xref: /netbsd-src/sys/kern/vfs_bio.c (revision 4b896b232495b7a9b8b94a1cf1e21873296d53b8)
1 /*	$NetBSD: vfs_bio.c,v 1.125 2004/05/25 04:30:33 atatat Exp $	*/
2 
3 /*-
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
37  */
38 
39 /*-
40  * Copyright (c) 1994 Christopher G. Demetriou
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by the University of
53  *	California, Berkeley and its contributors.
54  * 4. Neither the name of the University nor the names of its contributors
55  *    may be used to endorse or promote products derived from this software
56  *    without specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68  * SUCH DAMAGE.
69  *
70  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
71  */
72 
73 /*
74  * Some references:
75  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
76  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
77  *		UNIX Operating System (Addison Welley, 1989)
78  */
79 
80 #include "opt_bufcache.h"
81 #include "opt_softdep.h"
82 
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.125 2004/05/25 04:30:33 atatat Exp $");
85 
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/vnode.h>
92 #include <sys/mount.h>
93 #include <sys/malloc.h>
94 #include <sys/resourcevar.h>
95 #include <sys/sysctl.h>
96 #include <sys/conf.h>
97 
98 #include <uvm/uvm.h>
99 
100 #include <miscfs/specfs/specdev.h>
101 
102 #ifndef	BUFPAGES
103 # define BUFPAGES 0
104 #endif
105 
106 #ifdef BUFCACHE
107 # if (BUFCACHE < 5) || (BUFCACHE > 95)
108 #  error BUFCACHE is not between 5 and 95
109 # endif
110 #else
111 # define BUFCACHE 15
112 #endif
113 
114 u_int	nbuf;			/* XXX - for softdep_lockedbufs */
115 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
116 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
117 
118 
119 /* Macros to clear/set/test flags. */
120 #define	SET(t, f)	(t) |= (f)
121 #define	CLR(t, f)	(t) &= ~(f)
122 #define	ISSET(t, f)	((t) & (f))
123 
124 /*
125  * Definitions for the buffer hash lists.
126  */
127 #define	BUFHASH(dvp, lbn)	\
128 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
129 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
130 u_long	bufhash;
131 #ifndef SOFTDEP
132 struct bio_ops bioops;	/* I/O operation notification */
133 #endif
134 
135 /*
136  * Insq/Remq for the buffer hash lists.
137  */
138 #define	binshash(bp, dp)	LIST_INSERT_HEAD(dp, bp, b_hash)
139 #define	bremhash(bp)		LIST_REMOVE(bp, b_hash)
140 
141 /*
142  * Definitions for the buffer free lists.
143  */
144 #define	BQUEUES		3		/* number of free buffer queues */
145 
146 #define	BQ_LOCKED	0		/* super-blocks &c */
147 #define	BQ_LRU		1		/* lru, useful buffers */
148 #define	BQ_AGE		2		/* rubbish */
149 
150 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
151 int needbuffer;
152 
153 /*
154  * Buffer queue lock.
155  * Take this lock first if also taking some buffer's b_interlock.
156  */
157 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
158 
159 /*
160  * Buffer pool for I/O buffers.
161  */
162 struct pool bufpool;
163 
164 /* XXX - somewhat gross.. */
165 #if MAXBSIZE == 0x2000
166 #define NMEMPOOLS 4
167 #elif MAXBSIZE == 0x4000
168 #define NMEMPOOLS 5
169 #elif MAXBSIZE == 0x8000
170 #define NMEMPOOLS 6
171 #else
172 #define NMEMPOOLS 7
173 #endif
174 
175 #define MEMPOOL_INDEX_OFFSET 10		/* smallest pool is 1k */
176 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
177 #error update vfs_bio buffer memory parameters
178 #endif
179 
180 /* Buffer memory pools */
181 static struct pool bmempools[NMEMPOOLS];
182 
183 struct vm_map *buf_map;
184 
185 /*
186  * Buffer memory pool allocator.
187  */
188 static void *
189 bufpool_page_alloc(struct pool *pp, int flags)
190 {
191 
192 	return (void *)uvm_km_kmemalloc1(buf_map,
193 	    uvm.kernel_object, MAXBSIZE, MAXBSIZE, UVM_UNKNOWN_OFFSET,
194 	    (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
195 }
196 
197 static void
198 bufpool_page_free(struct pool *pp, void *v)
199 {
200 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE);
201 }
202 
203 static struct pool_allocator bufmempool_allocator = {
204 	bufpool_page_alloc, bufpool_page_free, MAXBSIZE,
205 };
206 
207 /* Buffer memory management variables */
208 u_long bufmem_valimit;
209 u_long bufmem_hiwater;
210 u_long bufmem_lowater;
211 u_long bufmem;
212 
213 /*
214  * MD code can call this to set a hard limit on the amount
215  * of virtual memory used by the buffer cache.
216  */
217 int
218 buf_setvalimit(vsize_t sz)
219 {
220 
221 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
222 	if (sz < NMEMPOOLS * MAXBSIZE)
223 		return EINVAL;
224 
225 	bufmem_valimit = sz;
226 	return 0;
227 }
228 
229 static int buf_trim(void);
230 
231 /*
232  * bread()/breadn() helper.
233  */
234 static __inline struct buf *bio_doread(struct vnode *, daddr_t, int,
235 					struct ucred *, int);
236 int count_lock_queue(void);
237 
238 /*
239  * Insq/Remq for the buffer free lists.
240  * Call with buffer queue locked.
241  */
242 #define	binsheadfree(bp, dp)	TAILQ_INSERT_HEAD(dp, bp, b_freelist)
243 #define	binstailfree(bp, dp)	TAILQ_INSERT_TAIL(dp, bp, b_freelist)
244 
245 #ifdef DEBUG
246 int debug_verify_freelist = 0;
247 static int checkfreelist(struct buf *bp, struct bqueues *dp)
248 {
249 	struct buf *b;
250 	TAILQ_FOREACH(b, dp, b_freelist) {
251 		if (b == bp)
252 			return 1;
253 	}
254 	return 0;
255 }
256 #endif
257 
258 void
259 bremfree(struct buf *bp)
260 {
261 	struct bqueues *dp = NULL;
262 
263 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
264 
265 	KDASSERT(!debug_verify_freelist ||
266 		checkfreelist(bp, &bufqueues[BQ_AGE]) ||
267 		checkfreelist(bp, &bufqueues[BQ_LRU]) ||
268 		checkfreelist(bp, &bufqueues[BQ_LOCKED]) );
269 
270 	/*
271 	 * We only calculate the head of the freelist when removing
272 	 * the last element of the list as that is the only time that
273 	 * it is needed (e.g. to reset the tail pointer).
274 	 *
275 	 * NB: This makes an assumption about how tailq's are implemented.
276 	 *
277 	 * We break the TAILQ abstraction in order to efficiently remove a
278 	 * buffer from its freelist without having to know exactly which
279 	 * freelist it is on.
280 	 */
281 	if (TAILQ_NEXT(bp, b_freelist) == NULL) {
282 		for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
283 			if (dp->tqh_last == &bp->b_freelist.tqe_next)
284 				break;
285 		if (dp == &bufqueues[BQUEUES])
286 			panic("bremfree: lost tail");
287 	}
288 	TAILQ_REMOVE(dp, bp, b_freelist);
289 }
290 
291 u_long
292 buf_memcalc(void)
293 {
294 	u_long n;
295 
296 	/*
297 	 * Determine the upper bound of memory to use for buffers.
298 	 *
299 	 *	- If bufpages is specified, use that as the number
300 	 *	  pages.
301 	 *
302 	 *	- Otherwise, use bufcache as the percentage of
303 	 *	  physical memory.
304 	 */
305 	if (bufpages != 0) {
306 		n = bufpages;
307 	} else {
308 		if (bufcache < 5) {
309 			printf("forcing bufcache %d -> 5", bufcache);
310 			bufcache = 5;
311 		}
312 		if (bufcache > 95) {
313 			printf("forcing bufcache %d -> 95", bufcache);
314 			bufcache = 95;
315 		}
316 		n = physmem / 100 * bufcache;
317 	}
318 
319 	n <<= PAGE_SHIFT;
320 	if (bufmem_valimit != 0 && n > bufmem_valimit)
321 		n = bufmem_valimit;
322 
323 	return (n);
324 }
325 
326 /*
327  * Initialize buffers and hash links for buffers.
328  */
329 void
330 bufinit(void)
331 {
332 	struct bqueues *dp;
333 	int smallmem;
334 	u_int i;
335 
336 	/*
337 	 * Initialize buffer cache memory parameters.
338 	 */
339 	bufmem = 0;
340 	bufmem_hiwater = buf_memcalc();
341 	/* lowater is approx. 2% of memory (with bufcache=15) */
342 	bufmem_lowater = (bufmem_hiwater >> 3);
343 	if (bufmem_lowater < 64 * 1024)
344 		/* Ensure a reasonable minimum value */
345 		bufmem_lowater = 64 * 1024;
346 
347 	if (bufmem_valimit != 0) {
348 		vaddr_t minaddr = 0, maxaddr;
349 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
350 					  bufmem_valimit, VM_MAP_PAGEABLE,
351 					  FALSE, 0);
352 		if (buf_map == NULL)
353 			panic("bufinit: cannot allocate submap");
354 	} else
355 		buf_map = kernel_map;
356 
357 	/*
358 	 * Initialize the buffer pools.
359 	 */
360 	pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
361 
362 	/* On "small" machines use small pool page sizes where possible */
363 	smallmem = (physmem < atop(16*1024*1024));
364 
365 	for (i = 0; i < NMEMPOOLS; i++) {
366 		struct pool_allocator *pa;
367 		struct pool *pp = &bmempools[i];
368 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
369 		char *name = malloc(8, M_TEMP, M_WAITOK);
370 		snprintf(name, 8, "buf%dk", 1 << i);
371 		pa = (size <= PAGE_SIZE && smallmem)
372 			? &pool_allocator_nointr
373 			: &bufmempool_allocator;
374 		pool_init(pp, size, 0, 0, PR_IMMEDRELEASE, name, pa);
375 		pool_setlowat(pp, 1);
376 	}
377 
378 	/* Initialize the buffer queues */
379 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
380 		TAILQ_INIT(dp);
381 
382 	/*
383 	 * Estimate hash table size based on the amount of memory we
384 	 * intend to use for the buffer cache. The average buffer
385 	 * size is dependent on our clients (i.e. filesystems).
386 	 *
387 	 * For now, use an empirical 3K per buffer.
388 	 */
389 	nbuf = (bufmem_hiwater / 1024) / 3;
390 	bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
391 }
392 
393 static int
394 buf_lotsfree(void)
395 {
396 	int try, thresh;
397 
398 	/* Always allocate if less than the low water mark. */
399 	if (bufmem < bufmem_lowater)
400 		return 1;
401 
402 	/* Never allocate if greater than the high water mark. */
403 	if (bufmem > bufmem_hiwater)
404 		return 0;
405 
406 	/* If there's anything on the AGE list, it should be eaten. */
407 	if (TAILQ_FIRST(&bufqueues[BQ_AGE]) != NULL)
408 		return 0;
409 
410 	/*
411 	 * The probabily of getting a new allocation is inversely
412 	 * proportional to the current size of the cache, using
413 	 * a granularity of 16 steps.
414 	 */
415 	try = random() & 0x0000000fL;
416 
417 	/* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
418 	thresh = bufmem / (bufmem_hiwater / 16);
419 
420 	if ((try > thresh) && (uvmexp.free > (2 * uvmexp.freetarg))) {
421 		return 1;
422 	}
423 
424 	/* Otherwise don't allocate. */
425 	return 0;
426 }
427 
428 /*
429  * Return estimate of bytes we think need to be
430  * released to help resolve low memory conditions.
431  *
432  * => called at splbio.
433  * => called with bqueue_slock held.
434  */
435 static int
436 buf_canrelease(void)
437 {
438 	int pagedemand, ninvalid = 0;
439 	struct buf *bp;
440 
441 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
442 
443 	if (bufmem < bufmem_lowater)
444 		return 0;
445 
446 	TAILQ_FOREACH(bp, &bufqueues[BQ_AGE], b_freelist)
447 		ninvalid += bp->b_bufsize;
448 
449 	pagedemand = uvmexp.freetarg - uvmexp.free;
450 	if (pagedemand < 0)
451 		return ninvalid;
452 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
453 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
454 }
455 
456 /*
457  * Buffer memory allocation helper functions
458  */
459 static __inline u_long
460 buf_mempoolidx(u_long size)
461 {
462 	u_int n = 0;
463 
464 	size -= 1;
465 	size >>= MEMPOOL_INDEX_OFFSET;
466 	while (size) {
467 		size >>= 1;
468 		n += 1;
469 	}
470 	if (n >= NMEMPOOLS)
471 		panic("buf mem pool index %d", n);
472 	return n;
473 }
474 
475 static __inline u_long
476 buf_roundsize(u_long size)
477 {
478 	/* Round up to nearest power of 2 */
479 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
480 }
481 
482 static __inline caddr_t
483 buf_malloc(size_t size)
484 {
485 	u_int n = buf_mempoolidx(size);
486 	caddr_t addr;
487 	int s;
488 
489 	while (1) {
490 		addr = pool_get(&bmempools[n], PR_NOWAIT);
491 		if (addr != NULL)
492 			break;
493 
494 		/* No memory, see if we can free some. If so, try again */
495 		if (buf_drain(1) > 0)
496 			continue;
497 
498 		/* Wait for buffers to arrive on the LRU queue */
499 		s = splbio();
500 		simple_lock(&bqueue_slock);
501 		needbuffer = 1;
502 		ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
503 			"buf_malloc", 0, &bqueue_slock);
504 		splx(s);
505 	}
506 
507 	return addr;
508 }
509 
510 static void
511 buf_mrelease(caddr_t addr, size_t size)
512 {
513 
514 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
515 }
516 
517 
518 static __inline struct buf *
519 bio_doread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
520     int async)
521 {
522 	struct buf *bp;
523 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
524 	struct proc *p = l->l_proc;
525 	struct mount *mp;
526 
527 	bp = getblk(vp, blkno, size, 0, 0);
528 
529 #ifdef DIAGNOSTIC
530 	if (bp == NULL) {
531 		panic("bio_doread: no such buf");
532 	}
533 #endif
534 
535 	/*
536 	 * If buffer does not have data valid, start a read.
537 	 * Note that if buffer is B_INVAL, getblk() won't return it.
538 	 * Therefore, it's valid if its I/O has completed or been delayed.
539 	 */
540 	if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
541 		/* Start I/O for the buffer. */
542 		SET(bp->b_flags, B_READ | async);
543 		if (async)
544 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
545 		else
546 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
547 		VOP_STRATEGY(vp, bp);
548 
549 		/* Pay for the read. */
550 		p->p_stats->p_ru.ru_inblock++;
551 	} else if (async) {
552 		brelse(bp);
553 	}
554 
555 	if (vp->v_type == VBLK)
556 		mp = vp->v_specmountpoint;
557 	else
558 		mp = vp->v_mount;
559 
560 	/*
561 	 * Collect statistics on synchronous and asynchronous reads.
562 	 * Reads from block devices are charged to their associated
563 	 * filesystem (if any).
564 	 */
565 	if (mp != NULL) {
566 		if (async == 0)
567 			mp->mnt_stat.f_syncreads++;
568 		else
569 			mp->mnt_stat.f_asyncreads++;
570 	}
571 
572 	return (bp);
573 }
574 
575 /*
576  * Read a disk block.
577  * This algorithm described in Bach (p.54).
578  */
579 int
580 bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
581     struct buf **bpp)
582 {
583 	struct buf *bp;
584 
585 	/* Get buffer for block. */
586 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
587 
588 	/* Wait for the read to complete, and return result. */
589 	return (biowait(bp));
590 }
591 
592 /*
593  * Read-ahead multiple disk blocks. The first is sync, the rest async.
594  * Trivial modification to the breada algorithm presented in Bach (p.55).
595  */
596 int
597 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
598     int *rasizes, int nrablks, struct ucred *cred, struct buf **bpp)
599 {
600 	struct buf *bp;
601 	int i;
602 
603 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
604 
605 	/*
606 	 * For each of the read-ahead blocks, start a read, if necessary.
607 	 */
608 	for (i = 0; i < nrablks; i++) {
609 		/* If it's in the cache, just go on to next one. */
610 		if (incore(vp, rablks[i]))
611 			continue;
612 
613 		/* Get a buffer for the read-ahead block */
614 		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
615 	}
616 
617 	/* Otherwise, we had to start a read for it; wait until it's valid. */
618 	return (biowait(bp));
619 }
620 
621 /*
622  * Read with single-block read-ahead.  Defined in Bach (p.55), but
623  * implemented as a call to breadn().
624  * XXX for compatibility with old file systems.
625  */
626 int
627 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
628     int rabsize, struct ucred *cred, struct buf **bpp)
629 {
630 
631 	return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
632 }
633 
634 /*
635  * Block write.  Described in Bach (p.56)
636  */
637 int
638 bwrite(struct buf *bp)
639 {
640 	int rv, sync, wasdelayed, s;
641 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
642 	struct proc *p = l->l_proc;
643 	struct vnode *vp;
644 	struct mount *mp;
645 
646 	KASSERT(ISSET(bp->b_flags, B_BUSY));
647 
648 	vp = bp->b_vp;
649 	if (vp != NULL) {
650 		if (vp->v_type == VBLK)
651 			mp = vp->v_specmountpoint;
652 		else
653 			mp = vp->v_mount;
654 	} else {
655 		mp = NULL;
656 	}
657 
658 	/*
659 	 * Remember buffer type, to switch on it later.  If the write was
660 	 * synchronous, but the file system was mounted with MNT_ASYNC,
661 	 * convert it to a delayed write.
662 	 * XXX note that this relies on delayed tape writes being converted
663 	 * to async, not sync writes (which is safe, but ugly).
664 	 */
665 	sync = !ISSET(bp->b_flags, B_ASYNC);
666 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
667 		bdwrite(bp);
668 		return (0);
669 	}
670 
671 	/*
672 	 * Collect statistics on synchronous and asynchronous writes.
673 	 * Writes to block devices are charged to their associated
674 	 * filesystem (if any).
675 	 */
676 	if (mp != NULL) {
677 		if (sync)
678 			mp->mnt_stat.f_syncwrites++;
679 		else
680 			mp->mnt_stat.f_asyncwrites++;
681 	}
682 
683 	s = splbio();
684 	simple_lock(&bp->b_interlock);
685 
686 	wasdelayed = ISSET(bp->b_flags, B_DELWRI);
687 
688 	CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
689 
690 	/*
691 	 * Pay for the I/O operation and make sure the buf is on the correct
692 	 * vnode queue.
693 	 */
694 	if (wasdelayed)
695 		reassignbuf(bp, bp->b_vp);
696 	else
697 		p->p_stats->p_ru.ru_oublock++;
698 
699 	/* Initiate disk write.  Make sure the appropriate party is charged. */
700 	V_INCR_NUMOUTPUT(bp->b_vp);
701 	simple_unlock(&bp->b_interlock);
702 	splx(s);
703 
704 	if (sync)
705 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
706 	else
707 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
708 
709 	VOP_STRATEGY(vp, bp);
710 
711 	if (sync) {
712 		/* If I/O was synchronous, wait for it to complete. */
713 		rv = biowait(bp);
714 
715 		/* Release the buffer. */
716 		brelse(bp);
717 
718 		return (rv);
719 	} else {
720 		return (0);
721 	}
722 }
723 
724 int
725 vn_bwrite(void *v)
726 {
727 	struct vop_bwrite_args *ap = v;
728 
729 	return (bwrite(ap->a_bp));
730 }
731 
732 /*
733  * Delayed write.
734  *
735  * The buffer is marked dirty, but is not queued for I/O.
736  * This routine should be used when the buffer is expected
737  * to be modified again soon, typically a small write that
738  * partially fills a buffer.
739  *
740  * NB: magnetic tapes cannot be delayed; they must be
741  * written in the order that the writes are requested.
742  *
743  * Described in Leffler, et al. (pp. 208-213).
744  */
745 void
746 bdwrite(struct buf *bp)
747 {
748 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
749 	struct proc *p = l->l_proc;
750 	const struct bdevsw *bdev;
751 	int s;
752 
753 	/* If this is a tape block, write the block now. */
754 	bdev = bdevsw_lookup(bp->b_dev);
755 	if (bdev != NULL && bdev->d_type == D_TAPE) {
756 		bawrite(bp);
757 		return;
758 	}
759 
760 	/*
761 	 * If the block hasn't been seen before:
762 	 *	(1) Mark it as having been seen,
763 	 *	(2) Charge for the write,
764 	 *	(3) Make sure it's on its vnode's correct block list.
765 	 */
766 	s = splbio();
767 	simple_lock(&bp->b_interlock);
768 
769 	KASSERT(ISSET(bp->b_flags, B_BUSY));
770 
771 	if (!ISSET(bp->b_flags, B_DELWRI)) {
772 		SET(bp->b_flags, B_DELWRI);
773 		p->p_stats->p_ru.ru_oublock++;
774 		reassignbuf(bp, bp->b_vp);
775 	}
776 
777 	/* Otherwise, the "write" is done, so mark and release the buffer. */
778 	CLR(bp->b_flags, B_DONE);
779 	simple_unlock(&bp->b_interlock);
780 	splx(s);
781 
782 	brelse(bp);
783 }
784 
785 /*
786  * Asynchronous block write; just an asynchronous bwrite().
787  */
788 void
789 bawrite(struct buf *bp)
790 {
791 	int s;
792 
793 	s = splbio();
794 	simple_lock(&bp->b_interlock);
795 
796 	KASSERT(ISSET(bp->b_flags, B_BUSY));
797 
798 	SET(bp->b_flags, B_ASYNC);
799 	simple_unlock(&bp->b_interlock);
800 	splx(s);
801 	VOP_BWRITE(bp);
802 }
803 
804 /*
805  * Same as first half of bdwrite, mark buffer dirty, but do not release it.
806  * Call at splbio() and with the buffer interlock locked.
807  * Note: called only from biodone() through ffs softdep's bioops.io_complete()
808  */
809 void
810 bdirty(struct buf *bp)
811 {
812 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
813 	struct proc *p = l->l_proc;
814 
815 	LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
816 	KASSERT(ISSET(bp->b_flags, B_BUSY));
817 
818 	CLR(bp->b_flags, B_AGE);
819 
820 	if (!ISSET(bp->b_flags, B_DELWRI)) {
821 		SET(bp->b_flags, B_DELWRI);
822 		p->p_stats->p_ru.ru_oublock++;
823 		reassignbuf(bp, bp->b_vp);
824 	}
825 }
826 
827 /*
828  * Release a buffer on to the free lists.
829  * Described in Bach (p. 46).
830  */
831 void
832 brelse(struct buf *bp)
833 {
834 	struct bqueues *bufq;
835 	int s;
836 
837 	/* Block disk interrupts. */
838 	s = splbio();
839 	simple_lock(&bqueue_slock);
840 	simple_lock(&bp->b_interlock);
841 
842 	KASSERT(ISSET(bp->b_flags, B_BUSY));
843 	KASSERT(!ISSET(bp->b_flags, B_CALL));
844 
845 	/* Wake up any processes waiting for any buffer to become free. */
846 	if (needbuffer) {
847 		needbuffer = 0;
848 		wakeup(&needbuffer);
849 	}
850 
851 	/* Wake up any proceeses waiting for _this_ buffer to become free. */
852 	if (ISSET(bp->b_flags, B_WANTED)) {
853 		CLR(bp->b_flags, B_WANTED|B_AGE);
854 		wakeup(bp);
855 	}
856 
857 	/*
858 	 * Determine which queue the buffer should be on, then put it there.
859 	 */
860 
861 	/* If it's locked, don't report an error; try again later. */
862 	if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
863 		CLR(bp->b_flags, B_ERROR);
864 
865 	/* If it's not cacheable, or an error, mark it invalid. */
866 	if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
867 		SET(bp->b_flags, B_INVAL);
868 
869 	if (ISSET(bp->b_flags, B_VFLUSH)) {
870 		/*
871 		 * This is a delayed write buffer that was just flushed to
872 		 * disk.  It is still on the LRU queue.  If it's become
873 		 * invalid, then we need to move it to a different queue;
874 		 * otherwise leave it in its current position.
875 		 */
876 		CLR(bp->b_flags, B_VFLUSH);
877 		if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) {
878 			KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
879 			goto already_queued;
880 		} else {
881 			bremfree(bp);
882 		}
883 	}
884 
885   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
886   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
887   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
888 
889 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
890 		/*
891 		 * If it's invalid or empty, dissociate it from its vnode
892 		 * and put on the head of the appropriate queue.
893 		 */
894 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
895 			(*bioops.io_deallocate)(bp);
896 		CLR(bp->b_flags, B_DONE|B_DELWRI);
897 		if (bp->b_vp) {
898 			reassignbuf(bp, bp->b_vp);
899 			brelvp(bp);
900 		}
901 		if (bp->b_bufsize <= 0)
902 			/* no data */
903 			goto already_queued;
904 		else
905 			/* invalid data */
906 			bufq = &bufqueues[BQ_AGE];
907 		binsheadfree(bp, bufq);
908 	} else {
909 		/*
910 		 * It has valid data.  Put it on the end of the appropriate
911 		 * queue, so that it'll stick around for as long as possible.
912 		 * If buf is AGE, but has dependencies, must put it on last
913 		 * bufqueue to be scanned, ie LRU. This protects against the
914 		 * livelock where BQ_AGE only has buffers with dependencies,
915 		 * and we thus never get to the dependent buffers in BQ_LRU.
916 		 */
917 		if (ISSET(bp->b_flags, B_LOCKED))
918 			/* locked in core */
919 			bufq = &bufqueues[BQ_LOCKED];
920 		else if (!ISSET(bp->b_flags, B_AGE))
921 			/* valid data */
922 			bufq = &bufqueues[BQ_LRU];
923 		else {
924 			/* stale but valid data */
925 			int has_deps;
926 
927 			if (LIST_FIRST(&bp->b_dep) != NULL &&
928 			    bioops.io_countdeps)
929 				has_deps = (*bioops.io_countdeps)(bp, 0);
930 			else
931 				has_deps = 0;
932 			bufq = has_deps ? &bufqueues[BQ_LRU] :
933 			    &bufqueues[BQ_AGE];
934 		}
935 		binstailfree(bp, bufq);
936 	}
937 
938 already_queued:
939 	/* Unlock the buffer. */
940 	CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
941 	SET(bp->b_flags, B_CACHE);
942 
943 	/* Allow disk interrupts. */
944 	simple_unlock(&bp->b_interlock);
945 	simple_unlock(&bqueue_slock);
946 	if (bp->b_bufsize <= 0) {
947 #ifdef DEBUG
948 		memset((char *)bp, 0, sizeof(*bp));
949 #endif
950 		pool_put(&bufpool, bp);
951 	}
952 	splx(s);
953 }
954 
955 /*
956  * Determine if a block is in the cache.
957  * Just look on what would be its hash chain.  If it's there, return
958  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
959  * we normally don't return the buffer, unless the caller explicitly
960  * wants us to.
961  */
962 struct buf *
963 incore(struct vnode *vp, daddr_t blkno)
964 {
965 	struct buf *bp;
966 
967 	/* Search hash chain */
968 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
969 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
970 		    !ISSET(bp->b_flags, B_INVAL))
971 		return (bp);
972 	}
973 
974 	return (NULL);
975 }
976 
977 /*
978  * Get a block of requested size that is associated with
979  * a given vnode and block offset. If it is found in the
980  * block cache, mark it as having been found, make it busy
981  * and return it. Otherwise, return an empty block of the
982  * correct size. It is up to the caller to insure that the
983  * cached blocks be of the correct size.
984  */
985 struct buf *
986 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
987 {
988 	struct buf *bp;
989 	int s, err;
990 	int preserve;
991 
992 start:
993 	s = splbio();
994 	simple_lock(&bqueue_slock);
995 	bp = incore(vp, blkno);
996 	if (bp != NULL) {
997 		simple_lock(&bp->b_interlock);
998 		if (ISSET(bp->b_flags, B_BUSY)) {
999 			simple_unlock(&bqueue_slock);
1000 			if (curproc == uvm.pagedaemon_proc) {
1001 				simple_unlock(&bp->b_interlock);
1002 				splx(s);
1003 				return NULL;
1004 			}
1005 			SET(bp->b_flags, B_WANTED);
1006 			err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
1007 					"getblk", slptimeo, &bp->b_interlock);
1008 			splx(s);
1009 			if (err)
1010 				return (NULL);
1011 			goto start;
1012 		}
1013 #ifdef DIAGNOSTIC
1014 		if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
1015 		    bp->b_bcount < size && vp->v_type != VBLK)
1016 			panic("getblk: block size invariant failed");
1017 #endif
1018 		SET(bp->b_flags, B_BUSY);
1019 		bremfree(bp);
1020 		preserve = 1;
1021 	} else {
1022 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
1023 			simple_unlock(&bqueue_slock);
1024 			splx(s);
1025 			goto start;
1026 		}
1027 
1028 		binshash(bp, BUFHASH(vp, blkno));
1029 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1030 		bgetvp(vp, bp);
1031 		preserve = 0;
1032 	}
1033 	simple_unlock(&bp->b_interlock);
1034 	simple_unlock(&bqueue_slock);
1035 	splx(s);
1036 	/*
1037 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1038 	 * if we re-size buffers here.
1039 	 */
1040 	if (ISSET(bp->b_flags, B_LOCKED)) {
1041 		KASSERT(bp->b_bufsize >= size);
1042 	} else {
1043 		allocbuf(bp, size, preserve);
1044 	}
1045 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1046 	return (bp);
1047 }
1048 
1049 /*
1050  * Get an empty, disassociated buffer of given size.
1051  */
1052 struct buf *
1053 geteblk(int size)
1054 {
1055 	struct buf *bp;
1056 	int s;
1057 
1058 	s = splbio();
1059 	simple_lock(&bqueue_slock);
1060 	while ((bp = getnewbuf(0, 0, 0)) == 0)
1061 		;
1062 
1063 	SET(bp->b_flags, B_INVAL);
1064 	binshash(bp, &invalhash);
1065 	simple_unlock(&bqueue_slock);
1066 	simple_unlock(&bp->b_interlock);
1067 	splx(s);
1068 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1069 	allocbuf(bp, size, 0);
1070 	return (bp);
1071 }
1072 
1073 /*
1074  * Expand or contract the actual memory allocated to a buffer.
1075  *
1076  * If the buffer shrinks, data is lost, so it's up to the
1077  * caller to have written it out *first*; this routine will not
1078  * start a write.  If the buffer grows, it's the callers
1079  * responsibility to fill out the buffer's additional contents.
1080  */
1081 void
1082 allocbuf(struct buf *bp, int size, int preserve)
1083 {
1084 	vsize_t oldsize, desired_size;
1085 	caddr_t addr;
1086 	int s, delta;
1087 
1088 	desired_size = buf_roundsize(size);
1089 	if (desired_size > MAXBSIZE)
1090 		printf("allocbuf: buffer larger than MAXBSIZE requested");
1091 
1092 	bp->b_bcount = size;
1093 
1094 	oldsize = bp->b_bufsize;
1095 	if (oldsize == desired_size)
1096 		return;
1097 
1098 	/*
1099 	 * If we want a buffer of a different size, re-allocate the
1100 	 * buffer's memory; copy old content only if needed.
1101 	 */
1102 	addr = buf_malloc(desired_size);
1103 	if (preserve)
1104 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1105 	if (bp->b_data != NULL)
1106 		buf_mrelease(bp->b_data, oldsize);
1107 	bp->b_data = addr;
1108 	bp->b_bufsize = desired_size;
1109 
1110 	/*
1111 	 * Update overall buffer memory counter (protected by bqueue_slock)
1112 	 */
1113 	delta = (long)desired_size - (long)oldsize;
1114 
1115 	s = splbio();
1116 	simple_lock(&bqueue_slock);
1117 	if ((bufmem += delta) > bufmem_hiwater) {
1118 		/*
1119 		 * Need to trim overall memory usage.
1120 		 */
1121 		while (buf_canrelease()) {
1122 			if (buf_trim() == 0)
1123 				break;
1124 		}
1125 	}
1126 
1127 	simple_unlock(&bqueue_slock);
1128 	splx(s);
1129 }
1130 
1131 /*
1132  * Find a buffer which is available for use.
1133  * Select something from a free list.
1134  * Preference is to AGE list, then LRU list.
1135  *
1136  * Called at splbio and with buffer queues locked.
1137  * Return buffer locked.
1138  */
1139 struct buf *
1140 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1141 {
1142 	struct buf *bp;
1143 
1144 start:
1145 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
1146 
1147 	/*
1148 	 * Get a new buffer from the pool; but use NOWAIT because
1149 	 * we have the buffer queues locked.
1150 	 */
1151 	if (buf_lotsfree() && !from_bufq &&
1152 	    (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
1153 		memset((char *)bp, 0, sizeof(*bp));
1154 		BUF_INIT(bp);
1155 		bp->b_dev = NODEV;
1156 		bp->b_vnbufs.le_next = NOLIST;
1157 		bp->b_flags = B_BUSY;
1158 		simple_lock(&bp->b_interlock);
1159 		return (bp);
1160 	}
1161 
1162 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE])) != NULL ||
1163 	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU])) != NULL) {
1164 		simple_lock(&bp->b_interlock);
1165 		bremfree(bp);
1166 	} else {
1167 		/* wait for a free buffer of any kind */
1168 		needbuffer = 1;
1169 		ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
1170 			"getnewbuf", slptimeo, &bqueue_slock);
1171 		return (NULL);
1172 	}
1173 
1174 #ifdef DIAGNOSTIC
1175 	if (bp->b_bufsize <= 0)
1176 		panic("buffer %p: on queue but empty", bp);
1177 #endif
1178 
1179 	if (ISSET(bp->b_flags, B_VFLUSH)) {
1180 		/*
1181 		 * This is a delayed write buffer being flushed to disk.  Make
1182 		 * sure it gets aged out of the queue when it's finished, and
1183 		 * leave it off the LRU queue.
1184 		 */
1185 		CLR(bp->b_flags, B_VFLUSH);
1186 		SET(bp->b_flags, B_AGE);
1187 		simple_unlock(&bp->b_interlock);
1188 		goto start;
1189 	}
1190 
1191 	/* Buffer is no longer on free lists. */
1192 	SET(bp->b_flags, B_BUSY);
1193 
1194 	/*
1195 	 * If buffer was a delayed write, start it and return NULL
1196 	 * (since we might sleep while starting the write).
1197 	 */
1198 	if (ISSET(bp->b_flags, B_DELWRI)) {
1199 		/*
1200 		 * This buffer has gone through the LRU, so make sure it gets
1201 		 * reused ASAP.
1202 		 */
1203 		SET(bp->b_flags, B_AGE);
1204 		simple_unlock(&bp->b_interlock);
1205 		simple_unlock(&bqueue_slock);
1206 		bawrite(bp);
1207 		simple_lock(&bqueue_slock);
1208 		return (NULL);
1209 	}
1210 
1211 	/* disassociate us from our vnode, if we had one... */
1212 	if (bp->b_vp)
1213 		brelvp(bp);
1214 
1215 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1216 		(*bioops.io_deallocate)(bp);
1217 
1218 	/* clear out various other fields */
1219 	bp->b_flags = B_BUSY;
1220 	bp->b_dev = NODEV;
1221 	bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
1222 	bp->b_iodone = 0;
1223 	bp->b_error = 0;
1224 	bp->b_resid = 0;
1225 	bp->b_bcount = 0;
1226 
1227 	bremhash(bp);
1228 	return (bp);
1229 }
1230 
1231 /*
1232  * Attempt to free an aged buffer off the queues.
1233  * Called at splbio and with queue lock held.
1234  * Returns the amount of buffer memory freed.
1235  */
1236 int
1237 buf_trim(void)
1238 {
1239 	struct buf *bp;
1240 	long size = 0;
1241 	int wanted;
1242 
1243 	/* Instruct getnewbuf() to get buffers off the queues */
1244 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1245 		return 0;
1246 
1247 	wanted = ISSET(bp->b_flags, B_WANTED);
1248 	simple_unlock(&bp->b_interlock);
1249 	if (wanted) {
1250 		printf("buftrim: got WANTED buffer\n");
1251 		SET(bp->b_flags, B_INVAL);
1252 		binshash(bp, &invalhash);
1253 		simple_unlock(&bqueue_slock);
1254 		goto out;
1255 	}
1256 	size = bp->b_bufsize;
1257 	bufmem -= size;
1258 	simple_unlock(&bqueue_slock);
1259 	if (size > 0) {
1260 		buf_mrelease(bp->b_data, size);
1261 		bp->b_bcount = bp->b_bufsize = 0;
1262 	}
1263 
1264 out:
1265 	/* brelse() will return the buffer to the global buffer pool */
1266 	brelse(bp);
1267 	simple_lock(&bqueue_slock);
1268 	return size;
1269 }
1270 
1271 int
1272 buf_drain(int n)
1273 {
1274 	int s, size = 0;
1275 
1276 	s = splbio();
1277 	simple_lock(&bqueue_slock);
1278 
1279 	/* If not asked for a specific amount, make our own estimate */
1280 	if (n == 0)
1281 		n = buf_canrelease();
1282 
1283 	while (size < n && bufmem > bufmem_lowater)
1284 		size += buf_trim();
1285 
1286 	simple_unlock(&bqueue_slock);
1287 	splx(s);
1288 	return size;
1289 }
1290 
1291 /*
1292  * Wait for operations on the buffer to complete.
1293  * When they do, extract and return the I/O's error value.
1294  */
1295 int
1296 biowait(struct buf *bp)
1297 {
1298 	int s, error;
1299 
1300 	s = splbio();
1301 	simple_lock(&bp->b_interlock);
1302 	while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
1303 		ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
1304 
1305 	/* check for interruption of I/O (e.g. via NFS), then errors. */
1306 	if (ISSET(bp->b_flags, B_EINTR)) {
1307 		CLR(bp->b_flags, B_EINTR);
1308 		error = EINTR;
1309 	} else if (ISSET(bp->b_flags, B_ERROR))
1310 		error = bp->b_error ? bp->b_error : EIO;
1311 	else
1312 		error = 0;
1313 
1314 	simple_unlock(&bp->b_interlock);
1315 	splx(s);
1316 	return (error);
1317 }
1318 
1319 /*
1320  * Mark I/O complete on a buffer.
1321  *
1322  * If a callback has been requested, e.g. the pageout
1323  * daemon, do so. Otherwise, awaken waiting processes.
1324  *
1325  * [ Leffler, et al., says on p.247:
1326  *	"This routine wakes up the blocked process, frees the buffer
1327  *	for an asynchronous write, or, for a request by the pagedaemon
1328  *	process, invokes a procedure specified in the buffer structure" ]
1329  *
1330  * In real life, the pagedaemon (or other system processes) wants
1331  * to do async stuff to, and doesn't want the buffer brelse()'d.
1332  * (for swap pager, that puts swap buffers on the free lists (!!!),
1333  * for the vn device, that puts malloc'd buffers on the free lists!)
1334  */
1335 void
1336 biodone(struct buf *bp)
1337 {
1338 	int s = splbio();
1339 
1340 	simple_lock(&bp->b_interlock);
1341 	if (ISSET(bp->b_flags, B_DONE))
1342 		panic("biodone already");
1343 	SET(bp->b_flags, B_DONE);		/* note that it's done */
1344 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1345 
1346 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
1347 		(*bioops.io_complete)(bp);
1348 
1349 	if (!ISSET(bp->b_flags, B_READ))	/* wake up reader */
1350 		vwakeup(bp);
1351 
1352 	/*
1353 	 * If necessary, call out.  Unlock the buffer before calling
1354 	 * iodone() as the buffer isn't valid any more when it return.
1355 	 */
1356 	if (ISSET(bp->b_flags, B_CALL)) {
1357 		CLR(bp->b_flags, B_CALL);	/* but note callout done */
1358 		simple_unlock(&bp->b_interlock);
1359 		(*bp->b_iodone)(bp);
1360 	} else {
1361 		if (ISSET(bp->b_flags, B_ASYNC)) {	/* if async, release */
1362 			simple_unlock(&bp->b_interlock);
1363 			brelse(bp);
1364 		} else {			/* or just wakeup the buffer */
1365 			CLR(bp->b_flags, B_WANTED);
1366 			wakeup(bp);
1367 			simple_unlock(&bp->b_interlock);
1368 		}
1369 	}
1370 
1371 	splx(s);
1372 }
1373 
1374 /*
1375  * Return a count of buffers on the "locked" queue.
1376  */
1377 int
1378 count_lock_queue(void)
1379 {
1380 	struct buf *bp;
1381 	int n = 0;
1382 
1383 	simple_lock(&bqueue_slock);
1384 	TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED], b_freelist)
1385 		n++;
1386 	simple_unlock(&bqueue_slock);
1387 	return (n);
1388 }
1389 
1390 /*
1391  * Wait for all buffers to complete I/O
1392  * Return the number of "stuck" buffers.
1393  */
1394 int
1395 buf_syncwait(void)
1396 {
1397 	struct buf *bp;
1398 	int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
1399 
1400 	dcount = 10000;
1401 	for (iter = 0; iter < 20;) {
1402 		s = splbio();
1403 		simple_lock(&bqueue_slock);
1404 		nbusy = 0;
1405 		for (ihash = 0; ihash < bufhash+1; ihash++) {
1406 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1407 			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1408 				nbusy++;
1409 			/*
1410 			 * With soft updates, some buffers that are
1411 			 * written will be remarked as dirty until other
1412 			 * buffers are written.
1413 			 */
1414 			if (bp->b_vp && bp->b_vp->v_mount
1415 			    && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1416 			    && (bp->b_flags & B_DELWRI)) {
1417 				simple_lock(&bp->b_interlock);
1418 				bremfree(bp);
1419 				bp->b_flags |= B_BUSY;
1420 				nbusy++;
1421 				simple_unlock(&bp->b_interlock);
1422 				simple_unlock(&bqueue_slock);
1423 				bawrite(bp);
1424 				if (dcount-- <= 0) {
1425 					printf("softdep ");
1426 					goto fail;
1427 				}
1428 				simple_lock(&bqueue_slock);
1429 			}
1430 		    }
1431 		}
1432 
1433 		simple_unlock(&bqueue_slock);
1434 		splx(s);
1435 
1436 		if (nbusy == 0)
1437 			break;
1438 		if (nbusy_prev == 0)
1439 			nbusy_prev = nbusy;
1440 		printf("%d ", nbusy);
1441 		tsleep(&nbusy, PRIBIO, "bflush",
1442 		    (iter == 0) ? 1 : hz / 25 * iter);
1443 		if (nbusy >= nbusy_prev) /* we didn't flush anything */
1444 			iter++;
1445 		else
1446 			nbusy_prev = nbusy;
1447 	}
1448 
1449 	if (nbusy) {
1450 fail:;
1451 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1452 		printf("giving up\nPrinting vnodes for busy buffers\n");
1453 		for (ihash = 0; ihash < bufhash+1; ihash++) {
1454 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1455 			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1456 				vprint(NULL, bp->b_vp);
1457 		    }
1458 		}
1459 #endif
1460 	}
1461 
1462 	return nbusy;
1463 }
1464 
1465 static void
1466 sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
1467 {
1468 
1469 	o->b_flags = i->b_flags;
1470 	o->b_error = i->b_error;
1471 	o->b_prio = i->b_prio;
1472 	o->b_dev = i->b_dev;
1473 	o->b_bufsize = i->b_bufsize;
1474 	o->b_bcount = i->b_bcount;
1475 	o->b_resid = i->b_resid;
1476 	o->b_addr = PTRTOUINT64(i->b_un.b_addr);
1477 	o->b_blkno = i->b_blkno;
1478 	o->b_rawblkno = i->b_rawblkno;
1479 	o->b_iodone = PTRTOUINT64(i->b_iodone);
1480 	o->b_proc = PTRTOUINT64(i->b_proc);
1481 	o->b_vp = PTRTOUINT64(i->b_vp);
1482 	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1483 	o->b_lblkno = i->b_lblkno;
1484 }
1485 
1486 #define KERN_BUFSLOP 20
1487 static int
1488 sysctl_dobuf(SYSCTLFN_ARGS)
1489 {
1490 	struct buf *bp;
1491 	struct buf_sysctl bs;
1492 	char *dp;
1493 	u_int i, op, arg;
1494 	size_t len, needed, elem_size, out_size;
1495 	int error, s, elem_count;
1496 
1497 	if (namelen == 1 && name[0] == CTL_QUERY)
1498 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
1499 
1500 	if (namelen != 4)
1501 		return (EINVAL);
1502 
1503 	dp = oldp;
1504 	len = (oldp != NULL) ? *oldlenp : 0;
1505 	op = name[0];
1506 	arg = name[1];
1507 	elem_size = name[2];
1508 	elem_count = name[3];
1509 	out_size = MIN(sizeof(bs), elem_size);
1510 
1511 	/*
1512 	 * at the moment, these are just "placeholders" to make the
1513 	 * API for retrieving kern.buf data more extensible in the
1514 	 * future.
1515 	 *
1516 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
1517 	 * these will be resolved at a later point.
1518 	 */
1519 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1520 	    elem_size < 1 || elem_count < 0)
1521 		return (EINVAL);
1522 
1523 	error = 0;
1524 	needed = 0;
1525 	s = splbio();
1526 	simple_lock(&bqueue_slock);
1527 	for (i = 0; i < BQUEUES; i++) {
1528 		TAILQ_FOREACH(bp, &bufqueues[i], b_freelist) {
1529 			if (len >= elem_size && elem_count > 0) {
1530 				sysctl_fillbuf(bp, &bs);
1531 				error = copyout(&bs, dp, out_size);
1532 				if (error)
1533 					goto cleanup;
1534 				dp += elem_size;
1535 				len -= elem_size;
1536 			}
1537 			if (elem_count > 0) {
1538 				needed += elem_size;
1539 				if (elem_count != INT_MAX)
1540 					elem_count--;
1541 			}
1542 		}
1543 	}
1544 cleanup:
1545 	simple_unlock(&bqueue_slock);
1546 	splx(s);
1547 
1548 	*oldlenp = needed;
1549 	if (oldp == NULL)
1550 		*oldlenp += KERN_BUFSLOP * sizeof(struct buf);
1551 
1552 	return (error);
1553 }
1554 
1555 static int
1556 sysctl_bufvm_update(SYSCTLFN_ARGS)
1557 {
1558 	int t, error;
1559 	struct sysctlnode node;
1560 
1561 	node = *rnode;
1562 	node.sysctl_data = &t;
1563 	t = *(int*)rnode->sysctl_data;
1564 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1565 	if (error || newp == NULL)
1566 		return (error);
1567 
1568 	if (rnode->sysctl_data == &bufcache) {
1569 		if (t < 0 || t > 100)
1570 			return (EINVAL);
1571 		bufcache = t;
1572 		bufmem_hiwater = buf_memcalc();
1573 		bufmem_lowater = (bufmem_hiwater >> 3);
1574 		if (bufmem_lowater < 64 * 1024)
1575 			/* Ensure a reasonable minimum value */
1576 			bufmem_lowater = 64 * 1024;
1577 
1578 	} else if (rnode->sysctl_data == &bufmem_lowater) {
1579 		bufmem_lowater = t;
1580 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
1581 		bufmem_hiwater = t;
1582 	} else
1583 		return (EINVAL);
1584 
1585 	/* Drain until below new high water mark */
1586 	while ((t = bufmem - bufmem_hiwater) >= 0) {
1587 		if (buf_drain(t / (2*1024)) <= 0)
1588 			break;
1589 	}
1590 
1591 	return 0;
1592 }
1593 
1594 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1595 {
1596 
1597 	sysctl_createv(clog, 0, NULL, NULL,
1598 		       CTLFLAG_PERMANENT,
1599 		       CTLTYPE_NODE, "kern", NULL,
1600 		       NULL, 0, NULL, 0,
1601 		       CTL_KERN, CTL_EOL);
1602 	sysctl_createv(clog, 0, NULL, NULL,
1603 		       CTLFLAG_PERMANENT,
1604 		       CTLTYPE_NODE, "buf",
1605 		       SYSCTL_DESCR("Kernel buffer cache information"),
1606 		       sysctl_dobuf, 0, NULL, 0,
1607 		       CTL_KERN, KERN_BUF, CTL_EOL);
1608 }
1609 
1610 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1611 {
1612 
1613 	sysctl_createv(clog, 0, NULL, NULL,
1614 		       CTLFLAG_PERMANENT,
1615 		       CTLTYPE_NODE, "vm", NULL,
1616 		       NULL, 0, NULL, 0,
1617 		       CTL_VM, CTL_EOL);
1618 
1619 	sysctl_createv(clog, 0, NULL, NULL,
1620 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1621 		       CTLTYPE_INT, "bufcache",
1622 		       SYSCTL_DESCR("Percentage of kernel memory to use for "
1623 				    "buffer cache"),
1624 		       sysctl_bufvm_update, 0, &bufcache, 0,
1625 		       CTL_VM, CTL_CREATE, CTL_EOL);
1626 	sysctl_createv(clog, 0, NULL, NULL,
1627 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1628 		       CTLTYPE_INT, "bufmem",
1629 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
1630 				    "cache"),
1631 		       NULL, 0, &bufmem, 0,
1632 		       CTL_VM, CTL_CREATE, CTL_EOL);
1633 	sysctl_createv(clog, 0, NULL, NULL,
1634 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1635 		       CTLTYPE_INT, "bufmem_lowater",
1636 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
1637 				    "reserve for buffer cache"),
1638 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1639 		       CTL_VM, CTL_CREATE, CTL_EOL);
1640 	sysctl_createv(clog, 0, NULL, NULL,
1641 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1642 		       CTLTYPE_INT, "bufmem_hiwater",
1643 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
1644 				    "for buffer cache"),
1645 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1646 		       CTL_VM, CTL_CREATE, CTL_EOL);
1647 }
1648 
1649 #ifdef DEBUG
1650 /*
1651  * Print out statistics on the current allocation of the buffer pool.
1652  * Can be enabled to print out on every ``sync'' by setting "syncprt"
1653  * in vfs_syscalls.c using sysctl.
1654  */
1655 void
1656 vfs_bufstats(void)
1657 {
1658 	int s, i, j, count;
1659 	struct buf *bp;
1660 	struct bqueues *dp;
1661 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1662 	static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1663 
1664 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1665 		count = 0;
1666 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1667 			counts[j] = 0;
1668 		s = splbio();
1669 		TAILQ_FOREACH(bp, dp, b_freelist) {
1670 			counts[bp->b_bufsize/PAGE_SIZE]++;
1671 			count++;
1672 		}
1673 		splx(s);
1674 		printf("%s: total-%d", bname[i], count);
1675 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1676 			if (counts[j] != 0)
1677 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1678 		printf("\n");
1679 	}
1680 }
1681 #endif /* DEBUG */
1682