = l->l_proc; 781 782 LOCK_ASSERT(simple_lock_held(&bp->b_interlock)); 783 KASSERT(ISSET(bp->b_flags, B_BUSY)); 784 785 CLR(bp->b_flags, B_AGE); 786 787 if (!ISSET(bp->b_flags, B_DELWRI)) { 788 SET(bp->b_flags, B_DELWRI); 789 p->p_stats->p_ru.ru_oublock++; 790 reassignbuf(bp, bp->b_vp); 791 } 792 } 793 794 /* 795 * Release a buffer on to the free lists. 796 * Described in Bach (p. 46). 797 */ 798 void 799 brelse(struct buf *bp) 800 { 801 struct bqueues *bufq; 802 int s; 803 804 /* Block disk interrupts. */ 805 s = splbio(); 806 simple_lock(&bqueue_slock); 807 simple_lock(&bp->b_interlock); 808 809 KASSERT(ISSET(bp->b_flags, B_BUSY)); 810 KASSERT(!ISSET(bp->b_flags, B_CALL)); 811 812 /* Wake up any processes waiting for any buffer to become free. */ 813 if (needbuffer) { 814 needbuffer = 0; 815 wakeup(&needbuffer); 816 } 817 818 /* Wake up any proceeses waiting for _this_ buffer to become free. */ 819 if (ISSET(bp->b_flags, B_WANTED)) { 820 CLR(bp->b_flags, B_WANTED|B_AGE); 821 wakeup(bp); 822 } 823 824 /* 825 * Determine which queue the buffer should be on, then put it there. 826 */ 827 828 /* If it's locked, don't report an error; try again later. */ 829 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR)) 830 CLR(bp->b_flags, B_ERROR); 831 832 /* If it's not cacheable, or an error, mark it invalid. */ 833 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR))) 834 SET(bp->b_flags, B_INVAL); 835 836 if (ISSET(bp->b_flags, B_VFLUSH)) { 837 /* 838 * This is a delayed write buffer that was just flushed to 839 * disk. It is still on the LRU queue. If it's become 840 * invalid, then we need to move it to a different queue; 841 * otherwise leave it in its current position. 842 */ 843 CLR(bp->b_flags, B_VFLUSH); 844 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) { 845 KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU])); 846 goto already_queued; 847 } else { 848 bremfree(bp); 849 } 850 } 851 852 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE])); 853 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU])); 854 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED])); 855 856 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) { 857 /* 858 * If it's invalid or empty, dissociate it from its vnode 859 * and put on the head of the appropriate queue. 860 */ 861 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) 862 (*bioops.io_deallocate)(bp); 863 CLR(bp->b_flags, B_DONE|B_DELWRI); 864 if (bp->b_vp) { 865 reassignbuf(bp, bp->b_vp); 866 brelvp(bp); 867 } 868 if (bp->b_bufsize <= 0) 869 /* no data */ 870 goto already_queued; 871 else 872 /* invalid data */ 873 bufq = &bufqueues[BQ_AGE]; 874 binsheadfree(bp, bufq); 875 } else { 876 /* 877 * It has valid data. Put it on the end of the appropriate 878 * queue, so that it'll stick around for as long as possible. 879 * If buf is AGE, but has dependencies, must put it on last 880 * bufqueue to be scanned, ie LRU. This protects against the 881 * livelock where BQ_AGE only has buffers with dependencies, 882 * and we thus never get to the dependent buffers in BQ_LRU. 883 */ 884 if (ISSET(bp->b_flags, B_LOCKED)) 885 /* locked in core */ 886 bufq = &bufqueues[BQ_LOCKED]; 887 else if (!ISSET(bp->b_flags, B_AGE)) 888 /* valid data */ 889 bufq = &bufqueues[BQ_LRU]; 890 else { 891 /* stale but valid data */ 892 int has_deps; 893 894 if (LIST_FIRST(&bp->b_dep) != NULL && 895 bioops.io_countdeps) 896 has_deps = (*bioops.io_countdeps)(bp, 0); 897 else 898 has_deps = 0; 899 bufq = has_deps ? &bufqueues[BQ_LRU] : 900 &bufqueues[BQ_AGE]; 901 } 902 binstailfree(bp, bufq); 903 } 904 905 already_queued: 906 /* Unlock the buffer. */ 907 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE); 908 SET(bp->b_flags, B_CACHE); 909 910 /* Allow disk interrupts. */ 911 simple_unlock(&bp->b_interlock); 912 simple_unlock(&bqueue_slock); 913 if (bp->b_bufsize <= 0) { 914 #ifdef DEBUG 915 memset((char *)bp, 0, sizeof(*bp)); 916 #endif 917 pool_put(&bufpool, bp); 918 } 919 splx(s); 920 } 921 922 /* 923 * Determine if a block is in the cache. 924 * Just look on what would be its hash chain. If it's there, return 925 * a pointer to it, unless it's marked invalid. If it's marked invalid, 926 * we normally don't return the buffer, unless the caller explicitly 927 * wants us to. 928 */ 929 struct buf * 930 incore(struct vnode *vp, daddr_t blkno) 931 { 932 struct buf *bp; 933 934 /* Search hash chain */ 935 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) { 936 if (bp->b_lblkno == blkno && bp->b_vp == vp && 937 !ISSET(bp->b_flags, B_INVAL)) 938 return (bp); 939 } 940 941 return (NULL); 942 } 943 944 /* 945 * Get a block of requested size that is associated with 946 * a given vnode and block offset. If it is found in the 947 * block cache, mark it as having been found, make it busy 948 * and return it. Otherwise, return an empty block of the 949 * correct size. It is up to the caller to insure that the 950 * cached blocks be of the correct size. 951 */ 952 struct buf * 953 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo) 954 { 955 struct buf *bp; 956 int s, err; 957 int preserve; 958 959 start: 960 s = splbio(); 961 simple_lock(&bqueue_slock); 962 bp = incore(vp, blkno); 963 if (bp != NULL) { 964 simple_lock(&bp->b_interlock); 965 if (ISSET(bp->b_flags, B_BUSY)) { 966 simple_unlock(&bqueue_slock); 967 if (curproc == uvm.pagedaemon_proc) { 968 simple_unlock(&bp->b_interlock); 969 splx(s); 970 return NULL; 971 } 972 SET(bp->b_flags, B_WANTED); 973 err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK, 974 "getblk", slptimeo, &bp->b_interlock); 975 splx(s); 976 if (err) 977 return (NULL); 978 goto start; 979 } 980 #ifdef DIAGNOSTIC 981 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) && 982 bp->b_bcount < size && vp->v_type != VBLK) 983 panic("getblk: block size invariant failed"); 984 #endif 985 SET(bp->b_flags, B_BUSY); 986 bremfree(bp); 987 preserve = 1; 988 } else { 989 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) { 990 simple_unlock(&bqueue_slock); 991 splx(s); 992 goto start; 993 } 994 995 binshash(bp, BUFHASH(vp, blkno)); 996 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno; 997 bgetvp(vp, bp); 998 preserve = 0; 999 } 1000 simple_unlock(&bp->b_interlock); 1001 simple_unlock(&bqueue_slock); 1002 splx(s); 1003 /* 1004 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes) 1005 * if we re-size buffers here. 1006 */ 1007 if (ISSET(bp->b_flags, B_LOCKED)) { 1008 KASSERT(bp->b_bufsize >= size); 1009 } else { 1010 allocbuf(bp, size, preserve); 1011 } 1012 BIO_SETPRIO(bp, BPRIO_DEFAULT); 1013 return (bp); 1014 } 1015 1016 /* 1017 * Get an empty, disassociated buffer of given size. 1018 */ 1019 struct buf * 1020 geteblk(int size) 1021 { 1022 struct buf *bp; 1023 int s; 1024 1025 s = splbio(); 1026 simple_lock(&bqueue_slock); 1027 while ((bp = getnewbuf(0, 0, 0)) == 0) 1028 ; 1029 1030 SET(bp->b_flags, B_INVAL); 1031 binshash(bp, &invalhash); 1032 simple_unlock(&bqueue_slock); 1033 simple_unlock(&bp->b_interlock); 1034 splx(s); 1035 BIO_SETPRIO(bp, BPRIO_DEFAULT); 1036 allocbuf(bp, size, 0); 1037 return (bp); 1038 } 1039 1040 /* 1041 * Expand or contract the actual memory allocated to a buffer. 1042 * 1043 * If the buffer shrinks, data is lost, so it's up to the 1044 * caller to have written it out *first*; this routine will not 1045 * start a write. If the buffer grows, it's the callers 1046 * responsibility to fill out the buffer's additional contents. 1047 */ 1048 void 1049 allocbuf(struct buf *bp, int size, int preserve) 1050 { 1051 vsize_t oldsize, desired_size; 1052 caddr_t addr; 1053 int s, delta; 1054 1055 desired_size = buf_roundsize(size); 1056 if (desired_size > MAXBSIZE) 1057 printf("allocbuf: buffer larger than MAXBSIZE requested"); 1058 1059 bp->b_bcount = size; 1060 1061 oldsize = bp->b_bufsize; 1062 if (oldsize == desired_size) 1063 return; 1064 1065 /* 1066 * If we want a buffer of a different size, re-allocate the 1067 * buffer's memory; copy old content only if needed. 1068 */ 1069 addr = buf_malloc(desired_size); 1070 if (preserve) 1071 memcpy(addr, bp->b_data, MIN(oldsize,desired_size)); 1072 if (bp->b_data != NULL) 1073 buf_mrelease(bp->b_data, oldsize); 1074 bp->b_data = addr; 1075 bp->b_bufsize = desired_size; 1076 1077 /* 1078 * Update overall buffer memory counter (protected by bqueue_slock) 1079 */ 1080 delta = (long)desired_size - (long)oldsize; 1081 1082 s = splbio(); 1083 simple_lock(&bqueue_slock); 1084 if ((bufmem += delta) > bufmem_hiwater) { 1085 /* 1086 * Need to trim overall memory usage. 1087 */ 1088 while (buf_canrelease()) { 1089 if (buf_trim() == 0) 1090 break; 1091 } 1092 } 1093 1094 simple_unlock(&bqueue_slock); 1095 splx(s); 1096 } 1097 1098 /* 1099 * Find a buffer which is available for use. 1100 * Select something from a free list. 1101 * Preference is to AGE list, then LRU list. 1102 * 1103 * Called at splbio and with buffer queues locked. 1104 * Return buffer locked. 1105 */ 1106 struct buf * 1107 getnewbuf(int slpflag, int slptimeo, int from_bufq) 1108 { 1109 struct buf *bp; 1110 1111 start: 1112 LOCK_ASSERT(simple_lock_held(&bqueue_slock)); 1113 1114 /* 1115 * Get a new buffer from the pool; but use NOWAIT because 1116 * we have the buffer queues locked. 1117 */ 1118 if (buf_lotsfree() && !from_bufq && 1119 (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) { 1120 memset((char *)bp, 0, sizeof(*bp)); 1121 BUF_INIT(bp); 1122 bp->b_dev = NODEV; 1123 bp->b_vnbufs.le_next = NOLIST; 1124 bp->b_flags = B_BUSY; 1125 simple_lock(&bp->b_interlock); 1126 return (bp); 1127 } 1128 1129 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE])) != NULL || 1130 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU])) != NULL) { 1131 simple_lock(&bp->b_interlock); 1132 bremfree(bp); 1133 } else { 1134 /* wait for a free buffer of any kind */ 1135 needbuffer = 1; 1136 ltsleep(&needbuffer, slpflag|(PRIBIO+1), 1137 "getnewbuf", slptimeo, &bqueue_slock); 1138 return (NULL); 1139 } 1140 1141 #ifdef DIAGNOSTIC 1142 if (bp->b_bufsize <= 0) 1143 panic("buffer %p: on queue but empty", bp); 1144 #endif 1145 1146 if (ISSET(bp->b_flags, B_VFLUSH)) { 1147 /* 1148 * This is a delayed write buffer being flushed to disk. Make 1149 * sure it gets aged out of the queue when it's finished, and 1150 * leave it off the LRU queue. 1151 */ 1152 CLR(bp->b_flags, B_VFLUSH); 1153 SET(bp->b_flags, B_AGE); 1154 simple_unlock(&bp->b_interlock); 1155 goto start; 1156 } 1157 1158 /* Buffer is no longer on free lists. */ 1159 SET(bp->b_flags, B_BUSY); 1160 1161 /* 1162 * If buffer was a delayed write, start it and return NULL 1163 * (since we might sleep while starting the write). 1164 */ 1165 if (ISSET(bp->b_flags, B_DELWRI)) { 1166 /* 1167 * This buffer has gone through the LRU, so make sure it gets 1168 * reused ASAP. 1169 */ 1170 SET(bp->b_flags, B_AGE); 1171 simple_unlock(&bp->b_interlock); 1172 simple_unlock(&bqueue_slock); 1173 bawrite(bp); 1174 simple_lock(&bqueue_slock); 1175 return (NULL); 1176 } 1177 1178 /* disassociate us from our vnode, if we had one... */ 1179 if (bp->b_vp) 1180 brelvp(bp); 1181 1182 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) 1183 (*bioops.io_deallocate)(bp); 1184 1185 /* clear out various other fields */ 1186 bp->b_flags = B_BUSY; 1187 bp->b_dev = NODEV; 1188 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0; 1189 bp->b_iodone = 0; 1190 bp->b_error = 0; 1191 bp->b_resid = 0; 1192 bp->b_bcount = 0; 1193 1194 bremhash(bp); 1195 return (bp); 1196 } 1197 1198 /* 1199 * Attempt to free an aged buffer off the queues. 1200 * Called at splbio and with queue lock held. 1201 * Returns the amount of buffer memory freed. 1202 */ 1203 int 1204 buf_trim(void) 1205 { 1206 struct buf *bp; 1207 long size = 0; 1208 int wanted; 1209 1210 /* Instruct getnewbuf() to get buffers off the queues */ 1211 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL) 1212 return 0; 1213 1214 wanted = ISSET(bp->b_flags, B_WANTED); 1215 simple_unlock(&bp->b_interlock); 1216 if (wanted) { 1217 printf("buftrim: got WANTED buffer\n"); 1218 SET(bp->b_flags, B_INVAL); 1219 binshash(bp, &invalhash); 1220 simple_unlock(&bqueue_slock); 1221 goto out; 1222 } 1223 size = bp->b_bufsize; 1224 bufmem -= size; 1225 simple_unlock(&bqueue_slock); 1226 if (size > 0) { 1227 buf_mrelease(bp->b_data, size); 1228 bp->b_bcount = bp->b_bufsize = 0; 1229 } 1230 1231 out: 1232 /* brelse() will return the buffer to the global buffer pool */ 1233 brelse(bp); 1234 simple_lock(&bqueue_slock); 1235 return size; 1236 } 1237 1238 int 1239 buf_drain(int n) 1240 { 1241 int s, size = 0; 1242 1243 /* If not asked for a specific amount, make our own estimate */ 1244 if (n == 0) 1245 n = buf_canrelease(); 1246 1247 s = splbio(); 1248 simple_lock(&bqueue_slock); 1249 while (size < n && bufmem > bufmem_lowater) 1250 size += buf_trim(); 1251 1252 simple_unlock(&bqueue_slock); 1253 splx(s); 1254 return size; 1255 } 1256 1257 /* 1258 * Wait for operations on the buffer to complete. 1259 * When they do, extract and return the I/O's error value. 1260 */ 1261 int 1262 biowait(struct buf *bp) 1263 { 1264 int s, error; 1265 1266 s = splbio(); 1267 simple_lock(&bp->b_interlock); 1268 while (!ISSET(bp->b_flags, B_DONE | B_DELWRI)) 1269 ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock); 1270 1271 /* check for interruption of I/O (e.g. via NFS), then errors. */ 1272 if (ISSET(bp->b_flags, B_EINTR)) { 1273 CLR(bp->b_flags, B_EINTR); 1274 error = EINTR; 1275 } else if (ISSET(bp->b_flags, B_ERROR)) 1276 error = bp->b_error ? bp->b_error : EIO; 1277 else 1278 error = 0; 1279 1280 simple_unlock(&bp->b_interlock); 1281 splx(s); 1282 return (error); 1283 } 1284 1285 /* 1286 * Mark I/O complete on a buffer. 1287 * 1288 * If a callback has been requested, e.g. the pageout 1289 * daemon, do so. Otherwise, awaken waiting processes. 1290 * 1291 * [ Leffler, et al., says on p.247: 1292 * "This routine wakes up the blocked process, frees the buffer 1293 * for an asynchronous write, or, for a request by the pagedaemon 1294 * process, invokes a procedure specified in the buffer structure" ] 1295 * 1296 * In real life, the pagedaemon (or other system processes) wants 1297 * to do async stuff to, and doesn't want the buffer brelse()'d. 1298 * (for swap pager, that puts swap buffers on the free lists (!!!), 1299 * for the vn device, that puts malloc'd buffers on the free lists!) 1300 */ 1301 void 1302 biodone(struct buf *bp) 1303 { 1304 int s = splbio(); 1305 1306 simple_lock(&bp->b_interlock); 1307 if (ISSET(bp->b_flags, B_DONE)) 1308 panic("biodone already"); 1309 SET(bp->b_flags, B_DONE); /* note that it's done */ 1310 BIO_SETPRIO(bp, BPRIO_DEFAULT); 1311 1312 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete) 1313 (*bioops.io_complete)(bp); 1314 1315 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */ 1316 vwakeup(bp); 1317 1318 /* 1319 * If necessary, call out. Unlock the buffer before calling 1320 * iodone() as the buffer isn't valid any more when it return. 1321 */ 1322 if (ISSET(bp->b_flags, B_CALL)) { 1323 CLR(bp->b_flags, B_CALL); /* but note callout done */ 1324 simple_unlock(&bp->b_interlock); 1325 (*bp->b_iodone)(bp); 1326 } else { 1327 if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release */ 1328 simple_unlock(&bp->b_interlock); 1329 brelse(bp); 1330 } else { /* or just wakeup the buffer */ 1331 CLR(bp->b_flags, B_WANTED); 1332 wakeup(bp); 1333 simple_unlock(&bp->b_interlock); 1334 } 1335 } 1336 1337 splx(s); 1338 } 1339 1340 /* 1341 * Return a count of buffers on the "locked" queue. 1342 */ 1343 int 1344 count_lock_queue(void) 1345 { 1346 struct buf *bp; 1347 int n = 0; 1348 1349 simple_lock(&bqueue_slock); 1350 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED], b_freelist) 1351 n++; 1352 simple_unlock(&bqueue_slock); 1353 return (n); 1354 } 1355 1356 /* 1357 * Wait for all buffers to complete I/O 1358 * Return the number of "stuck" buffers. 1359 */ 1360 int 1361 buf_syncwait(void) 1362 { 1363 struct buf *bp; 1364 int iter, nbusy, nbusy_prev = 0, dcount, s, ihash; 1365 1366 dcount = 10000; 1367 for (iter = 0; iter < 20;) { 1368 s = splbio(); 1369 simple_lock(&bqueue_slock); 1370 nbusy = 0; 1371 for (ihash = 0; ihash < bufhash+1; ihash++) { 1372 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) { 1373 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY) 1374 nbusy++; 1375 /* 1376 * With soft updates, some buffers that are 1377 * written will be remarked as dirty until other 1378 * buffers are written. 1379 */ 1380 if (bp->b_vp && bp->b_vp->v_mount 1381 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP) 1382 && (bp->b_flags & B_DELWRI)) { 1383 simple_lock(&bp->b_interlock); 1384 bremfree(bp); 1385 bp->b_flags |= B_BUSY; 1386 nbusy++; 1387 simple_unlock(&bp->b_interlock); 1388 simple_unlock(&bqueue_slock); 1389 bawrite(bp); 1390 if (dcount-- <= 0) { 1391 printf("softdep "); 1392 goto fail; 1393 } 1394 simple_lock(&bqueue_slock); 1395 } 1396 } 1397 } 1398 1399 simple_unlock(&bqueue_slock); 1400 splx(s); 1401 1402 if (nbusy == 0) 1403 break; 1404 if (nbusy_prev == 0) 1405 nbusy_prev = nbusy; 1406 printf("%d ", nbusy); 1407 tsleep(&nbusy, PRIBIO, "bflush", 1408 (iter == 0) ? 1 : hz / 25 * iter); 1409 if (nbusy >= nbusy_prev) /* we didn't flush anything */ 1410 iter++; 1411 else 1412 nbusy_prev = nbusy; 1413 } 1414 1415 if (nbusy) { 1416 fail:; 1417 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY) 1418 printf("giving up\nPrinting vnodes for busy buffers\n"); 1419 for (ihash = 0; ihash < bufhash+1; ihash++) { 1420 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) { 1421 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY) 1422 vprint(NULL, bp->b_vp); 1423 } 1424 } 1425 #endif 1426 } 1427 1428 return nbusy; 1429 } 1430 1431 #define KERN_BUFSLOP 20 1432 static int 1433 sysctl_dobuf(SYSCTLFN_ARGS) 1434 { 1435 struct buf *bp; 1436 char *dp; 1437 u_int i, elem_size; 1438 size_t len, buflen, needed; 1439 int error, s; 1440 1441 dp = oldp; 1442 len = buflen = oldp != NULL ? *oldlenp : 0; 1443 error = 0; 1444 needed = 0; 1445 elem_size = sizeof(struct buf); 1446 1447 s = splbio(); 1448 simple_lock(&bqueue_slock); 1449 for (i = 0; i < BQUEUES; i++) { 1450 TAILQ_FOREACH(bp, &bufqueues[i], b_freelist) { 1451 if (len >= elem_size) { 1452 error = copyout(bp, dp, elem_size); 1453 if (error) 1454 goto cleanup; 1455 dp += elem_size; 1456 len -= elem_size; 1457 } 1458 needed += elem_size; 1459 } 1460 } 1461 cleanup: 1462 simple_unlock(&bqueue_slock); 1463 splx(s); 1464 1465 if (oldp != NULL) { 1466 *oldlenp = (char *)dp - (char *)oldp; 1467 if (needed > *oldlenp) 1468 error = ENOMEM; 1469 } else { 1470 needed += KERN_BUFSLOP; 1471 *oldlenp = needed; 1472 } 1473 1474 return (error); 1475 } 1476 1477 static int sysctlnum_bufcache, sysctlnum_bufmemhiwater, sysctlnum_bufmemlowater; 1478 1479 static int 1480 sysctl_bufvm_update(SYSCTLFN_ARGS) 1481 { 1482 int t, error; 1483 struct sysctlnode node; 1484 1485 node = *rnode; 1486 node.sysctl_data = &t; 1487 t = *(int*)rnode->sysctl_data; 1488 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1489 if (error || newp == NULL) 1490 return (error); 1491 1492 if (rnode->sysctl_num == sysctlnum_bufcache) { 1493 if (t < 0 || t > 100) 1494 return (EINVAL); 1495 bufcache = t; 1496 bufmem_hiwater = buf_memcalc(); 1497 bufmem_lowater = (bufmem_hiwater >> 3); 1498 if (bufmem_lowater < 64 * 1024) 1499 /* Ensure a reasonable minimum value */ 1500 bufmem_lowater = 64 * 1024; 1501 1502 } else if (rnode->sysctl_num == sysctlnum_bufmemlowater) { 1503 bufmem_lowater = t; 1504 } else if (rnode->sysctl_num == sysctlnum_bufmemhiwater) { 1505 bufmem_hiwater = t; 1506 } else 1507 return (EINVAL); 1508 1509 /* Drain until below new high water mark */ 1510 while ((t = bufmem - bufmem_hiwater) >= 0) { 1511 if (buf_drain(t / (2*1024)) <= 0) 1512 break; 1513 } 1514 1515 return 0; 1516 } 1517 1518 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup") 1519 { 1520 1521 sysctl_createv(SYSCTL_PERMANENT, 1522 CTLTYPE_NODE, "kern", NULL, 1523 NULL, 0, NULL, 0, 1524 CTL_KERN, CTL_EOL); 1525 sysctl_createv(SYSCTL_PERMANENT, 1526 CTLTYPE_NODE, "buf", NULL, 1527 sysctl_dobuf, 0, NULL, 0, 1528 CTL_KERN, KERN_BUF, CTL_EOL); 1529 } 1530 1531 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup") 1532 { 1533 struct sysctlnode *rnode; 1534 1535 sysctl_createv(SYSCTL_PERMANENT, 1536 CTLTYPE_NODE, "vm", NULL, 1537 NULL, 0, NULL, 0, 1538 CTL_VM, CTL_EOL); 1539 1540 rnode = NULL; 1541 if (sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE, 1542 CTLTYPE_INT, "bufcache", &rnode, 1543 sysctl_bufvm_update, 0, &bufcache, 0, 1544 CTL_VM, CTL_CREATE, CTL_EOL) == 0) 1545 sysctlnum_bufcache = rnode->sysctl_num; 1546 1547 rnode = NULL; 1548 if (sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE, 1549 CTLTYPE_INT, "bufmem_lowater", &rnode, 1550 sysctl_bufvm_update, 0, &bufmem_lowater, 0, 1551 CTL_VM, CTL_CREATE, CTL_EOL) == 0) 1552 sysctlnum_bufmemlowater = rnode->sysctl_num; 1553 1554 rnode = NULL; 1555 if (sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE, 1556 CTLTYPE_INT, "bufmem_hiwater", &rnode, 1557 sysctl_bufvm_update, 0, &bufmem_hiwater, 0, 1558 CTL_VM, CTL_CREATE, CTL_EOL) == 0) 1559 sysctlnum_bufmemhiwater = rnode->sysctl_num; 1560 } 1561 1562 #ifdef DEBUG 1563 /* 1564 * Print out statistics on the current allocation of the buffer pool. 1565 * Can be enabled to print out on every ``sync'' by setting "syncprt" 1566 * in vfs_syscalls.c using sysctl. 1567 */ 1568 void 1569 vfs_bufstats(void) 1570 { 1571 int s, i, j, count; 1572 struct buf *bp; 1573 struct bqueues *dp; 1574 int counts[(MAXBSIZE / PAGE_SIZE) + 1]; 1575 static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" }; 1576 1577 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) { 1578 count = 0; 1579 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 1580 counts[j] = 0; 1581 s = splbio(); 1582 TAILQ_FOREACH(bp, dp, b_freelist) { 1583 counts[bp->b_bufsize/PAGE_SIZE]++; 1584 count++; 1585 } 1586 splx(s); 1587 printf("%s: total-%d", bname[i], count); 1588 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 1589 if (counts[j] != 0) 1590 printf(", %d-%d", j * PAGE_SIZE, counts[j]); 1591 printf("\n"); 1592 } 1593 } 1594 #endif /* DEBUG */ 1595