1 /* $NetBSD: vfs_bio.c,v 1.125 2004/05/25 04:30:33 atatat Exp $ */ 2 3 /*- 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 37 */ 38 39 /*- 40 * Copyright (c) 1994 Christopher G. Demetriou 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. All advertising materials mentioning features or use of this software 51 * must display the following acknowledgement: 52 * This product includes software developed by the University of 53 * California, Berkeley and its contributors. 54 * 4. Neither the name of the University nor the names of its contributors 55 * may be used to endorse or promote products derived from this software 56 * without specific prior written permission. 57 * 58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 68 * SUCH DAMAGE. 69 * 70 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 71 */ 72 73 /* 74 * Some references: 75 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986) 76 * Leffler, et al.: The Design and Implementation of the 4.3BSD 77 * UNIX Operating System (Addison Welley, 1989) 78 */ 79 80 #include "opt_bufcache.h" 81 #include "opt_softdep.h" 82 83 #include <sys/cdefs.h> 84 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.125 2004/05/25 04:30:33 atatat Exp $"); 85 86 #include <sys/param.h> 87 #include <sys/systm.h> 88 #include <sys/kernel.h> 89 #include <sys/proc.h> 90 #include <sys/buf.h> 91 #include <sys/vnode.h> 92 #include <sys/mount.h> 93 #include <sys/malloc.h> 94 #include <sys/resourcevar.h> 95 #include <sys/sysctl.h> 96 #include <sys/conf.h> 97 98 #include <uvm/uvm.h> 99 100 #include <miscfs/specfs/specdev.h> 101 102 #ifndef BUFPAGES 103 # define BUFPAGES 0 104 #endif 105 106 #ifdef BUFCACHE 107 # if (BUFCACHE < 5) || (BUFCACHE > 95) 108 # error BUFCACHE is not between 5 and 95 109 # endif 110 #else 111 # define BUFCACHE 15 112 #endif 113 114 u_int nbuf; /* XXX - for softdep_lockedbufs */ 115 u_int bufpages = BUFPAGES; /* optional hardwired count */ 116 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */ 117 118 119 /* Macros to clear/set/test flags. */ 120 #define SET(t, f) (t) |= (f) 121 #define CLR(t, f) (t) &= ~(f) 122 #define ISSET(t, f) ((t) & (f)) 123 124 /* 125 * Definitions for the buffer hash lists. 126 */ 127 #define BUFHASH(dvp, lbn) \ 128 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash]) 129 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash; 130 u_long bufhash; 131 #ifndef SOFTDEP 132 struct bio_ops bioops; /* I/O operation notification */ 133 #endif 134 135 /* 136 * Insq/Remq for the buffer hash lists. 137 */ 138 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash) 139 #define bremhash(bp) LIST_REMOVE(bp, b_hash) 140 141 /* 142 * Definitions for the buffer free lists. 143 */ 144 #define BQUEUES 3 /* number of free buffer queues */ 145 146 #define BQ_LOCKED 0 /* super-blocks &c */ 147 #define BQ_LRU 1 /* lru, useful buffers */ 148 #define BQ_AGE 2 /* rubbish */ 149 150 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES]; 151 int needbuffer; 152 153 /* 154 * Buffer queue lock. 155 * Take this lock first if also taking some buffer's b_interlock. 156 */ 157 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER; 158 159 /* 160 * Buffer pool for I/O buffers. 161 */ 162 struct pool bufpool; 163 164 /* XXX - somewhat gross.. */ 165 #if MAXBSIZE == 0x2000 166 #define NMEMPOOLS 4 167 #elif MAXBSIZE == 0x4000 168 #define NMEMPOOLS 5 169 #elif MAXBSIZE == 0x8000 170 #define NMEMPOOLS 6 171 #else 172 #define NMEMPOOLS 7 173 #endif 174 175 #define MEMPOOL_INDEX_OFFSET 10 /* smallest pool is 1k */ 176 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE 177 #error update vfs_bio buffer memory parameters 178 #endif 179 180 /* Buffer memory pools */ 181 static struct pool bmempools[NMEMPOOLS]; 182 183 struct vm_map *buf_map; 184 185 /* 186 * Buffer memory pool allocator. 187 */ 188 static void * 189 bufpool_page_alloc(struct pool *pp, int flags) 190 { 191 192 return (void *)uvm_km_kmemalloc1(buf_map, 193 uvm.kernel_object, MAXBSIZE, MAXBSIZE, UVM_UNKNOWN_OFFSET, 194 (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK); 195 } 196 197 static void 198 bufpool_page_free(struct pool *pp, void *v) 199 { 200 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE); 201 } 202 203 static struct pool_allocator bufmempool_allocator = { 204 bufpool_page_alloc, bufpool_page_free, MAXBSIZE, 205 }; 206 207 /* Buffer memory management variables */ 208 u_long bufmem_valimit; 209 u_long bufmem_hiwater; 210 u_long bufmem_lowater; 211 u_long bufmem; 212 213 /* 214 * MD code can call this to set a hard limit on the amount 215 * of virtual memory used by the buffer cache. 216 */ 217 int 218 buf_setvalimit(vsize_t sz) 219 { 220 221 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */ 222 if (sz < NMEMPOOLS * MAXBSIZE) 223 return EINVAL; 224 225 bufmem_valimit = sz; 226 return 0; 227 } 228 229 static int buf_trim(void); 230 231 /* 232 * bread()/breadn() helper. 233 */ 234 static __inline struct buf *bio_doread(struct vnode *, daddr_t, int, 235 struct ucred *, int); 236 int count_lock_queue(void); 237 238 /* 239 * Insq/Remq for the buffer free lists. 240 * Call with buffer queue locked. 241 */ 242 #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist) 243 #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist) 244 245 #ifdef DEBUG 246 int debug_verify_freelist = 0; 247 static int checkfreelist(struct buf *bp, struct bqueues *dp) 248 { 249 struct buf *b; 250 TAILQ_FOREACH(b, dp, b_freelist) { 251 if (b == bp) 252 return 1; 253 } 254 return 0; 255 } 256 #endif 257 258 void 259 bremfree(struct buf *bp) 260 { 261 struct bqueues *dp = NULL; 262 263 LOCK_ASSERT(simple_lock_held(&bqueue_slock)); 264 265 KDASSERT(!debug_verify_freelist || 266 checkfreelist(bp, &bufqueues[BQ_AGE]) || 267 checkfreelist(bp, &bufqueues[BQ_LRU]) || 268 checkfreelist(bp, &bufqueues[BQ_LOCKED]) ); 269 270 /* 271 * We only calculate the head of the freelist when removing 272 * the last element of the list as that is the only time that 273 * it is needed (e.g. to reset the tail pointer). 274 * 275 * NB: This makes an assumption about how tailq's are implemented. 276 * 277 * We break the TAILQ abstraction in order to efficiently remove a 278 * buffer from its freelist without having to know exactly which 279 * freelist it is on. 280 */ 281 if (TAILQ_NEXT(bp, b_freelist) == NULL) { 282 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) 283 if (dp->tqh_last == &bp->b_freelist.tqe_next) 284 break; 285 if (dp == &bufqueues[BQUEUES]) 286 panic("bremfree: lost tail"); 287 } 288 TAILQ_REMOVE(dp, bp, b_freelist); 289 } 290 291 u_long 292 buf_memcalc(void) 293 { 294 u_long n; 295 296 /* 297 * Determine the upper bound of memory to use for buffers. 298 * 299 * - If bufpages is specified, use that as the number 300 * pages. 301 * 302 * - Otherwise, use bufcache as the percentage of 303 * physical memory. 304 */ 305 if (bufpages != 0) { 306 n = bufpages; 307 } else { 308 if (bufcache < 5) { 309 printf("forcing bufcache %d -> 5", bufcache); 310 bufcache = 5; 311 } 312 if (bufcache > 95) { 313 printf("forcing bufcache %d -> 95", bufcache); 314 bufcache = 95; 315 } 316 n = physmem / 100 * bufcache; 317 } 318 319 n <<= PAGE_SHIFT; 320 if (bufmem_valimit != 0 && n > bufmem_valimit) 321 n = bufmem_valimit; 322 323 return (n); 324 } 325 326 /* 327 * Initialize buffers and hash links for buffers. 328 */ 329 void 330 bufinit(void) 331 { 332 struct bqueues *dp; 333 int smallmem; 334 u_int i; 335 336 /* 337 * Initialize buffer cache memory parameters. 338 */ 339 bufmem = 0; 340 bufmem_hiwater = buf_memcalc(); 341 /* lowater is approx. 2% of memory (with bufcache=15) */ 342 bufmem_lowater = (bufmem_hiwater >> 3); 343 if (bufmem_lowater < 64 * 1024) 344 /* Ensure a reasonable minimum value */ 345 bufmem_lowater = 64 * 1024; 346 347 if (bufmem_valimit != 0) { 348 vaddr_t minaddr = 0, maxaddr; 349 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr, 350 bufmem_valimit, VM_MAP_PAGEABLE, 351 FALSE, 0); 352 if (buf_map == NULL) 353 panic("bufinit: cannot allocate submap"); 354 } else 355 buf_map = kernel_map; 356 357 /* 358 * Initialize the buffer pools. 359 */ 360 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL); 361 362 /* On "small" machines use small pool page sizes where possible */ 363 smallmem = (physmem < atop(16*1024*1024)); 364 365 for (i = 0; i < NMEMPOOLS; i++) { 366 struct pool_allocator *pa; 367 struct pool *pp = &bmempools[i]; 368 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET); 369 char *name = malloc(8, M_TEMP, M_WAITOK); 370 snprintf(name, 8, "buf%dk", 1 << i); 371 pa = (size <= PAGE_SIZE && smallmem) 372 ? &pool_allocator_nointr 373 : &bufmempool_allocator; 374 pool_init(pp, size, 0, 0, PR_IMMEDRELEASE, name, pa); 375 pool_setlowat(pp, 1); 376 } 377 378 /* Initialize the buffer queues */ 379 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) 380 TAILQ_INIT(dp); 381 382 /* 383 * Estimate hash table size based on the amount of memory we 384 * intend to use for the buffer cache. The average buffer 385 * size is dependent on our clients (i.e. filesystems). 386 * 387 * For now, use an empirical 3K per buffer. 388 */ 389 nbuf = (bufmem_hiwater / 1024) / 3; 390 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash); 391 } 392 393 static int 394 buf_lotsfree(void) 395 { 396 int try, thresh; 397 398 /* Always allocate if less than the low water mark. */ 399 if (bufmem < bufmem_lowater) 400 return 1; 401 402 /* Never allocate if greater than the high water mark. */ 403 if (bufmem > bufmem_hiwater) 404 return 0; 405 406 /* If there's anything on the AGE list, it should be eaten. */ 407 if (TAILQ_FIRST(&bufqueues[BQ_AGE]) != NULL) 408 return 0; 409 410 /* 411 * The probabily of getting a new allocation is inversely 412 * proportional to the current size of the cache, using 413 * a granularity of 16 steps. 414 */ 415 try = random() & 0x0000000fL; 416 417 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */ 418 thresh = bufmem / (bufmem_hiwater / 16); 419 420 if ((try > thresh) && (uvmexp.free > (2 * uvmexp.freetarg))) { 421 return 1; 422 } 423 424 /* Otherwise don't allocate. */ 425 return 0; 426 } 427 428 /* 429 * Return estimate of bytes we think need to be 430 * released to help resolve low memory conditions. 431 * 432 * => called at splbio. 433 * => called with bqueue_slock held. 434 */ 435 static int 436 buf_canrelease(void) 437 { 438 int pagedemand, ninvalid = 0; 439 struct buf *bp; 440 441 LOCK_ASSERT(simple_lock_held(&bqueue_slock)); 442 443 if (bufmem < bufmem_lowater) 444 return 0; 445 446 TAILQ_FOREACH(bp, &bufqueues[BQ_AGE], b_freelist) 447 ninvalid += bp->b_bufsize; 448 449 pagedemand = uvmexp.freetarg - uvmexp.free; 450 if (pagedemand < 0) 451 return ninvalid; 452 return MAX(ninvalid, MIN(2 * MAXBSIZE, 453 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE))); 454 } 455 456 /* 457 * Buffer memory allocation helper functions 458 */ 459 static __inline u_long 460 buf_mempoolidx(u_long size) 461 { 462 u_int n = 0; 463 464 size -= 1; 465 size >>= MEMPOOL_INDEX_OFFSET; 466 while (size) { 467 size >>= 1; 468 n += 1; 469 } 470 if (n >= NMEMPOOLS) 471 panic("buf mem pool index %d", n); 472 return n; 473 } 474 475 static __inline u_long 476 buf_roundsize(u_long size) 477 { 478 /* Round up to nearest power of 2 */ 479 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET)); 480 } 481 482 static __inline caddr_t 483 buf_malloc(size_t size) 484 { 485 u_int n = buf_mempoolidx(size); 486 caddr_t addr; 487 int s; 488 489 while (1) { 490 addr = pool_get(&bmempools[n], PR_NOWAIT); 491 if (addr != NULL) 492 break; 493 494 /* No memory, see if we can free some. If so, try again */ 495 if (buf_drain(1) > 0) 496 continue; 497 498 /* Wait for buffers to arrive on the LRU queue */ 499 s = splbio(); 500 simple_lock(&bqueue_slock); 501 needbuffer = 1; 502 ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1), 503 "buf_malloc", 0, &bqueue_slock); 504 splx(s); 505 } 506 507 return addr; 508 } 509 510 static void 511 buf_mrelease(caddr_t addr, size_t size) 512 { 513 514 pool_put(&bmempools[buf_mempoolidx(size)], addr); 515 } 516 517 518 static __inline struct buf * 519 bio_doread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred, 520 int async) 521 { 522 struct buf *bp; 523 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */ 524 struct proc *p = l->l_proc; 525 struct mount *mp; 526 527 bp = getblk(vp, blkno, size, 0, 0); 528 529 #ifdef DIAGNOSTIC 530 if (bp == NULL) { 531 panic("bio_doread: no such buf"); 532 } 533 #endif 534 535 /* 536 * If buffer does not have data valid, start a read. 537 * Note that if buffer is B_INVAL, getblk() won't return it. 538 * Therefore, it's valid if its I/O has completed or been delayed. 539 */ 540 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) { 541 /* Start I/O for the buffer. */ 542 SET(bp->b_flags, B_READ | async); 543 if (async) 544 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 545 else 546 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 547 VOP_STRATEGY(vp, bp); 548 549 /* Pay for the read. */ 550 p->p_stats->p_ru.ru_inblock++; 551 } else if (async) { 552 brelse(bp); 553 } 554 555 if (vp->v_type == VBLK) 556 mp = vp->v_specmountpoint; 557 else 558 mp = vp->v_mount; 559 560 /* 561 * Collect statistics on synchronous and asynchronous reads. 562 * Reads from block devices are charged to their associated 563 * filesystem (if any). 564 */ 565 if (mp != NULL) { 566 if (async == 0) 567 mp->mnt_stat.f_syncreads++; 568 else 569 mp->mnt_stat.f_asyncreads++; 570 } 571 572 return (bp); 573 } 574 575 /* 576 * Read a disk block. 577 * This algorithm described in Bach (p.54). 578 */ 579 int 580 bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred, 581 struct buf **bpp) 582 { 583 struct buf *bp; 584 585 /* Get buffer for block. */ 586 bp = *bpp = bio_doread(vp, blkno, size, cred, 0); 587 588 /* Wait for the read to complete, and return result. */ 589 return (biowait(bp)); 590 } 591 592 /* 593 * Read-ahead multiple disk blocks. The first is sync, the rest async. 594 * Trivial modification to the breada algorithm presented in Bach (p.55). 595 */ 596 int 597 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks, 598 int *rasizes, int nrablks, struct ucred *cred, struct buf **bpp) 599 { 600 struct buf *bp; 601 int i; 602 603 bp = *bpp = bio_doread(vp, blkno, size, cred, 0); 604 605 /* 606 * For each of the read-ahead blocks, start a read, if necessary. 607 */ 608 for (i = 0; i < nrablks; i++) { 609 /* If it's in the cache, just go on to next one. */ 610 if (incore(vp, rablks[i])) 611 continue; 612 613 /* Get a buffer for the read-ahead block */ 614 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC); 615 } 616 617 /* Otherwise, we had to start a read for it; wait until it's valid. */ 618 return (biowait(bp)); 619 } 620 621 /* 622 * Read with single-block read-ahead. Defined in Bach (p.55), but 623 * implemented as a call to breadn(). 624 * XXX for compatibility with old file systems. 625 */ 626 int 627 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno, 628 int rabsize, struct ucred *cred, struct buf **bpp) 629 { 630 631 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp)); 632 } 633 634 /* 635 * Block write. Described in Bach (p.56) 636 */ 637 int 638 bwrite(struct buf *bp) 639 { 640 int rv, sync, wasdelayed, s; 641 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */ 642 struct proc *p = l->l_proc; 643 struct vnode *vp; 644 struct mount *mp; 645 646 KASSERT(ISSET(bp->b_flags, B_BUSY)); 647 648 vp = bp->b_vp; 649 if (vp != NULL) { 650 if (vp->v_type == VBLK) 651 mp = vp->v_specmountpoint; 652 else 653 mp = vp->v_mount; 654 } else { 655 mp = NULL; 656 } 657 658 /* 659 * Remember buffer type, to switch on it later. If the write was 660 * synchronous, but the file system was mounted with MNT_ASYNC, 661 * convert it to a delayed write. 662 * XXX note that this relies on delayed tape writes being converted 663 * to async, not sync writes (which is safe, but ugly). 664 */ 665 sync = !ISSET(bp->b_flags, B_ASYNC); 666 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) { 667 bdwrite(bp); 668 return (0); 669 } 670 671 /* 672 * Collect statistics on synchronous and asynchronous writes. 673 * Writes to block devices are charged to their associated 674 * filesystem (if any). 675 */ 676 if (mp != NULL) { 677 if (sync) 678 mp->mnt_stat.f_syncwrites++; 679 else 680 mp->mnt_stat.f_asyncwrites++; 681 } 682 683 s = splbio(); 684 simple_lock(&bp->b_interlock); 685 686 wasdelayed = ISSET(bp->b_flags, B_DELWRI); 687 688 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI)); 689 690 /* 691 * Pay for the I/O operation and make sure the buf is on the correct 692 * vnode queue. 693 */ 694 if (wasdelayed) 695 reassignbuf(bp, bp->b_vp); 696 else 697 p->p_stats->p_ru.ru_oublock++; 698 699 /* Initiate disk write. Make sure the appropriate party is charged. */ 700 V_INCR_NUMOUTPUT(bp->b_vp); 701 simple_unlock(&bp->b_interlock); 702 splx(s); 703 704 if (sync) 705 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 706 else 707 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 708 709 VOP_STRATEGY(vp, bp); 710 711 if (sync) { 712 /* If I/O was synchronous, wait for it to complete. */ 713 rv = biowait(bp); 714 715 /* Release the buffer. */ 716 brelse(bp); 717 718 return (rv); 719 } else { 720 return (0); 721 } 722 } 723 724 int 725 vn_bwrite(void *v) 726 { 727 struct vop_bwrite_args *ap = v; 728 729 return (bwrite(ap->a_bp)); 730 } 731 732 /* 733 * Delayed write. 734 * 735 * The buffer is marked dirty, but is not queued for I/O. 736 * This routine should be used when the buffer is expected 737 * to be modified again soon, typically a small write that 738 * partially fills a buffer. 739 * 740 * NB: magnetic tapes cannot be delayed; they must be 741 * written in the order that the writes are requested. 742 * 743 * Described in Leffler, et al. (pp. 208-213). 744 */ 745 void 746 bdwrite(struct buf *bp) 747 { 748 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */ 749 struct proc *p = l->l_proc; 750 const struct bdevsw *bdev; 751 int s; 752 753 /* If this is a tape block, write the block now. */ 754 bdev = bdevsw_lookup(bp->b_dev); 755 if (bdev != NULL && bdev->d_type == D_TAPE) { 756 bawrite(bp); 757 return; 758 } 759 760 /* 761 * If the block hasn't been seen before: 762 * (1) Mark it as having been seen, 763 * (2) Charge for the write, 764 * (3) Make sure it's on its vnode's correct block list. 765 */ 766 s = splbio(); 767 simple_lock(&bp->b_interlock); 768 769 KASSERT(ISSET(bp->b_flags, B_BUSY)); 770 771 if (!ISSET(bp->b_flags, B_DELWRI)) { 772 SET(bp->b_flags, B_DELWRI); 773 p->p_stats->p_ru.ru_oublock++; 774 reassignbuf(bp, bp->b_vp); 775 } 776 777 /* Otherwise, the "write" is done, so mark and release the buffer. */ 778 CLR(bp->b_flags, B_DONE); 779 simple_unlock(&bp->b_interlock); 780 splx(s); 781 782 brelse(bp); 783 } 784 785 /* 786 * Asynchronous block write; just an asynchronous bwrite(). 787 */ 788 void 789 bawrite(struct buf *bp) 790 { 791 int s; 792 793 s = splbio(); 794 simple_lock(&bp->b_interlock); 795 796 KASSERT(ISSET(bp->b_flags, B_BUSY)); 797 798 SET(bp->b_flags, B_ASYNC); 799 simple_unlock(&bp->b_interlock); 800 splx(s); 801 VOP_BWRITE(bp); 802 } 803 804 /* 805 * Same as first half of bdwrite, mark buffer dirty, but do not release it. 806 * Call at splbio() and with the buffer interlock locked. 807 * Note: called only from biodone() through ffs softdep's bioops.io_complete() 808 */ 809 void 810 bdirty(struct buf *bp) 811 { 812 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */ 813 struct proc *p = l->l_proc; 814 815 LOCK_ASSERT(simple_lock_held(&bp->b_interlock)); 816 KASSERT(ISSET(bp->b_flags, B_BUSY)); 817 818 CLR(bp->b_flags, B_AGE); 819 820 if (!ISSET(bp->b_flags, B_DELWRI)) { 821 SET(bp->b_flags, B_DELWRI); 822 p->p_stats->p_ru.ru_oublock++; 823 reassignbuf(bp, bp->b_vp); 824 } 825 } 826 827 /* 828 * Release a buffer on to the free lists. 829 * Described in Bach (p. 46). 830 */ 831 void 832 brelse(struct buf *bp) 833 { 834 struct bqueues *bufq; 835 int s; 836 837 /* Block disk interrupts. */ 838 s = splbio(); 839 simple_lock(&bqueue_slock); 840 simple_lock(&bp->b_interlock); 841 842 KASSERT(ISSET(bp->b_flags, B_BUSY)); 843 KASSERT(!ISSET(bp->b_flags, B_CALL)); 844 845 /* Wake up any processes waiting for any buffer to become free. */ 846 if (needbuffer) { 847 needbuffer = 0; 848 wakeup(&needbuffer); 849 } 850 851 /* Wake up any proceeses waiting for _this_ buffer to become free. */ 852 if (ISSET(bp->b_flags, B_WANTED)) { 853 CLR(bp->b_flags, B_WANTED|B_AGE); 854 wakeup(bp); 855 } 856 857 /* 858 * Determine which queue the buffer should be on, then put it there. 859 */ 860 861 /* If it's locked, don't report an error; try again later. */ 862 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR)) 863 CLR(bp->b_flags, B_ERROR); 864 865 /* If it's not cacheable, or an error, mark it invalid. */ 866 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR))) 867 SET(bp->b_flags, B_INVAL); 868 869 if (ISSET(bp->b_flags, B_VFLUSH)) { 870 /* 871 * This is a delayed write buffer that was just flushed to 872 * disk. It is still on the LRU queue. If it's become 873 * invalid, then we need to move it to a different queue; 874 * otherwise leave it in its current position. 875 */ 876 CLR(bp->b_flags, B_VFLUSH); 877 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) { 878 KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU])); 879 goto already_queued; 880 } else { 881 bremfree(bp); 882 } 883 } 884 885 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE])); 886 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU])); 887 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED])); 888 889 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) { 890 /* 891 * If it's invalid or empty, dissociate it from its vnode 892 * and put on the head of the appropriate queue. 893 */ 894 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) 895 (*bioops.io_deallocate)(bp); 896 CLR(bp->b_flags, B_DONE|B_DELWRI); 897 if (bp->b_vp) { 898 reassignbuf(bp, bp->b_vp); 899 brelvp(bp); 900 } 901 if (bp->b_bufsize <= 0) 902 /* no data */ 903 goto already_queued; 904 else 905 /* invalid data */ 906 bufq = &bufqueues[BQ_AGE]; 907 binsheadfree(bp, bufq); 908 } else { 909 /* 910 * It has valid data. Put it on the end of the appropriate 911 * queue, so that it'll stick around for as long as possible. 912 * If buf is AGE, but has dependencies, must put it on last 913 * bufqueue to be scanned, ie LRU. This protects against the 914 * livelock where BQ_AGE only has buffers with dependencies, 915 * and we thus never get to the dependent buffers in BQ_LRU. 916 */ 917 if (ISSET(bp->b_flags, B_LOCKED)) 918 /* locked in core */ 919 bufq = &bufqueues[BQ_LOCKED]; 920 else if (!ISSET(bp->b_flags, B_AGE)) 921 /* valid data */ 922 bufq = &bufqueues[BQ_LRU]; 923 else { 924 /* stale but valid data */ 925 int has_deps; 926 927 if (LIST_FIRST(&bp->b_dep) != NULL && 928 bioops.io_countdeps) 929 has_deps = (*bioops.io_countdeps)(bp, 0); 930 else 931 has_deps = 0; 932 bufq = has_deps ? &bufqueues[BQ_LRU] : 933 &bufqueues[BQ_AGE]; 934 } 935 binstailfree(bp, bufq); 936 } 937 938 already_queued: 939 /* Unlock the buffer. */ 940 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE); 941 SET(bp->b_flags, B_CACHE); 942 943 /* Allow disk interrupts. */ 944 simple_unlock(&bp->b_interlock); 945 simple_unlock(&bqueue_slock); 946 if (bp->b_bufsize <= 0) { 947 #ifdef DEBUG 948 memset((char *)bp, 0, sizeof(*bp)); 949 #endif 950 pool_put(&bufpool, bp); 951 } 952 splx(s); 953 } 954 955 /* 956 * Determine if a block is in the cache. 957 * Just look on what would be its hash chain. If it's there, return 958 * a pointer to it, unless it's marked invalid. If it's marked invalid, 959 * we normally don't return the buffer, unless the caller explicitly 960 * wants us to. 961 */ 962 struct buf * 963 incore(struct vnode *vp, daddr_t blkno) 964 { 965 struct buf *bp; 966 967 /* Search hash chain */ 968 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) { 969 if (bp->b_lblkno == blkno && bp->b_vp == vp && 970 !ISSET(bp->b_flags, B_INVAL)) 971 return (bp); 972 } 973 974 return (NULL); 975 } 976 977 /* 978 * Get a block of requested size that is associated with 979 * a given vnode and block offset. If it is found in the 980 * block cache, mark it as having been found, make it busy 981 * and return it. Otherwise, return an empty block of the 982 * correct size. It is up to the caller to insure that the 983 * cached blocks be of the correct size. 984 */ 985 struct buf * 986 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo) 987 { 988 struct buf *bp; 989 int s, err; 990 int preserve; 991 992 start: 993 s = splbio(); 994 simple_lock(&bqueue_slock); 995 bp = incore(vp, blkno); 996 if (bp != NULL) { 997 simple_lock(&bp->b_interlock); 998 if (ISSET(bp->b_flags, B_BUSY)) { 999 simple_unlock(&bqueue_slock); 1000 if (curproc == uvm.pagedaemon_proc) { 1001 simple_unlock(&bp->b_interlock); 1002 splx(s); 1003 return NULL; 1004 } 1005 SET(bp->b_flags, B_WANTED); 1006 err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK, 1007 "getblk", slptimeo, &bp->b_interlock); 1008 splx(s); 1009 if (err) 1010 return (NULL); 1011 goto start; 1012 } 1013 #ifdef DIAGNOSTIC 1014 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) && 1015 bp->b_bcount < size && vp->v_type != VBLK) 1016 panic("getblk: block size invariant failed"); 1017 #endif 1018 SET(bp->b_flags, B_BUSY); 1019 bremfree(bp); 1020 preserve = 1; 1021 } else { 1022 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) { 1023 simple_unlock(&bqueue_slock); 1024 splx(s); 1025 goto start; 1026 } 1027 1028 binshash(bp, BUFHASH(vp, blkno)); 1029 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno; 1030 bgetvp(vp, bp); 1031 preserve = 0; 1032 } 1033 simple_unlock(&bp->b_interlock); 1034 simple_unlock(&bqueue_slock); 1035 splx(s); 1036 /* 1037 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes) 1038 * if we re-size buffers here. 1039 */ 1040 if (ISSET(bp->b_flags, B_LOCKED)) { 1041 KASSERT(bp->b_bufsize >= size); 1042 } else { 1043 allocbuf(bp, size, preserve); 1044 } 1045 BIO_SETPRIO(bp, BPRIO_DEFAULT); 1046 return (bp); 1047 } 1048 1049 /* 1050 * Get an empty, disassociated buffer of given size. 1051 */ 1052 struct buf * 1053 geteblk(int size) 1054 { 1055 struct buf *bp; 1056 int s; 1057 1058 s = splbio(); 1059 simple_lock(&bqueue_slock); 1060 while ((bp = getnewbuf(0, 0, 0)) == 0) 1061 ; 1062 1063 SET(bp->b_flags, B_INVAL); 1064 binshash(bp, &invalhash); 1065 simple_unlock(&bqueue_slock); 1066 simple_unlock(&bp->b_interlock); 1067 splx(s); 1068 BIO_SETPRIO(bp, BPRIO_DEFAULT); 1069 allocbuf(bp, size, 0); 1070 return (bp); 1071 } 1072 1073 /* 1074 * Expand or contract the actual memory allocated to a buffer. 1075 * 1076 * If the buffer shrinks, data is lost, so it's up to the 1077 * caller to have written it out *first*; this routine will not 1078 * start a write. If the buffer grows, it's the callers 1079 * responsibility to fill out the buffer's additional contents. 1080 */ 1081 void 1082 allocbuf(struct buf *bp, int size, int preserve) 1083 { 1084 vsize_t oldsize, desired_size; 1085 caddr_t addr; 1086 int s, delta; 1087 1088 desired_size = buf_roundsize(size); 1089 if (desired_size > MAXBSIZE) 1090 printf("allocbuf: buffer larger than MAXBSIZE requested"); 1091 1092 bp->b_bcount = size; 1093 1094 oldsize = bp->b_bufsize; 1095 if (oldsize == desired_size) 1096 return; 1097 1098 /* 1099 * If we want a buffer of a different size, re-allocate the 1100 * buffer's memory; copy old content only if needed. 1101 */ 1102 addr = buf_malloc(desired_size); 1103 if (preserve) 1104 memcpy(addr, bp->b_data, MIN(oldsize,desired_size)); 1105 if (bp->b_data != NULL) 1106 buf_mrelease(bp->b_data, oldsize); 1107 bp->b_data = addr; 1108 bp->b_bufsize = desired_size; 1109 1110 /* 1111 * Update overall buffer memory counter (protected by bqueue_slock) 1112 */ 1113 delta = (long)desired_size - (long)oldsize; 1114 1115 s = splbio(); 1116 simple_lock(&bqueue_slock); 1117 if ((bufmem += delta) > bufmem_hiwater) { 1118 /* 1119 * Need to trim overall memory usage. 1120 */ 1121 while (buf_canrelease()) { 1122 if (buf_trim() == 0) 1123 break; 1124 } 1125 } 1126 1127 simple_unlock(&bqueue_slock); 1128 splx(s); 1129 } 1130 1131 /* 1132 * Find a buffer which is available for use. 1133 * Select something from a free list. 1134 * Preference is to AGE list, then LRU list. 1135 * 1136 * Called at splbio and with buffer queues locked. 1137 * Return buffer locked. 1138 */ 1139 struct buf * 1140 getnewbuf(int slpflag, int slptimeo, int from_bufq) 1141 { 1142 struct buf *bp; 1143 1144 start: 1145 LOCK_ASSERT(simple_lock_held(&bqueue_slock)); 1146 1147 /* 1148 * Get a new buffer from the pool; but use NOWAIT because 1149 * we have the buffer queues locked. 1150 */ 1151 if (buf_lotsfree() && !from_bufq && 1152 (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) { 1153 memset((char *)bp, 0, sizeof(*bp)); 1154 BUF_INIT(bp); 1155 bp->b_dev = NODEV; 1156 bp->b_vnbufs.le_next = NOLIST; 1157 bp->b_flags = B_BUSY; 1158 simple_lock(&bp->b_interlock); 1159 return (bp); 1160 } 1161 1162 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE])) != NULL || 1163 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU])) != NULL) { 1164 simple_lock(&bp->b_interlock); 1165 bremfree(bp); 1166 } else { 1167 /* wait for a free buffer of any kind */ 1168 needbuffer = 1; 1169 ltsleep(&needbuffer, slpflag|(PRIBIO + 1), 1170 "getnewbuf", slptimeo, &bqueue_slock); 1171 return (NULL); 1172 } 1173 1174 #ifdef DIAGNOSTIC 1175 if (bp->b_bufsize <= 0) 1176 panic("buffer %p: on queue but empty", bp); 1177 #endif 1178 1179 if (ISSET(bp->b_flags, B_VFLUSH)) { 1180 /* 1181 * This is a delayed write buffer being flushed to disk. Make 1182 * sure it gets aged out of the queue when it's finished, and 1183 * leave it off the LRU queue. 1184 */ 1185 CLR(bp->b_flags, B_VFLUSH); 1186 SET(bp->b_flags, B_AGE); 1187 simple_unlock(&bp->b_interlock); 1188 goto start; 1189 } 1190 1191 /* Buffer is no longer on free lists. */ 1192 SET(bp->b_flags, B_BUSY); 1193 1194 /* 1195 * If buffer was a delayed write, start it and return NULL 1196 * (since we might sleep while starting the write). 1197 */ 1198 if (ISSET(bp->b_flags, B_DELWRI)) { 1199 /* 1200 * This buffer has gone through the LRU, so make sure it gets 1201 * reused ASAP. 1202 */ 1203 SET(bp->b_flags, B_AGE); 1204 simple_unlock(&bp->b_interlock); 1205 simple_unlock(&bqueue_slock); 1206 bawrite(bp); 1207 simple_lock(&bqueue_slock); 1208 return (NULL); 1209 } 1210 1211 /* disassociate us from our vnode, if we had one... */ 1212 if (bp->b_vp) 1213 brelvp(bp); 1214 1215 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) 1216 (*bioops.io_deallocate)(bp); 1217 1218 /* clear out various other fields */ 1219 bp->b_flags = B_BUSY; 1220 bp->b_dev = NODEV; 1221 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0; 1222 bp->b_iodone = 0; 1223 bp->b_error = 0; 1224 bp->b_resid = 0; 1225 bp->b_bcount = 0; 1226 1227 bremhash(bp); 1228 return (bp); 1229 } 1230 1231 /* 1232 * Attempt to free an aged buffer off the queues. 1233 * Called at splbio and with queue lock held. 1234 * Returns the amount of buffer memory freed. 1235 */ 1236 int 1237 buf_trim(void) 1238 { 1239 struct buf *bp; 1240 long size = 0; 1241 int wanted; 1242 1243 /* Instruct getnewbuf() to get buffers off the queues */ 1244 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL) 1245 return 0; 1246 1247 wanted = ISSET(bp->b_flags, B_WANTED); 1248 simple_unlock(&bp->b_interlock); 1249 if (wanted) { 1250 printf("buftrim: got WANTED buffer\n"); 1251 SET(bp->b_flags, B_INVAL); 1252 binshash(bp, &invalhash); 1253 simple_unlock(&bqueue_slock); 1254 goto out; 1255 } 1256 size = bp->b_bufsize; 1257 bufmem -= size; 1258 simple_unlock(&bqueue_slock); 1259 if (size > 0) { 1260 buf_mrelease(bp->b_data, size); 1261 bp->b_bcount = bp->b_bufsize = 0; 1262 } 1263 1264 out: 1265 /* brelse() will return the buffer to the global buffer pool */ 1266 brelse(bp); 1267 simple_lock(&bqueue_slock); 1268 return size; 1269 } 1270 1271 int 1272 buf_drain(int n) 1273 { 1274 int s, size = 0; 1275 1276 s = splbio(); 1277 simple_lock(&bqueue_slock); 1278 1279 /* If not asked for a specific amount, make our own estimate */ 1280 if (n == 0) 1281 n = buf_canrelease(); 1282 1283 while (size < n && bufmem > bufmem_lowater) 1284 size += buf_trim(); 1285 1286 simple_unlock(&bqueue_slock); 1287 splx(s); 1288 return size; 1289 } 1290 1291 /* 1292 * Wait for operations on the buffer to complete. 1293 * When they do, extract and return the I/O's error value. 1294 */ 1295 int 1296 biowait(struct buf *bp) 1297 { 1298 int s, error; 1299 1300 s = splbio(); 1301 simple_lock(&bp->b_interlock); 1302 while (!ISSET(bp->b_flags, B_DONE | B_DELWRI)) 1303 ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock); 1304 1305 /* check for interruption of I/O (e.g. via NFS), then errors. */ 1306 if (ISSET(bp->b_flags, B_EINTR)) { 1307 CLR(bp->b_flags, B_EINTR); 1308 error = EINTR; 1309 } else if (ISSET(bp->b_flags, B_ERROR)) 1310 error = bp->b_error ? bp->b_error : EIO; 1311 else 1312 error = 0; 1313 1314 simple_unlock(&bp->b_interlock); 1315 splx(s); 1316 return (error); 1317 } 1318 1319 /* 1320 * Mark I/O complete on a buffer. 1321 * 1322 * If a callback has been requested, e.g. the pageout 1323 * daemon, do so. Otherwise, awaken waiting processes. 1324 * 1325 * [ Leffler, et al., says on p.247: 1326 * "This routine wakes up the blocked process, frees the buffer 1327 * for an asynchronous write, or, for a request by the pagedaemon 1328 * process, invokes a procedure specified in the buffer structure" ] 1329 * 1330 * In real life, the pagedaemon (or other system processes) wants 1331 * to do async stuff to, and doesn't want the buffer brelse()'d. 1332 * (for swap pager, that puts swap buffers on the free lists (!!!), 1333 * for the vn device, that puts malloc'd buffers on the free lists!) 1334 */ 1335 void 1336 biodone(struct buf *bp) 1337 { 1338 int s = splbio(); 1339 1340 simple_lock(&bp->b_interlock); 1341 if (ISSET(bp->b_flags, B_DONE)) 1342 panic("biodone already"); 1343 SET(bp->b_flags, B_DONE); /* note that it's done */ 1344 BIO_SETPRIO(bp, BPRIO_DEFAULT); 1345 1346 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete) 1347 (*bioops.io_complete)(bp); 1348 1349 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */ 1350 vwakeup(bp); 1351 1352 /* 1353 * If necessary, call out. Unlock the buffer before calling 1354 * iodone() as the buffer isn't valid any more when it return. 1355 */ 1356 if (ISSET(bp->b_flags, B_CALL)) { 1357 CLR(bp->b_flags, B_CALL); /* but note callout done */ 1358 simple_unlock(&bp->b_interlock); 1359 (*bp->b_iodone)(bp); 1360 } else { 1361 if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release */ 1362 simple_unlock(&bp->b_interlock); 1363 brelse(bp); 1364 } else { /* or just wakeup the buffer */ 1365 CLR(bp->b_flags, B_WANTED); 1366 wakeup(bp); 1367 simple_unlock(&bp->b_interlock); 1368 } 1369 } 1370 1371 splx(s); 1372 } 1373 1374 /* 1375 * Return a count of buffers on the "locked" queue. 1376 */ 1377 int 1378 count_lock_queue(void) 1379 { 1380 struct buf *bp; 1381 int n = 0; 1382 1383 simple_lock(&bqueue_slock); 1384 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED], b_freelist) 1385 n++; 1386 simple_unlock(&bqueue_slock); 1387 return (n); 1388 } 1389 1390 /* 1391 * Wait for all buffers to complete I/O 1392 * Return the number of "stuck" buffers. 1393 */ 1394 int 1395 buf_syncwait(void) 1396 { 1397 struct buf *bp; 1398 int iter, nbusy, nbusy_prev = 0, dcount, s, ihash; 1399 1400 dcount = 10000; 1401 for (iter = 0; iter < 20;) { 1402 s = splbio(); 1403 simple_lock(&bqueue_slock); 1404 nbusy = 0; 1405 for (ihash = 0; ihash < bufhash+1; ihash++) { 1406 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) { 1407 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY) 1408 nbusy++; 1409 /* 1410 * With soft updates, some buffers that are 1411 * written will be remarked as dirty until other 1412 * buffers are written. 1413 */ 1414 if (bp->b_vp && bp->b_vp->v_mount 1415 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP) 1416 && (bp->b_flags & B_DELWRI)) { 1417 simple_lock(&bp->b_interlock); 1418 bremfree(bp); 1419 bp->b_flags |= B_BUSY; 1420 nbusy++; 1421 simple_unlock(&bp->b_interlock); 1422 simple_unlock(&bqueue_slock); 1423 bawrite(bp); 1424 if (dcount-- <= 0) { 1425 printf("softdep "); 1426 goto fail; 1427 } 1428 simple_lock(&bqueue_slock); 1429 } 1430 } 1431 } 1432 1433 simple_unlock(&bqueue_slock); 1434 splx(s); 1435 1436 if (nbusy == 0) 1437 break; 1438 if (nbusy_prev == 0) 1439 nbusy_prev = nbusy; 1440 printf("%d ", nbusy); 1441 tsleep(&nbusy, PRIBIO, "bflush", 1442 (iter == 0) ? 1 : hz / 25 * iter); 1443 if (nbusy >= nbusy_prev) /* we didn't flush anything */ 1444 iter++; 1445 else 1446 nbusy_prev = nbusy; 1447 } 1448 1449 if (nbusy) { 1450 fail:; 1451 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY) 1452 printf("giving up\nPrinting vnodes for busy buffers\n"); 1453 for (ihash = 0; ihash < bufhash+1; ihash++) { 1454 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) { 1455 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY) 1456 vprint(NULL, bp->b_vp); 1457 } 1458 } 1459 #endif 1460 } 1461 1462 return nbusy; 1463 } 1464 1465 static void 1466 sysctl_fillbuf(struct buf *i, struct buf_sysctl *o) 1467 { 1468 1469 o->b_flags = i->b_flags; 1470 o->b_error = i->b_error; 1471 o->b_prio = i->b_prio; 1472 o->b_dev = i->b_dev; 1473 o->b_bufsize = i->b_bufsize; 1474 o->b_bcount = i->b_bcount; 1475 o->b_resid = i->b_resid; 1476 o->b_addr = PTRTOUINT64(i->b_un.b_addr); 1477 o->b_blkno = i->b_blkno; 1478 o->b_rawblkno = i->b_rawblkno; 1479 o->b_iodone = PTRTOUINT64(i->b_iodone); 1480 o->b_proc = PTRTOUINT64(i->b_proc); 1481 o->b_vp = PTRTOUINT64(i->b_vp); 1482 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr); 1483 o->b_lblkno = i->b_lblkno; 1484 } 1485 1486 #define KERN_BUFSLOP 20 1487 static int 1488 sysctl_dobuf(SYSCTLFN_ARGS) 1489 { 1490 struct buf *bp; 1491 struct buf_sysctl bs; 1492 char *dp; 1493 u_int i, op, arg; 1494 size_t len, needed, elem_size, out_size; 1495 int error, s, elem_count; 1496 1497 if (namelen == 1 && name[0] == CTL_QUERY) 1498 return (sysctl_query(SYSCTLFN_CALL(rnode))); 1499 1500 if (namelen != 4) 1501 return (EINVAL); 1502 1503 dp = oldp; 1504 len = (oldp != NULL) ? *oldlenp : 0; 1505 op = name[0]; 1506 arg = name[1]; 1507 elem_size = name[2]; 1508 elem_count = name[3]; 1509 out_size = MIN(sizeof(bs), elem_size); 1510 1511 /* 1512 * at the moment, these are just "placeholders" to make the 1513 * API for retrieving kern.buf data more extensible in the 1514 * future. 1515 * 1516 * XXX kern.buf currently has "netbsd32" issues. hopefully 1517 * these will be resolved at a later point. 1518 */ 1519 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL || 1520 elem_size < 1 || elem_count < 0) 1521 return (EINVAL); 1522 1523 error = 0; 1524 needed = 0; 1525 s = splbio(); 1526 simple_lock(&bqueue_slock); 1527 for (i = 0; i < BQUEUES; i++) { 1528 TAILQ_FOREACH(bp, &bufqueues[i], b_freelist) { 1529 if (len >= elem_size && elem_count > 0) { 1530 sysctl_fillbuf(bp, &bs); 1531 error = copyout(&bs, dp, out_size); 1532 if (error) 1533 goto cleanup; 1534 dp += elem_size; 1535 len -= elem_size; 1536 } 1537 if (elem_count > 0) { 1538 needed += elem_size; 1539 if (elem_count != INT_MAX) 1540 elem_count--; 1541 } 1542 } 1543 } 1544 cleanup: 1545 simple_unlock(&bqueue_slock); 1546 splx(s); 1547 1548 *oldlenp = needed; 1549 if (oldp == NULL) 1550 *oldlenp += KERN_BUFSLOP * sizeof(struct buf); 1551 1552 return (error); 1553 } 1554 1555 static int 1556 sysctl_bufvm_update(SYSCTLFN_ARGS) 1557 { 1558 int t, error; 1559 struct sysctlnode node; 1560 1561 node = *rnode; 1562 node.sysctl_data = &t; 1563 t = *(int*)rnode->sysctl_data; 1564 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1565 if (error || newp == NULL) 1566 return (error); 1567 1568 if (rnode->sysctl_data == &bufcache) { 1569 if (t < 0 || t > 100) 1570 return (EINVAL); 1571 bufcache = t; 1572 bufmem_hiwater = buf_memcalc(); 1573 bufmem_lowater = (bufmem_hiwater >> 3); 1574 if (bufmem_lowater < 64 * 1024) 1575 /* Ensure a reasonable minimum value */ 1576 bufmem_lowater = 64 * 1024; 1577 1578 } else if (rnode->sysctl_data == &bufmem_lowater) { 1579 bufmem_lowater = t; 1580 } else if (rnode->sysctl_data == &bufmem_hiwater) { 1581 bufmem_hiwater = t; 1582 } else 1583 return (EINVAL); 1584 1585 /* Drain until below new high water mark */ 1586 while ((t = bufmem - bufmem_hiwater) >= 0) { 1587 if (buf_drain(t / (2*1024)) <= 0) 1588 break; 1589 } 1590 1591 return 0; 1592 } 1593 1594 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup") 1595 { 1596 1597 sysctl_createv(clog, 0, NULL, NULL, 1598 CTLFLAG_PERMANENT, 1599 CTLTYPE_NODE, "kern", NULL, 1600 NULL, 0, NULL, 0, 1601 CTL_KERN, CTL_EOL); 1602 sysctl_createv(clog, 0, NULL, NULL, 1603 CTLFLAG_PERMANENT, 1604 CTLTYPE_NODE, "buf", 1605 SYSCTL_DESCR("Kernel buffer cache information"), 1606 sysctl_dobuf, 0, NULL, 0, 1607 CTL_KERN, KERN_BUF, CTL_EOL); 1608 } 1609 1610 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup") 1611 { 1612 1613 sysctl_createv(clog, 0, NULL, NULL, 1614 CTLFLAG_PERMANENT, 1615 CTLTYPE_NODE, "vm", NULL, 1616 NULL, 0, NULL, 0, 1617 CTL_VM, CTL_EOL); 1618 1619 sysctl_createv(clog, 0, NULL, NULL, 1620 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1621 CTLTYPE_INT, "bufcache", 1622 SYSCTL_DESCR("Percentage of kernel memory to use for " 1623 "buffer cache"), 1624 sysctl_bufvm_update, 0, &bufcache, 0, 1625 CTL_VM, CTL_CREATE, CTL_EOL); 1626 sysctl_createv(clog, 0, NULL, NULL, 1627 CTLFLAG_PERMANENT|CTLFLAG_READONLY, 1628 CTLTYPE_INT, "bufmem", 1629 SYSCTL_DESCR("Amount of kernel memory used by buffer " 1630 "cache"), 1631 NULL, 0, &bufmem, 0, 1632 CTL_VM, CTL_CREATE, CTL_EOL); 1633 sysctl_createv(clog, 0, NULL, NULL, 1634 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1635 CTLTYPE_INT, "bufmem_lowater", 1636 SYSCTL_DESCR("Minimum amount of kernel memory to " 1637 "reserve for buffer cache"), 1638 sysctl_bufvm_update, 0, &bufmem_lowater, 0, 1639 CTL_VM, CTL_CREATE, CTL_EOL); 1640 sysctl_createv(clog, 0, NULL, NULL, 1641 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1642 CTLTYPE_INT, "bufmem_hiwater", 1643 SYSCTL_DESCR("Maximum amount of kernel memory to use " 1644 "for buffer cache"), 1645 sysctl_bufvm_update, 0, &bufmem_hiwater, 0, 1646 CTL_VM, CTL_CREATE, CTL_EOL); 1647 } 1648 1649 #ifdef DEBUG 1650 /* 1651 * Print out statistics on the current allocation of the buffer pool. 1652 * Can be enabled to print out on every ``sync'' by setting "syncprt" 1653 * in vfs_syscalls.c using sysctl. 1654 */ 1655 void 1656 vfs_bufstats(void) 1657 { 1658 int s, i, j, count; 1659 struct buf *bp; 1660 struct bqueues *dp; 1661 int counts[(MAXBSIZE / PAGE_SIZE) + 1]; 1662 static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" }; 1663 1664 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) { 1665 count = 0; 1666 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 1667 counts[j] = 0; 1668 s = splbio(); 1669 TAILQ_FOREACH(bp, dp, b_freelist) { 1670 counts[bp->b_bufsize/PAGE_SIZE]++; 1671 count++; 1672 } 1673 splx(s); 1674 printf("%s: total-%d", bname[i], count); 1675 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 1676 if (counts[j] != 0) 1677 printf(", %d-%d", j * PAGE_SIZE, counts[j]); 1678 printf("\n"); 1679 } 1680 } 1681 #endif /* DEBUG */ 1682