xref: /netbsd-src/sys/kern/vfs_bio.c (revision 8ac07aec990b9d2e483062509d0a9fa5b4f57cf2)
1 /*	$NetBSD: vfs_bio.c,v 1.195 2008/04/22 11:05:06 reinoud Exp $	*/
2 
3 /*-
4  * Copyright (c) 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1982, 1986, 1989, 1993
41  *	The Regents of the University of California.  All rights reserved.
42  * (c) UNIX System Laboratories, Inc.
43  * All or some portions of this file are derived from material licensed
44  * to the University of California by American Telephone and Telegraph
45  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
46  * the permission of UNIX System Laboratories, Inc.
47  *
48  * Redistribution and use in source and binary forms, with or without
49  * modification, are permitted provided that the following conditions
50  * are met:
51  * 1. Redistributions of source code must retain the above copyright
52  *    notice, this list of conditions and the following disclaimer.
53  * 2. Redistributions in binary form must reproduce the above copyright
54  *    notice, this list of conditions and the following disclaimer in the
55  *    documentation and/or other materials provided with the distribution.
56  * 3. Neither the name of the University nor the names of its contributors
57  *    may be used to endorse or promote products derived from this software
58  *    without specific prior written permission.
59  *
60  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70  * SUCH DAMAGE.
71  *
72  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
73  */
74 
75 /*-
76  * Copyright (c) 1994 Christopher G. Demetriou
77  *
78  * Redistribution and use in source and binary forms, with or without
79  * modification, are permitted provided that the following conditions
80  * are met:
81  * 1. Redistributions of source code must retain the above copyright
82  *    notice, this list of conditions and the following disclaimer.
83  * 2. Redistributions in binary form must reproduce the above copyright
84  *    notice, this list of conditions and the following disclaimer in the
85  *    documentation and/or other materials provided with the distribution.
86  * 3. All advertising materials mentioning features or use of this software
87  *    must display the following acknowledgement:
88  *	This product includes software developed by the University of
89  *	California, Berkeley and its contributors.
90  * 4. Neither the name of the University nor the names of its contributors
91  *    may be used to endorse or promote products derived from this software
92  *    without specific prior written permission.
93  *
94  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
95  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
96  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
97  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
98  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
99  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
100  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
101  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
102  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
103  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
104  * SUCH DAMAGE.
105  *
106  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
107  */
108 
109 /*
110  * Some references:
111  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
112  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
113  *		UNIX Operating System (Addison Welley, 1989)
114  */
115 
116 #include <sys/cdefs.h>
117 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.195 2008/04/22 11:05:06 reinoud Exp $");
118 
119 #include "fs_ffs.h"
120 #include "opt_bufcache.h"
121 
122 #include <sys/param.h>
123 #include <sys/systm.h>
124 #include <sys/kernel.h>
125 #include <sys/proc.h>
126 #include <sys/buf.h>
127 #include <sys/vnode.h>
128 #include <sys/mount.h>
129 #include <sys/malloc.h>
130 #include <sys/resourcevar.h>
131 #include <sys/sysctl.h>
132 #include <sys/conf.h>
133 #include <sys/kauth.h>
134 #include <sys/intr.h>
135 #include <sys/cpu.h>
136 
137 #include <uvm/uvm.h>
138 
139 #include <miscfs/specfs/specdev.h>
140 
141 #ifndef	BUFPAGES
142 # define BUFPAGES 0
143 #endif
144 
145 #ifdef BUFCACHE
146 # if (BUFCACHE < 5) || (BUFCACHE > 95)
147 #  error BUFCACHE is not between 5 and 95
148 # endif
149 #else
150 # define BUFCACHE 15
151 #endif
152 
153 u_int	nbuf;			/* XXX - for softdep_lockedbufs */
154 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
155 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
156 
157 /* Function prototypes */
158 struct bqueue;
159 
160 static void buf_setwm(void);
161 static int buf_trim(void);
162 static void *bufpool_page_alloc(struct pool *, int);
163 static void bufpool_page_free(struct pool *, void *);
164 static buf_t *bio_doread(struct vnode *, daddr_t, int,
165     kauth_cred_t, int);
166 static buf_t *getnewbuf(int, int, int);
167 static int buf_lotsfree(void);
168 static int buf_canrelease(void);
169 static u_long buf_mempoolidx(u_long);
170 static u_long buf_roundsize(u_long);
171 static void *buf_malloc(size_t);
172 static void buf_mrelease(void *, size_t);
173 static void binsheadfree(buf_t *, struct bqueue *);
174 static void binstailfree(buf_t *, struct bqueue *);
175 int count_lock_queue(void); /* XXX */
176 #ifdef DEBUG
177 static int checkfreelist(buf_t *, struct bqueue *);
178 #endif
179 static void biointr(void *);
180 static void biodone2(buf_t *);
181 static void bref(buf_t *);
182 static void brele(buf_t *);
183 
184 /*
185  * Definitions for the buffer hash lists.
186  */
187 #define	BUFHASH(dvp, lbn)	\
188 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
189 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
190 u_long	bufhash;
191 struct bqueue bufqueues[BQUEUES];
192 const struct bio_ops *bioopsp;	/* I/O operation notification */
193 
194 static kcondvar_t needbuffer_cv;
195 
196 /*
197  * Buffer queue lock.
198  */
199 kmutex_t bufcache_lock;
200 kmutex_t buffer_lock;
201 
202 /* Software ISR for completed transfers. */
203 static void *biodone_sih;
204 
205 /* Buffer pool for I/O buffers. */
206 static pool_cache_t buf_cache;
207 static pool_cache_t bufio_cache;
208 
209 /* XXX - somewhat gross.. */
210 #if MAXBSIZE == 0x2000
211 #define NMEMPOOLS 5
212 #elif MAXBSIZE == 0x4000
213 #define NMEMPOOLS 6
214 #elif MAXBSIZE == 0x8000
215 #define NMEMPOOLS 7
216 #else
217 #define NMEMPOOLS 8
218 #endif
219 
220 #define MEMPOOL_INDEX_OFFSET 9	/* smallest pool is 512 bytes */
221 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
222 #error update vfs_bio buffer memory parameters
223 #endif
224 
225 /* Buffer memory pools */
226 static struct pool bmempools[NMEMPOOLS];
227 
228 static struct vm_map *buf_map;
229 
230 /*
231  * Buffer memory pool allocator.
232  */
233 static void *
234 bufpool_page_alloc(struct pool *pp, int flags)
235 {
236 
237 	return (void *)uvm_km_alloc(buf_map,
238 	    MAXBSIZE, MAXBSIZE,
239 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
240 	    | UVM_KMF_WIRED);
241 }
242 
243 static void
244 bufpool_page_free(struct pool *pp, void *v)
245 {
246 
247 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
248 }
249 
250 static struct pool_allocator bufmempool_allocator = {
251 	.pa_alloc = bufpool_page_alloc,
252 	.pa_free = bufpool_page_free,
253 	.pa_pagesz = MAXBSIZE,
254 };
255 
256 /* Buffer memory management variables */
257 u_long bufmem_valimit;
258 u_long bufmem_hiwater;
259 u_long bufmem_lowater;
260 u_long bufmem;
261 
262 /*
263  * MD code can call this to set a hard limit on the amount
264  * of virtual memory used by the buffer cache.
265  */
266 int
267 buf_setvalimit(vsize_t sz)
268 {
269 
270 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
271 	if (sz < NMEMPOOLS * MAXBSIZE)
272 		return EINVAL;
273 
274 	bufmem_valimit = sz;
275 	return 0;
276 }
277 
278 static void
279 buf_setwm(void)
280 {
281 
282 	bufmem_hiwater = buf_memcalc();
283 	/* lowater is approx. 2% of memory (with bufcache = 15) */
284 #define	BUFMEM_WMSHIFT	3
285 #define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
286 	if (bufmem_hiwater < BUFMEM_HIWMMIN)
287 		/* Ensure a reasonable minimum value */
288 		bufmem_hiwater = BUFMEM_HIWMMIN;
289 	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
290 }
291 
292 #ifdef DEBUG
293 int debug_verify_freelist = 0;
294 static int
295 checkfreelist(buf_t *bp, struct bqueue *dp)
296 {
297 	buf_t *b;
298 
299 	if (!debug_verify_freelist)
300 		return 1;
301 
302 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
303 		if (b == bp)
304 			return 1;
305 	}
306 
307 	return 0;
308 }
309 #endif
310 
311 /*
312  * Insq/Remq for the buffer hash lists.
313  * Call with buffer queue locked.
314  */
315 static void
316 binsheadfree(buf_t *bp, struct bqueue *dp)
317 {
318 
319 	KASSERT(bp->b_freelistindex == -1);
320 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
321 	dp->bq_bytes += bp->b_bufsize;
322 	bp->b_freelistindex = dp - bufqueues;
323 }
324 
325 static void
326 binstailfree(buf_t *bp, struct bqueue *dp)
327 {
328 
329 	KASSERT(bp->b_freelistindex == -1);
330 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
331 	dp->bq_bytes += bp->b_bufsize;
332 	bp->b_freelistindex = dp - bufqueues;
333 }
334 
335 void
336 bremfree(buf_t *bp)
337 {
338 	struct bqueue *dp;
339 	int bqidx = bp->b_freelistindex;
340 
341 	KASSERT(mutex_owned(&bufcache_lock));
342 
343 	KASSERT(bqidx != -1);
344 	dp = &bufqueues[bqidx];
345 	KDASSERT(checkfreelist(bp, dp));
346 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
347 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
348 	dp->bq_bytes -= bp->b_bufsize;
349 
350 	/* For the sysctl helper. */
351 	if (bp == dp->bq_marker)
352 		dp->bq_marker = NULL;
353 
354 #if defined(DIAGNOSTIC)
355 	bp->b_freelistindex = -1;
356 #endif /* defined(DIAGNOSTIC) */
357 }
358 
359 /*
360  * Add a reference to an buffer structure that came from buf_cache.
361  */
362 static inline void
363 bref(buf_t *bp)
364 {
365 
366 	KASSERT(mutex_owned(&bufcache_lock));
367 	KASSERT(bp->b_refcnt > 0);
368 
369 	bp->b_refcnt++;
370 }
371 
372 /*
373  * Free an unused buffer structure that came from buf_cache.
374  */
375 static inline void
376 brele(buf_t *bp)
377 {
378 
379 	KASSERT(mutex_owned(&bufcache_lock));
380 	KASSERT(bp->b_refcnt > 0);
381 
382 	if (bp->b_refcnt-- == 1) {
383 		buf_destroy(bp);
384 #ifdef DEBUG
385 		memset((char *)bp, 0, sizeof(*bp));
386 #endif
387 		pool_cache_put(buf_cache, bp);
388 	}
389 }
390 
391 /*
392  * note that for some ports this is used by pmap bootstrap code to
393  * determine kva size.
394  */
395 u_long
396 buf_memcalc(void)
397 {
398 	u_long n;
399 
400 	/*
401 	 * Determine the upper bound of memory to use for buffers.
402 	 *
403 	 *	- If bufpages is specified, use that as the number
404 	 *	  pages.
405 	 *
406 	 *	- Otherwise, use bufcache as the percentage of
407 	 *	  physical memory.
408 	 */
409 	if (bufpages != 0) {
410 		n = bufpages;
411 	} else {
412 		if (bufcache < 5) {
413 			printf("forcing bufcache %d -> 5", bufcache);
414 			bufcache = 5;
415 		}
416 		if (bufcache > 95) {
417 			printf("forcing bufcache %d -> 95", bufcache);
418 			bufcache = 95;
419 		}
420 		n = calc_cache_size(buf_map, bufcache,
421 		    (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
422 		    / PAGE_SIZE;
423 	}
424 
425 	n <<= PAGE_SHIFT;
426 	if (bufmem_valimit != 0 && n > bufmem_valimit)
427 		n = bufmem_valimit;
428 
429 	return (n);
430 }
431 
432 /*
433  * Initialize buffers and hash links for buffers.
434  */
435 void
436 bufinit(void)
437 {
438 	struct bqueue *dp;
439 	int use_std;
440 	u_int i;
441 
442 	mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
443 	mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
444 	cv_init(&needbuffer_cv, "needbuf");
445 
446 	if (bufmem_valimit != 0) {
447 		vaddr_t minaddr = 0, maxaddr;
448 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
449 					  bufmem_valimit, 0, false, 0);
450 		if (buf_map == NULL)
451 			panic("bufinit: cannot allocate submap");
452 	} else
453 		buf_map = kernel_map;
454 
455 	/*
456 	 * Initialize buffer cache memory parameters.
457 	 */
458 	bufmem = 0;
459 	buf_setwm();
460 
461 	/* On "small" machines use small pool page sizes where possible */
462 	use_std = (physmem < atop(16*1024*1024));
463 
464 	/*
465 	 * Also use them on systems that can map the pool pages using
466 	 * a direct-mapped segment.
467 	 */
468 #ifdef PMAP_MAP_POOLPAGE
469 	use_std = 1;
470 #endif
471 
472 	buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
473 	    "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
474 	bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
475 	    "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
476 
477 	bufmempool_allocator.pa_backingmap = buf_map;
478 	for (i = 0; i < NMEMPOOLS; i++) {
479 		struct pool_allocator *pa;
480 		struct pool *pp = &bmempools[i];
481 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
482 		char *name = malloc(8, M_TEMP, M_WAITOK);
483 		if (__predict_true(size >= 1024))
484 			(void)snprintf(name, 8, "buf%dk", size / 1024);
485 		else
486 			(void)snprintf(name, 8, "buf%db", size);
487 		pa = (size <= PAGE_SIZE && use_std)
488 			? &pool_allocator_nointr
489 			: &bufmempool_allocator;
490 		pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
491 		pool_setlowat(pp, 1);
492 		pool_sethiwat(pp, 1);
493 	}
494 
495 	/* Initialize the buffer queues */
496 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
497 		TAILQ_INIT(&dp->bq_queue);
498 		dp->bq_bytes = 0;
499 	}
500 
501 	/*
502 	 * Estimate hash table size based on the amount of memory we
503 	 * intend to use for the buffer cache. The average buffer
504 	 * size is dependent on our clients (i.e. filesystems).
505 	 *
506 	 * For now, use an empirical 3K per buffer.
507 	 */
508 	nbuf = (bufmem_hiwater / 1024) / 3;
509 	bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
510 }
511 
512 void
513 bufinit2(void)
514 {
515 
516 	biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
517 	    NULL);
518 	if (biodone_sih == NULL)
519 		panic("bufinit2: can't establish soft interrupt");
520 }
521 
522 static int
523 buf_lotsfree(void)
524 {
525 	int try, thresh;
526 
527 	/* Always allocate if doing copy on write */
528 	if (curlwp->l_pflag & LP_UFSCOW)
529 		return 1;
530 
531 	/* Always allocate if less than the low water mark. */
532 	if (bufmem < bufmem_lowater)
533 		return 1;
534 
535 	/* Never allocate if greater than the high water mark. */
536 	if (bufmem > bufmem_hiwater)
537 		return 0;
538 
539 	/* If there's anything on the AGE list, it should be eaten. */
540 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
541 		return 0;
542 
543 	/*
544 	 * The probabily of getting a new allocation is inversely
545 	 * proportional to the current size of the cache, using
546 	 * a granularity of 16 steps.
547 	 */
548 	try = random() & 0x0000000fL;
549 
550 	/* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
551 	thresh = (bufmem - bufmem_lowater) /
552 	    ((bufmem_hiwater - bufmem_lowater) / 16);
553 
554 	if (try >= thresh)
555 		return 1;
556 
557 	/* Otherwise don't allocate. */
558 	return 0;
559 }
560 
561 /*
562  * Return estimate of bytes we think need to be
563  * released to help resolve low memory conditions.
564  *
565  * => called with bufcache_lock held.
566  */
567 static int
568 buf_canrelease(void)
569 {
570 	int pagedemand, ninvalid = 0;
571 
572 	KASSERT(mutex_owned(&bufcache_lock));
573 
574 	if (bufmem < bufmem_lowater)
575 		return 0;
576 
577 	if (bufmem > bufmem_hiwater)
578 		return bufmem - bufmem_hiwater;
579 
580 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
581 
582 	pagedemand = uvmexp.freetarg - uvmexp.free;
583 	if (pagedemand < 0)
584 		return ninvalid;
585 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
586 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
587 }
588 
589 /*
590  * Buffer memory allocation helper functions
591  */
592 static u_long
593 buf_mempoolidx(u_long size)
594 {
595 	u_int n = 0;
596 
597 	size -= 1;
598 	size >>= MEMPOOL_INDEX_OFFSET;
599 	while (size) {
600 		size >>= 1;
601 		n += 1;
602 	}
603 	if (n >= NMEMPOOLS)
604 		panic("buf mem pool index %d", n);
605 	return n;
606 }
607 
608 static u_long
609 buf_roundsize(u_long size)
610 {
611 	/* Round up to nearest power of 2 */
612 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
613 }
614 
615 static void *
616 buf_malloc(size_t size)
617 {
618 	u_int n = buf_mempoolidx(size);
619 	void *addr;
620 
621 	while (1) {
622 		addr = pool_get(&bmempools[n], PR_NOWAIT);
623 		if (addr != NULL)
624 			break;
625 
626 		/* No memory, see if we can free some. If so, try again */
627 		mutex_enter(&bufcache_lock);
628 		if (buf_drain(1) > 0) {
629 			mutex_exit(&bufcache_lock);
630 			continue;
631 		}
632 
633 		if (curlwp == uvm.pagedaemon_lwp) {
634 			mutex_exit(&bufcache_lock);
635 			return NULL;
636 		}
637 
638 		/* Wait for buffers to arrive on the LRU queue */
639 		cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
640 		mutex_exit(&bufcache_lock);
641 	}
642 
643 	return addr;
644 }
645 
646 static void
647 buf_mrelease(void *addr, size_t size)
648 {
649 
650 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
651 }
652 
653 /*
654  * bread()/breadn() helper.
655  */
656 static buf_t *
657 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
658     int async)
659 {
660 	buf_t *bp;
661 	struct mount *mp;
662 
663 	bp = getblk(vp, blkno, size, 0, 0);
664 
665 #ifdef DIAGNOSTIC
666 	if (bp == NULL) {
667 		panic("bio_doread: no such buf");
668 	}
669 #endif
670 
671 	/*
672 	 * If buffer does not have data valid, start a read.
673 	 * Note that if buffer is BC_INVAL, getblk() won't return it.
674 	 * Therefore, it's valid if its I/O has completed or been delayed.
675 	 */
676 	if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
677 		/* Start I/O for the buffer. */
678 		SET(bp->b_flags, B_READ | async);
679 		if (async)
680 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
681 		else
682 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
683 		VOP_STRATEGY(vp, bp);
684 
685 		/* Pay for the read. */
686 		curlwp->l_ru.ru_inblock++;
687 	} else if (async)
688 		brelse(bp, 0);
689 
690 	if (vp->v_type == VBLK)
691 		mp = vp->v_specmountpoint;
692 	else
693 		mp = vp->v_mount;
694 
695 	/*
696 	 * Collect statistics on synchronous and asynchronous reads.
697 	 * Reads from block devices are charged to their associated
698 	 * filesystem (if any).
699 	 */
700 	if (mp != NULL) {
701 		if (async == 0)
702 			mp->mnt_stat.f_syncreads++;
703 		else
704 			mp->mnt_stat.f_asyncreads++;
705 	}
706 
707 	return (bp);
708 }
709 
710 /*
711  * Read a disk block.
712  * This algorithm described in Bach (p.54).
713  */
714 int
715 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
716     buf_t **bpp)
717 {
718 	buf_t *bp;
719 
720 	/* Get buffer for block. */
721 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
722 
723 	/* Wait for the read to complete, and return result. */
724 	return (biowait(bp));
725 }
726 
727 /*
728  * Read-ahead multiple disk blocks. The first is sync, the rest async.
729  * Trivial modification to the breada algorithm presented in Bach (p.55).
730  */
731 int
732 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
733     int *rasizes, int nrablks, kauth_cred_t cred, buf_t **bpp)
734 {
735 	buf_t *bp;
736 	int i;
737 
738 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
739 
740 	/*
741 	 * For each of the read-ahead blocks, start a read, if necessary.
742 	 */
743 	mutex_enter(&bufcache_lock);
744 	for (i = 0; i < nrablks; i++) {
745 		/* If it's in the cache, just go on to next one. */
746 		if (incore(vp, rablks[i]))
747 			continue;
748 
749 		/* Get a buffer for the read-ahead block */
750 		mutex_exit(&bufcache_lock);
751 		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
752 		mutex_enter(&bufcache_lock);
753 	}
754 	mutex_exit(&bufcache_lock);
755 
756 	/* Otherwise, we had to start a read for it; wait until it's valid. */
757 	return (biowait(bp));
758 }
759 
760 /*
761  * Read with single-block read-ahead.  Defined in Bach (p.55), but
762  * implemented as a call to breadn().
763  * XXX for compatibility with old file systems.
764  */
765 int
766 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
767     int rabsize, kauth_cred_t cred, buf_t **bpp)
768 {
769 
770 	return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
771 }
772 
773 /*
774  * Block write.  Described in Bach (p.56)
775  */
776 int
777 bwrite(buf_t *bp)
778 {
779 	int rv, sync, wasdelayed;
780 	struct vnode *vp;
781 	struct mount *mp;
782 
783 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
784 
785 	vp = bp->b_vp;
786 	if (vp != NULL) {
787 		KASSERT(bp->b_objlock == &vp->v_interlock);
788 		if (vp->v_type == VBLK)
789 			mp = vp->v_specmountpoint;
790 		else
791 			mp = vp->v_mount;
792 	} else {
793 		mp = NULL;
794 	}
795 
796 	/*
797 	 * Remember buffer type, to switch on it later.  If the write was
798 	 * synchronous, but the file system was mounted with MNT_ASYNC,
799 	 * convert it to a delayed write.
800 	 * XXX note that this relies on delayed tape writes being converted
801 	 * to async, not sync writes (which is safe, but ugly).
802 	 */
803 	sync = !ISSET(bp->b_flags, B_ASYNC);
804 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
805 		bdwrite(bp);
806 		return (0);
807 	}
808 
809 	/*
810 	 * Collect statistics on synchronous and asynchronous writes.
811 	 * Writes to block devices are charged to their associated
812 	 * filesystem (if any).
813 	 */
814 	if (mp != NULL) {
815 		if (sync)
816 			mp->mnt_stat.f_syncwrites++;
817 		else
818 			mp->mnt_stat.f_asyncwrites++;
819 	}
820 
821 	/*
822 	 * Pay for the I/O operation and make sure the buf is on the correct
823 	 * vnode queue.
824 	 */
825 	bp->b_error = 0;
826 	wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
827 	CLR(bp->b_flags, B_READ);
828 	if (wasdelayed) {
829 		mutex_enter(&bufcache_lock);
830 		mutex_enter(bp->b_objlock);
831 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
832 		reassignbuf(bp, bp->b_vp);
833 		mutex_exit(&bufcache_lock);
834 	} else {
835 		curlwp->l_ru.ru_oublock++;
836 		mutex_enter(bp->b_objlock);
837 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
838 	}
839 	if (vp != NULL)
840 		vp->v_numoutput++;
841 	mutex_exit(bp->b_objlock);
842 
843 	/* Initiate disk write. */
844 	if (sync)
845 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
846 	else
847 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
848 
849 	VOP_STRATEGY(vp, bp);
850 
851 	if (sync) {
852 		/* If I/O was synchronous, wait for it to complete. */
853 		rv = biowait(bp);
854 
855 		/* Release the buffer. */
856 		brelse(bp, 0);
857 
858 		return (rv);
859 	} else {
860 		return (0);
861 	}
862 }
863 
864 int
865 vn_bwrite(void *v)
866 {
867 	struct vop_bwrite_args *ap = v;
868 
869 	return (bwrite(ap->a_bp));
870 }
871 
872 /*
873  * Delayed write.
874  *
875  * The buffer is marked dirty, but is not queued for I/O.
876  * This routine should be used when the buffer is expected
877  * to be modified again soon, typically a small write that
878  * partially fills a buffer.
879  *
880  * NB: magnetic tapes cannot be delayed; they must be
881  * written in the order that the writes are requested.
882  *
883  * Described in Leffler, et al. (pp. 208-213).
884  */
885 void
886 bdwrite(buf_t *bp)
887 {
888 
889 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
890 
891 	/* If this is a tape block, write the block now. */
892 	if (bdev_type(bp->b_dev) == D_TAPE) {
893 		bawrite(bp);
894 		return;
895 	}
896 
897 	/*
898 	 * If the block hasn't been seen before:
899 	 *	(1) Mark it as having been seen,
900 	 *	(2) Charge for the write,
901 	 *	(3) Make sure it's on its vnode's correct block list.
902 	 */
903 	KASSERT(bp->b_vp == NULL || bp->b_objlock == &bp->b_vp->v_interlock);
904 
905 	if (!ISSET(bp->b_oflags, BO_DELWRI)) {
906 		mutex_enter(&bufcache_lock);
907 		mutex_enter(bp->b_objlock);
908 		SET(bp->b_oflags, BO_DELWRI);
909 		curlwp->l_ru.ru_oublock++;
910 		reassignbuf(bp, bp->b_vp);
911 		mutex_exit(&bufcache_lock);
912 	} else {
913 		mutex_enter(bp->b_objlock);
914 	}
915 	/* Otherwise, the "write" is done, so mark and release the buffer. */
916 	CLR(bp->b_oflags, BO_DONE);
917 	mutex_exit(bp->b_objlock);
918 
919 	brelse(bp, 0);
920 }
921 
922 /*
923  * Asynchronous block write; just an asynchronous bwrite().
924  */
925 void
926 bawrite(buf_t *bp)
927 {
928 
929 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
930 
931 	SET(bp->b_flags, B_ASYNC);
932 	VOP_BWRITE(bp);
933 }
934 
935 /*
936  * Same as first half of bdwrite, mark buffer dirty, but do not release it.
937  * Call with the buffer interlock held.
938  *
939  * Note: called only from biodone() through ffs softdep's io_complete()
940  */
941 void
942 bdirty(buf_t *bp)
943 {
944 
945 	KASSERT(mutex_owned(&bufcache_lock));
946 	KASSERT(bp->b_objlock == &bp->b_vp->v_interlock);
947 	KASSERT(mutex_owned(bp->b_objlock));
948 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
949 
950 	CLR(bp->b_cflags, BC_AGE);
951 
952 	if (!ISSET(bp->b_oflags, BO_DELWRI)) {
953 		SET(bp->b_oflags, BO_DELWRI);
954 		curlwp->l_ru.ru_oublock++;
955 		reassignbuf(bp, bp->b_vp);
956 	}
957 }
958 
959 
960 /*
961  * Release a buffer on to the free lists.
962  * Described in Bach (p. 46).
963  */
964 void
965 brelsel(buf_t *bp, int set)
966 {
967 	struct bqueue *bufq;
968 	struct vnode *vp;
969 
970 	KASSERT(mutex_owned(&bufcache_lock));
971 
972 	SET(bp->b_cflags, set);
973 
974 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
975 	KASSERT(bp->b_iodone == NULL);
976 
977 	/* Wake up any processes waiting for any buffer to become free. */
978 	cv_signal(&needbuffer_cv);
979 
980 	/* Wake up any proceeses waiting for _this_ buffer to become */
981 	if (ISSET(bp->b_cflags, BC_WANTED) != 0) {
982 		CLR(bp->b_cflags, BC_WANTED|BC_AGE);
983 		cv_broadcast(&bp->b_busy);
984 	}
985 
986 	/*
987 	 * Determine which queue the buffer should be on, then put it there.
988 	 */
989 
990 	/* If it's locked, don't report an error; try again later. */
991 	if (ISSET(bp->b_flags, B_LOCKED))
992 		bp->b_error = 0;
993 
994 	/* If it's not cacheable, or an error, mark it invalid. */
995 	if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
996 		SET(bp->b_cflags, BC_INVAL);
997 
998 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
999 		/*
1000 		 * This is a delayed write buffer that was just flushed to
1001 		 * disk.  It is still on the LRU queue.  If it's become
1002 		 * invalid, then we need to move it to a different queue;
1003 		 * otherwise leave it in its current position.
1004 		 */
1005 		CLR(bp->b_cflags, BC_VFLUSH);
1006 		if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1007 		    !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1008 			KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU]));
1009 			goto already_queued;
1010 		} else {
1011 			bremfree(bp);
1012 		}
1013 	}
1014 
1015 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE]));
1016 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU]));
1017 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED]));
1018 
1019 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1020 		/*
1021 		 * If it's invalid or empty, dissociate it from its vnode
1022 		 * and put on the head of the appropriate queue.
1023 		 */
1024 		if (bioopsp != NULL)
1025 			(*bioopsp->io_deallocate)(bp);
1026 
1027 		mutex_enter(bp->b_objlock);
1028 		CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1029 		if ((vp = bp->b_vp) != NULL) {
1030 			KASSERT(bp->b_objlock == &vp->v_interlock);
1031 			reassignbuf(bp, bp->b_vp);
1032 			brelvp(bp);
1033 			mutex_exit(&vp->v_interlock);
1034 		} else {
1035 			KASSERT(bp->b_objlock == &buffer_lock);
1036 			mutex_exit(bp->b_objlock);
1037 		}
1038 
1039 		if (bp->b_bufsize <= 0)
1040 			/* no data */
1041 			goto already_queued;
1042 		else
1043 			/* invalid data */
1044 			bufq = &bufqueues[BQ_AGE];
1045 		binsheadfree(bp, bufq);
1046 	} else  {
1047 		/*
1048 		 * It has valid data.  Put it on the end of the appropriate
1049 		 * queue, so that it'll stick around for as long as possible.
1050 		 * If buf is AGE, but has dependencies, must put it on last
1051 		 * bufqueue to be scanned, ie LRU. This protects against the
1052 		 * livelock where BQ_AGE only has buffers with dependencies,
1053 		 * and we thus never get to the dependent buffers in BQ_LRU.
1054 		 */
1055 		if (ISSET(bp->b_flags, B_LOCKED)) {
1056 			/* locked in core */
1057 			bufq = &bufqueues[BQ_LOCKED];
1058 		} else if (!ISSET(bp->b_cflags, BC_AGE)) {
1059 			/* valid data */
1060 			bufq = &bufqueues[BQ_LRU];
1061 		} else {
1062 			/* stale but valid data */
1063 			int has_deps;
1064 
1065 			if (bioopsp != NULL)
1066 				has_deps = (*bioopsp->io_countdeps)(bp, 0);
1067 			else
1068 				has_deps = 0;
1069 			bufq = has_deps ? &bufqueues[BQ_LRU] :
1070 			    &bufqueues[BQ_AGE];
1071 		}
1072 		binstailfree(bp, bufq);
1073 	}
1074 already_queued:
1075 	/* Unlock the buffer. */
1076 	CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1077 	CLR(bp->b_flags, B_ASYNC);
1078 
1079 	if (bp->b_bufsize <= 0)
1080 		brele(bp);
1081 }
1082 
1083 void
1084 brelse(buf_t *bp, int set)
1085 {
1086 
1087 	mutex_enter(&bufcache_lock);
1088 	brelsel(bp, set);
1089 	mutex_exit(&bufcache_lock);
1090 }
1091 
1092 /*
1093  * Determine if a block is in the cache.
1094  * Just look on what would be its hash chain.  If it's there, return
1095  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
1096  * we normally don't return the buffer, unless the caller explicitly
1097  * wants us to.
1098  */
1099 buf_t *
1100 incore(struct vnode *vp, daddr_t blkno)
1101 {
1102 	buf_t *bp;
1103 
1104 	KASSERT(mutex_owned(&bufcache_lock));
1105 
1106 	/* Search hash chain */
1107 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1108 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1109 		    !ISSET(bp->b_cflags, BC_INVAL)) {
1110 		    	KASSERT(bp->b_objlock == &vp->v_interlock);
1111 		    	return (bp);
1112 		}
1113 	}
1114 
1115 	return (NULL);
1116 }
1117 
1118 /*
1119  * Get a block of requested size that is associated with
1120  * a given vnode and block offset. If it is found in the
1121  * block cache, mark it as having been found, make it busy
1122  * and return it. Otherwise, return an empty block of the
1123  * correct size. It is up to the caller to insure that the
1124  * cached blocks be of the correct size.
1125  */
1126 buf_t *
1127 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1128 {
1129 	int err, preserve;
1130 	buf_t *bp;
1131 
1132 	mutex_enter(&bufcache_lock);
1133  loop:
1134 	bp = incore(vp, blkno);
1135 	if (bp != NULL) {
1136 		err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1137 		if (err != 0) {
1138 			if (err == EPASSTHROUGH)
1139 				goto loop;
1140 			mutex_exit(&bufcache_lock);
1141 			return (NULL);
1142 		}
1143 #ifdef DIAGNOSTIC
1144 		if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1145 		    bp->b_bcount < size && vp->v_type != VBLK)
1146 			panic("getblk: block size invariant failed");
1147 #endif
1148 		bremfree(bp);
1149 		preserve = 1;
1150 	} else {
1151 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1152 			goto loop;
1153 
1154 		if (incore(vp, blkno) != NULL) {
1155 			/* The block has come into memory in the meantime. */
1156 			brelsel(bp, 0);
1157 			goto loop;
1158 		}
1159 
1160 		LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1161 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1162 		mutex_enter(&vp->v_interlock);
1163 		bgetvp(vp, bp);
1164 		mutex_exit(&vp->v_interlock);
1165 		preserve = 0;
1166 	}
1167 	mutex_exit(&bufcache_lock);
1168 
1169 	/*
1170 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1171 	 * if we re-size buffers here.
1172 	 */
1173 	if (ISSET(bp->b_flags, B_LOCKED)) {
1174 		KASSERT(bp->b_bufsize >= size);
1175 	} else {
1176 		if (allocbuf(bp, size, preserve)) {
1177 			mutex_enter(&bufcache_lock);
1178 			LIST_REMOVE(bp, b_hash);
1179 			mutex_exit(&bufcache_lock);
1180 			brelse(bp, BC_INVAL);
1181 			return NULL;
1182 		}
1183 	}
1184 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1185 	return (bp);
1186 }
1187 
1188 /*
1189  * Get an empty, disassociated buffer of given size.
1190  */
1191 buf_t *
1192 geteblk(int size)
1193 {
1194 	buf_t *bp;
1195 	int error;
1196 
1197 	mutex_enter(&bufcache_lock);
1198 	while ((bp = getnewbuf(0, 0, 0)) == NULL)
1199 		;
1200 
1201 	SET(bp->b_cflags, BC_INVAL);
1202 	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1203 	mutex_exit(&bufcache_lock);
1204 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1205 	error = allocbuf(bp, size, 0);
1206 	KASSERT(error == 0);
1207 	return (bp);
1208 }
1209 
1210 /*
1211  * Expand or contract the actual memory allocated to a buffer.
1212  *
1213  * If the buffer shrinks, data is lost, so it's up to the
1214  * caller to have written it out *first*; this routine will not
1215  * start a write.  If the buffer grows, it's the callers
1216  * responsibility to fill out the buffer's additional contents.
1217  */
1218 int
1219 allocbuf(buf_t *bp, int size, int preserve)
1220 {
1221 	vsize_t oldsize, desired_size;
1222 	void *addr;
1223 	int delta;
1224 
1225 	desired_size = buf_roundsize(size);
1226 	if (desired_size > MAXBSIZE)
1227 		printf("allocbuf: buffer larger than MAXBSIZE requested");
1228 
1229 	bp->b_bcount = size;
1230 
1231 	oldsize = bp->b_bufsize;
1232 	if (oldsize == desired_size)
1233 		return 0;
1234 
1235 	/*
1236 	 * If we want a buffer of a different size, re-allocate the
1237 	 * buffer's memory; copy old content only if needed.
1238 	 */
1239 	addr = buf_malloc(desired_size);
1240 	if (addr == NULL)
1241 		return ENOMEM;
1242 	if (preserve)
1243 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1244 	if (bp->b_data != NULL)
1245 		buf_mrelease(bp->b_data, oldsize);
1246 	bp->b_data = addr;
1247 	bp->b_bufsize = desired_size;
1248 
1249 	/*
1250 	 * Update overall buffer memory counter (protected by bufcache_lock)
1251 	 */
1252 	delta = (long)desired_size - (long)oldsize;
1253 
1254 	mutex_enter(&bufcache_lock);
1255 	if ((bufmem += delta) > bufmem_hiwater) {
1256 		/*
1257 		 * Need to trim overall memory usage.
1258 		 */
1259 		while (buf_canrelease()) {
1260 			if (curcpu()->ci_schedstate.spc_flags &
1261 			    SPCF_SHOULDYIELD) {
1262 				mutex_exit(&bufcache_lock);
1263 				preempt();
1264 				mutex_enter(&bufcache_lock);
1265 			}
1266 			if (buf_trim() == 0)
1267 				break;
1268 		}
1269 	}
1270 	mutex_exit(&bufcache_lock);
1271 	return 0;
1272 }
1273 
1274 /*
1275  * Find a buffer which is available for use.
1276  * Select something from a free list.
1277  * Preference is to AGE list, then LRU list.
1278  *
1279  * Called with the buffer queues locked.
1280  * Return buffer locked.
1281  */
1282 buf_t *
1283 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1284 {
1285 	buf_t *bp;
1286 	struct vnode *vp;
1287 
1288  start:
1289 	KASSERT(mutex_owned(&bufcache_lock));
1290 
1291 	/*
1292 	 * Get a new buffer from the pool.
1293 	 */
1294 	if (!from_bufq && buf_lotsfree()) {
1295 		mutex_exit(&bufcache_lock);
1296 		bp = pool_cache_get(buf_cache, PR_NOWAIT);
1297 		if (bp != NULL) {
1298 			memset((char *)bp, 0, sizeof(*bp));
1299 			buf_init(bp);
1300 			bp->b_dev = NODEV;
1301 			bp->b_vnbufs.le_next = NOLIST;
1302 			bp->b_cflags = BC_BUSY;
1303 			bp->b_refcnt = 1;
1304 			mutex_enter(&bufcache_lock);
1305 #if defined(DIAGNOSTIC)
1306 			bp->b_freelistindex = -1;
1307 #endif /* defined(DIAGNOSTIC) */
1308 			return (bp);
1309 		}
1310 		mutex_enter(&bufcache_lock);
1311 	}
1312 
1313 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1314 	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1315 		bremfree(bp);
1316 	} else {
1317 		/*
1318 		 * XXX: !from_bufq should be removed.
1319 		 */
1320 		if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1321 			/* wait for a free buffer of any kind */
1322 			if ((slpflag & PCATCH) != 0)
1323 				(void)cv_timedwait_sig(&needbuffer_cv,
1324 				    &bufcache_lock, slptimeo);
1325 			else
1326 				(void)cv_timedwait(&needbuffer_cv,
1327 				    &bufcache_lock, slptimeo);
1328 		}
1329 		return (NULL);
1330 	}
1331 
1332 #ifdef DIAGNOSTIC
1333 	if (bp->b_bufsize <= 0)
1334 		panic("buffer %p: on queue but empty", bp);
1335 #endif
1336 
1337 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1338 		/*
1339 		 * This is a delayed write buffer being flushed to disk.  Make
1340 		 * sure it gets aged out of the queue when it's finished, and
1341 		 * leave it off the LRU queue.
1342 		 */
1343 		CLR(bp->b_cflags, BC_VFLUSH);
1344 		SET(bp->b_cflags, BC_AGE);
1345 		goto start;
1346 	}
1347 
1348 	/* Buffer is no longer on free lists. */
1349 	SET(bp->b_cflags, BC_BUSY);
1350 
1351 	/*
1352 	 * If buffer was a delayed write, start it and return NULL
1353 	 * (since we might sleep while starting the write).
1354 	 */
1355 	if (ISSET(bp->b_oflags, BO_DELWRI)) {
1356 		/*
1357 		 * This buffer has gone through the LRU, so make sure it gets
1358 		 * reused ASAP.
1359 		 */
1360 		SET(bp->b_cflags, BC_AGE);
1361 		mutex_exit(&bufcache_lock);
1362 		bawrite(bp);
1363 		mutex_enter(&bufcache_lock);
1364 		return (NULL);
1365 	}
1366 
1367 	vp = bp->b_vp;
1368 	if (bioopsp != NULL)
1369 		(*bioopsp->io_deallocate)(bp);
1370 
1371 	/* clear out various other fields */
1372 	bp->b_cflags = BC_BUSY;
1373 	bp->b_oflags = 0;
1374 	bp->b_flags = 0;
1375 	bp->b_dev = NODEV;
1376 	bp->b_blkno = 0;
1377 	bp->b_lblkno = 0;
1378 	bp->b_rawblkno = 0;
1379 	bp->b_iodone = 0;
1380 	bp->b_error = 0;
1381 	bp->b_resid = 0;
1382 	bp->b_bcount = 0;
1383 
1384 	LIST_REMOVE(bp, b_hash);
1385 
1386 	/* Disassociate us from our vnode, if we had one... */
1387 	if (vp != NULL) {
1388 		mutex_enter(&vp->v_interlock);
1389 		brelvp(bp);
1390 		mutex_exit(&vp->v_interlock);
1391 	}
1392 
1393 	return (bp);
1394 }
1395 
1396 /*
1397  * Attempt to free an aged buffer off the queues.
1398  * Called with queue lock held.
1399  * Returns the amount of buffer memory freed.
1400  */
1401 static int
1402 buf_trim(void)
1403 {
1404 	buf_t *bp;
1405 	long size = 0;
1406 
1407 	KASSERT(mutex_owned(&bufcache_lock));
1408 
1409 	/* Instruct getnewbuf() to get buffers off the queues */
1410 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1411 		return 0;
1412 
1413 	KASSERT((bp->b_cflags & BC_WANTED) == 0);
1414 	size = bp->b_bufsize;
1415 	bufmem -= size;
1416 	if (size > 0) {
1417 		buf_mrelease(bp->b_data, size);
1418 		bp->b_bcount = bp->b_bufsize = 0;
1419 	}
1420 	/* brelse() will return the buffer to the global buffer pool */
1421 	brelsel(bp, 0);
1422 	return size;
1423 }
1424 
1425 int
1426 buf_drain(int n)
1427 {
1428 	int size = 0, sz;
1429 
1430 	KASSERT(mutex_owned(&bufcache_lock));
1431 
1432 	while (size < n && bufmem > bufmem_lowater) {
1433 		sz = buf_trim();
1434 		if (sz <= 0)
1435 			break;
1436 		size += sz;
1437 	}
1438 
1439 	return size;
1440 }
1441 
1442 /*
1443  * Wait for operations on the buffer to complete.
1444  * When they do, extract and return the I/O's error value.
1445  */
1446 int
1447 biowait(buf_t *bp)
1448 {
1449 
1450 	mutex_enter(bp->b_objlock);
1451 	while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
1452 		cv_wait(&bp->b_done, bp->b_objlock);
1453 	mutex_exit(bp->b_objlock);
1454 
1455 	return bp->b_error;
1456 }
1457 
1458 /*
1459  * Mark I/O complete on a buffer.
1460  *
1461  * If a callback has been requested, e.g. the pageout
1462  * daemon, do so. Otherwise, awaken waiting processes.
1463  *
1464  * [ Leffler, et al., says on p.247:
1465  *	"This routine wakes up the blocked process, frees the buffer
1466  *	for an asynchronous write, or, for a request by the pagedaemon
1467  *	process, invokes a procedure specified in the buffer structure" ]
1468  *
1469  * In real life, the pagedaemon (or other system processes) wants
1470  * to do async stuff to, and doesn't want the buffer brelse()'d.
1471  * (for swap pager, that puts swap buffers on the free lists (!!!),
1472  * for the vn device, that puts malloc'd buffers on the free lists!)
1473  */
1474 void
1475 biodone(buf_t *bp)
1476 {
1477 	int s;
1478 
1479 	KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1480 
1481 	if (cpu_intr_p()) {
1482 		/* From interrupt mode: defer to a soft interrupt. */
1483 		s = splvm();
1484 		TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1485 		softint_schedule(biodone_sih);
1486 		splx(s);
1487 	} else {
1488 		/* Process now - the buffer may be freed soon. */
1489 		biodone2(bp);
1490 	}
1491 }
1492 
1493 static void
1494 biodone2(buf_t *bp)
1495 {
1496 	void (*callout)(buf_t *);
1497 
1498 	if (bioopsp != NULL)
1499 		(*bioopsp->io_complete)(bp);
1500 
1501 	mutex_enter(bp->b_objlock);
1502 	/* Note that the transfer is done. */
1503 	if (ISSET(bp->b_oflags, BO_DONE))
1504 		panic("biodone2 already");
1505 	CLR(bp->b_flags, B_COWDONE);
1506 	SET(bp->b_oflags, BO_DONE);
1507 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1508 
1509 	/* Wake up waiting writers. */
1510 	if (!ISSET(bp->b_flags, B_READ))
1511 		vwakeup(bp);
1512 
1513 	if ((callout = bp->b_iodone) != NULL) {
1514 		/* Note callout done, then call out. */
1515 		KERNEL_LOCK(1, NULL);		/* XXXSMP */
1516 		bp->b_iodone = NULL;
1517 		mutex_exit(bp->b_objlock);
1518 		(*callout)(bp);
1519 		KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
1520 	} else if (ISSET(bp->b_flags, B_ASYNC)) {
1521 		/* If async, release. */
1522 		mutex_exit(bp->b_objlock);
1523 		brelse(bp, 0);
1524 	} else {
1525 		/* Otherwise just wake up waiters in biowait(). */
1526 		cv_broadcast(&bp->b_done);
1527 		mutex_exit(bp->b_objlock);
1528 	}
1529 }
1530 
1531 static void
1532 biointr(void *cookie)
1533 {
1534 	struct cpu_info *ci;
1535 	buf_t *bp;
1536 	int s;
1537 
1538 	ci = curcpu();
1539 
1540 	while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1541 		KASSERT(curcpu() == ci);
1542 
1543 		s = splvm();
1544 		bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1545 		TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1546 		splx(s);
1547 
1548 		biodone2(bp);
1549 	}
1550 }
1551 
1552 /*
1553  * Return a count of buffers on the "locked" queue.
1554  */
1555 int
1556 count_lock_queue(void)
1557 {
1558 	buf_t *bp;
1559 	int n = 0;
1560 
1561 	mutex_enter(&bufcache_lock);
1562 	TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1563 		n++;
1564 	mutex_exit(&bufcache_lock);
1565 	return (n);
1566 }
1567 
1568 /*
1569  * Wait for all buffers to complete I/O
1570  * Return the number of "stuck" buffers.
1571  */
1572 int
1573 buf_syncwait(void)
1574 {
1575 	buf_t *bp;
1576 	int iter, nbusy, nbusy_prev = 0, dcount, ihash;
1577 
1578 	dcount = 10000;
1579 	for (iter = 0; iter < 20;) {
1580 		mutex_enter(&bufcache_lock);
1581 		nbusy = 0;
1582 		for (ihash = 0; ihash < bufhash+1; ihash++) {
1583 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1584 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1585 				nbusy += ((bp->b_flags & B_READ) == 0);
1586 			/*
1587 			 * With soft updates, some buffers that are
1588 			 * written will be remarked as dirty until other
1589 			 * buffers are written.
1590 			 */
1591 			if (bp->b_vp && bp->b_vp->v_mount
1592 			    && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1593 			    && (bp->b_oflags & BO_DELWRI)) {
1594 				bremfree(bp);
1595 				bp->b_cflags |= BC_BUSY;
1596 				nbusy++;
1597 				mutex_exit(&bufcache_lock);
1598 				bawrite(bp);
1599 				if (dcount-- <= 0) {
1600 					printf("softdep ");
1601 					goto fail;
1602 				}
1603 				mutex_enter(&bufcache_lock);
1604 			}
1605 		    }
1606 		}
1607 		mutex_exit(&bufcache_lock);
1608 
1609 		if (nbusy == 0)
1610 			break;
1611 		if (nbusy_prev == 0)
1612 			nbusy_prev = nbusy;
1613 		printf("%d ", nbusy);
1614 		tsleep(&nbusy, PRIBIO, "bflush",
1615 		    (iter == 0) ? 1 : hz / 25 * iter);
1616 		if (nbusy >= nbusy_prev) /* we didn't flush anything */
1617 			iter++;
1618 		else
1619 			nbusy_prev = nbusy;
1620 	}
1621 
1622 	if (nbusy) {
1623 fail:;
1624 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1625 		printf("giving up\nPrinting vnodes for busy buffers\n");
1626 		for (ihash = 0; ihash < bufhash+1; ihash++) {
1627 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1628 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1629 			    (bp->b_flags & B_READ) == 0)
1630 				vprint(NULL, bp->b_vp);
1631 		    }
1632 		}
1633 #endif
1634 	}
1635 
1636 	return nbusy;
1637 }
1638 
1639 static void
1640 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1641 {
1642 
1643 	o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1644 	o->b_error = i->b_error;
1645 	o->b_prio = i->b_prio;
1646 	o->b_dev = i->b_dev;
1647 	o->b_bufsize = i->b_bufsize;
1648 	o->b_bcount = i->b_bcount;
1649 	o->b_resid = i->b_resid;
1650 	o->b_addr = PTRTOUINT64(i->b_data);
1651 	o->b_blkno = i->b_blkno;
1652 	o->b_rawblkno = i->b_rawblkno;
1653 	o->b_iodone = PTRTOUINT64(i->b_iodone);
1654 	o->b_proc = PTRTOUINT64(i->b_proc);
1655 	o->b_vp = PTRTOUINT64(i->b_vp);
1656 	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1657 	o->b_lblkno = i->b_lblkno;
1658 }
1659 
1660 #define KERN_BUFSLOP 20
1661 static int
1662 sysctl_dobuf(SYSCTLFN_ARGS)
1663 {
1664 	buf_t *bp;
1665 	struct buf_sysctl bs;
1666 	struct bqueue *bq;
1667 	char *dp;
1668 	u_int i, op, arg;
1669 	size_t len, needed, elem_size, out_size;
1670 	int error, elem_count, retries;
1671 
1672 	if (namelen == 1 && name[0] == CTL_QUERY)
1673 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
1674 
1675 	if (namelen != 4)
1676 		return (EINVAL);
1677 
1678 	retries = 100;
1679  retry:
1680 	dp = oldp;
1681 	len = (oldp != NULL) ? *oldlenp : 0;
1682 	op = name[0];
1683 	arg = name[1];
1684 	elem_size = name[2];
1685 	elem_count = name[3];
1686 	out_size = MIN(sizeof(bs), elem_size);
1687 
1688 	/*
1689 	 * at the moment, these are just "placeholders" to make the
1690 	 * API for retrieving kern.buf data more extensible in the
1691 	 * future.
1692 	 *
1693 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
1694 	 * these will be resolved at a later point.
1695 	 */
1696 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1697 	    elem_size < 1 || elem_count < 0)
1698 		return (EINVAL);
1699 
1700 	error = 0;
1701 	needed = 0;
1702 	sysctl_unlock();
1703 	mutex_enter(&bufcache_lock);
1704 	for (i = 0; i < BQUEUES; i++) {
1705 		bq = &bufqueues[i];
1706 		TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1707 			bq->bq_marker = bp;
1708 			if (len >= elem_size && elem_count > 0) {
1709 				sysctl_fillbuf(bp, &bs);
1710 				mutex_exit(&bufcache_lock);
1711 				error = copyout(&bs, dp, out_size);
1712 				mutex_enter(&bufcache_lock);
1713 				if (error)
1714 					break;
1715 				if (bq->bq_marker != bp) {
1716 					/*
1717 					 * This sysctl node is only for
1718 					 * statistics.  Retry; if the
1719 					 * queue keeps changing, then
1720 					 * bail out.
1721 					 */
1722 					if (retries-- == 0) {
1723 						error = EAGAIN;
1724 						break;
1725 					}
1726 					mutex_exit(&bufcache_lock);
1727 					goto retry;
1728 				}
1729 				dp += elem_size;
1730 				len -= elem_size;
1731 			}
1732 			if (elem_count > 0) {
1733 				needed += elem_size;
1734 				if (elem_count != INT_MAX)
1735 					elem_count--;
1736 			}
1737 		}
1738 		if (error != 0)
1739 			break;
1740 	}
1741 	mutex_exit(&bufcache_lock);
1742 	sysctl_relock();
1743 
1744 	*oldlenp = needed;
1745 	if (oldp == NULL)
1746 		*oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1747 
1748 	return (error);
1749 }
1750 
1751 static int
1752 sysctl_bufvm_update(SYSCTLFN_ARGS)
1753 {
1754 	int t, error, rv;
1755 	struct sysctlnode node;
1756 
1757 	node = *rnode;
1758 	node.sysctl_data = &t;
1759 	t = *(int *)rnode->sysctl_data;
1760 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1761 	if (error || newp == NULL)
1762 		return (error);
1763 
1764 	if (t < 0)
1765 		return EINVAL;
1766 	if (rnode->sysctl_data == &bufcache) {
1767 		if (t > 100)
1768 			return (EINVAL);
1769 		bufcache = t;
1770 		buf_setwm();
1771 	} else if (rnode->sysctl_data == &bufmem_lowater) {
1772 		if (bufmem_hiwater - t < 16)
1773 			return (EINVAL);
1774 		bufmem_lowater = t;
1775 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
1776 		if (t - bufmem_lowater < 16)
1777 			return (EINVAL);
1778 		bufmem_hiwater = t;
1779 	} else
1780 		return (EINVAL);
1781 
1782 	/* Drain until below new high water mark */
1783 	sysctl_unlock();
1784 	mutex_enter(&bufcache_lock);
1785 	while ((t = bufmem - bufmem_hiwater) >= 0) {
1786 		rv = buf_drain(t / (2 * 1024));
1787 		if (rv <= 0)
1788 			break;
1789 	}
1790 	mutex_exit(&bufcache_lock);
1791 	sysctl_relock();
1792 
1793 	return 0;
1794 }
1795 
1796 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1797 {
1798 
1799 	sysctl_createv(clog, 0, NULL, NULL,
1800 		       CTLFLAG_PERMANENT,
1801 		       CTLTYPE_NODE, "kern", NULL,
1802 		       NULL, 0, NULL, 0,
1803 		       CTL_KERN, CTL_EOL);
1804 	sysctl_createv(clog, 0, NULL, NULL,
1805 		       CTLFLAG_PERMANENT,
1806 		       CTLTYPE_NODE, "buf",
1807 		       SYSCTL_DESCR("Kernel buffer cache information"),
1808 		       sysctl_dobuf, 0, NULL, 0,
1809 		       CTL_KERN, KERN_BUF, CTL_EOL);
1810 }
1811 
1812 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1813 {
1814 
1815 	sysctl_createv(clog, 0, NULL, NULL,
1816 		       CTLFLAG_PERMANENT,
1817 		       CTLTYPE_NODE, "vm", NULL,
1818 		       NULL, 0, NULL, 0,
1819 		       CTL_VM, CTL_EOL);
1820 
1821 	sysctl_createv(clog, 0, NULL, NULL,
1822 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1823 		       CTLTYPE_INT, "bufcache",
1824 		       SYSCTL_DESCR("Percentage of physical memory to use for "
1825 				    "buffer cache"),
1826 		       sysctl_bufvm_update, 0, &bufcache, 0,
1827 		       CTL_VM, CTL_CREATE, CTL_EOL);
1828 	sysctl_createv(clog, 0, NULL, NULL,
1829 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1830 		       CTLTYPE_INT, "bufmem",
1831 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
1832 				    "cache"),
1833 		       NULL, 0, &bufmem, 0,
1834 		       CTL_VM, CTL_CREATE, CTL_EOL);
1835 	sysctl_createv(clog, 0, NULL, NULL,
1836 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1837 		       CTLTYPE_INT, "bufmem_lowater",
1838 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
1839 				    "reserve for buffer cache"),
1840 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1841 		       CTL_VM, CTL_CREATE, CTL_EOL);
1842 	sysctl_createv(clog, 0, NULL, NULL,
1843 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1844 		       CTLTYPE_INT, "bufmem_hiwater",
1845 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
1846 				    "for buffer cache"),
1847 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1848 		       CTL_VM, CTL_CREATE, CTL_EOL);
1849 }
1850 
1851 #ifdef DEBUG
1852 /*
1853  * Print out statistics on the current allocation of the buffer pool.
1854  * Can be enabled to print out on every ``sync'' by setting "syncprt"
1855  * in vfs_syscalls.c using sysctl.
1856  */
1857 void
1858 vfs_bufstats(void)
1859 {
1860 	int i, j, count;
1861 	buf_t *bp;
1862 	struct bqueue *dp;
1863 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1864 	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1865 
1866 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1867 		count = 0;
1868 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1869 			counts[j] = 0;
1870 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1871 			counts[bp->b_bufsize/PAGE_SIZE]++;
1872 			count++;
1873 		}
1874 		printf("%s: total-%d", bname[i], count);
1875 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1876 			if (counts[j] != 0)
1877 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1878 		printf("\n");
1879 	}
1880 }
1881 #endif /* DEBUG */
1882 
1883 /* ------------------------------ */
1884 
1885 buf_t *
1886 getiobuf(struct vnode *vp, bool waitok)
1887 {
1888 	buf_t *bp;
1889 
1890 	bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1891 	if (bp == NULL)
1892 		return bp;
1893 
1894 	buf_init(bp);
1895 
1896 	if ((bp->b_vp = vp) == NULL)
1897 		bp->b_objlock = &buffer_lock;
1898 	else
1899 		bp->b_objlock = &vp->v_interlock;
1900 
1901 	return bp;
1902 }
1903 
1904 void
1905 putiobuf(buf_t *bp)
1906 {
1907 
1908 	buf_destroy(bp);
1909 	pool_cache_put(bufio_cache, bp);
1910 }
1911 
1912 /*
1913  * nestiobuf_iodone: b_iodone callback for nested buffers.
1914  */
1915 
1916 void
1917 nestiobuf_iodone(buf_t *bp)
1918 {
1919 	buf_t *mbp = bp->b_private;
1920 	int error;
1921 	int donebytes;
1922 
1923 	KASSERT(bp->b_bcount <= bp->b_bufsize);
1924 	KASSERT(mbp != bp);
1925 
1926 	error = bp->b_error;
1927 	if (bp->b_error == 0 &&
1928 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
1929 		/*
1930 		 * Not all got transfered, raise an error. We have no way to
1931 		 * propagate these conditions to mbp.
1932 		 */
1933 		error = EIO;
1934 	}
1935 
1936 	donebytes = bp->b_bufsize;
1937 
1938 	putiobuf(bp);
1939 	nestiobuf_done(mbp, donebytes, error);
1940 }
1941 
1942 /*
1943  * nestiobuf_setup: setup a "nested" buffer.
1944  *
1945  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1946  * => 'bp' should be a buffer allocated by getiobuf.
1947  * => 'offset' is a byte offset in the master buffer.
1948  * => 'size' is a size in bytes of this nested buffer.
1949  */
1950 
1951 void
1952 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
1953 {
1954 	const int b_read = mbp->b_flags & B_READ;
1955 	struct vnode *vp = mbp->b_vp;
1956 
1957 	KASSERT(mbp->b_bcount >= offset + size);
1958 	bp->b_vp = vp;
1959 	bp->b_objlock = mbp->b_objlock;
1960 	bp->b_cflags = BC_BUSY;
1961 	bp->b_flags = B_ASYNC | b_read;
1962 	bp->b_iodone = nestiobuf_iodone;
1963 	bp->b_data = (char *)mbp->b_data + offset;
1964 	bp->b_resid = bp->b_bcount = size;
1965 	bp->b_bufsize = bp->b_bcount;
1966 	bp->b_private = mbp;
1967 	BIO_COPYPRIO(bp, mbp);
1968 	if (!b_read && vp != NULL) {
1969 		mutex_enter(&vp->v_interlock);
1970 		vp->v_numoutput++;
1971 		mutex_exit(&vp->v_interlock);
1972 	}
1973 }
1974 
1975 /*
1976  * nestiobuf_done: propagate completion to the master buffer.
1977  *
1978  * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1979  * => 'error' is an errno(2) that 'donebytes' has been completed with.
1980  */
1981 
1982 void
1983 nestiobuf_done(buf_t *mbp, int donebytes, int error)
1984 {
1985 
1986 	if (donebytes == 0) {
1987 		return;
1988 	}
1989 	mutex_enter(mbp->b_objlock);
1990 	KASSERT(mbp->b_resid >= donebytes);
1991 	mbp->b_resid -= donebytes;
1992 	if (error)
1993 		mbp->b_error = error;
1994 	if (mbp->b_resid == 0) {
1995 		mutex_exit(mbp->b_objlock);
1996 		biodone(mbp);
1997 	} else
1998 		mutex_exit(mbp->b_objlock);
1999 }
2000 
2001 void
2002 buf_init(buf_t *bp)
2003 {
2004 
2005 	LIST_INIT(&bp->b_dep);
2006 	cv_init(&bp->b_busy, "biolock");
2007 	cv_init(&bp->b_done, "biowait");
2008 	bp->b_dev = NODEV;
2009 	bp->b_error = 0;
2010 	bp->b_flags = 0;
2011 	bp->b_cflags = 0;
2012 	bp->b_oflags = 0;
2013 	bp->b_objlock = &buffer_lock;
2014 	bp->b_iodone = NULL;
2015 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
2016 }
2017 
2018 void
2019 buf_destroy(buf_t *bp)
2020 {
2021 
2022 	cv_destroy(&bp->b_done);
2023 	cv_destroy(&bp->b_busy);
2024 }
2025 
2026 int
2027 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2028 {
2029 	int error;
2030 
2031 	KASSERT(mutex_owned(&bufcache_lock));
2032 
2033 	if ((bp->b_cflags & BC_BUSY) != 0) {
2034 		if (curlwp == uvm.pagedaemon_lwp)
2035 			return EDEADLK;
2036 		bp->b_cflags |= BC_WANTED;
2037 		bref(bp);
2038 		if (interlock != NULL)
2039 			mutex_exit(interlock);
2040 		if (intr) {
2041 			error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2042 			    timo);
2043 		} else {
2044 			error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2045 			    timo);
2046 		}
2047 		brele(bp);
2048 		if (interlock != NULL)
2049 			mutex_enter(interlock);
2050 		if (error != 0)
2051 			return error;
2052 		return EPASSTHROUGH;
2053 	}
2054 	bp->b_cflags |= BC_BUSY;
2055 
2056 	return 0;
2057 }
2058