xref: /netbsd-src/sys/kern/vfs_bio.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /*	$NetBSD: vfs_bio.c,v 1.76 2001/04/01 16:16:56 chs Exp $	*/
2 
3 /*-
4  * Copyright (c) 1994 Christopher G. Demetriou
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
42  */
43 
44 /*
45  * Some references:
46  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
47  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
48  *		UNIX Operating System (Addison Welley, 1989)
49  */
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/proc.h>
54 #include <sys/buf.h>
55 #include <sys/vnode.h>
56 #include <sys/mount.h>
57 #include <sys/malloc.h>
58 #include <sys/resourcevar.h>
59 #include <sys/conf.h>
60 
61 #include <uvm/uvm.h>
62 
63 #include <miscfs/specfs/specdev.h>
64 
65 /* Macros to clear/set/test flags. */
66 #define	SET(t, f)	(t) |= (f)
67 #define	CLR(t, f)	(t) &= ~(f)
68 #define	ISSET(t, f)	((t) & (f))
69 
70 /*
71  * Definitions for the buffer hash lists.
72  */
73 #define	BUFHASH(dvp, lbn)	\
74 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
75 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
76 u_long	bufhash;
77 struct bio_ops bioops;	/* I/O operation notification */
78 
79 /*
80  * Insq/Remq for the buffer hash lists.
81  */
82 #define	binshash(bp, dp)	LIST_INSERT_HEAD(dp, bp, b_hash)
83 #define	bremhash(bp)		LIST_REMOVE(bp, b_hash)
84 
85 /*
86  * Definitions for the buffer free lists.
87  */
88 #define	BQUEUES		4		/* number of free buffer queues */
89 
90 #define	BQ_LOCKED	0		/* super-blocks &c */
91 #define	BQ_LRU		1		/* lru, useful buffers */
92 #define	BQ_AGE		2		/* rubbish */
93 #define	BQ_EMPTY	3		/* buffer headers with no memory */
94 
95 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
96 int needbuffer;
97 
98 /*
99  * Buffer pool for I/O buffers.
100  */
101 struct pool bufpool;
102 
103 /*
104  * Insq/Remq for the buffer free lists.
105  */
106 #define	binsheadfree(bp, dp)	TAILQ_INSERT_HEAD(dp, bp, b_freelist)
107 #define	binstailfree(bp, dp)	TAILQ_INSERT_TAIL(dp, bp, b_freelist)
108 
109 static __inline struct buf *bio_doread __P((struct vnode *, daddr_t, int,
110 					    struct ucred *, int));
111 int count_lock_queue __P((void));
112 
113 void
114 bremfree(bp)
115 	struct buf *bp;
116 {
117 	int s = splbio();
118 
119 	struct bqueues *dp = NULL;
120 
121 	/*
122 	 * We only calculate the head of the freelist when removing
123 	 * the last element of the list as that is the only time that
124 	 * it is needed (e.g. to reset the tail pointer).
125 	 *
126 	 * NB: This makes an assumption about how tailq's are implemented.
127 	 */
128 	if (bp->b_freelist.tqe_next == NULL) {
129 		for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
130 			if (dp->tqh_last == &bp->b_freelist.tqe_next)
131 				break;
132 		if (dp == &bufqueues[BQUEUES])
133 			panic("bremfree: lost tail");
134 	}
135 	TAILQ_REMOVE(dp, bp, b_freelist);
136 	splx(s);
137 }
138 
139 /*
140  * Initialize buffers and hash links for buffers.
141  */
142 void
143 bufinit()
144 {
145 	struct buf *bp;
146 	struct bqueues *dp;
147 	int i;
148 	int base, residual;
149 
150 	/*
151 	 * Initialize the buffer pool.  This pool is used for buffers
152 	 * which are strictly I/O control blocks, not buffer cache
153 	 * buffers.
154 	 */
155 	pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", 0,
156 	    NULL, NULL, M_DEVBUF);
157 
158 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
159 		TAILQ_INIT(dp);
160 	bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
161 	base = bufpages / nbuf;
162 	residual = bufpages % nbuf;
163 	for (i = 0; i < nbuf; i++) {
164 		bp = &buf[i];
165 		memset((char *)bp, 0, sizeof(*bp));
166 		bp->b_dev = NODEV;
167 		bp->b_vnbufs.le_next = NOLIST;
168 		LIST_INIT(&bp->b_dep);
169 		bp->b_data = buffers + i * MAXBSIZE;
170 		if (i < residual)
171 			bp->b_bufsize = (base + 1) * PAGE_SIZE;
172 		else
173 			bp->b_bufsize = base * PAGE_SIZE;
174 		bp->b_flags = B_INVAL;
175 		dp = bp->b_bufsize ? &bufqueues[BQ_AGE] : &bufqueues[BQ_EMPTY];
176 		binsheadfree(bp, dp);
177 		binshash(bp, &invalhash);
178 	}
179 }
180 
181 static __inline struct buf *
182 bio_doread(vp, blkno, size, cred, async)
183 	struct vnode *vp;
184 	daddr_t blkno;
185 	int size;
186 	struct ucred *cred;
187 	int async;
188 {
189 	struct buf *bp;
190 	struct proc *p = (curproc != NULL ? curproc : &proc0);	/* XXX */
191 
192 	bp = getblk(vp, blkno, size, 0, 0);
193 
194 	/*
195 	 * If buffer does not have data valid, start a read.
196 	 * Note that if buffer is B_INVAL, getblk() won't return it.
197 	 * Therefore, it's valid if it's I/O has completed or been delayed.
198 	 */
199 	if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
200 		/* Start I/O for the buffer. */
201 		SET(bp->b_flags, B_READ | async);
202 		VOP_STRATEGY(bp);
203 
204 		/* Pay for the read. */
205 		p->p_stats->p_ru.ru_inblock++;
206 	} else if (async) {
207 		brelse(bp);
208 	}
209 
210 	return (bp);
211 }
212 
213 /*
214  * Read a disk block.
215  * This algorithm described in Bach (p.54).
216  */
217 int
218 bread(vp, blkno, size, cred, bpp)
219 	struct vnode *vp;
220 	daddr_t blkno;
221 	int size;
222 	struct ucred *cred;
223 	struct buf **bpp;
224 {
225 	struct buf *bp;
226 
227 	/* Get buffer for block. */
228 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
229 
230 	/*
231 	 * Delayed write buffers are found in the cache and have
232 	 * valid contents. Also, B_ERROR is not set, otherwise
233 	 * getblk() would not have returned them.
234 	 */
235 	if (ISSET(bp->b_flags, B_DONE|B_DELWRI))
236 		return (0);
237 
238 	/*
239 	 * Otherwise, we had to start a read for it; wait until
240 	 * it's valid and return the result.
241 	 */
242 	return (biowait(bp));
243 }
244 
245 /*
246  * Read-ahead multiple disk blocks. The first is sync, the rest async.
247  * Trivial modification to the breada algorithm presented in Bach (p.55).
248  */
249 int
250 breadn(vp, blkno, size, rablks, rasizes, nrablks, cred, bpp)
251 	struct vnode *vp;
252 	daddr_t blkno; int size;
253 	daddr_t rablks[]; int rasizes[];
254 	int nrablks;
255 	struct ucred *cred;
256 	struct buf **bpp;
257 {
258 	struct buf *bp;
259 	int i;
260 
261 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
262 
263 	/*
264 	 * For each of the read-ahead blocks, start a read, if necessary.
265 	 */
266 	for (i = 0; i < nrablks; i++) {
267 		/* If it's in the cache, just go on to next one. */
268 		if (incore(vp, rablks[i]))
269 			continue;
270 
271 		/* Get a buffer for the read-ahead block */
272 		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
273 	}
274 
275 	/*
276 	 * Delayed write buffers are found in the cache and have
277 	 * valid contents. Also, B_ERROR is not set, otherwise
278 	 * getblk() would not have returned them.
279 	 */
280 	if (ISSET(bp->b_flags, B_DONE|B_DELWRI))
281 		return (0);
282 
283 	/*
284 	 * Otherwise, we had to start a read for it; wait until
285 	 * it's valid and return the result.
286 	 */
287 	return (biowait(bp));
288 }
289 
290 /*
291  * Read with single-block read-ahead.  Defined in Bach (p.55), but
292  * implemented as a call to breadn().
293  * XXX for compatibility with old file systems.
294  */
295 int
296 breada(vp, blkno, size, rablkno, rabsize, cred, bpp)
297 	struct vnode *vp;
298 	daddr_t blkno; int size;
299 	daddr_t rablkno; int rabsize;
300 	struct ucred *cred;
301 	struct buf **bpp;
302 {
303 
304 	return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
305 }
306 
307 /*
308  * Block write.  Described in Bach (p.56)
309  */
310 int
311 bwrite(bp)
312 	struct buf *bp;
313 {
314 	int rv, sync, wasdelayed, s;
315 	struct proc *p = (curproc != NULL ? curproc : &proc0);	/* XXX */
316 	struct vnode *vp;
317 	struct mount *mp;
318 
319 	vp = bp->b_vp;
320 	if (vp != NULL) {
321 		if (vp->v_type == VBLK)
322 			mp = vp->v_specmountpoint;
323 		else
324 			mp = vp->v_mount;
325 	} else {
326 		mp = NULL;
327 	}
328 
329 	/*
330 	 * Remember buffer type, to switch on it later.  If the write was
331 	 * synchronous, but the file system was mounted with MNT_ASYNC,
332 	 * convert it to a delayed write.
333 	 * XXX note that this relies on delayed tape writes being converted
334 	 * to async, not sync writes (which is safe, but ugly).
335 	 */
336 	sync = !ISSET(bp->b_flags, B_ASYNC);
337 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
338 		bdwrite(bp);
339 		return (0);
340 	}
341 
342 	/*
343 	 * Collect statistics on synchronous and asynchronous writes.
344 	 * Writes to block devices are charged to their associated
345 	 * filesystem (if any).
346 	 */
347 	if (mp != NULL) {
348 		if (sync)
349 			mp->mnt_stat.f_syncwrites++;
350 		else
351 			mp->mnt_stat.f_asyncwrites++;
352 	}
353 
354 	wasdelayed = ISSET(bp->b_flags, B_DELWRI);
355 
356 	s = splbio();
357 
358 	CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
359 
360 	/*
361 	 * Pay for the I/O operation and make sure the buf is on the correct
362 	 * vnode queue.
363 	 */
364 	if (wasdelayed)
365 		reassignbuf(bp, bp->b_vp);
366 	else
367 		p->p_stats->p_ru.ru_oublock++;
368 
369 	/* Initiate disk write.  Make sure the appropriate party is charged. */
370 	bp->b_vp->v_numoutput++;
371 	splx(s);
372 
373 	VOP_STRATEGY(bp);
374 
375 	if (sync) {
376 		/* If I/O was synchronous, wait for it to complete. */
377 		rv = biowait(bp);
378 
379 		/* Release the buffer. */
380 		brelse(bp);
381 
382 		return (rv);
383 	} else {
384 		return (0);
385 	}
386 }
387 
388 int
389 vn_bwrite(v)
390 	void *v;
391 {
392 	struct vop_bwrite_args *ap = v;
393 
394 	return (bwrite(ap->a_bp));
395 }
396 
397 /*
398  * Delayed write.
399  *
400  * The buffer is marked dirty, but is not queued for I/O.
401  * This routine should be used when the buffer is expected
402  * to be modified again soon, typically a small write that
403  * partially fills a buffer.
404  *
405  * NB: magnetic tapes cannot be delayed; they must be
406  * written in the order that the writes are requested.
407  *
408  * Described in Leffler, et al. (pp. 208-213).
409  */
410 void
411 bdwrite(bp)
412 	struct buf *bp;
413 {
414 	struct proc *p = (curproc != NULL ? curproc : &proc0);	/* XXX */
415 	int s;
416 
417 	/* If this is a tape block, write the block now. */
418 	/* XXX NOTE: the memory filesystem usurpes major device */
419 	/* XXX       number 255, which is a bad idea.		*/
420 	if (bp->b_dev != NODEV &&
421 	    major(bp->b_dev) != 255 &&	/* XXX - MFS buffers! */
422 	    bdevsw[major(bp->b_dev)].d_type == D_TAPE) {
423 		bawrite(bp);
424 		return;
425 	}
426 
427 	/*
428 	 * If the block hasn't been seen before:
429 	 *	(1) Mark it as having been seen,
430 	 *	(2) Charge for the write,
431 	 *	(3) Make sure it's on its vnode's correct block list.
432 	 */
433 	s = splbio();
434 
435 	if (!ISSET(bp->b_flags, B_DELWRI)) {
436 		SET(bp->b_flags, B_DELWRI);
437 		p->p_stats->p_ru.ru_oublock++;
438 		reassignbuf(bp, bp->b_vp);
439 	}
440 
441 	/* Otherwise, the "write" is done, so mark and release the buffer. */
442 	CLR(bp->b_flags, B_NEEDCOMMIT|B_DONE);
443 	splx(s);
444 
445 	brelse(bp);
446 }
447 
448 /*
449  * Asynchronous block write; just an asynchronous bwrite().
450  */
451 void
452 bawrite(bp)
453 	struct buf *bp;
454 {
455 
456 	SET(bp->b_flags, B_ASYNC);
457 	VOP_BWRITE(bp);
458 }
459 
460 /*
461  * Ordered block write; asynchronous, but I/O will occur in order queued.
462  */
463 void
464 bowrite(bp)
465 	struct buf *bp;
466 {
467 
468 	SET(bp->b_flags, B_ASYNC | B_ORDERED);
469 	VOP_BWRITE(bp);
470 }
471 
472 /*
473  * Same as first half of bdwrite, mark buffer dirty, but do not release it.
474  */
475 void
476 bdirty(bp)
477 	struct buf *bp;
478 {
479 	struct proc *p = (curproc != NULL ? curproc : &proc0);	/* XXX */
480 	int s;
481 
482 	s = splbio();
483 
484 	CLR(bp->b_flags, B_AGE);
485 
486 	if (!ISSET(bp->b_flags, B_DELWRI)) {
487 		SET(bp->b_flags, B_DELWRI);
488 		p->p_stats->p_ru.ru_oublock++;
489 		reassignbuf(bp, bp->b_vp);
490 	}
491 
492 	splx(s);
493 }
494 
495 /*
496  * Release a buffer on to the free lists.
497  * Described in Bach (p. 46).
498  */
499 void
500 brelse(bp)
501 	struct buf *bp;
502 {
503 	struct bqueues *bufq;
504 	int s;
505 
506 	KASSERT(ISSET(bp->b_flags, B_BUSY));
507 
508 	/* Wake up any processes waiting for any buffer to become free. */
509 	if (needbuffer) {
510 		needbuffer = 0;
511 		wakeup(&needbuffer);
512 	}
513 
514 	/* Block disk interrupts. */
515 	s = splbio();
516 
517 	/* Wake up any proceeses waiting for _this_ buffer to become free. */
518 	if (ISSET(bp->b_flags, B_WANTED)) {
519 		CLR(bp->b_flags, B_WANTED|B_AGE);
520 		wakeup(bp);
521 	}
522 
523 	/*
524 	 * Determine which queue the buffer should be on, then put it there.
525 	 */
526 
527 	/* If it's locked, don't report an error; try again later. */
528 	if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
529 		CLR(bp->b_flags, B_ERROR);
530 
531 	/* If it's not cacheable, or an error, mark it invalid. */
532 	if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
533 		SET(bp->b_flags, B_INVAL);
534 
535 	if (ISSET(bp->b_flags, B_VFLUSH)) {
536 		/*
537 		 * This is a delayed write buffer that was just flushed to
538 		 * disk.  It is still on the LRU queue.  If it's become
539 		 * invalid, then we need to move it to a different queue;
540 		 * otherwise leave it in its current position.
541 		 */
542 		CLR(bp->b_flags, B_VFLUSH);
543 		if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE))
544 			goto already_queued;
545 		else
546 			bremfree(bp);
547 	}
548 
549 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
550 		/*
551 		 * If it's invalid or empty, dissociate it from its vnode
552 		 * and put on the head of the appropriate queue.
553 		 */
554 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
555 			(*bioops.io_deallocate)(bp);
556 		CLR(bp->b_flags, B_DONE|B_DELWRI);
557 		if (bp->b_vp) {
558 			reassignbuf(bp, bp->b_vp);
559 			brelvp(bp);
560 		}
561 		if (bp->b_bufsize <= 0)
562 			/* no data */
563 			bufq = &bufqueues[BQ_EMPTY];
564 		else
565 			/* invalid data */
566 			bufq = &bufqueues[BQ_AGE];
567 		binsheadfree(bp, bufq);
568 	} else {
569 		/*
570 		 * It has valid data.  Put it on the end of the appropriate
571 		 * queue, so that it'll stick around for as long as possible.
572 		 * If buf is AGE, but has dependencies, must put it on last
573 		 * bufqueue to be scanned, ie LRU. This protects against the
574 		 * livelock where BQ_AGE only has buffers with dependencies,
575 		 * and we thus never get to the dependent buffers in BQ_LRU.
576 		 */
577 		if (ISSET(bp->b_flags, B_LOCKED))
578 			/* locked in core */
579 			bufq = &bufqueues[BQ_LOCKED];
580 		else if (!ISSET(bp->b_flags, B_AGE))
581 			/* valid data */
582 			bufq = &bufqueues[BQ_LRU];
583 		else {
584 			/* stale but valid data */
585 			int has_deps;
586 
587 			if (LIST_FIRST(&bp->b_dep) != NULL &&
588 			    bioops.io_countdeps)
589 				has_deps = (*bioops.io_countdeps)(bp, 0);
590 			else
591 				has_deps = 0;
592 			bufq = has_deps ? &bufqueues[BQ_LRU] :
593 			    &bufqueues[BQ_AGE];
594 		}
595 		binstailfree(bp, bufq);
596 	}
597 
598 already_queued:
599 	/* Unlock the buffer. */
600 	CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE|B_ORDERED);
601 	SET(bp->b_flags, B_CACHE);
602 
603 	/* Allow disk interrupts. */
604 	splx(s);
605 }
606 
607 /*
608  * Determine if a block is in the cache.
609  * Just look on what would be its hash chain.  If it's there, return
610  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
611  * we normally don't return the buffer, unless the caller explicitly
612  * wants us to.
613  */
614 struct buf *
615 incore(vp, blkno)
616 	struct vnode *vp;
617 	daddr_t blkno;
618 {
619 	struct buf *bp;
620 
621 	bp = BUFHASH(vp, blkno)->lh_first;
622 
623 	/* Search hash chain */
624 	for (; bp != NULL; bp = bp->b_hash.le_next) {
625 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
626 		    !ISSET(bp->b_flags, B_INVAL))
627 		return (bp);
628 	}
629 
630 	return (NULL);
631 }
632 
633 /*
634  * Get a block of requested size that is associated with
635  * a given vnode and block offset. If it is found in the
636  * block cache, mark it as having been found, make it busy
637  * and return it. Otherwise, return an empty block of the
638  * correct size. It is up to the caller to insure that the
639  * cached blocks be of the correct size.
640  */
641 struct buf *
642 getblk(vp, blkno, size, slpflag, slptimeo)
643 	struct vnode *vp;
644 	daddr_t blkno;
645 	int size, slpflag, slptimeo;
646 {
647 	struct buf *bp;
648 	int s, err;
649 
650 start:
651 	bp = incore(vp, blkno);
652 	if (bp != NULL) {
653 		s = splbio();
654 		if (ISSET(bp->b_flags, B_BUSY)) {
655 			if (curproc == uvm.pagedaemon_proc) {
656 				splx(s);
657 				return NULL;
658 			}
659 			SET(bp->b_flags, B_WANTED);
660 			err = tsleep(bp, slpflag | (PRIBIO + 1), "getblk",
661 				     slptimeo);
662 			splx(s);
663 			if (err)
664 				return (NULL);
665 			goto start;
666 		}
667 #ifdef DIAGNOSTIC
668 		if (ISSET(bp->b_flags, B_DONE|B_DELWRI) && bp->b_bcount < size)
669 			panic("getblk: block size invariant failed");
670 #endif
671 		SET(bp->b_flags, B_BUSY);
672 		bremfree(bp);
673 		splx(s);
674 	} else {
675 		if ((bp = getnewbuf(slpflag, slptimeo)) == NULL)
676 			goto start;
677 
678 		binshash(bp, BUFHASH(vp, blkno));
679 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
680 		s = splbio();
681 		bgetvp(vp, bp);
682 		splx(s);
683 	}
684 	allocbuf(bp, size);
685 	return (bp);
686 }
687 
688 /*
689  * Get an empty, disassociated buffer of given size.
690  */
691 struct buf *
692 geteblk(size)
693 	int size;
694 {
695 	struct buf *bp;
696 
697 	while ((bp = getnewbuf(0, 0)) == 0)
698 		;
699 	SET(bp->b_flags, B_INVAL);
700 	binshash(bp, &invalhash);
701 	allocbuf(bp, size);
702 	return (bp);
703 }
704 
705 /*
706  * Expand or contract the actual memory allocated to a buffer.
707  *
708  * If the buffer shrinks, data is lost, so it's up to the
709  * caller to have written it out *first*; this routine will not
710  * start a write.  If the buffer grows, it's the callers
711  * responsibility to fill out the buffer's additional contents.
712  */
713 void
714 allocbuf(bp, size)
715 	struct buf *bp;
716 	int size;
717 {
718 	struct buf *nbp;
719 	vsize_t desired_size;
720 	int s;
721 
722 	desired_size = round_page((vsize_t)size);
723 	if (desired_size > MAXBSIZE)
724 		panic("allocbuf: buffer larger than MAXBSIZE requested");
725 
726 	if (bp->b_bufsize == desired_size)
727 		goto out;
728 
729 	/*
730 	 * If the buffer is smaller than the desired size, we need to snarf
731 	 * it from other buffers.  Get buffers (via getnewbuf()), and
732 	 * steal their pages.
733 	 */
734 	while (bp->b_bufsize < desired_size) {
735 		int amt;
736 
737 		/* find a buffer */
738 		while ((nbp = getnewbuf(0, 0)) == NULL)
739 			;
740 
741 		SET(nbp->b_flags, B_INVAL);
742 		binshash(nbp, &invalhash);
743 
744 		/* and steal its pages, up to the amount we need */
745 		amt = min(nbp->b_bufsize, (desired_size - bp->b_bufsize));
746 		pagemove((nbp->b_data + nbp->b_bufsize - amt),
747 			 bp->b_data + bp->b_bufsize, amt);
748 		bp->b_bufsize += amt;
749 		nbp->b_bufsize -= amt;
750 
751 		/* reduce transfer count if we stole some data */
752 		if (nbp->b_bcount > nbp->b_bufsize)
753 			nbp->b_bcount = nbp->b_bufsize;
754 
755 #ifdef DIAGNOSTIC
756 		if (nbp->b_bufsize < 0)
757 			panic("allocbuf: negative bufsize");
758 #endif
759 
760 		brelse(nbp);
761 	}
762 
763 	/*
764 	 * If we want a buffer smaller than the current size,
765 	 * shrink this buffer.  Grab a buf head from the EMPTY queue,
766 	 * move a page onto it, and put it on front of the AGE queue.
767 	 * If there are no free buffer headers, leave the buffer alone.
768 	 */
769 	if (bp->b_bufsize > desired_size) {
770 		s = splbio();
771 		if ((nbp = bufqueues[BQ_EMPTY].tqh_first) == NULL) {
772 			/* No free buffer head */
773 			splx(s);
774 			goto out;
775 		}
776 		bremfree(nbp);
777 		SET(nbp->b_flags, B_BUSY);
778 		splx(s);
779 
780 		/* move the page to it and note this change */
781 		pagemove(bp->b_data + desired_size,
782 		    nbp->b_data, bp->b_bufsize - desired_size);
783 		nbp->b_bufsize = bp->b_bufsize - desired_size;
784 		bp->b_bufsize = desired_size;
785 		nbp->b_bcount = 0;
786 		SET(nbp->b_flags, B_INVAL);
787 
788 		/* release the newly-filled buffer and leave */
789 		brelse(nbp);
790 	}
791 
792 out:
793 	bp->b_bcount = size;
794 }
795 
796 /*
797  * Find a buffer which is available for use.
798  * Select something from a free list.
799  * Preference is to AGE list, then LRU list.
800  */
801 struct buf *
802 getnewbuf(slpflag, slptimeo)
803 	int slpflag, slptimeo;
804 {
805 	struct buf *bp;
806 	int s;
807 
808 start:
809 	s = splbio();
810 	if ((bp = bufqueues[BQ_AGE].tqh_first) != NULL ||
811 	    (bp = bufqueues[BQ_LRU].tqh_first) != NULL) {
812 		bremfree(bp);
813 	} else {
814 		/* wait for a free buffer of any kind */
815 		needbuffer = 1;
816 		tsleep(&needbuffer, slpflag|(PRIBIO+1), "getnewbuf", slptimeo);
817 		splx(s);
818 		return (NULL);
819 	}
820 
821 	if (ISSET(bp->b_flags, B_VFLUSH)) {
822 		/*
823 		 * This is a delayed write buffer being flushed to disk.  Make
824 		 * sure it gets aged out of the queue when it's finished, and
825 		 * leave it off the LRU queue.
826 		 */
827 		CLR(bp->b_flags, B_VFLUSH);
828 		SET(bp->b_flags, B_AGE);
829 		splx(s);
830 		goto start;
831 	}
832 
833 	/* Buffer is no longer on free lists. */
834 	SET(bp->b_flags, B_BUSY);
835 
836 	/*
837 	 * If buffer was a delayed write, start it and return NULL
838 	 * (since we might sleep while starting the write).
839 	 */
840 	if (ISSET(bp->b_flags, B_DELWRI)) {
841 		splx(s);
842 		/*
843 		 * This buffer has gone through the LRU, so make sure it gets
844 		 * reused ASAP.
845 		 */
846 		SET(bp->b_flags, B_AGE);
847 		bawrite(bp);
848 		return (NULL);
849 	}
850 
851 	/* disassociate us from our vnode, if we had one... */
852 	if (bp->b_vp)
853 		brelvp(bp);
854 	splx(s);
855 
856 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
857 		(*bioops.io_deallocate)(bp);
858 
859 	/* clear out various other fields */
860 	bp->b_flags = B_BUSY;
861 	bp->b_dev = NODEV;
862 	bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
863 	bp->b_iodone = 0;
864 	bp->b_error = 0;
865 	bp->b_resid = 0;
866 	bp->b_bcount = 0;
867 
868 	bremhash(bp);
869 	return (bp);
870 }
871 
872 /*
873  * Wait for operations on the buffer to complete.
874  * When they do, extract and return the I/O's error value.
875  */
876 int
877 biowait(bp)
878 	struct buf *bp;
879 {
880 	int s;
881 
882 	s = splbio();
883 	while (!ISSET(bp->b_flags, B_DONE))
884 		tsleep(bp, PRIBIO + 1, "biowait", 0);
885 	splx(s);
886 
887 	/* check for interruption of I/O (e.g. via NFS), then errors. */
888 	if (ISSET(bp->b_flags, B_EINTR)) {
889 		CLR(bp->b_flags, B_EINTR);
890 		return (EINTR);
891 	} else if (ISSET(bp->b_flags, B_ERROR))
892 		return (bp->b_error ? bp->b_error : EIO);
893 	else
894 		return (0);
895 }
896 
897 /*
898  * Mark I/O complete on a buffer.
899  *
900  * If a callback has been requested, e.g. the pageout
901  * daemon, do so. Otherwise, awaken waiting processes.
902  *
903  * [ Leffler, et al., says on p.247:
904  *	"This routine wakes up the blocked process, frees the buffer
905  *	for an asynchronous write, or, for a request by the pagedaemon
906  *	process, invokes a procedure specified in the buffer structure" ]
907  *
908  * In real life, the pagedaemon (or other system processes) wants
909  * to do async stuff to, and doesn't want the buffer brelse()'d.
910  * (for swap pager, that puts swap buffers on the free lists (!!!),
911  * for the vn device, that puts malloc'd buffers on the free lists!)
912  */
913 void
914 biodone(bp)
915 	struct buf *bp;
916 {
917 	int s = splbio();
918 
919 	if (ISSET(bp->b_flags, B_DONE))
920 		panic("biodone already");
921 	SET(bp->b_flags, B_DONE);		/* note that it's done */
922 
923 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
924 		(*bioops.io_complete)(bp);
925 
926 	if (!ISSET(bp->b_flags, B_READ))	/* wake up reader */
927 		vwakeup(bp);
928 
929 	if (ISSET(bp->b_flags, B_CALL)) {	/* if necessary, call out */
930 		CLR(bp->b_flags, B_CALL);	/* but note callout done */
931 		(*bp->b_iodone)(bp);
932 	} else {
933 		if (ISSET(bp->b_flags, B_ASYNC))	/* if async, release */
934 			brelse(bp);
935 		else {				/* or just wakeup the buffer */
936 			CLR(bp->b_flags, B_WANTED);
937 			wakeup(bp);
938 		}
939 	}
940 
941 	splx(s);
942 }
943 
944 /*
945  * Return a count of buffers on the "locked" queue.
946  */
947 int
948 count_lock_queue()
949 {
950 	struct buf *bp;
951 	int n = 0;
952 
953 	for (bp = bufqueues[BQ_LOCKED].tqh_first; bp;
954 	    bp = bp->b_freelist.tqe_next)
955 		n++;
956 	return (n);
957 }
958 
959 #ifdef DEBUG
960 /*
961  * Print out statistics on the current allocation of the buffer pool.
962  * Can be enabled to print out on every ``sync'' by setting "syncprt"
963  * in vfs_syscalls.c using sysctl.
964  */
965 void
966 vfs_bufstats()
967 {
968 	int s, i, j, count;
969 	struct buf *bp;
970 	struct bqueues *dp;
971 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
972 	static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE", "EMPTY" };
973 
974 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
975 		count = 0;
976 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
977 			counts[j] = 0;
978 		s = splbio();
979 		for (bp = dp->tqh_first; bp; bp = bp->b_freelist.tqe_next) {
980 			counts[bp->b_bufsize/PAGE_SIZE]++;
981 			count++;
982 		}
983 		splx(s);
984 		printf("%s: total-%d", bname[i], count);
985 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
986 			if (counts[j] != 0)
987 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
988 		printf("\n");
989 	}
990 }
991 #endif /* DEBUG */
992