xref: /netbsd-src/sys/kern/vfs_bio.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: vfs_bio.c,v 1.250 2014/05/25 16:31:51 pooka Exp $	*/
2 
3 /*-
4  * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran, and by Wasabi Systems, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1982, 1986, 1989, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  * (c) UNIX System Laboratories, Inc.
36  * All or some portions of this file are derived from material licensed
37  * to the University of California by American Telephone and Telegraph
38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39  * the permission of UNIX System Laboratories, Inc.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
66  */
67 
68 /*-
69  * Copyright (c) 1994 Christopher G. Demetriou
70  *
71  * Redistribution and use in source and binary forms, with or without
72  * modification, are permitted provided that the following conditions
73  * are met:
74  * 1. Redistributions of source code must retain the above copyright
75  *    notice, this list of conditions and the following disclaimer.
76  * 2. Redistributions in binary form must reproduce the above copyright
77  *    notice, this list of conditions and the following disclaimer in the
78  *    documentation and/or other materials provided with the distribution.
79  * 3. All advertising materials mentioning features or use of this software
80  *    must display the following acknowledgement:
81  *	This product includes software developed by the University of
82  *	California, Berkeley and its contributors.
83  * 4. Neither the name of the University nor the names of its contributors
84  *    may be used to endorse or promote products derived from this software
85  *    without specific prior written permission.
86  *
87  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97  * SUCH DAMAGE.
98  *
99  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
100  */
101 
102 /*
103  * The buffer cache subsystem.
104  *
105  * Some references:
106  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
107  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
108  *		UNIX Operating System (Addison Welley, 1989)
109  *
110  * Locking
111  *
112  * There are three locks:
113  * - bufcache_lock: protects global buffer cache state.
114  * - BC_BUSY: a long term per-buffer lock.
115  * - buf_t::b_objlock: lock on completion (biowait vs biodone).
116  *
117  * For buffers associated with vnodes (a most common case) b_objlock points
118  * to the vnode_t::v_interlock.  Otherwise, it points to generic buffer_lock.
119  *
120  * Lock order:
121  *	bufcache_lock ->
122  *		buf_t::b_objlock
123  */
124 
125 #include <sys/cdefs.h>
126 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.250 2014/05/25 16:31:51 pooka Exp $");
127 
128 #include "opt_bufcache.h"
129 
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/kernel.h>
133 #include <sys/proc.h>
134 #include <sys/buf.h>
135 #include <sys/vnode.h>
136 #include <sys/mount.h>
137 #include <sys/resourcevar.h>
138 #include <sys/sysctl.h>
139 #include <sys/conf.h>
140 #include <sys/kauth.h>
141 #include <sys/fstrans.h>
142 #include <sys/intr.h>
143 #include <sys/cpu.h>
144 #include <sys/wapbl.h>
145 #include <sys/bitops.h>
146 
147 #include <uvm/uvm.h>	/* extern struct uvm uvm */
148 
149 #include <miscfs/specfs/specdev.h>
150 
151 #ifndef	BUFPAGES
152 # define BUFPAGES 0
153 #endif
154 
155 #ifdef BUFCACHE
156 # if (BUFCACHE < 5) || (BUFCACHE > 95)
157 #  error BUFCACHE is not between 5 and 95
158 # endif
159 #else
160 # define BUFCACHE 15
161 #endif
162 
163 u_int	nbuf;			/* desired number of buffer headers */
164 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
165 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
166 
167 /* Function prototypes */
168 struct bqueue;
169 
170 static void buf_setwm(void);
171 static int buf_trim(void);
172 static void *bufpool_page_alloc(struct pool *, int);
173 static void bufpool_page_free(struct pool *, void *);
174 static buf_t *bio_doread(struct vnode *, daddr_t, int,
175     kauth_cred_t, int);
176 static buf_t *getnewbuf(int, int, int);
177 static int buf_lotsfree(void);
178 static int buf_canrelease(void);
179 static u_long buf_mempoolidx(u_long);
180 static u_long buf_roundsize(u_long);
181 static void *buf_alloc(size_t);
182 static void buf_mrelease(void *, size_t);
183 static void binsheadfree(buf_t *, struct bqueue *);
184 static void binstailfree(buf_t *, struct bqueue *);
185 #ifdef DEBUG
186 static int checkfreelist(buf_t *, struct bqueue *, int);
187 #endif
188 static void biointr(void *);
189 static void biodone2(buf_t *);
190 static void bref(buf_t *);
191 static void brele(buf_t *);
192 static void sysctl_kern_buf_setup(void);
193 static void sysctl_vm_buf_setup(void);
194 
195 /*
196  * Definitions for the buffer hash lists.
197  */
198 #define	BUFHASH(dvp, lbn)	\
199 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
200 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
201 u_long	bufhash;
202 struct bqueue bufqueues[BQUEUES];
203 
204 static kcondvar_t needbuffer_cv;
205 
206 /*
207  * Buffer queue lock.
208  */
209 kmutex_t bufcache_lock;
210 kmutex_t buffer_lock;
211 
212 /* Software ISR for completed transfers. */
213 static void *biodone_sih;
214 
215 /* Buffer pool for I/O buffers. */
216 static pool_cache_t buf_cache;
217 static pool_cache_t bufio_cache;
218 
219 #define MEMPOOL_INDEX_OFFSET (ilog2(DEV_BSIZE))	/* smallest pool is 512 bytes */
220 #define NMEMPOOLS (ilog2(MAXBSIZE) - MEMPOOL_INDEX_OFFSET + 1)
221 __CTASSERT((1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) == MAXBSIZE);
222 
223 /* Buffer memory pools */
224 static struct pool bmempools[NMEMPOOLS];
225 
226 static struct vm_map *buf_map;
227 
228 /*
229  * Buffer memory pool allocator.
230  */
231 static void *
232 bufpool_page_alloc(struct pool *pp, int flags)
233 {
234 
235 	return (void *)uvm_km_alloc(buf_map,
236 	    MAXBSIZE, MAXBSIZE,
237 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT|UVM_KMF_TRYLOCK)
238 	    | UVM_KMF_WIRED);
239 }
240 
241 static void
242 bufpool_page_free(struct pool *pp, void *v)
243 {
244 
245 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
246 }
247 
248 static struct pool_allocator bufmempool_allocator = {
249 	.pa_alloc = bufpool_page_alloc,
250 	.pa_free = bufpool_page_free,
251 	.pa_pagesz = MAXBSIZE,
252 };
253 
254 /* Buffer memory management variables */
255 u_long bufmem_valimit;
256 u_long bufmem_hiwater;
257 u_long bufmem_lowater;
258 u_long bufmem;
259 
260 /*
261  * MD code can call this to set a hard limit on the amount
262  * of virtual memory used by the buffer cache.
263  */
264 int
265 buf_setvalimit(vsize_t sz)
266 {
267 
268 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
269 	if (sz < NMEMPOOLS * MAXBSIZE)
270 		return EINVAL;
271 
272 	bufmem_valimit = sz;
273 	return 0;
274 }
275 
276 static void
277 buf_setwm(void)
278 {
279 
280 	bufmem_hiwater = buf_memcalc();
281 	/* lowater is approx. 2% of memory (with bufcache = 15) */
282 #define	BUFMEM_WMSHIFT	3
283 #define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
284 	if (bufmem_hiwater < BUFMEM_HIWMMIN)
285 		/* Ensure a reasonable minimum value */
286 		bufmem_hiwater = BUFMEM_HIWMMIN;
287 	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
288 }
289 
290 #ifdef DEBUG
291 int debug_verify_freelist = 0;
292 static int
293 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
294 {
295 	buf_t *b;
296 
297 	if (!debug_verify_freelist)
298 		return 1;
299 
300 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
301 		if (b == bp)
302 			return ison ? 1 : 0;
303 	}
304 
305 	return ison ? 0 : 1;
306 }
307 #endif
308 
309 /*
310  * Insq/Remq for the buffer hash lists.
311  * Call with buffer queue locked.
312  */
313 static void
314 binsheadfree(buf_t *bp, struct bqueue *dp)
315 {
316 
317 	KASSERT(mutex_owned(&bufcache_lock));
318 	KASSERT(bp->b_freelistindex == -1);
319 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
320 	dp->bq_bytes += bp->b_bufsize;
321 	bp->b_freelistindex = dp - bufqueues;
322 }
323 
324 static void
325 binstailfree(buf_t *bp, struct bqueue *dp)
326 {
327 
328 	KASSERT(mutex_owned(&bufcache_lock));
329 	KASSERT(bp->b_freelistindex == -1);
330 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
331 	dp->bq_bytes += bp->b_bufsize;
332 	bp->b_freelistindex = dp - bufqueues;
333 }
334 
335 void
336 bremfree(buf_t *bp)
337 {
338 	struct bqueue *dp;
339 	int bqidx = bp->b_freelistindex;
340 
341 	KASSERT(mutex_owned(&bufcache_lock));
342 
343 	KASSERT(bqidx != -1);
344 	dp = &bufqueues[bqidx];
345 	KDASSERT(checkfreelist(bp, dp, 1));
346 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
347 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
348 	dp->bq_bytes -= bp->b_bufsize;
349 
350 	/* For the sysctl helper. */
351 	if (bp == dp->bq_marker)
352 		dp->bq_marker = NULL;
353 
354 #if defined(DIAGNOSTIC)
355 	bp->b_freelistindex = -1;
356 #endif /* defined(DIAGNOSTIC) */
357 }
358 
359 /*
360  * Add a reference to an buffer structure that came from buf_cache.
361  */
362 static inline void
363 bref(buf_t *bp)
364 {
365 
366 	KASSERT(mutex_owned(&bufcache_lock));
367 	KASSERT(bp->b_refcnt > 0);
368 
369 	bp->b_refcnt++;
370 }
371 
372 /*
373  * Free an unused buffer structure that came from buf_cache.
374  */
375 static inline void
376 brele(buf_t *bp)
377 {
378 
379 	KASSERT(mutex_owned(&bufcache_lock));
380 	KASSERT(bp->b_refcnt > 0);
381 
382 	if (bp->b_refcnt-- == 1) {
383 		buf_destroy(bp);
384 #ifdef DEBUG
385 		memset((char *)bp, 0, sizeof(*bp));
386 #endif
387 		pool_cache_put(buf_cache, bp);
388 	}
389 }
390 
391 /*
392  * note that for some ports this is used by pmap bootstrap code to
393  * determine kva size.
394  */
395 u_long
396 buf_memcalc(void)
397 {
398 	u_long n;
399 	vsize_t mapsz = 0;
400 
401 	/*
402 	 * Determine the upper bound of memory to use for buffers.
403 	 *
404 	 *	- If bufpages is specified, use that as the number
405 	 *	  pages.
406 	 *
407 	 *	- Otherwise, use bufcache as the percentage of
408 	 *	  physical memory.
409 	 */
410 	if (bufpages != 0) {
411 		n = bufpages;
412 	} else {
413 		if (bufcache < 5) {
414 			printf("forcing bufcache %d -> 5", bufcache);
415 			bufcache = 5;
416 		}
417 		if (bufcache > 95) {
418 			printf("forcing bufcache %d -> 95", bufcache);
419 			bufcache = 95;
420 		}
421 		if (buf_map != NULL)
422 			mapsz = vm_map_max(buf_map) - vm_map_min(buf_map);
423 		n = calc_cache_size(mapsz, bufcache,
424 		    (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
425 		    / PAGE_SIZE;
426 	}
427 
428 	n <<= PAGE_SHIFT;
429 	if (bufmem_valimit != 0 && n > bufmem_valimit)
430 		n = bufmem_valimit;
431 
432 	return (n);
433 }
434 
435 /*
436  * Initialize buffers and hash links for buffers.
437  */
438 void
439 bufinit(void)
440 {
441 	struct bqueue *dp;
442 	int use_std;
443 	u_int i;
444 	extern void (*biodone_vfs)(buf_t *);
445 
446 	biodone_vfs = biodone;
447 
448 	mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
449 	mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
450 	cv_init(&needbuffer_cv, "needbuf");
451 
452 	if (bufmem_valimit != 0) {
453 		vaddr_t minaddr = 0, maxaddr;
454 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
455 					  bufmem_valimit, 0, false, 0);
456 		if (buf_map == NULL)
457 			panic("bufinit: cannot allocate submap");
458 	} else
459 		buf_map = kernel_map;
460 
461 	/*
462 	 * Initialize buffer cache memory parameters.
463 	 */
464 	bufmem = 0;
465 	buf_setwm();
466 
467 	/* On "small" machines use small pool page sizes where possible */
468 	use_std = (physmem < atop(16*1024*1024));
469 
470 	/*
471 	 * Also use them on systems that can map the pool pages using
472 	 * a direct-mapped segment.
473 	 */
474 #ifdef PMAP_MAP_POOLPAGE
475 	use_std = 1;
476 #endif
477 
478 	buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
479 	    "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
480 	bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
481 	    "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
482 
483 	for (i = 0; i < NMEMPOOLS; i++) {
484 		struct pool_allocator *pa;
485 		struct pool *pp = &bmempools[i];
486 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
487 		char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
488 		if (__predict_false(size >= 1048576))
489 			(void)snprintf(name, 8, "buf%um", size / 1048576);
490 		else if (__predict_true(size >= 1024))
491 			(void)snprintf(name, 8, "buf%uk", size / 1024);
492 		else
493 			(void)snprintf(name, 8, "buf%ub", size);
494 		pa = (size <= PAGE_SIZE && use_std)
495 			? &pool_allocator_nointr
496 			: &bufmempool_allocator;
497 		pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
498 		pool_setlowat(pp, 1);
499 		pool_sethiwat(pp, 1);
500 	}
501 
502 	/* Initialize the buffer queues */
503 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
504 		TAILQ_INIT(&dp->bq_queue);
505 		dp->bq_bytes = 0;
506 	}
507 
508 	/*
509 	 * Estimate hash table size based on the amount of memory we
510 	 * intend to use for the buffer cache. The average buffer
511 	 * size is dependent on our clients (i.e. filesystems).
512 	 *
513 	 * For now, use an empirical 3K per buffer.
514 	 */
515 	nbuf = (bufmem_hiwater / 1024) / 3;
516 	bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
517 
518 	sysctl_kern_buf_setup();
519 	sysctl_vm_buf_setup();
520 }
521 
522 void
523 bufinit2(void)
524 {
525 
526 	biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
527 	    NULL);
528 	if (biodone_sih == NULL)
529 		panic("bufinit2: can't establish soft interrupt");
530 }
531 
532 static int
533 buf_lotsfree(void)
534 {
535 	int try, thresh;
536 
537 	/* Always allocate if less than the low water mark. */
538 	if (bufmem < bufmem_lowater)
539 		return 1;
540 
541 	/* Never allocate if greater than the high water mark. */
542 	if (bufmem > bufmem_hiwater)
543 		return 0;
544 
545 	/* If there's anything on the AGE list, it should be eaten. */
546 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
547 		return 0;
548 
549 	/*
550 	 * The probabily of getting a new allocation is inversely
551 	 * proportional to the current size of the cache, using
552 	 * a granularity of 16 steps.
553 	 */
554 	try = random() & 0x0000000fL;
555 
556 	/* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
557 	thresh = (bufmem - bufmem_lowater) /
558 	    ((bufmem_hiwater - bufmem_lowater) / 16);
559 
560 	if (try >= thresh)
561 		return 1;
562 
563 	/* Otherwise don't allocate. */
564 	return 0;
565 }
566 
567 /*
568  * Return estimate of bytes we think need to be
569  * released to help resolve low memory conditions.
570  *
571  * => called with bufcache_lock held.
572  */
573 static int
574 buf_canrelease(void)
575 {
576 	int pagedemand, ninvalid = 0;
577 
578 	KASSERT(mutex_owned(&bufcache_lock));
579 
580 	if (bufmem < bufmem_lowater)
581 		return 0;
582 
583 	if (bufmem > bufmem_hiwater)
584 		return bufmem - bufmem_hiwater;
585 
586 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
587 
588 	pagedemand = uvmexp.freetarg - uvmexp.free;
589 	if (pagedemand < 0)
590 		return ninvalid;
591 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
592 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
593 }
594 
595 /*
596  * Buffer memory allocation helper functions
597  */
598 static u_long
599 buf_mempoolidx(u_long size)
600 {
601 	u_int n = 0;
602 
603 	size -= 1;
604 	size >>= MEMPOOL_INDEX_OFFSET;
605 	while (size) {
606 		size >>= 1;
607 		n += 1;
608 	}
609 	if (n >= NMEMPOOLS)
610 		panic("buf mem pool index %d", n);
611 	return n;
612 }
613 
614 static u_long
615 buf_roundsize(u_long size)
616 {
617 	/* Round up to nearest power of 2 */
618 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
619 }
620 
621 static void *
622 buf_alloc(size_t size)
623 {
624 	u_int n = buf_mempoolidx(size);
625 	void *addr;
626 
627 	while (1) {
628 		addr = pool_get(&bmempools[n], PR_NOWAIT);
629 		if (addr != NULL)
630 			break;
631 
632 		/* No memory, see if we can free some. If so, try again */
633 		mutex_enter(&bufcache_lock);
634 		if (buf_drain(1) > 0) {
635 			mutex_exit(&bufcache_lock);
636 			continue;
637 		}
638 
639 		if (curlwp == uvm.pagedaemon_lwp) {
640 			mutex_exit(&bufcache_lock);
641 			return NULL;
642 		}
643 
644 		/* Wait for buffers to arrive on the LRU queue */
645 		cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
646 		mutex_exit(&bufcache_lock);
647 	}
648 
649 	return addr;
650 }
651 
652 static void
653 buf_mrelease(void *addr, size_t size)
654 {
655 
656 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
657 }
658 
659 /*
660  * bread()/breadn() helper.
661  */
662 static buf_t *
663 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
664     int async)
665 {
666 	buf_t *bp;
667 	struct mount *mp;
668 
669 	bp = getblk(vp, blkno, size, 0, 0);
670 
671 	/*
672 	 * getblk() may return NULL if we are the pagedaemon.
673 	 */
674 	if (bp == NULL) {
675 		KASSERT(curlwp == uvm.pagedaemon_lwp);
676 		return NULL;
677 	}
678 
679 	/*
680 	 * If buffer does not have data valid, start a read.
681 	 * Note that if buffer is BC_INVAL, getblk() won't return it.
682 	 * Therefore, it's valid if its I/O has completed or been delayed.
683 	 */
684 	if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
685 		/* Start I/O for the buffer. */
686 		SET(bp->b_flags, B_READ | async);
687 		if (async)
688 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
689 		else
690 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
691 		VOP_STRATEGY(vp, bp);
692 
693 		/* Pay for the read. */
694 		curlwp->l_ru.ru_inblock++;
695 	} else if (async)
696 		brelse(bp, 0);
697 
698 	if (vp->v_type == VBLK)
699 		mp = spec_node_getmountedfs(vp);
700 	else
701 		mp = vp->v_mount;
702 
703 	/*
704 	 * Collect statistics on synchronous and asynchronous reads.
705 	 * Reads from block devices are charged to their associated
706 	 * filesystem (if any).
707 	 */
708 	if (mp != NULL) {
709 		if (async == 0)
710 			mp->mnt_stat.f_syncreads++;
711 		else
712 			mp->mnt_stat.f_asyncreads++;
713 	}
714 
715 	return (bp);
716 }
717 
718 /*
719  * Read a disk block.
720  * This algorithm described in Bach (p.54).
721  */
722 int
723 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
724     int flags, buf_t **bpp)
725 {
726 	buf_t *bp;
727 	int error;
728 
729 	/* Get buffer for block. */
730 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
731 	if (bp == NULL)
732 		return ENOMEM;
733 
734 	/* Wait for the read to complete, and return result. */
735 	error = biowait(bp);
736 	if (error == 0 && (flags & B_MODIFY) != 0)
737 		error = fscow_run(bp, true);
738 	if (error) {
739 		brelse(bp, 0);
740 		*bpp = NULL;
741 	}
742 
743 	return error;
744 }
745 
746 /*
747  * Read-ahead multiple disk blocks. The first is sync, the rest async.
748  * Trivial modification to the breada algorithm presented in Bach (p.55).
749  */
750 int
751 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
752     int *rasizes, int nrablks, kauth_cred_t cred, int flags, buf_t **bpp)
753 {
754 	buf_t *bp;
755 	int error, i;
756 
757 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
758 	if (bp == NULL)
759 		return ENOMEM;
760 
761 	/*
762 	 * For each of the read-ahead blocks, start a read, if necessary.
763 	 */
764 	mutex_enter(&bufcache_lock);
765 	for (i = 0; i < nrablks; i++) {
766 		/* If it's in the cache, just go on to next one. */
767 		if (incore(vp, rablks[i]))
768 			continue;
769 
770 		/* Get a buffer for the read-ahead block */
771 		mutex_exit(&bufcache_lock);
772 		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
773 		mutex_enter(&bufcache_lock);
774 	}
775 	mutex_exit(&bufcache_lock);
776 
777 	/* Otherwise, we had to start a read for it; wait until it's valid. */
778 	error = biowait(bp);
779 	if (error == 0 && (flags & B_MODIFY) != 0)
780 		error = fscow_run(bp, true);
781 	if (error) {
782 		brelse(bp, 0);
783 		*bpp = NULL;
784 	}
785 
786 	return error;
787 }
788 
789 /*
790  * Block write.  Described in Bach (p.56)
791  */
792 int
793 bwrite(buf_t *bp)
794 {
795 	int rv, sync, wasdelayed;
796 	struct vnode *vp;
797 	struct mount *mp;
798 
799 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
800 	KASSERT(!cv_has_waiters(&bp->b_done));
801 
802 	vp = bp->b_vp;
803 	if (vp != NULL) {
804 		KASSERT(bp->b_objlock == vp->v_interlock);
805 		if (vp->v_type == VBLK)
806 			mp = spec_node_getmountedfs(vp);
807 		else
808 			mp = vp->v_mount;
809 	} else {
810 		mp = NULL;
811 	}
812 
813 	if (mp && mp->mnt_wapbl) {
814 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
815 			bdwrite(bp);
816 			return 0;
817 		}
818 	}
819 
820 	/*
821 	 * Remember buffer type, to switch on it later.  If the write was
822 	 * synchronous, but the file system was mounted with MNT_ASYNC,
823 	 * convert it to a delayed write.
824 	 * XXX note that this relies on delayed tape writes being converted
825 	 * to async, not sync writes (which is safe, but ugly).
826 	 */
827 	sync = !ISSET(bp->b_flags, B_ASYNC);
828 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
829 		bdwrite(bp);
830 		return (0);
831 	}
832 
833 	/*
834 	 * Collect statistics on synchronous and asynchronous writes.
835 	 * Writes to block devices are charged to their associated
836 	 * filesystem (if any).
837 	 */
838 	if (mp != NULL) {
839 		if (sync)
840 			mp->mnt_stat.f_syncwrites++;
841 		else
842 			mp->mnt_stat.f_asyncwrites++;
843 	}
844 
845 	/*
846 	 * Pay for the I/O operation and make sure the buf is on the correct
847 	 * vnode queue.
848 	 */
849 	bp->b_error = 0;
850 	wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
851 	CLR(bp->b_flags, B_READ);
852 	if (wasdelayed) {
853 		mutex_enter(&bufcache_lock);
854 		mutex_enter(bp->b_objlock);
855 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
856 		reassignbuf(bp, bp->b_vp);
857 		mutex_exit(&bufcache_lock);
858 	} else {
859 		curlwp->l_ru.ru_oublock++;
860 		mutex_enter(bp->b_objlock);
861 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
862 	}
863 	if (vp != NULL)
864 		vp->v_numoutput++;
865 	mutex_exit(bp->b_objlock);
866 
867 	/* Initiate disk write. */
868 	if (sync)
869 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
870 	else
871 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
872 
873 	VOP_STRATEGY(vp, bp);
874 
875 	if (sync) {
876 		/* If I/O was synchronous, wait for it to complete. */
877 		rv = biowait(bp);
878 
879 		/* Release the buffer. */
880 		brelse(bp, 0);
881 
882 		return (rv);
883 	} else {
884 		return (0);
885 	}
886 }
887 
888 int
889 vn_bwrite(void *v)
890 {
891 	struct vop_bwrite_args *ap = v;
892 
893 	return (bwrite(ap->a_bp));
894 }
895 
896 /*
897  * Delayed write.
898  *
899  * The buffer is marked dirty, but is not queued for I/O.
900  * This routine should be used when the buffer is expected
901  * to be modified again soon, typically a small write that
902  * partially fills a buffer.
903  *
904  * NB: magnetic tapes cannot be delayed; they must be
905  * written in the order that the writes are requested.
906  *
907  * Described in Leffler, et al. (pp. 208-213).
908  */
909 void
910 bdwrite(buf_t *bp)
911 {
912 
913 	KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
914 	    bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
915 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
916 	KASSERT(!cv_has_waiters(&bp->b_done));
917 
918 	/* If this is a tape block, write the block now. */
919 	if (bdev_type(bp->b_dev) == D_TAPE) {
920 		bawrite(bp);
921 		return;
922 	}
923 
924 	if (wapbl_vphaswapbl(bp->b_vp)) {
925 		struct mount *mp = wapbl_vptomp(bp->b_vp);
926 
927 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
928 			WAPBL_ADD_BUF(mp, bp);
929 		}
930 	}
931 
932 	/*
933 	 * If the block hasn't been seen before:
934 	 *	(1) Mark it as having been seen,
935 	 *	(2) Charge for the write,
936 	 *	(3) Make sure it's on its vnode's correct block list.
937 	 */
938 	KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
939 
940 	if (!ISSET(bp->b_oflags, BO_DELWRI)) {
941 		mutex_enter(&bufcache_lock);
942 		mutex_enter(bp->b_objlock);
943 		SET(bp->b_oflags, BO_DELWRI);
944 		curlwp->l_ru.ru_oublock++;
945 		reassignbuf(bp, bp->b_vp);
946 		mutex_exit(&bufcache_lock);
947 	} else {
948 		mutex_enter(bp->b_objlock);
949 	}
950 	/* Otherwise, the "write" is done, so mark and release the buffer. */
951 	CLR(bp->b_oflags, BO_DONE);
952 	mutex_exit(bp->b_objlock);
953 
954 	brelse(bp, 0);
955 }
956 
957 /*
958  * Asynchronous block write; just an asynchronous bwrite().
959  */
960 void
961 bawrite(buf_t *bp)
962 {
963 
964 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
965 	KASSERT(bp->b_vp != NULL);
966 
967 	SET(bp->b_flags, B_ASYNC);
968 	VOP_BWRITE(bp->b_vp, bp);
969 }
970 
971 /*
972  * Release a buffer on to the free lists.
973  * Described in Bach (p. 46).
974  */
975 void
976 brelsel(buf_t *bp, int set)
977 {
978 	struct bqueue *bufq;
979 	struct vnode *vp;
980 
981 	KASSERT(bp != NULL);
982 	KASSERT(mutex_owned(&bufcache_lock));
983 	KASSERT(!cv_has_waiters(&bp->b_done));
984 	KASSERT(bp->b_refcnt > 0);
985 
986 	SET(bp->b_cflags, set);
987 
988 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
989 	KASSERT(bp->b_iodone == NULL);
990 
991 	/* Wake up any processes waiting for any buffer to become free. */
992 	cv_signal(&needbuffer_cv);
993 
994 	/* Wake up any proceeses waiting for _this_ buffer to become */
995 	if (ISSET(bp->b_cflags, BC_WANTED))
996 		CLR(bp->b_cflags, BC_WANTED|BC_AGE);
997 
998 	/* If it's clean clear the copy-on-write flag. */
999 	if (ISSET(bp->b_flags, B_COWDONE)) {
1000 		mutex_enter(bp->b_objlock);
1001 		if (!ISSET(bp->b_oflags, BO_DELWRI))
1002 			CLR(bp->b_flags, B_COWDONE);
1003 		mutex_exit(bp->b_objlock);
1004 	}
1005 
1006 	/*
1007 	 * Determine which queue the buffer should be on, then put it there.
1008 	 */
1009 
1010 	/* If it's locked, don't report an error; try again later. */
1011 	if (ISSET(bp->b_flags, B_LOCKED))
1012 		bp->b_error = 0;
1013 
1014 	/* If it's not cacheable, or an error, mark it invalid. */
1015 	if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
1016 		SET(bp->b_cflags, BC_INVAL);
1017 
1018 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1019 		/*
1020 		 * This is a delayed write buffer that was just flushed to
1021 		 * disk.  It is still on the LRU queue.  If it's become
1022 		 * invalid, then we need to move it to a different queue;
1023 		 * otherwise leave it in its current position.
1024 		 */
1025 		CLR(bp->b_cflags, BC_VFLUSH);
1026 		if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1027 		    !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1028 			KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
1029 			goto already_queued;
1030 		} else {
1031 			bremfree(bp);
1032 		}
1033 	}
1034 
1035 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
1036 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
1037 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
1038 
1039 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1040 		/*
1041 		 * If it's invalid or empty, dissociate it from its vnode
1042 		 * and put on the head of the appropriate queue.
1043 		 */
1044 		if (ISSET(bp->b_flags, B_LOCKED)) {
1045 			if (wapbl_vphaswapbl(vp = bp->b_vp)) {
1046 				struct mount *mp = wapbl_vptomp(vp);
1047 
1048 				KASSERT(bp->b_iodone
1049 				    != mp->mnt_wapbl_op->wo_wapbl_biodone);
1050 				WAPBL_REMOVE_BUF(mp, bp);
1051 			}
1052 		}
1053 
1054 		mutex_enter(bp->b_objlock);
1055 		CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1056 		if ((vp = bp->b_vp) != NULL) {
1057 			KASSERT(bp->b_objlock == vp->v_interlock);
1058 			reassignbuf(bp, bp->b_vp);
1059 			brelvp(bp);
1060 			mutex_exit(vp->v_interlock);
1061 		} else {
1062 			KASSERT(bp->b_objlock == &buffer_lock);
1063 			mutex_exit(bp->b_objlock);
1064 		}
1065 
1066 		if (bp->b_bufsize <= 0)
1067 			/* no data */
1068 			goto already_queued;
1069 		else
1070 			/* invalid data */
1071 			bufq = &bufqueues[BQ_AGE];
1072 		binsheadfree(bp, bufq);
1073 	} else  {
1074 		/*
1075 		 * It has valid data.  Put it on the end of the appropriate
1076 		 * queue, so that it'll stick around for as long as possible.
1077 		 * If buf is AGE, but has dependencies, must put it on last
1078 		 * bufqueue to be scanned, ie LRU. This protects against the
1079 		 * livelock where BQ_AGE only has buffers with dependencies,
1080 		 * and we thus never get to the dependent buffers in BQ_LRU.
1081 		 */
1082 		if (ISSET(bp->b_flags, B_LOCKED)) {
1083 			/* locked in core */
1084 			bufq = &bufqueues[BQ_LOCKED];
1085 		} else if (!ISSET(bp->b_cflags, BC_AGE)) {
1086 			/* valid data */
1087 			bufq = &bufqueues[BQ_LRU];
1088 		} else {
1089 			/* stale but valid data */
1090 			bufq = &bufqueues[BQ_AGE];
1091 		}
1092 		binstailfree(bp, bufq);
1093 	}
1094 already_queued:
1095 	/* Unlock the buffer. */
1096 	CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1097 	CLR(bp->b_flags, B_ASYNC);
1098 	cv_broadcast(&bp->b_busy);
1099 
1100 	if (bp->b_bufsize <= 0)
1101 		brele(bp);
1102 }
1103 
1104 void
1105 brelse(buf_t *bp, int set)
1106 {
1107 
1108 	mutex_enter(&bufcache_lock);
1109 	brelsel(bp, set);
1110 	mutex_exit(&bufcache_lock);
1111 }
1112 
1113 /*
1114  * Determine if a block is in the cache.
1115  * Just look on what would be its hash chain.  If it's there, return
1116  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
1117  * we normally don't return the buffer, unless the caller explicitly
1118  * wants us to.
1119  */
1120 buf_t *
1121 incore(struct vnode *vp, daddr_t blkno)
1122 {
1123 	buf_t *bp;
1124 
1125 	KASSERT(mutex_owned(&bufcache_lock));
1126 
1127 	/* Search hash chain */
1128 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1129 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1130 		    !ISSET(bp->b_cflags, BC_INVAL)) {
1131 		    	KASSERT(bp->b_objlock == vp->v_interlock);
1132 		    	return (bp);
1133 		}
1134 	}
1135 
1136 	return (NULL);
1137 }
1138 
1139 /*
1140  * Get a block of requested size that is associated with
1141  * a given vnode and block offset. If it is found in the
1142  * block cache, mark it as having been found, make it busy
1143  * and return it. Otherwise, return an empty block of the
1144  * correct size. It is up to the caller to insure that the
1145  * cached blocks be of the correct size.
1146  */
1147 buf_t *
1148 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1149 {
1150 	int err, preserve;
1151 	buf_t *bp;
1152 
1153 	mutex_enter(&bufcache_lock);
1154  loop:
1155 	bp = incore(vp, blkno);
1156 	if (bp != NULL) {
1157 		err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1158 		if (err != 0) {
1159 			if (err == EPASSTHROUGH)
1160 				goto loop;
1161 			mutex_exit(&bufcache_lock);
1162 			return (NULL);
1163 		}
1164 		KASSERT(!cv_has_waiters(&bp->b_done));
1165 #ifdef DIAGNOSTIC
1166 		if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1167 		    bp->b_bcount < size && vp->v_type != VBLK)
1168 			panic("getblk: block size invariant failed");
1169 #endif
1170 		bremfree(bp);
1171 		preserve = 1;
1172 	} else {
1173 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1174 			goto loop;
1175 
1176 		if (incore(vp, blkno) != NULL) {
1177 			/* The block has come into memory in the meantime. */
1178 			brelsel(bp, 0);
1179 			goto loop;
1180 		}
1181 
1182 		LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1183 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1184 		mutex_enter(vp->v_interlock);
1185 		bgetvp(vp, bp);
1186 		mutex_exit(vp->v_interlock);
1187 		preserve = 0;
1188 	}
1189 	mutex_exit(&bufcache_lock);
1190 
1191 	/*
1192 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1193 	 * if we re-size buffers here.
1194 	 */
1195 	if (ISSET(bp->b_flags, B_LOCKED)) {
1196 		KASSERT(bp->b_bufsize >= size);
1197 	} else {
1198 		if (allocbuf(bp, size, preserve)) {
1199 			mutex_enter(&bufcache_lock);
1200 			LIST_REMOVE(bp, b_hash);
1201 			mutex_exit(&bufcache_lock);
1202 			brelse(bp, BC_INVAL);
1203 			return NULL;
1204 		}
1205 	}
1206 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1207 	return (bp);
1208 }
1209 
1210 /*
1211  * Get an empty, disassociated buffer of given size.
1212  */
1213 buf_t *
1214 geteblk(int size)
1215 {
1216 	buf_t *bp;
1217 	int error __diagused;
1218 
1219 	mutex_enter(&bufcache_lock);
1220 	while ((bp = getnewbuf(0, 0, 0)) == NULL)
1221 		;
1222 
1223 	SET(bp->b_cflags, BC_INVAL);
1224 	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1225 	mutex_exit(&bufcache_lock);
1226 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1227 	error = allocbuf(bp, size, 0);
1228 	KASSERT(error == 0);
1229 	return (bp);
1230 }
1231 
1232 /*
1233  * Expand or contract the actual memory allocated to a buffer.
1234  *
1235  * If the buffer shrinks, data is lost, so it's up to the
1236  * caller to have written it out *first*; this routine will not
1237  * start a write.  If the buffer grows, it's the callers
1238  * responsibility to fill out the buffer's additional contents.
1239  */
1240 int
1241 allocbuf(buf_t *bp, int size, int preserve)
1242 {
1243 	void *addr;
1244 	vsize_t oldsize, desired_size;
1245 	int oldcount;
1246 	int delta;
1247 
1248 	desired_size = buf_roundsize(size);
1249 	if (desired_size > MAXBSIZE)
1250 		printf("allocbuf: buffer larger than MAXBSIZE requested");
1251 
1252 	oldcount = bp->b_bcount;
1253 
1254 	bp->b_bcount = size;
1255 
1256 	oldsize = bp->b_bufsize;
1257 	if (oldsize == desired_size) {
1258 		/*
1259 		 * Do not short cut the WAPBL resize, as the buffer length
1260 		 * could still have changed and this would corrupt the
1261 		 * tracking of the transaction length.
1262 		 */
1263 		goto out;
1264 	}
1265 
1266 	/*
1267 	 * If we want a buffer of a different size, re-allocate the
1268 	 * buffer's memory; copy old content only if needed.
1269 	 */
1270 	addr = buf_alloc(desired_size);
1271 	if (addr == NULL)
1272 		return ENOMEM;
1273 	if (preserve)
1274 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1275 	if (bp->b_data != NULL)
1276 		buf_mrelease(bp->b_data, oldsize);
1277 	bp->b_data = addr;
1278 	bp->b_bufsize = desired_size;
1279 
1280 	/*
1281 	 * Update overall buffer memory counter (protected by bufcache_lock)
1282 	 */
1283 	delta = (long)desired_size - (long)oldsize;
1284 
1285 	mutex_enter(&bufcache_lock);
1286 	if ((bufmem += delta) > bufmem_hiwater) {
1287 		/*
1288 		 * Need to trim overall memory usage.
1289 		 */
1290 		while (buf_canrelease()) {
1291 			if (curcpu()->ci_schedstate.spc_flags &
1292 			    SPCF_SHOULDYIELD) {
1293 				mutex_exit(&bufcache_lock);
1294 				preempt();
1295 				mutex_enter(&bufcache_lock);
1296 			}
1297 			if (buf_trim() == 0)
1298 				break;
1299 		}
1300 	}
1301 	mutex_exit(&bufcache_lock);
1302 
1303  out:
1304 	if (wapbl_vphaswapbl(bp->b_vp))
1305 		WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
1306 
1307 	return 0;
1308 }
1309 
1310 /*
1311  * Find a buffer which is available for use.
1312  * Select something from a free list.
1313  * Preference is to AGE list, then LRU list.
1314  *
1315  * Called with the buffer queues locked.
1316  * Return buffer locked.
1317  */
1318 buf_t *
1319 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1320 {
1321 	buf_t *bp;
1322 	struct vnode *vp;
1323 
1324  start:
1325 	KASSERT(mutex_owned(&bufcache_lock));
1326 
1327 	/*
1328 	 * Get a new buffer from the pool.
1329 	 */
1330 	if (!from_bufq && buf_lotsfree()) {
1331 		mutex_exit(&bufcache_lock);
1332 		bp = pool_cache_get(buf_cache, PR_NOWAIT);
1333 		if (bp != NULL) {
1334 			memset((char *)bp, 0, sizeof(*bp));
1335 			buf_init(bp);
1336 			SET(bp->b_cflags, BC_BUSY);	/* mark buffer busy */
1337 			mutex_enter(&bufcache_lock);
1338 #if defined(DIAGNOSTIC)
1339 			bp->b_freelistindex = -1;
1340 #endif /* defined(DIAGNOSTIC) */
1341 			return (bp);
1342 		}
1343 		mutex_enter(&bufcache_lock);
1344 	}
1345 
1346 	KASSERT(mutex_owned(&bufcache_lock));
1347 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1348 	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1349 	    	KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
1350 		bremfree(bp);
1351 
1352 		/* Buffer is no longer on free lists. */
1353 		SET(bp->b_cflags, BC_BUSY);
1354 	} else {
1355 		/*
1356 		 * XXX: !from_bufq should be removed.
1357 		 */
1358 		if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1359 			/* wait for a free buffer of any kind */
1360 			if ((slpflag & PCATCH) != 0)
1361 				(void)cv_timedwait_sig(&needbuffer_cv,
1362 				    &bufcache_lock, slptimeo);
1363 			else
1364 				(void)cv_timedwait(&needbuffer_cv,
1365 				    &bufcache_lock, slptimeo);
1366 		}
1367 		return (NULL);
1368 	}
1369 
1370 #ifdef DIAGNOSTIC
1371 	if (bp->b_bufsize <= 0)
1372 		panic("buffer %p: on queue but empty", bp);
1373 #endif
1374 
1375 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1376 		/*
1377 		 * This is a delayed write buffer being flushed to disk.  Make
1378 		 * sure it gets aged out of the queue when it's finished, and
1379 		 * leave it off the LRU queue.
1380 		 */
1381 		CLR(bp->b_cflags, BC_VFLUSH);
1382 		SET(bp->b_cflags, BC_AGE);
1383 		goto start;
1384 	}
1385 
1386 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1387 	KASSERT(bp->b_refcnt > 0);
1388     	KASSERT(!cv_has_waiters(&bp->b_done));
1389 
1390 	/*
1391 	 * If buffer was a delayed write, start it and return NULL
1392 	 * (since we might sleep while starting the write).
1393 	 */
1394 	if (ISSET(bp->b_oflags, BO_DELWRI)) {
1395 		/*
1396 		 * This buffer has gone through the LRU, so make sure it gets
1397 		 * reused ASAP.
1398 		 */
1399 		SET(bp->b_cflags, BC_AGE);
1400 		mutex_exit(&bufcache_lock);
1401 		bawrite(bp);
1402 		mutex_enter(&bufcache_lock);
1403 		return (NULL);
1404 	}
1405 
1406 	vp = bp->b_vp;
1407 
1408 	/* clear out various other fields */
1409 	bp->b_cflags = BC_BUSY;
1410 	bp->b_oflags = 0;
1411 	bp->b_flags = 0;
1412 	bp->b_dev = NODEV;
1413 	bp->b_blkno = 0;
1414 	bp->b_lblkno = 0;
1415 	bp->b_rawblkno = 0;
1416 	bp->b_iodone = 0;
1417 	bp->b_error = 0;
1418 	bp->b_resid = 0;
1419 	bp->b_bcount = 0;
1420 
1421 	LIST_REMOVE(bp, b_hash);
1422 
1423 	/* Disassociate us from our vnode, if we had one... */
1424 	if (vp != NULL) {
1425 		mutex_enter(vp->v_interlock);
1426 		brelvp(bp);
1427 		mutex_exit(vp->v_interlock);
1428 	}
1429 
1430 	return (bp);
1431 }
1432 
1433 /*
1434  * Attempt to free an aged buffer off the queues.
1435  * Called with queue lock held.
1436  * Returns the amount of buffer memory freed.
1437  */
1438 static int
1439 buf_trim(void)
1440 {
1441 	buf_t *bp;
1442 	long size;
1443 
1444 	KASSERT(mutex_owned(&bufcache_lock));
1445 
1446 	/* Instruct getnewbuf() to get buffers off the queues */
1447 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1448 		return 0;
1449 
1450 	KASSERT((bp->b_cflags & BC_WANTED) == 0);
1451 	size = bp->b_bufsize;
1452 	bufmem -= size;
1453 	if (size > 0) {
1454 		buf_mrelease(bp->b_data, size);
1455 		bp->b_bcount = bp->b_bufsize = 0;
1456 	}
1457 	/* brelse() will return the buffer to the global buffer pool */
1458 	brelsel(bp, 0);
1459 	return size;
1460 }
1461 
1462 int
1463 buf_drain(int n)
1464 {
1465 	int size = 0, sz;
1466 
1467 	KASSERT(mutex_owned(&bufcache_lock));
1468 
1469 	while (size < n && bufmem > bufmem_lowater) {
1470 		sz = buf_trim();
1471 		if (sz <= 0)
1472 			break;
1473 		size += sz;
1474 	}
1475 
1476 	return size;
1477 }
1478 
1479 /*
1480  * Wait for operations on the buffer to complete.
1481  * When they do, extract and return the I/O's error value.
1482  */
1483 int
1484 biowait(buf_t *bp)
1485 {
1486 
1487 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1488 	KASSERT(bp->b_refcnt > 0);
1489 
1490 	mutex_enter(bp->b_objlock);
1491 	while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
1492 		cv_wait(&bp->b_done, bp->b_objlock);
1493 	mutex_exit(bp->b_objlock);
1494 
1495 	return bp->b_error;
1496 }
1497 
1498 /*
1499  * Mark I/O complete on a buffer.
1500  *
1501  * If a callback has been requested, e.g. the pageout
1502  * daemon, do so. Otherwise, awaken waiting processes.
1503  *
1504  * [ Leffler, et al., says on p.247:
1505  *	"This routine wakes up the blocked process, frees the buffer
1506  *	for an asynchronous write, or, for a request by the pagedaemon
1507  *	process, invokes a procedure specified in the buffer structure" ]
1508  *
1509  * In real life, the pagedaemon (or other system processes) wants
1510  * to do async stuff to, and doesn't want the buffer brelse()'d.
1511  * (for swap pager, that puts swap buffers on the free lists (!!!),
1512  * for the vn device, that puts allocated buffers on the free lists!)
1513  */
1514 void
1515 biodone(buf_t *bp)
1516 {
1517 	int s;
1518 
1519 	KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1520 
1521 	if (cpu_intr_p()) {
1522 		/* From interrupt mode: defer to a soft interrupt. */
1523 		s = splvm();
1524 		TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1525 		softint_schedule(biodone_sih);
1526 		splx(s);
1527 	} else {
1528 		/* Process now - the buffer may be freed soon. */
1529 		biodone2(bp);
1530 	}
1531 }
1532 
1533 static void
1534 biodone2(buf_t *bp)
1535 {
1536 	void (*callout)(buf_t *);
1537 
1538 	mutex_enter(bp->b_objlock);
1539 	/* Note that the transfer is done. */
1540 	if (ISSET(bp->b_oflags, BO_DONE))
1541 		panic("biodone2 already");
1542 	CLR(bp->b_flags, B_COWDONE);
1543 	SET(bp->b_oflags, BO_DONE);
1544 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1545 
1546 	/* Wake up waiting writers. */
1547 	if (!ISSET(bp->b_flags, B_READ))
1548 		vwakeup(bp);
1549 
1550 	if ((callout = bp->b_iodone) != NULL) {
1551 		/* Note callout done, then call out. */
1552 		KASSERT(!cv_has_waiters(&bp->b_done));
1553 		KERNEL_LOCK(1, NULL);		/* XXXSMP */
1554 		bp->b_iodone = NULL;
1555 		mutex_exit(bp->b_objlock);
1556 		(*callout)(bp);
1557 		KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
1558 	} else if (ISSET(bp->b_flags, B_ASYNC)) {
1559 		/* If async, release. */
1560 		KASSERT(!cv_has_waiters(&bp->b_done));
1561 		mutex_exit(bp->b_objlock);
1562 		brelse(bp, 0);
1563 	} else {
1564 		/* Otherwise just wake up waiters in biowait(). */
1565 		cv_broadcast(&bp->b_done);
1566 		mutex_exit(bp->b_objlock);
1567 	}
1568 }
1569 
1570 static void
1571 biointr(void *cookie)
1572 {
1573 	struct cpu_info *ci;
1574 	buf_t *bp;
1575 	int s;
1576 
1577 	ci = curcpu();
1578 
1579 	while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1580 		KASSERT(curcpu() == ci);
1581 
1582 		s = splvm();
1583 		bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1584 		TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1585 		splx(s);
1586 
1587 		biodone2(bp);
1588 	}
1589 }
1590 
1591 /*
1592  * Wait for all buffers to complete I/O
1593  * Return the number of "stuck" buffers.
1594  */
1595 int
1596 buf_syncwait(void)
1597 {
1598 	buf_t *bp;
1599 	int iter, nbusy, nbusy_prev = 0, ihash;
1600 
1601 	for (iter = 0; iter < 20;) {
1602 		mutex_enter(&bufcache_lock);
1603 		nbusy = 0;
1604 		for (ihash = 0; ihash < bufhash+1; ihash++) {
1605 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1606 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1607 				nbusy += ((bp->b_flags & B_READ) == 0);
1608 		    }
1609 		}
1610 		mutex_exit(&bufcache_lock);
1611 
1612 		if (nbusy == 0)
1613 			break;
1614 		if (nbusy_prev == 0)
1615 			nbusy_prev = nbusy;
1616 		printf("%d ", nbusy);
1617 		kpause("bflush", false, MAX(1, hz / 25 * iter), NULL);
1618 		if (nbusy >= nbusy_prev) /* we didn't flush anything */
1619 			iter++;
1620 		else
1621 			nbusy_prev = nbusy;
1622 	}
1623 
1624 	if (nbusy) {
1625 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1626 		printf("giving up\nPrinting vnodes for busy buffers\n");
1627 		for (ihash = 0; ihash < bufhash+1; ihash++) {
1628 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1629 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1630 			    (bp->b_flags & B_READ) == 0)
1631 				vprint(NULL, bp->b_vp);
1632 		    }
1633 		}
1634 #endif
1635 	}
1636 
1637 	return nbusy;
1638 }
1639 
1640 static void
1641 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1642 {
1643 
1644 	o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1645 	o->b_error = i->b_error;
1646 	o->b_prio = i->b_prio;
1647 	o->b_dev = i->b_dev;
1648 	o->b_bufsize = i->b_bufsize;
1649 	o->b_bcount = i->b_bcount;
1650 	o->b_resid = i->b_resid;
1651 	o->b_addr = PTRTOUINT64(i->b_data);
1652 	o->b_blkno = i->b_blkno;
1653 	o->b_rawblkno = i->b_rawblkno;
1654 	o->b_iodone = PTRTOUINT64(i->b_iodone);
1655 	o->b_proc = PTRTOUINT64(i->b_proc);
1656 	o->b_vp = PTRTOUINT64(i->b_vp);
1657 	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1658 	o->b_lblkno = i->b_lblkno;
1659 }
1660 
1661 #define KERN_BUFSLOP 20
1662 static int
1663 sysctl_dobuf(SYSCTLFN_ARGS)
1664 {
1665 	buf_t *bp;
1666 	struct buf_sysctl bs;
1667 	struct bqueue *bq;
1668 	char *dp;
1669 	u_int i, op, arg;
1670 	size_t len, needed, elem_size, out_size;
1671 	int error, elem_count, retries;
1672 
1673 	if (namelen == 1 && name[0] == CTL_QUERY)
1674 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
1675 
1676 	if (namelen != 4)
1677 		return (EINVAL);
1678 
1679 	retries = 100;
1680  retry:
1681 	dp = oldp;
1682 	len = (oldp != NULL) ? *oldlenp : 0;
1683 	op = name[0];
1684 	arg = name[1];
1685 	elem_size = name[2];
1686 	elem_count = name[3];
1687 	out_size = MIN(sizeof(bs), elem_size);
1688 
1689 	/*
1690 	 * at the moment, these are just "placeholders" to make the
1691 	 * API for retrieving kern.buf data more extensible in the
1692 	 * future.
1693 	 *
1694 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
1695 	 * these will be resolved at a later point.
1696 	 */
1697 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1698 	    elem_size < 1 || elem_count < 0)
1699 		return (EINVAL);
1700 
1701 	error = 0;
1702 	needed = 0;
1703 	sysctl_unlock();
1704 	mutex_enter(&bufcache_lock);
1705 	for (i = 0; i < BQUEUES; i++) {
1706 		bq = &bufqueues[i];
1707 		TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1708 			bq->bq_marker = bp;
1709 			if (len >= elem_size && elem_count > 0) {
1710 				sysctl_fillbuf(bp, &bs);
1711 				mutex_exit(&bufcache_lock);
1712 				error = copyout(&bs, dp, out_size);
1713 				mutex_enter(&bufcache_lock);
1714 				if (error)
1715 					break;
1716 				if (bq->bq_marker != bp) {
1717 					/*
1718 					 * This sysctl node is only for
1719 					 * statistics.  Retry; if the
1720 					 * queue keeps changing, then
1721 					 * bail out.
1722 					 */
1723 					if (retries-- == 0) {
1724 						error = EAGAIN;
1725 						break;
1726 					}
1727 					mutex_exit(&bufcache_lock);
1728 					sysctl_relock();
1729 					goto retry;
1730 				}
1731 				dp += elem_size;
1732 				len -= elem_size;
1733 			}
1734 			needed += elem_size;
1735 			if (elem_count > 0 && elem_count != INT_MAX)
1736 				elem_count--;
1737 		}
1738 		if (error != 0)
1739 			break;
1740 	}
1741 	mutex_exit(&bufcache_lock);
1742 	sysctl_relock();
1743 
1744 	*oldlenp = needed;
1745 	if (oldp == NULL)
1746 		*oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1747 
1748 	return (error);
1749 }
1750 
1751 static int
1752 sysctl_bufvm_update(SYSCTLFN_ARGS)
1753 {
1754 	int error, rv;
1755 	struct sysctlnode node;
1756 	unsigned int temp_bufcache;
1757 	unsigned long temp_water;
1758 
1759 	/* Take a copy of the supplied node and its data */
1760 	node = *rnode;
1761 	if (node.sysctl_data == &bufcache) {
1762 	    node.sysctl_data = &temp_bufcache;
1763 	    temp_bufcache = *(unsigned int *)rnode->sysctl_data;
1764 	} else {
1765 	    node.sysctl_data = &temp_water;
1766 	    temp_water = *(unsigned long *)rnode->sysctl_data;
1767 	}
1768 
1769 	/* Update the copy */
1770 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1771 	if (error || newp == NULL)
1772 		return (error);
1773 
1774 	if (rnode->sysctl_data == &bufcache) {
1775 		if (temp_bufcache > 100)
1776 			return (EINVAL);
1777 		bufcache = temp_bufcache;
1778 		buf_setwm();
1779 	} else if (rnode->sysctl_data == &bufmem_lowater) {
1780 		if (bufmem_hiwater - temp_water < 16)
1781 			return (EINVAL);
1782 		bufmem_lowater = temp_water;
1783 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
1784 		if (temp_water - bufmem_lowater < 16)
1785 			return (EINVAL);
1786 		bufmem_hiwater = temp_water;
1787 	} else
1788 		return (EINVAL);
1789 
1790 	/* Drain until below new high water mark */
1791 	sysctl_unlock();
1792 	mutex_enter(&bufcache_lock);
1793 	while (bufmem > bufmem_hiwater) {
1794 		rv = buf_drain((bufmem - bufmem_hiwater) / (2 * 1024));
1795 		if (rv <= 0)
1796 			break;
1797 	}
1798 	mutex_exit(&bufcache_lock);
1799 	sysctl_relock();
1800 
1801 	return 0;
1802 }
1803 
1804 static struct sysctllog *vfsbio_sysctllog;
1805 
1806 static void
1807 sysctl_kern_buf_setup(void)
1808 {
1809 
1810 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1811 		       CTLFLAG_PERMANENT,
1812 		       CTLTYPE_NODE, "buf",
1813 		       SYSCTL_DESCR("Kernel buffer cache information"),
1814 		       sysctl_dobuf, 0, NULL, 0,
1815 		       CTL_KERN, KERN_BUF, CTL_EOL);
1816 }
1817 
1818 static void
1819 sysctl_vm_buf_setup(void)
1820 {
1821 
1822 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1823 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1824 		       CTLTYPE_INT, "bufcache",
1825 		       SYSCTL_DESCR("Percentage of physical memory to use for "
1826 				    "buffer cache"),
1827 		       sysctl_bufvm_update, 0, &bufcache, 0,
1828 		       CTL_VM, CTL_CREATE, CTL_EOL);
1829 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1830 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1831 		       CTLTYPE_LONG, "bufmem",
1832 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
1833 				    "cache"),
1834 		       NULL, 0, &bufmem, 0,
1835 		       CTL_VM, CTL_CREATE, CTL_EOL);
1836 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1837 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1838 		       CTLTYPE_LONG, "bufmem_lowater",
1839 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
1840 				    "reserve for buffer cache"),
1841 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1842 		       CTL_VM, CTL_CREATE, CTL_EOL);
1843 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1844 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1845 		       CTLTYPE_LONG, "bufmem_hiwater",
1846 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
1847 				    "for buffer cache"),
1848 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1849 		       CTL_VM, CTL_CREATE, CTL_EOL);
1850 }
1851 
1852 #ifdef DEBUG
1853 /*
1854  * Print out statistics on the current allocation of the buffer pool.
1855  * Can be enabled to print out on every ``sync'' by setting "syncprt"
1856  * in vfs_syscalls.c using sysctl.
1857  */
1858 void
1859 vfs_bufstats(void)
1860 {
1861 	int i, j, count;
1862 	buf_t *bp;
1863 	struct bqueue *dp;
1864 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1865 	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1866 
1867 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1868 		count = 0;
1869 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1870 			counts[j] = 0;
1871 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1872 			counts[bp->b_bufsize/PAGE_SIZE]++;
1873 			count++;
1874 		}
1875 		printf("%s: total-%d", bname[i], count);
1876 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1877 			if (counts[j] != 0)
1878 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1879 		printf("\n");
1880 	}
1881 }
1882 #endif /* DEBUG */
1883 
1884 /* ------------------------------ */
1885 
1886 buf_t *
1887 getiobuf(struct vnode *vp, bool waitok)
1888 {
1889 	buf_t *bp;
1890 
1891 	bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1892 	if (bp == NULL)
1893 		return bp;
1894 
1895 	buf_init(bp);
1896 
1897 	if ((bp->b_vp = vp) == NULL)
1898 		bp->b_objlock = &buffer_lock;
1899 	else
1900 		bp->b_objlock = vp->v_interlock;
1901 
1902 	return bp;
1903 }
1904 
1905 void
1906 putiobuf(buf_t *bp)
1907 {
1908 
1909 	buf_destroy(bp);
1910 	pool_cache_put(bufio_cache, bp);
1911 }
1912 
1913 /*
1914  * nestiobuf_iodone: b_iodone callback for nested buffers.
1915  */
1916 
1917 void
1918 nestiobuf_iodone(buf_t *bp)
1919 {
1920 	buf_t *mbp = bp->b_private;
1921 	int error;
1922 	int donebytes;
1923 
1924 	KASSERT(bp->b_bcount <= bp->b_bufsize);
1925 	KASSERT(mbp != bp);
1926 
1927 	error = bp->b_error;
1928 	if (bp->b_error == 0 &&
1929 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
1930 		/*
1931 		 * Not all got transfered, raise an error. We have no way to
1932 		 * propagate these conditions to mbp.
1933 		 */
1934 		error = EIO;
1935 	}
1936 
1937 	donebytes = bp->b_bufsize;
1938 
1939 	putiobuf(bp);
1940 	nestiobuf_done(mbp, donebytes, error);
1941 }
1942 
1943 /*
1944  * nestiobuf_setup: setup a "nested" buffer.
1945  *
1946  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1947  * => 'bp' should be a buffer allocated by getiobuf.
1948  * => 'offset' is a byte offset in the master buffer.
1949  * => 'size' is a size in bytes of this nested buffer.
1950  */
1951 
1952 void
1953 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
1954 {
1955 	const int b_read = mbp->b_flags & B_READ;
1956 	struct vnode *vp = mbp->b_vp;
1957 
1958 	KASSERT(mbp->b_bcount >= offset + size);
1959 	bp->b_vp = vp;
1960 	bp->b_dev = mbp->b_dev;
1961 	bp->b_objlock = mbp->b_objlock;
1962 	bp->b_cflags = BC_BUSY;
1963 	bp->b_flags = B_ASYNC | b_read;
1964 	bp->b_iodone = nestiobuf_iodone;
1965 	bp->b_data = (char *)mbp->b_data + offset;
1966 	bp->b_resid = bp->b_bcount = size;
1967 	bp->b_bufsize = bp->b_bcount;
1968 	bp->b_private = mbp;
1969 	BIO_COPYPRIO(bp, mbp);
1970 	if (!b_read && vp != NULL) {
1971 		mutex_enter(vp->v_interlock);
1972 		vp->v_numoutput++;
1973 		mutex_exit(vp->v_interlock);
1974 	}
1975 }
1976 
1977 /*
1978  * nestiobuf_done: propagate completion to the master buffer.
1979  *
1980  * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1981  * => 'error' is an errno(2) that 'donebytes' has been completed with.
1982  */
1983 
1984 void
1985 nestiobuf_done(buf_t *mbp, int donebytes, int error)
1986 {
1987 
1988 	if (donebytes == 0) {
1989 		return;
1990 	}
1991 	mutex_enter(mbp->b_objlock);
1992 	KASSERT(mbp->b_resid >= donebytes);
1993 	mbp->b_resid -= donebytes;
1994 	if (error)
1995 		mbp->b_error = error;
1996 	if (mbp->b_resid == 0) {
1997 		if (mbp->b_error)
1998 			mbp->b_resid = mbp->b_bcount;
1999 		mutex_exit(mbp->b_objlock);
2000 		biodone(mbp);
2001 	} else
2002 		mutex_exit(mbp->b_objlock);
2003 }
2004 
2005 void
2006 buf_init(buf_t *bp)
2007 {
2008 
2009 	cv_init(&bp->b_busy, "biolock");
2010 	cv_init(&bp->b_done, "biowait");
2011 	bp->b_dev = NODEV;
2012 	bp->b_error = 0;
2013 	bp->b_flags = 0;
2014 	bp->b_cflags = 0;
2015 	bp->b_oflags = 0;
2016 	bp->b_objlock = &buffer_lock;
2017 	bp->b_iodone = NULL;
2018 	bp->b_refcnt = 1;
2019 	bp->b_dev = NODEV;
2020 	bp->b_vnbufs.le_next = NOLIST;
2021 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
2022 }
2023 
2024 void
2025 buf_destroy(buf_t *bp)
2026 {
2027 
2028 	cv_destroy(&bp->b_done);
2029 	cv_destroy(&bp->b_busy);
2030 }
2031 
2032 int
2033 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2034 {
2035 	int error;
2036 
2037 	KASSERT(mutex_owned(&bufcache_lock));
2038 
2039 	if ((bp->b_cflags & BC_BUSY) != 0) {
2040 		if (curlwp == uvm.pagedaemon_lwp)
2041 			return EDEADLK;
2042 		bp->b_cflags |= BC_WANTED;
2043 		bref(bp);
2044 		if (interlock != NULL)
2045 			mutex_exit(interlock);
2046 		if (intr) {
2047 			error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2048 			    timo);
2049 		} else {
2050 			error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2051 			    timo);
2052 		}
2053 		brele(bp);
2054 		if (interlock != NULL)
2055 			mutex_enter(interlock);
2056 		if (error != 0)
2057 			return error;
2058 		return EPASSTHROUGH;
2059 	}
2060 	bp->b_cflags |= BC_BUSY;
2061 
2062 	return 0;
2063 }
2064